1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
6 \use_default_options true
7 \maintain_unincluded_children false
9 \language_package default
12 \font_roman TeX Gyre Pagella
14 \font_typewriter default
16 \font_default_family default
17 \use_non_tex_fonts true
23 \default_output_format pdf4
25 \bibtex_command default
26 \index_command default
27 \paperfontsize default
30 \pdf_title "Sähköpajan päiväkirja"
31 \pdf_author "Marek Nečada"
33 \pdf_bookmarksnumbered false
34 \pdf_bookmarksopen false
35 \pdf_bookmarksopenlevel 1
43 \use_package amsmath 1
44 \use_package amssymb 1
47 \use_package mathdots 1
48 \use_package mathtools 1
50 \use_package stackrel 1
51 \use_package stmaryrd 1
52 \use_package undertilde 1
54 \cite_engine_type default
58 \paperorientation portrait
68 \paragraph_separation indent
69 \paragraph_indentation default
70 \quotes_language swedish
73 \paperpagestyle default
74 \tracking_changes false
83 \begin_layout Standard
86 \begin_inset FormulaMacro
87 \newcommand{\vect}[1]{\mathbf{#1}}
91 \begin_inset FormulaMacro
92 \newcommand{\ush}[2]{Y_{#1,#2}}
96 \begin_inset FormulaMacro
97 \newcommand{\svwfr}[3]{\mathbf{u}_{#1,#2}^{#3}}
101 \begin_inset FormulaMacro
102 \newcommand{\svwfs}[3]{\mathbf{v}_{#1,#2}^{#3}}
106 \begin_inset FormulaMacro
107 \newcommand{\coeffs}{a}
111 \begin_inset FormulaMacro
112 \newcommand{\coeffsi}[3]{\coeffs_{#1,#2}^{#3}}
116 \begin_inset FormulaMacro
117 \newcommand{\coeffsip}[4]{\coeffs_{#1}^{#2,#3,#4}}
121 \begin_inset FormulaMacro
122 \newcommand{\coeffr}{p}
126 \begin_inset FormulaMacro
127 \newcommand{\coeffri}[3]{p_{#1,#2}^{#3}}
131 \begin_inset FormulaMacro
132 \newcommand{\coeffrip}[4]{p_{#1}^{#2,#3,#4}}
136 \begin_inset FormulaMacro
137 \newcommand{\coeffripext}[4]{p_{\mathrm{ext}(#1)}^{#2,#3,#4}}
141 \begin_inset FormulaMacro
142 \newcommand{\transop}{S}
148 \begin_layout Section
151 \begin_inset Formula $T$
155 \begin_inset CommandInset label
157 name "sec:T-matrix-simulations"
164 \begin_layout Standard
167 In order to get more detailed insight into the mode structure of the lattice
169 \begin_inset Formula $\Kp$
172 -point – most importantly, how much do the mode frequencies at the
173 \begin_inset Formula $\Kp$
176 -points differ from the empty lattice model – we performed multiple-scattering
178 \begin_inset Formula $T$
182 \begin_inset CommandInset citation
184 key "mackowski_analysis_1991"
188 for an infinite lattice based on our systems' geometry.
189 We give a brief overview of this method in the subsections
190 \begin_inset CommandInset ref
192 reference "sub:The-multiple-scattering-problem"
197 \begin_inset CommandInset ref
199 reference "sub:Periodic-systems"
206 The top advantage of the multiple-scattering
207 \begin_inset Formula $T$
210 -matrix approach is its computational efficiency for large finite systems
212 In the lattice mode analysis in this work, however, we use it here for
213 another reason, specifically the relative ease of describing symmetries
215 \begin_inset CommandInset citation
217 key "schulz_point-group_1999"
222 A brief theoretical overview of the method is presented in subsections
224 \begin_inset CommandInset ref
226 reference "sub:The-multiple-scattering-problem"
231 \begin_inset CommandInset ref
233 reference "sub:Periodic-systems"
240 \begin_layout Standard
242 xxx(a) shows the dispersions around the
243 \begin_inset Formula $\Kp$
246 -point for the cylindrical nanoparticles used in our experiment.
250 \begin_inset Formula $T$
253 -matrix of a single cylindrical nanoparticle was computed using the scuff-tmatri
254 x application from the SCUFF-EM suite~
257 \begin_inset CommandInset citation
259 key "SCUFF2,reid_efficient_2015"
265 and the system was solved up to the
266 \begin_inset Formula $l_{\mathrm{max}}=3$
269 (octupolar) degree of electric and magnetic spherical multipole.
271 xxx(b) shows the dispersions for a system where the cylindrical nanoparticles
272 were replaced with spherical ones with radius of
273 \begin_inset Formula $40\,\mathrm{nm}$
277 \begin_inset Formula $T$
280 -matrix was calculated semi-analytically using the Lorenz-Mie theory.
281 In both cases, we used gold with interpolated tabulated values of refraction
283 \begin_inset CommandInset citation
285 key "johnson_optical_1972"
289 for the nanoparticles and constant reffraction index of 1.52 for the background
291 In both cases, the diffracted orders do split into separate bands according
295 \begin_inset Formula $\Kp$
300 irreducible representations (cf.
302 \begin_inset CommandInset ref
304 reference "sm:symmetries"
308 ), but the splitting is extremely weak – not exceeding
309 \begin_inset Formula $1\,\mathrm{meV}$
312 for the spherical and even less for the cylindrical nanoparticles.
315 \begin_layout Standard
318 This is most likely due to the frequencies in our experiment being far below
319 the resonances of the nanoparticles, with the largest elements of the
320 \begin_inset Formula $T$
323 -matrix being of the order of
324 \begin_inset Formula $10^{-3}$
327 (for power-normalised waves).
328 The nanoparticles are therefore almost transparent, but still suffice to
329 provide enough feedback for lasing.
333 \begin_layout Subsection
334 The multiple-scattering problem
335 \begin_inset CommandInset label
337 name "sub:The-multiple-scattering-problem"
344 \begin_layout Standard
346 \begin_inset Formula $T$
349 -matrix approach, scattering properties of single nanoparticles are first
350 computed in terms of vector sperical wavefunctions (VSWFs)—the field incident
352 \begin_inset Formula $n$
355 -th nanoparticle from external sources can be expanded as
358 \vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)\label{eq:E_inc}
364 \begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$
368 \begin_inset Formula $\vect R_{n}$
371 being the position of the centre of
372 \begin_inset Formula $n$
376 \begin_inset Formula $\svwfr lmt$
379 are the regular VSWFs which can be expressed in terms of regular spherical
381 \begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$
384 and spherical harmonics
385 \begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$
388 ; the expressions can be found e.g.
390 \begin_inset Note Note
393 \begin_layout Plain Layout
394 few words about different conventions?
399 (care must be taken because of varying normalisation and phase conventions).
400 On the other hand, the field scattered by the particle can be (outside
401 the particle's circumscribing sphere) expanded in terms of singular VSWFs
403 \begin_inset Formula $\svwfs lmt$
406 which differ from the regular ones by regular spherical Bessel functions
407 being replaced with spherical Hankel functions
408 \begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$
414 \vect E_{n}^{\mathrm{scat}}\left(\vect r\right)=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right).\label{eq:E_scat}
419 The expansion coefficients
420 \begin_inset Formula $\coeffsip nlmt$
424 \begin_inset Formula $t=\mathrm{E},\mathrm{M}$
427 are related to the electric and magnetic multipole polarisation amplitudes
432 \begin_layout Standard
433 At a given frequency, assuming the system is linear, the relation between
434 the expansion coefficients in the VSWF bases is given by the so-called
436 \begin_inset Formula $T$
442 \coeffsip nlmt=\sum_{l',m',t'}T_{n}^{lmt;l'm't'}\coeffrip n{l'}{m'}{t'}.\label{eq:Tmatrix definition}
448 \begin_inset Formula $T$
451 -matrix is given by the shape and composition of the particle and fully
452 describes its scattering properties.
453 In theory it is infinite-dimensional, but in practice (at least for subwaveleng
454 th nanoparticles) its elements drop very quickly to negligible values with
455 growing degree indices
456 \begin_inset Formula $l,l'$
459 , enabling to take into account only the elements up to some finite degree,
461 \begin_inset Formula $l,l'\le l_{\mathrm{max}}$
466 \begin_inset Formula $T$
469 -matrix can be calculated numerically using various methods; here we used
470 the scuff-tmatrix tool from the SCUFF-EM suite
471 \begin_inset CommandInset citation
473 key "SCUFF2,reid_efficient_2015"
480 \begin_layout Standard
481 The singular SVWFs originating at
482 \begin_inset Formula $\vect R_{n}$
485 can be then re-expanded around another origin (nanoparticle location)
486 \begin_inset Formula $\vect R_{n'}$
489 in terms of regular SVWFs,
492 \svwfs lmt\left(\vect r_{n}\right)=\sum_{l',m',t'}\transop^{l'm't';lmt}\left(\vect R_{n'}-\vect R_{n}\right)\svwfr{l'}{m'}{t'}\left(\vect r_{n'}\right),\qquad\left|\vect r_{n'}\right|<\left|\vect R_{n'}-\vect R_{n}\right|.\label{eq:translation op def}
497 Analytical expressions for the translation operator
498 \begin_inset Formula $\transop^{lmt;l'm't'}\left(\vect R_{n'}-\vect R_{n}\right)$
502 \begin_inset CommandInset citation
504 key "xu_efficient_1998"
511 \begin_layout Standard
512 If we write the field incident onto
513 \begin_inset Formula $n$
516 -th nanoparticle as the sum of fields scattered from all the other nanoparticles
517 and an external field
518 \begin_inset Formula $\vect E_{0}$
524 \vect E_{n}^{\mathrm{inc}}\left(\vect r\right)=\vect E_{0}\left(\vect r\right)+\sum_{n'\ne n}\vect E_{n'}^{\mathrm{scat}}\left(\vect r\right)
531 \begin_inset CommandInset ref
538 \begin_inset CommandInset ref
540 reference "eq:translation op def"
544 , we obtain a set of linear equations for the electromagnetic response (multiple
545 scattering) of the whole set of nanoparticles,
548 \begin_layout Standard
549 \begin_inset Note Note
552 \begin_layout Plain Layout
555 \vect E_{n}^{\mathrm{inc}}\left(\vect r\right)=\vect E_{0}\left(\vect r\right)+\sum_{n'\ne n}\vect E_{n'}^{\mathrm{scat}}\left(\vect r\right)
563 \begin_layout Plain Layout
566 \sum_{l,m,t}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)=\sum_{l,m,t}\coeffripext nlmt\svwfr lmt\left(\vect r_{n}\right)+\sum_{n'\ne n}\sum_{l,m,t}\coeffsip{n'}lmt\svwfs lmt\left(\vect r_{n'}\right)
574 \begin_layout Plain Layout
577 \sum_{l,m,t}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)=\sum_{l,m,t}\coeffripext nlmt\svwfr lmt\left(\vect r_{n}\right)+\sum_{n'\ne n}\sum_{l,m,t}\coeffsip{n'}lmt\sum_{l',m',t'}\transop^{l'm't';lmt}\left(\vect R_{n}-\vect R_{n'}\right)\svwfr{l'}{m'}{t'}\left(\vect r_{n}\right)
585 \sum_{l,m,t}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)=\sum_{l,m,t}\coeffripext nlmt\svwfr lmt\left(\vect r_{n}\right)+\sum_{n'\ne n}\sum_{l,m,t}\sum_{l',m',t'}\coeffsip{n'}{l'}{m'}{t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)\svwfr lmt\left(\vect r_{n}\right)
593 \begin_layout Plain Layout
596 \coeffrip nlmt=\coeffripext nlmt+\sum_{n'\ne n}\sum_{l',m',t'}\coeffsip{n'}{l'}{m'}{t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)
602 \begin_inset Formula $\coeffsip{n'}{l'}{m'}{t'}=\sum_{l'',m'',t''}T_{n'}^{l'm't';l''m''t''}\coeffrip{n'}{l''}{m''}{t''}$
608 \coeffrip nlmt=\coeffripext nlmt+\sum_{n'\ne n}\sum_{l',m',t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)\sum_{l'',m'',t''}T_{n'}^{l'm't';l''m''t''}\coeffrip{n'}{l''}{m''}{t''}
621 \begin_layout Standard
624 \coeffrip nlmt=\coeffripext nlmt+\sum_{n'\ne n}\sum_{l',m',t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)\sum_{l'',m'',t''}T_{n'}^{l'm't';l''m''t''}\coeffrip{n'}{l''}{m''}{t''},\label{eq:multiplescattering element-wise}
630 \begin_inset Formula $\coeffripext nlmt$
633 are the expansion coefficients of the external field around the
634 \begin_inset Formula $n$
638 \begin_inset Formula $\vect E_{0}\left(\vect r\right)=\sum_{l,m,t}\coeffripext nlmt\svwfr lmt\left(\vect r_{n}\right).$
641 It is practical to get rid of the SVWF indices, rewriting
642 \begin_inset CommandInset ref
644 reference "eq:multiplescattering element-wise"
648 in a per-particle matrix form
651 \coeffr_{n}=\coeffr_{\mathrm{ext}(n)}+\sum_{n'\ne n}S_{n,n'}T_{n'}p_{n'}\label{eq:multiple scattering per particle p}
656 and to reformulate the problem using
657 \begin_inset CommandInset ref
659 reference "eq:Tmatrix definition"
664 \begin_inset Formula $\coeffs$
667 -coefficients which describe the multipole excitations of the particles
670 \coeffs_{n}-T_{n}\sum_{n'\ne n}S_{n,n'}\coeffs_{n'}=T_{n}\coeffr_{\mathrm{ext}(n)}.\label{eq:multiple scattering per particle a}
676 \begin_inset Formula $T_{n},S_{n,n'},\coeffr_{\mathrm{ext}(n)}$
679 , the nanoparticle excitations
680 \begin_inset Formula $a_{n}$
683 can be solved by standard linear algebra methods.
684 The total scattered field anywhere outside the particles' circumscribing
685 spheres is then obtained by summing the contributions
686 \begin_inset CommandInset ref
688 reference "eq:E_scat"
695 \begin_layout Subsection
696 Periodic systems and mode analysis
697 \begin_inset CommandInset label
699 name "sub:Periodic-systems"
706 \begin_layout Standard
707 In an infinite periodic array of nanoparticles, the excitations of the nanoparti
708 cles take the quasiperiodic Bloch-wave form
711 \coeffs_{i\alpha}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\alpha}
716 (assuming the incident external field has the same periodicity,
717 \begin_inset Formula $\coeffr_{\mathrm{ext}(i\alpha)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\alpha\right)}$
721 \begin_inset Formula $\alpha$
724 is the index of a particle inside one unit cell and
725 \begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$
728 are the lattice vectors corresponding to the sites (labeled by multiindices
730 \begin_inset Formula $i,i'$
733 ) of a Bravais lattice
734 \begin_inset Formula $\Lambda$
738 The multiple-scattering problem
739 \begin_inset CommandInset ref
741 reference "eq:multiple scattering per particle a"
746 \begin_inset Note Note
749 \begin_layout Plain Layout
752 \coeffs_{i\alpha}=T_{\alpha}\left(\coeffr_{\mathrm{ext}(i\alpha)}+\sum_{(i',\alpha')\ne\left(i,\alpha\right)}S_{i\alpha,i'\alpha}\coeffs_{i'\alpha'}\right)
765 \begin_layout Standard
768 \coeffs_{i\alpha}-T_{\alpha}\sum_{(i',\alpha')\ne\left(i,\alpha\right)}S_{i\alpha,i'\alpha'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\alpha'}=T_{\alpha}\coeffr_{\mathrm{ext}(i\alpha)}
774 \begin_inset Formula $W_{\alpha\alpha'}=\sum_{i';(i',\alpha')\ne\left(i,\alpha\right)}S_{i\alpha,i'\alpha'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\alpha')\ne\left(0,\alpha\right)}S_{0\alpha,i'\alpha'}e^{i\vect k\cdot\vect R_{i'}}$
777 and using the quasiperiodicity,
780 \sum_{\alpha'}\left(\delta_{\alpha\alpha'}\mathbb{I}-T_{\alpha}W_{\alpha\alpha'}\right)\coeffs_{\alpha'}=T_{\alpha}\coeffr_{\mathrm{ext}(\alpha)},\label{eq:multiple scattering per particle a periodic}
786 \begin_inset Note Note
789 \begin_layout Plain Layout
792 \coeffs_{\alpha}-T_{\alpha}\sum_{\alpha'}W_{\alpha\alpha'}\coeffs_{\alpha'}=T_{\alpha}\coeffr_{\mathrm{ext}(\alpha)},\label{eq:multiple scattering per particle a periodic-2}
802 which reduces the linear problem
803 \begin_inset CommandInset ref
805 reference "eq:multiple scattering per particle a"
809 to interactions between particles inside single unit cell.
810 A problematic part is the evaluation of the translation operator lattice
812 \begin_inset Formula $W_{\alpha\alpha'}$
815 ; this is performed using exponentially convergent Ewald-type representations
817 \begin_inset CommandInset citation
819 key "linton_lattice_2010"
826 \begin_layout Standard
827 In an infinite periodic system, a nonlossy mode supports itself without
828 external driving, i.e.
829 such mode is described by excitation coefficients
830 \begin_inset Formula $a_{\alpha}$
835 \begin_inset CommandInset ref
837 reference "eq:multiple scattering per particle a periodic-2"
841 with zero right-hand side.
842 That can happen if the block matrix
843 \begin_inset Formula $M\left(\omega,\vect k\right)=\left\{ \delta_{\alpha\alpha'}\mathbb{I}-T_{\alpha}\left(\vect{\omega}\right)W_{\alpha\alpha'}\left(\omega,\vect k\right)\right\} _{\alpha\alpha'}$
846 from the left hand side of
847 \begin_inset CommandInset ref
849 reference "eq:multiple scattering per particle a periodic"
853 is singular (here we explicitely note the
854 \begin_inset Formula $\omega,\vect k$
859 \begin_inset Note Note
862 \begin_layout Plain Layout
863 In other words, the energy bands of the lattice are given by
866 \det M\left(\omega,\vect k\right)=0.
879 \begin_layout Standard
880 For lossy nanoparticles, however, perfect propagating modes will not exist
882 \begin_inset Formula $M\left(\omega,\vect k\right)$
885 will never be perfectly singular.
886 Therefore in practice, we get the bands by scanning over
887 \begin_inset Formula $\omega,\vect k$
891 \begin_inset Formula $M\left(\omega,\vect k\right)$
895 \begin_inset Quotes sld
899 \begin_inset Quotes srd
905 \begin_layout Section
909 \begin_inset CommandInset label
918 \begin_layout Standard
919 A general overview of utilizing group theory to find lattice modes at high-symme
920 try points of the Brillouin zone can be found e.g.
922 \begin_inset CommandInset citation
924 after "chapters 10–11"
925 key "dresselhaus_group_2008"
929 ; here we use the same notation.
932 \begin_layout Standard
933 We analyse the symmetries of the system in the same SVWF representation
935 \begin_inset Formula $T$
938 -matrix formalism introduced above.
939 We are interested in the modes at the
940 \begin_inset Formula $\Kp$
943 -point of the hexagonal lattice, which has the
944 \begin_inset Formula $D_{3h}$
949 \begin_inset Note Note
952 \begin_layout Plain Layout
953 The symmetry makes the
954 \begin_inset Formula $M\left(\omega,\vect k\right)$
957 matrix defined above invariant to the symmetry operations at the
958 \begin_inset Formula $\Kp$
964 RM\left(\omega,\vect K\right)R^{-1}=M\left(\omega,\vect K\right),\qquad R\in D_{3h}.
974 The six irreducible representations (irreps) of the
975 \begin_inset Formula $D_{3h}$
978 group are known and are available in the literature in their explicit forms.
979 In order to find and classify the modes, we need to find a decomposition
980 of the lattice mode representation
981 \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
985 \begin_inset Formula $D_{3h}$
990 \begin_inset Note Note
993 \begin_layout Plain Layout
994 The characters of the equivalence representation
995 \begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
998 are given by the formula
999 \begin_inset Formula $\chi^{\mathrm{equiv.}}=\sum_{\alpha}\delta_{R_{\alpha}\vect r_{\alpha},\vect r_{\alpha}}e^{i\vect K_{m}\cdot\vect r_{\alpha}}$
1003 \begin_inset Formula $\vect r_{\alpha}$
1006 are the positions of the nanoparticles with respect
1011 The equivalence representation
1012 \begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
1016 \begin_inset Formula $E'$
1019 representation as can be deduced from
1020 \begin_inset CommandInset citation
1023 key "dresselhaus_group_2008"
1028 (11.19) and the character table for
1029 \begin_inset Formula $D_{3h}$
1034 \begin_inset Formula $\Gamma_{\mathrm{vec.}}$
1037 operates on a space spanned by the VSWFs around each nanoparticle in the
1038 unit cell (the effects of point group operations on VSWFs are described
1040 \begin_inset CommandInset citation
1042 key "schulz_point-group_1999"
1047 This space can be then decomposed into invariant subspaces of the
1048 \begin_inset Formula $D_{3h}$
1051 using the projectors
1052 \begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
1056 \begin_inset CommandInset citation
1059 key "dresselhaus_group_2008"
1064 This way, we obtain a symmetry adapted basis
1065 \begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
1068 as linear combinations of VSWFs
1069 \begin_inset Formula $\svwfs lm{p,t}$
1072 around the constituting nanoparticles (labeled
1073 \begin_inset Formula $p$
1077 \begin_inset Formula
1079 \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\svwfs lm{p,t},
1085 \begin_inset Formula $\Gamma$
1088 stands for one of the six different irreps of
1089 \begin_inset Formula $D_{3h}$
1093 \begin_inset Formula $r$
1096 labels the different realisations of the same irrep, and the last index
1098 \begin_inset Formula $i$
1102 \begin_inset Formula $d_{\Gamma}$
1105 (the dimensionality of
1106 \begin_inset Formula $\Gamma$
1109 ) labels the different partners of the same given irrep.
1110 The number of how many times is each irrep contained in
1111 \begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
1116 \begin_inset Formula $r$
1120 \begin_inset Formula $\Gamma$
1123 ) depends on the multipole degree cutoff
1124 \begin_inset Formula $l_{\mathrm{max}}$
1131 \begin_layout Standard
1133 \begin_inset Formula $\Kp$
1136 -point shall lie in the irreducible spaces of only one of the six possible
1137 irreps and it can be shown via
1138 \begin_inset CommandInset citation
1141 key "dresselhaus_group_2008"
1146 \begin_inset Formula $\Kp$
1150 \begin_inset Formula $M\left(\omega,\vect k\right)$
1153 defined above takes a block-diagonal form in the symmetry-adapted basis,
1154 \begin_inset Formula
1156 M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
1161 This enables us to decompose the matrix according to the irreps and to
1162 solve the singular value problem in each irrep separately, as done in Fig.
1166 \begin_layout Standard
1167 \begin_inset CommandInset bibtex
1169 bibfiles "hexarray-theory"