1 #LyX 2.4 created this file. For more info see https://www.lyx.org/
5 \save_transient_properties true
8 \use_default_options true
9 \maintain_unincluded_children false
11 \language_package default
14 \font_roman "default" "default"
15 \font_sans "default" "default"
16 \font_typewriter "default" "default"
17 \font_math "auto" "auto"
18 \font_default_family default
19 \use_non_tex_fonts false
23 \font_typewriter_osf false
24 \font_sf_scale 100 100
25 \font_tt_scale 100 100
27 \use_dash_ligatures true
29 \default_output_format default
31 \bibtex_command default
32 \index_command default
33 \paperfontsize default
37 \use_package amsmath 1
38 \use_package amssymb 1
41 \use_package mathdots 1
42 \use_package mathtools 1
44 \use_package stackrel 1
45 \use_package stmaryrd 1
46 \use_package undertilde 1
48 \cite_engine_type default
51 \paperorientation portrait
63 \paragraph_separation indent
64 \paragraph_indentation default
66 \math_numbering_side default
71 \paperpagestyle default
73 \tracking_changes false
82 \begin_layout Standard
85 \begin_inset FormulaMacro
86 \newcommand{\vect}[1]{\mathbf{#1}}
92 \begin_inset FormulaMacro
93 \newcommand{\Kambe}[1]{#1^{\mathrm{K}}}
97 \begin_inset FormulaMacro
98 \newcommand{\Linton}[1]{#1^{\mathrm{L}}}
104 \begin_layout Standard
105 Here and in Kambe's papers,
106 \begin_inset Formula $\kappa$
110 \begin_inset Formula $k$
115 \begin_inset Formula $\vect K_{p}$
118 is a point of the reciprocal lattice (
119 \begin_inset Formula $\vect K_{p}=\Kambe{\vect K_{pt}}=\Linton{\vect{\beta}_{\mu}}$
125 \begin_layout Section
126 \begin_inset Quotes eld
130 \begin_inset Quotes erd
136 \begin_layout Standard
138 \begin_inset Formula $\kappa$
144 \begin_layout Standard
147 \Kambe{\Gamma_{p}}\equiv\begin{cases}
148 \sqrt{\kappa^{2}-\left|\vect K_{p}\right|^{2}} & \kappa^{2}-\left|\vect K_{p}\right|^{2}>0\\
149 i\sqrt{\left|\vect K_{p}\right|^{2}-\kappa^{2}} & \kappa^{2}-\left|\vect K_{p}\right|^{2}<0
158 \Linton{\gamma_{\mu}}\equiv\begin{cases}
159 \sqrt{\left(\frac{\vect K_{p}}{\kappa}\right)^{2}-1} & \kappa-\left|\vect K_{p}\right|\le0\\
160 -i\sqrt{1-\left(\frac{\vect K_{p}}{\kappa}\right)^{2}} & \kappa-\left|\vect K_{p}\right|>0
169 \Kambe{\Gamma_{p}}=-i\kappa\Linton{\gamma_{\mu}},
177 \begin_layout Standard
180 \Linton{\gamma_{\mu}}=i\frac{\Kambe{\Gamma_{p}}}{\kappa}.
188 \begin_layout Section
192 \begin_layout Standard
193 In-plane sums [Linton 2009, (4.5)], replacing
194 \begin_inset Formula $n,m\rightarrow L,M$
198 \begin_inset Formula $k\rightarrow\kappa$
204 \begin_layout Standard
209 \sigma_{L}^{M(1)} & = & -\frac{i^{L+1}}{2\kappa^{2}\mathscr{A}}\left(-1\right)^{\left(L+M\right)/2}\sqrt{\left(2L+1\right)\left(L-M\right)!\left(L+M\right)!}\times\\
210 & & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(L-\left|M\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2\kappa\right)^{L-2j}e^{iM\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(L-M\right)-j\right)!\left(\frac{1}{2}\left(L+M\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}
215 [Kambe II, (3.17)], replacing
218 \begin_inset Formula $n\rightarrow j$
226 \begin_inset Formula $A\rightarrow\mathscr{A}$
230 \begin_inset Formula $\vect K_{pt}\to\vect K_{p}$
234 \begin_inset Formula $\Gamma\left(\frac{1}{2}-j,e^{-i\pi}\Gamma_{p}^{2}\omega/2\right)\to\Gamma_{j,p}$
237 and performing little typographic modifications
242 D_{LM} & =-\frac{1}{\mathscr{A}\kappa}i^{\left|M\right|+1}2^{-L}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
243 & \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ijt}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(\Gamma_{p}/\kappa\right)^{2j-1}\left(K_{p}/\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}
248 Using the relations between
249 \begin_inset Formula $\Kambe{\Gamma_{p}}=-i\kappa\Linton{\gamma_{\mu}}$
252 , we have (also, we replace the
253 \begin_inset Formula $\mu$
257 \begin_inset Formula $p$
263 D_{LM} & =-\frac{1}{\mathscr{A}\kappa}i^{\left|M\right|+1}2^{-L}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
264 & \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ijt}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(-i\gamma_{p}\right)^{2j-1}\left(K_{p}/\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}
269 and now, trying to make the exponents look the same as in Linton,
270 \begin_inset Formula $2^{-1}2^{2j-L}2^{1-2j}=2^{-L}$
274 \begin_inset Formula $K_{p}^{L-2j}=K_{p}^{L-2j}$
280 D_{LM} & =-\frac{1}{2\kappa\mathscr{A}}i^{\left|M\right|+1}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
281 & \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ij}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(-i\right)^{2j-1}\left(K_{p}/2\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}\left(\frac{\gamma_{p}}{2}\right)^{2j-1}
286 There are now these differences left:
289 \begin_layout Itemize
293 \begin_inset Formula $\kappa$
297 \begin_inset Formula $D_{LM}$
303 \begin_layout Itemize
306 \begin_inset Formula $i^{L+1}\left(-1\right)^{\left(L+M\right)/2}\left(-1\right)^{j}$
311 \begin_inset Formula $i^{\left|M\right|+1}\left(-i\right)^{2j-1}$
317 \begin_layout Itemize
320 Opposite phase in the angular part.
323 \begin_layout Itemize
327 \begin_inset Formula $D_{LM}$
333 \begin_layout Standard
337 \begin_inset Formula $i,-1$
341 \begin_inset Formula $L+M$
345 \begin_inset Formula $\left(-i\right)^{2j}=\left(-1\right)^{j},$
349 \begin_inset Formula $i^{L+1}\left(-1\right)^{\left(L+M\right)/2}$
354 \begin_inset Formula $i^{\left|M\right|+1}i$
358 So there is might be a phase difference due to different conventions, but
359 it does not depend on
360 \begin_inset Formula $j$
363 , so one should be able to transplant the
364 \begin_inset Formula $z\ne0$
367 sum from Kambe without major problems.
370 \begin_layout Section
371 Ewald parameter (integration limits)
374 \begin_layout Standard
377 \Linton{\eta}=\sqrt{\frac{1}{2\Kambe{\omega}}}
382 (Based on comparison of some function arguments, not checked.)