1 #LyX 2.3 created this file. For more info see http://www.lyx.org/
5 \save_transient_properties true
9 %\renewcommand*{\chapterheadstartvskip}{\vspace*{1cm}}
10 %\renewcommand*{\chapterheadendvskip}{\vspace{2cm}}
12 \use_default_options true
13 \maintain_unincluded_children false
15 \language_package default
18 \font_roman "default" "TeX Gyre Pagella"
19 \font_sans "default" "default"
20 \font_typewriter "default" "default"
21 \font_math "auto" "auto"
22 \font_default_family default
23 \use_non_tex_fonts true
26 \font_sf_scale 100 100
27 \font_tt_scale 100 100
29 \use_dash_ligatures false
31 \default_output_format pdf4
33 \bibtex_command default
34 \index_command default
35 \paperfontsize default
38 \pdf_title "Sähköpajan päiväkirja"
39 \pdf_author "Marek Nečada"
41 \pdf_bookmarksnumbered false
42 \pdf_bookmarksopen false
43 \pdf_bookmarksopenlevel 1
51 \use_package amsmath 1
52 \use_package amssymb 1
55 \use_package mathdots 1
56 \use_package mathtools 1
58 \use_package stackrel 1
59 \use_package stmaryrd 1
60 \use_package undertilde 1
62 \cite_engine_type default
66 \paperorientation portrait
81 \paragraph_separation indent
82 \paragraph_indentation default
84 \math_numbering_side default
89 \paperpagestyle default
90 \tracking_changes false
99 \begin_layout Standard
100 \begin_inset FormulaMacro
101 \newcommand{\vect}[1]{\mathbf{#1}}
105 \begin_inset FormulaMacro
106 \newcommand{\ud}{\mathrm{d}}
113 Electromagnetic multiple scattering, spherical waves and conventions
120 \begin_layout Chapter
121 Zillion conventions for spherical vector waves
124 \begin_layout Section
125 Legendre polynomials and spherical harmonics: messy from the very beginning
128 \begin_layout Standard
129 \begin_inset Marginal
132 \begin_layout Plain Layout
133 FIXME check the Condon-Shortley phases.
141 \begin_layout Standard
142 Associated Legendre polynomial of degree
143 \begin_inset Formula $l\ge0$
147 \begin_inset Formula $m,$
151 \begin_inset Formula $l\ge m\ge-l$
154 , is given by the recursive relation
157 P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{Condon-Shortley phase}}\frac{1}{2^{l}l!}\left(1-x^{2}\right)^{m/2}\frac{\ud^{l+m}}{\ud x^{l+m}}\left(x^{2}-1\right)^{l}.
162 There is a relation between the positive and negative orders,
165 \begin_layout Standard
168 P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{C.-S. p.}}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0.
174 \begin_inset Formula $l$
177 (in certain notations, it is often
178 \begin_inset Formula $n$
186 \begin_inset Formula $m$
194 These two terms are then transitively used for all the object which build
195 on the associated Legendre polynomials, i.e.
196 spherical harmonics, vector spherical harmonics, spherical waves etc.
199 \begin_layout Subsection
203 \begin_layout Standard
204 Kristensson uses the Condon-Shortley phase, so (sect.
208 \begin_layout Standard
211 Y_{lm}\left(\hat{\vect r}\right)=\left(-1\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}P_{l}^{m}\left(\cos\theta\right)e^{im\phi}
219 Y_{lm}^{\dagger}\left(\hat{\vect r}\right)=Y_{lm}^{*}\left(\hat{\vect r}\right)
227 Y_{l,-m}\left(\hat{\vect r}\right)=\left(-1\right)^{m}Y_{lm}^{\dagger}\left(\hat{\vect r}\right)
235 \begin_layout Standard
239 \int Y_{lm}\left(\hat{\vect r}\right)Y_{l'm'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{ll'}\delta_{mm'}
247 \begin_layout Section
251 \begin_layout Subsection
253 \begin_inset CommandInset label
255 name "subsec:Xu pitau"
262 \begin_layout Standard
266 \begin_layout Standard
269 \pi_{mn}\left(\cos\theta\right) & = & \frac{m}{\sin\theta}P_{n}^{m}\left(\cos\theta\right)\\
270 \tau_{mn}\left(\cos\theta\right) & = & \frac{\ud}{\ud\theta}P_{n}^{m}\left(\cos\theta\right)=-\left(\sin\theta\right)\frac{\ud P_{n}^{m}\left(\cos\theta\right)}{\ud\left(\cos\theta\right)}
278 \begin_layout Standard
280 \begin_inset Formula $\left(\sin\theta\right)^{-1}$
284 \begin_inset Formula $\frac{\ud P_{n}^{m}\left(\cos\theta\right)}{\ud\left(\cos\theta\right)}$
288 \begin_inset Formula $\cos\theta=\pm1$
292 \begin_inset Formula $\tau_{mn}\left(\pm1\right),\pi_{mn}\left(\pm1\right)$
297 \begin_inset Formula $x\equiv\cos\theta$
301 \begin_inset Formula $\sqrt{\left(1+x\right)\left(1-x\right)}=\sqrt{1-x^{2}}\equiv\sin\theta$
304 and using the asymptotic expression (DLMF 14.8.2) we obtain that the limits
306 \begin_inset Formula $m=\pm1$
312 \pi_{1\nu}(+1-) & = & CS\frac{\nu\left(\nu+1\right)}{2}\\
313 \tau_{1\nu}(+1-) & = & CS\frac{\nu\left(\nu+1\right)}{2}
318 and using the parity property
319 \begin_inset Formula $P_{n}^{m}\left(-x\right)=\left(-1\right)^{m+n}P_{n}^{m}\left(x\right)$
325 \pi_{1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\frac{\nu\left(\nu+1\right)}{2}\\
326 \tau_{1\nu}(-1+) & = & CS\left(-1\right)^{\nu}\frac{\nu\left(\nu+1\right)}{2}
332 \begin_inset Formula $m=1$
335 , we simply use the relation
336 \begin_inset Formula $P_{n}^{-m}=\left(CS\right)^{m}P_{n}^{m}\frac{\left(n-m\right)!}{\left(n+m\right)!}$
342 \pi_{-1\nu}(+1-) & = & \frac{CS}{2}\\
343 \tau_{-1\nu}(+1-) & = & -\frac{CS}{2}\\
344 \pi_{-1\nu}(-1+) & = & -\left(-1\right)^{\nu}\frac{CS}{2}\\
345 \tau_{-1\nu}(-1+) & = & -\left(-1\right)^{\nu}\frac{CS}{2}
351 \begin_inset Formula $CS$
355 \begin_inset Formula $-1$
358 if the Condon-Shortley phase is employed on the level of Legendre polynomials,
362 \begin_layout Subsection
366 \begin_layout Standard
369 \tilde{\pi}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{m}{\sin\theta}P_{n}^{m}\left(\cos\theta\right)\\
370 \tilde{\tau}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{\ud}{\ud\theta}P_{n}^{m}\left(\cos\theta\right)
378 \begin_layout Standard
379 The limiting expressions are obtained simply by multiplying the expressions
382 \begin_inset CommandInset ref
384 reference "subsec:Xu pitau"
388 by the normalisation factor,
391 \tilde{\pi}_{1\nu}(+1-) & = & CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
392 \tilde{\tau}_{1\nu}(+1-) & = & CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
393 \tilde{\pi}_{1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
394 \tilde{\tau}_{1\nu}(-1+) & = & CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}
402 \tilde{\pi}_{-1\nu}(+1-) & = & CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
403 \tilde{\tau}_{-1\nu}(+1-) & = & -CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
404 \tilde{\pi}_{-1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}\left(\nu+2\right)}{2}\\
405 \tilde{\tau}_{-1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}\left(\nu+2\right)}{2}
412 \begin_inset Formula $m=-1$
416 \begin_inset Formula $m=1$
419 except for the sign if Condon-Shortley phase is used on the Legendre polynomial
423 \begin_layout Section
424 Vector spherical harmonics (?)
427 \begin_layout Subsection
431 \begin_layout Standard
432 Original formulation, sect.
436 \begin_layout Standard
439 \vect A_{1lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{1}{\sin\theta}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\nonumber \\
440 & = & \frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect rY_{lm}\left(\hat{\vect r}\right)\right)\nonumber \\
441 \vect A_{2lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\label{eq:vector spherical harmonics Kristensson}\\
442 & = & \frac{1}{\sqrt{l\left(l+1\right)}}r\nabla Y_{lm}\left(\hat{\vect r}\right)\nonumber \\
443 \vect A_{3lm}\left(\hat{\vect r}\right) & = & \hat{\vect r}Y_{lm}\left(\hat{\vect r}\right)\nonumber
451 \int\vect A_{n}\left(\hat{\vect r}\right)\cdot\vect A_{n'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{nn'}
457 \begin_inset Formula $\mbox{ }^{\dagger}$
460 means just complex conjugate, apparently (see footnote on p.
464 \begin_layout Subsection
468 \begin_layout Standard
469 \begin_inset CommandInset citation
472 key "jackson_classical_1998"
480 \vect X_{lm}(\theta,\phi)=\frac{1}{\sqrt{l(l+1)}}\vect LY_{lm}(\theta,\phi)
486 \begin_inset CommandInset citation
489 key "jackson_classical_1998"
497 \vect L=\frac{1}{i}\left(\vect r\times\vect{\nabla}\right)
502 for its expression in spherical coordinates and other properties check Jackson's
503 book around the definitions.
506 \begin_layout Standard
508 \begin_inset CommandInset citation
511 key "jackson_classical_1998"
519 \int\vect X_{l'm'}^{*}\cdot\vect X_{lm}\,\ud\Omega=\delta_{ll'}\delta_{mm'}
527 \begin_layout Standard
529 \begin_inset CommandInset citation
532 key "jackson_classical_1998"
540 \sum_{m=-l}^{l}\left|\vect X_{lm}(\theta,\phi)^{2}\right|=\frac{2l+1}{4\pi}
548 \begin_layout Section
549 Spherical Bessel functions
550 \begin_inset CommandInset label
552 name "sec:Spherical-Bessel-functions"
559 \begin_layout Standard
564 \begin_layout Standard
565 The radial dependence of spherical vector waves is given by the spherical
566 Bessel functions and their first derivatives.
567 Commonly, the following notation is adopted
570 z_{n}^{(1)}(x) & = & j_{n}(x),\\
571 z_{n}^{(2)}(x) & = & y_{n}(x),\\
572 z_{n}^{(3)}(x) & = & h_{n}^{(1)}(x)=j_{n}(x)+iy_{n}(x),\\
573 z_{n}^{(4)}(x) & = & h_{n}^{(2)}(x)=j_{n}(x)-iy_{n}(x).
579 \begin_inset Formula $j_{n}$
582 is the spherical Bessel function of first kind (regular),
583 \begin_inset Formula $y_{j}$
586 is the spherical Bessel function of second kind (singular), and
587 \begin_inset Formula $h_{n}^{(1)},h_{n}^{(2)}$
590 are the Hankel functions a.k.a.
591 spherical Bessel functions of third kind.
592 In spherical vector waves,
593 \begin_inset Formula $j_{n}$
596 corresponds to regular waves,
597 \begin_inset Formula $h^{(1)}$
600 corresponds (by the usual convention) to outgoing waves, and
601 \begin_inset Formula $h^{(2)}$
604 corresponds to incoming waves.
605 To describe scattering, we need two sets of waves with two different types
606 of spherical Bessel functions
607 \begin_inset Formula $z_{n}^{(J)}$
611 Most common choice is
612 \begin_inset Formula $J=1,3$
615 , because if we decompose the field into spherical waves centered at
616 \begin_inset Formula $\vect r_{0}$
619 , the field produced by other sources (e.g.
620 spherical waves from other scatterers or a plane wave) is always regular
622 \begin_inset Formula $\vect r_{0}$
626 Second choice which makes a bit of sense is
627 \begin_inset Formula $J=3,4$
630 as it leads to a nice expression for the energy transport.
633 \begin_layout Subsection
637 \begin_layout Standard
641 \begin_layout Subsection
642 \begin_inset Formula $z\to0$
648 \begin_layout Standard
651 j_{n}(z) & \sim & z^{n}/(2n+1)!!\\
652 h_{n}^{(1)}(z)\sim iy(z) & \sim & -i\left(2n+1\right)!!/z^{n+1}
660 \begin_layout Section
661 Spherical vector waves
664 \begin_layout Standard
666 \begin_inset Formula $M,N,\psi,\chi,\widetilde{M},\widetilde{N},u,v,w,\dots$
669 , sine/cosine convention (B&H), ...
672 \begin_layout Standard
673 There are two mutually orthogonal types of divergence-free (everywhere except
674 in the origin for singular waves) spherical vector waves, which I call
675 electric and magnetic, given by the type of multipole source to which they
677 This is another distinction than the regular/singular/ingoing/outgoing
678 waves given by the type of the radial dependence (cf.
680 \begin_inset CommandInset ref
682 reference "sec:Spherical-Bessel-functions"
687 Oscillating electric current in a tiny rod parallel to its axis will generate
688 electric dipole waves (net dipole moment of magnetic current is zero) moment
689 , whereas oscillating electric current in a tiny circular loop will generate
690 magnetic dipole waves (net dipole moment of electric current is zero).
693 \begin_layout Standard
694 In the usual cases we encounter, the part described by the magnetic waves
698 \begin_layout Standard
699 The expression with Bessel function derivatives appearing below in the electric
700 waves can be rewritten using (DLMF 10.51.2)
703 \frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}=\frac{\ud z_{n}^{j}\left(kr\right)}{\ud(kr)}+\frac{z_{n}^{j}\left(kr\right)}{kr}=z_{n-1}^{j}\left(kr\right)-n\frac{z_{n}^{j}\left(kr\right)}{kr}.
711 \begin_layout Subsection
715 \begin_layout Standard
716 Definition [T](2.40);
717 \begin_inset Formula $\widetilde{\vect N}_{mn}^{(j)},\widetilde{\vect M}_{mn}^{(j)}$
720 are the electric and magnetic waves, respectively:
723 \begin_layout Standard
726 \widetilde{\vect N}_{mn}^{(j)} & = & \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\hat{\vect r}\\
727 & & +\left[\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}+i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}\\
728 \widetilde{\vect M}_{mn}^{(j)} & = & \left[i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}-\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
736 \begin_layout Subsection
740 \begin_layout Standard
741 are the electric and magnetic waves, respectively:
744 \begin_layout Standard
747 \vect N_{mn}^{(j)} & = & \frac{n(n+1)}{kr}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\hat{\vect r}\\
748 & & +\left[\tau_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}+i\pi_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}\\
749 \vect M_{mn}^{(j)} & = & \left[i\pi_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}-\tau_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
757 \begin_layout Subsection
761 \begin_layout Standard
762 Definition [K](2.4.6);
763 \begin_inset Formula $\vect u_{\tau lm},\vect v_{\tau lm},\vect w_{\tau lm}$
767 \begin_inset Formula $j=3,1,4$
771 outgoing, regular and incoming waves.
772 The first index distinguishes between the electric (
773 \begin_inset Formula $\tau=2$
777 \begin_inset Formula $\tau=1$
781 Kristensson uses a multiindex
782 \begin_inset Formula $n\equiv(\tau,l,m)$
785 to simlify the notation.
788 \left(\vect{u/v/w}\right)_{2lm} & = & \frac{1}{kr}\frac{\ud\left(kr\,z_{l}^{(j)}\left(kr\right)\right)}{\ud\,kr}\vect A_{2lm}\left(\hat{\vect r}\right)+\sqrt{l\left(l+1\right)}\frac{z_{l}^{(j)}(kr)}{kr}\vect A_{3lm}\left(\hat{\vect r}\right)\\
789 \left(\vect{u/v/w}\right)_{1lm} & = & z_{l}^{(j)}\left(kr\right)\vect A_{1lm}\left(\hat{\vect r}\right)
797 \begin_layout Subsection
802 \begin_layout Standard
804 \begin_inset CommandInset citation
807 key "xu_calculation_1996"
812 with unnormalised Legendre polynomials:
815 \left(\vect{u/v/w}\right)_{1lm} & = & \left(\mbox{CS}\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}\frac{\vect N_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}\\
816 \left(\vect{u/v/w}\right)_{1lm} & = & \left(\mbox{CS}\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}\frac{\vect M_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}
822 \begin_inset Formula $-1$
825 in Kristensson's text.
827 be careful about the translation coefficients and
828 \begin_inset CommandInset citation
831 key "xu_calculation_1996"
836 , Xu's text is a bit confusing.
839 \begin_layout Subsection
840 Relation between Kristensson and Taylor
841 \begin_inset CommandInset label
843 name "subsec:Kristensson-v-Taylor"
850 \begin_layout Standard
851 Kristensson's and Taylor's VSWFs seem to differ only by an
852 \begin_inset Formula $l$
855 -dependent normalization factor, and notation of course (n.b.
856 the inverse index order)
859 \left(\vect{u/v/w}\right)_{2lm} & = & \frac{\widetilde{\vect N}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}\\
860 \left(\vect{u/v/w}\right)_{1lm} & = & \frac{\widetilde{\vect M}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}
868 \begin_layout Section
872 \begin_layout Subsection
876 \begin_layout Standard
877 \begin_inset Formula $x$
881 \begin_inset Formula $z$
884 -propagating plane wave,
885 \begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
891 \vect E & = & -i\left(p_{mn}\widetilde{\vect N}_{mn}^{(1)}+q_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)\\
892 p_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\tau}_{mn}(1)\\
893 q_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\pi}_{mn}(1)
898 while it can be shown that
901 \tilde{\pi}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
902 \tilde{\tau}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}-\delta_{m,-1}\right)
910 \begin_layout Subsection
914 \begin_layout Standard
915 \begin_inset Formula $x$
919 \begin_inset Formula $z$
922 -propagating plane wave,
923 \begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
929 \vect E=\sum_{n}a_{n}\vect v_{n}
937 a_{1lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
938 a_{2lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)
946 \begin_layout Section
950 \begin_layout Standard
951 In this section I summarize the formulae for power
952 \begin_inset Formula $P$
955 radiated from the system.
956 For an absorbing scatterer, this should be negative (n.b.
957 sign conventions can be sometimes confusing).
958 If the system is excited by a plane wave with intensity
959 \begin_inset Formula $E_{0}$
962 , this can be used to calculate the absorption cross section (TODO check
963 if it should be multiplied by the 2),
966 \sigma_{\mathrm{abs}}=-\frac{2P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
974 \begin_layout Subsection
976 \begin_inset CommandInset label
978 name "subsec:Radiated enenergy-Kristensson"
985 \begin_layout Standard
987 [K]2.6.2; here this form of expansion is assumed:
990 \vect E\left(\vect r,\omega\right)=k\sqrt{\eta_{0}\eta}\sum_{n}\left(a_{n}\vect v_{n}\left(k\vect r\right)+f_{n}\vect u_{n}\left(k\vect r\right)\right).\label{eq:power-Kristensson-E}
996 \begin_inset Formula $\eta_{0}=\sqrt{\mu_{0}/\varepsilon_{0}}$
999 is the wave impedance of free space and
1000 \begin_inset Formula $\eta=\sqrt{\mu/\varepsilon}$
1003 is the relative wave impedance of the medium.
1007 \begin_layout Standard
1008 The radiated power is then (2.28):
1009 \begin_inset Formula
1011 P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right).
1016 The first term is obviously the power radiated away by the outgoing waves.
1017 The second term must then be minus the power sucked by the scatterer from
1019 If the exciting wave is plane, it gives us the extinction cross section
1020 \begin_inset Formula
1022 \sigma_{\mathrm{tot}}=-\frac{\sum_{n}\Re\left(f_{n}a_{n}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}
1030 \begin_layout Subsection
1034 \begin_layout Standard
1035 Here I derive the radiated power in Taylor's convention by applying the
1036 relations from subsection
1037 \begin_inset CommandInset ref
1039 reference "subsec:Kristensson-v-Taylor"
1043 to the Kristensson's formulae (sect.
1045 \begin_inset CommandInset ref
1047 reference "subsec:Radiated enenergy-Kristensson"
1054 \begin_layout Standard
1055 Assume the external field decomposed as (here I use tildes even for the
1056 expansion coefficients in order to avoid confusion with the
1057 \begin_inset Formula $a_{n}$
1061 \begin_inset CommandInset ref
1063 reference "eq:power-Kristensson-E"
1068 \begin_inset Formula
1070 \vect E\left(\vect r,\omega\right)=\sum_{mn}\left[-i\left(\tilde{p}_{mn}\vect{\widetilde{N}}_{mn}^{(1)}+\tilde{q}_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)+i\left(\tilde{a}_{mn}\widetilde{\vect N}_{mn}^{(3)}+\tilde{b}_{mn}\widetilde{\vect M}_{mn}^{(3)}\right)\right]
1075 (there is minus between the regular and outgoing part!).
1076 The coefficients are related to those from
1077 \begin_inset CommandInset ref
1079 reference "eq:power-Kristensson-E"
1084 \begin_inset Formula
1086 \tilde{p}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{2nm},\quad\tilde{q}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{1nm},
1092 \begin_inset Formula
1094 \tilde{a}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{2nm},\quad\tilde{b}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{1nm}.
1099 The radiated power is then
1100 \begin_inset Formula
1102 P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}\eta}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
1107 If the exciting wave is a plane wave, the extinction cross section is
1108 \begin_inset Formula
1110 \sigma_{\mathrm{tot}}=\frac{1}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}k^{2}\eta_{0}\eta}\sum_{m,n}n(n+1)\left(\Re\left(a_{mn}p_{mn}^{*}\right)+\Re\left(b_{mn}q_{mn}^{*}\right)\right)
1118 \begin_layout Subsection
1122 \begin_layout Standard
1123 \begin_inset CommandInset citation
1126 key "jackson_classical_1998"
1132 \begin_inset Formula
1134 P=\frac{Z_{0}}{2k^{2}}\sum_{l,m}\left[\left|a_{E}(l,m)\right|^{2}+\left|a_{M}(l,m)\right|^{2}\right]
1142 \begin_layout Section
1146 \begin_layout Subsection
1147 Far-field asymptotic solution
1150 \begin_layout Standard
1152 \begin_inset CommandInset citation
1155 key "pustovit_plasmon-mediated_2010"
1160 and Jackson (9.169) and around.
1163 \begin_layout Subsection
1167 \begin_layout Chapter
1168 Single particle scattering and Mie theory
1171 \begin_layout Standard
1172 The basic idea is simple.
1173 For an exciting spherical wave (usually the regular wave in whatever convention
1174 ) of a given frequency
1175 \begin_inset Formula $\omega$
1179 \begin_inset Formula $\zeta'$
1182 (electric or magnetic), degree
1183 \begin_inset Formula $l'$
1187 \begin_inset Formula $m'$
1190 , the particle responds with waves from the complementary set (e.g.
1191 outgoing waves), with the same frequency
1192 \begin_inset Formula $\omega$
1196 \begin_inset Formula $\zeta$
1200 \begin_inset Formula $l$
1204 \begin_inset Formula $m$
1207 , in a way that the Maxwell's equations are satisfied, with the coefficients
1209 \begin_inset Formula $T_{l,m;l',m'}^{\zeta,\zeta'}(\omega)$
1213 This yields one row in the scattering matrix (often called the
1214 \begin_inset Formula $T$
1218 \begin_inset Formula $T(\omega)$
1221 , which fully characterizes the scattering properties of the particle (in
1222 the linear regime, of course).
1223 Analytical expression for the matrix is known for spherical scatterer,
1224 otherwise it is computed numerically (using DDA, BEM or whatever).
1225 So if we have the two sets of spherical wave functions
1226 \begin_inset Formula $\vect f_{lm}^{J_{1},\zeta}$
1230 \begin_inset Formula $\vect f_{lm}^{J_{2},\zeta}$
1234 \begin_inset Quotes sld
1238 \begin_inset Quotes srd
1241 wave has electric field given as
1242 \begin_inset Formula
1244 \vect E_{\mathrm{inc}}=\sum_{\zeta'=\mathrm{E,M}}\sum_{l',m'}c_{l'm'}^{\zeta'}\vect f_{l'm'}^{\zeta'},
1250 \begin_inset Quotes sld
1254 \begin_inset Quotes srd
1258 \begin_inset Formula
1260 \vect E_{\mathrm{scat}}=\sum_{\zeta',l',m'}\sum_{\zeta,l,m}T_{l,m;l',m'}^{\zeta,\zeta'}c_{l'm'}^{\zeta'}\vect f_{lm}^{\zeta},
1265 and the total field around the scaterer is
1266 \begin_inset Formula $\vect E=\vect E_{\mathrm{ext}}+\vect E_{\mathrm{scat}}$
1272 \begin_layout Section
1273 Mie theory – full version
1276 \begin_layout Standard
1277 \begin_inset Formula $T$
1280 -matrix for a spherical particle is type-, degree- and order- diagonal,
1282 \begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)=0$
1286 \begin_inset Formula $l\ne l'$
1290 \begin_inset Formula $m\ne m'$
1294 \begin_inset Formula $\zeta\ne\zeta'$
1298 Moreover, it does not depend on
1299 \begin_inset Formula $m$
1303 \begin_inset Formula
1305 T_{l,m;l',m'}^{\zeta,\zeta'}(\omega)=T_{l}^{\zeta}\left(\omega\right)\delta_{\zeta'\zeta}\delta_{l'l}\delta_{m'm}
1310 where for the usual choice
1311 \begin_inset Formula $J_{1}=1,J_{2}=3$
1315 \begin_inset Formula
1317 T_{l}^{E}\left(\omega\right) & = & TODO,\\
1318 T_{l}^{M}(\omega) & = & TODO.
1326 \begin_layout Section
1327 Long wave approximation for spherical nanoparticle
1330 \begin_layout Standard
1332 \begin_inset CommandInset citation
1335 key "pustovit_plasmon-mediated_2010"
1343 \begin_layout Section
1344 Note on transforming T-matrix conventions
1347 \begin_layout Standard
1348 T-matrix depends on the used conventions as well.
1349 This is not apparent for the Mie case as the T-matrix for a sphere is
1350 \begin_inset Quotes sld
1354 \begin_inset Quotes srd
1358 But for other shapes, dipole incoming field can induce also higher-order
1359 multipoles in the nanoparticle, etc.
1360 The easiest way to determine the transformation properties is to write
1361 down the total scattered electric field for both conventions in the form
1362 \begin_inset Formula
1364 \vect E_{\mathrm{scat}}=\sum_{n'}\sum_{n}T_{n'}^{n}c^{n'}\vect f_{n}=\sum_{n'}\sum_{n}\widetilde{T}_{n'}^{n}\widetilde{c}^{n'}\widetilde{\vect f}_{n}
1369 where we merged all the indices into single multiindex
1370 \begin_inset Formula $n$
1374 \begin_inset Formula $n'$
1378 This way of writing immediately suggest how to transform the T-matrix into
1379 the new convention if we know the transformation properties of the base
1380 waves and expansion coefficients, as it reminds the notation used in geometry
1382 \begin_inset Formula $c^{\alpha}$
1386 \begin_inset Quotes sld
1390 \begin_inset Quotes srd
1394 \begin_inset Formula $\vect f_{\alpha}$
1398 \begin_inset Quotes sld
1402 \begin_inset Quotes srd
1406 Obviously, T-matrix is then
1407 \begin_inset Quotes sld
1410 tensor of type (1,1)
1411 \begin_inset Quotes srd
1414 , and it transforms as vector coordinates (i.e.
1415 wave expansion coefficients) in the
1416 \begin_inset Formula $n$
1419 (outgoing wave) indices and as form coordinates in the
1420 \begin_inset Formula $n'$
1423 (regular/illuminating wave) indices.
1424 Form coordinates change in the same waves as base vectors
1427 \begin_layout Subsection
1428 Kristensson to Taylor
1431 \begin_layout Standard
1432 For instance, let us transform between from the Kristensson's to Taylor's
1434 We know that the Taylor's base vectors are
1435 \begin_inset Quotes sld
1439 \begin_inset Quotes srd
1443 \begin_inset Formula $\widetilde{\vect N}_{ml}^{(3/1/4)}=\sqrt{l(l+1)}\left(\vect{u/v/w}\right)_{2lm}$
1446 etc, so the coefficients must be smaller by the reciprocal factor, e.g.
1448 \begin_inset Formula $\tilde{a}_{ml}=f_{2lm}/\sqrt{l(l+1)}$
1451 (now we assume that there are no other prefactors in the expansion of the
1452 field, they are already included in the coefficients).
1453 Then the T-matrix in the Taylor's convention (tilded) can be calculated
1454 from the T-matrix in the Kristensson's convention as
1455 \begin_inset Formula
1457 \underbrace{\widetilde{T}_{\zeta'l'm'}^{\zeta lm}}_{\mbox{Taylor}}=\frac{\sqrt{l'(l'+1)}}{\sqrt{l(l+1)}}\underbrace{T_{\zeta'l'm'}^{\zeta lm}}_{\mbox{Krist.}}\,_{\leftarrow\mbox{illuminating}}^{\leftarrow\mbox{outgoing}}.
1465 \begin_layout Subsubsection
1466 scuff-tmatrix output
1469 \begin_layout Standard
1470 Indices of the outgoing wave (without primes) come first, illuminating regular
1471 wave (with primes) second in the output files of scuff-tmatrix.
1472 It seems that it at least in the electric part, the output of scuff-tmatrix
1473 is equivalent to the Kristensson's convention.
1474 Not sure whether it is also true for the E-M cross terms.
1477 \begin_layout Chapter
1481 \begin_layout Section
1482 xyz pure free-space dipole waves in terms of SVWF
1485 \begin_layout Section
1486 Mie decomposition of Green's function for single nanoparticle
1489 \begin_layout Chapter
1490 Translation of spherical waves: getting insane
1493 \begin_layout Standard
1494 Cruzan's formulation, Xu's normalisation
1495 \begin_inset CommandInset citation
1498 key "xu_efficient_1998"
1504 \begin_inset Formula
1506 B_{m,n,\mu,\nu}=\underbrace{\left(-1\right)^{-m}\frac{\left(2\nu+1\right)\left(n+m\right)!\left(\nu-\mu\right)!}{2n\left(n+1\right)\left(n-m\right)!\left(\nu+\mu\right)!}\sum_{q=1}^{Q_{max}^{-m,n,\mu,\nu}}i^{p+1}\sqrt{\left(\left(p+1\right)^{2}-\left(n-\nu\right)^{2}\right)\left(\left(n+\nu+1\right)^{2}-\left(p+1\right)^{2}\right)}b_{-m,n,\mu,\nu}^{p,p+1}}_{\mbox{(without the \ensuremath{\sum})}\equiv B_{m,n,\mu,\nu}^{q}}z_{p+1}P_{p+1}e^{i\left(\mu-m\right)\phi},
1512 \begin_inset CommandInset citation
1514 after "(28,5,60,61)"
1515 key "xu_efficient_1998"
1521 \begin_inset Formula $p\equiv n+\nu-2q$
1525 \begin_inset Formula $Q_{max}^{-m,n,\mu,\nu}\equiv\min\left(n,\nu,\frac{n+\nu+1-\left|\mu-m\right|}{2}\right)$
1529 \begin_inset Formula
1531 b_{-m,n,\mu,\nu}^{p,p+1}\equiv\left(-1\right)^{\mu-m}\left(2p+3\right)\sqrt{\frac{\left(n-m\right)!\left(\nu+\mu\right)!\left(p+m-\mu+1\right)!}{\left(n+m\right)!\left(\nu-\mu\right)!\left(p-m+\mu+1\right)!}}\begin{pmatrix}n & \nu & p+1\\
1533 \end{pmatrix}\begin{pmatrix}n & \nu & p\\
1543 \begin_layout Chapter
1544 Multiple scattering: nice linear algebra born from all the mess
1547 \begin_layout Chapter
1548 Quantisation of quasistatic modes of a sphere
1551 \begin_layout Standard
1552 \begin_inset CommandInset bibtex
1554 bibfiles "Electrodynamics"