1 #LyX 2.0 created this file. For more info see http://www.lyx.org/
6 \options pra,superscriptaddress,twocolumn,notitlepage
7 \use_default_options false
8 \maintain_unincluded_children false
10 \language_package default
15 \font_typewriter default
16 \font_default_family default
17 \use_non_tex_fonts true
24 \default_output_format pdf4
26 \bibtex_command bibtex
27 \index_command default
28 \paperfontsize default
40 \paperorientation portrait
49 \paragraph_separation indent
50 \paragraph_indentation default
51 \quotes_language english
54 \paperpagestyle default
55 \tracking_changes false
64 \begin_layout Standard
67 \begin_inset FormulaMacro
68 \newcommand{\ket}[1]{\left|#1\right\rangle }
72 \begin_inset FormulaMacro
73 \newcommand{\bra}[1]{\left\langle #1\right|}
79 \begin_inset FormulaMacro
80 \newcommand{\vect}[1]{\mathbf{\boldsymbol{#1}}}
81 {\boldsymbol{\mathbf{#1}}}
85 \begin_inset FormulaMacro
86 \newcommand{\uvec}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
87 {\boldsymbol{\hat{\mathbf{#1}}}}
91 \begin_inset FormulaMacro
92 \newcommand{\ud}{\mathrm{d}}
99 Technical notes on quantum electromagnetic multiple scattering
106 \begin_layout Affiliation
107 COMP Centre of Excellence, Department of Applied Physics, Aalto University,
109 Box 15100, Fi-00076 Aalto, Finland
116 \begin_layout Plain Layout
128 \begin_layout Abstract
133 \begin_layout Section
134 Theory of quantum electromagnetic multiple scattering
137 \begin_layout Subsection
141 \begin_layout Standard
144 \begin_inset CommandInset citation
146 key "wubs_multiple-scattering_2004"
151 \begin_inset CommandInset citation
153 key "delga_quantum_2014,delga_theory_2014"
160 \begin_layout Subsection
161 General initial states
164 \begin_layout Standard
166 \begin_inset CommandInset citation
168 key "landau_computational_2015"
172 for an inspiration for solving the LS equation with an arbitrary initial
176 \begin_layout Section
177 Computing classical Green's functions
180 \begin_layout Standard
181 The formulae below might differ depending on the conventions used by various
184 \begin_inset CommandInset citation
186 key "taylor_optical_2011"
190 uses normalized spherical wavefunctions
191 \begin_inset Formula $\widetilde{\vect M}_{mn}^{(j)},\widetilde{\vect N}_{mn}^{(j)}$
194 which are designed in a way that avoids float number overflow of some of
195 the variables during the numerical calculation.
198 \begin_layout Standard
199 Beware of various conventions in definitions of Legendre functions etc.
200 (the implementation in py-gmm differs, for example, by a factor of
201 \begin_inset Formula $(-1)^{m}$
204 from scipy.special.lpmn.
205 I think this is also the reason that lead to the
206 \begin_inset Quotes eld
210 \begin_inset Quotes erd
213 signs in the addition coefficients in my code compared to
214 \begin_inset CommandInset citation
216 key "xu_calculation_1996"
223 \begin_layout Subsection
227 \begin_layout Subsubsection
231 \begin_layout Standard
232 Expressions for VSWF in Xu
233 \begin_inset CommandInset citation
236 key "xu_electromagnetic_1995"
243 \begin_layout Standard
246 \vect M_{mn}^{(J)} & = & \left(i\uvec{\theta}\pi_{mn}(\cos\theta)-\uvec{\phi}\tau_{mn}(\cos\theta)\right)z_{n}^{(J)}(kr)e^{im\phi},\nonumber \\
247 \vect N_{mn}^{(J)} & = & \uvec rn(n+1)P_{n}^{m}(\cos\theta)\frac{z_{n}^{(J)}(kr)}{kr}e^{im\phi}\label{eq:vswf}\\
248 & & +\left(\uvec{\theta}\tau_{mn}(\cos\theta)+i\uvec{\phi}\pi_{mn}(\cos\theta)\right)\nonumber \\
249 & & \phantom{+}\times\frac{1}{kr}\frac{\ud\left(rz_{n}^{(J)}(kr)\right)}{\ud r}e^{im\phi},\nonumber \\
256 \begin_inset Formula $z_{n}^{(J)}$
260 \begin_inset Formula $j_{n},y_{n},h_{n}^{+},h_{n}^{-}$
264 \begin_inset Formula $J=1,2,3,4$
270 \pi_{mn}(\cos\theta) & = & \frac{m}{\sin\theta}P_{n}^{m}(\cos\theta),\\
271 \tau_{mn}(\cos\theta) & = & \frac{\ud P_{n}^{m}(\cos\theta)}{\ud\theta}=-\sin\theta\frac{\ud P_{n}^{m}(\cos\theta)}{\ud\cos\theta}.
277 \begin_inset Formula $\vect M_{mn}^{(J)},\vect N_{mn}^{(J)}$
283 \begin_layout Standard
287 \begin_inset Formula $\theta\to0,\pi$
293 \begin_inset Formula $1/\sin\theta$
297 \begin_inset Formula $\pi_{mn}(\cos\theta)$
302 \begin_inset Formula $m=0$
305 , it is irrelevant because of the
306 \begin_inset Formula $m$
309 factor (it would be bad otherwise, because
310 \begin_inset Formula $P_{n}^{0}(\cos\theta)$
313 does not go to zero at
314 \begin_inset Formula $\theta\to0,\pi$
319 \begin_inset Formula $\left|m\right|\ge2$
323 \begin_inset Formula $P_{n}^{m}(x)$
327 \begin_inset Formula $o(x+1),o(x-1)$
331 \begin_inset Formula $-1,1$
335 \begin_inset Formula $P_{n}^{m}(\cos\theta)$
339 \begin_inset Formula $o(\theta^{2}),o\left((\theta-\pi)^{2}\right)$
343 \begin_inset Formula $0,\pi$
346 , which safely eliminates the divergent factor.
348 \begin_inset Formula $\left|m\right|=1$
351 , the whole expression
352 \begin_inset Formula $P_{n}^{m}(\cos\theta)/\sin\theta$
355 has a finite nonzero limit for
356 \begin_inset Formula $\theta\to0,\pi$
360 According to Mathematica (for
361 \begin_inset Formula $\theta\to\pi,$
364 Mathematica does not work well, but it can be derived from the
365 \begin_inset Formula $\theta\to0$
368 case and oddness/evenness).
372 \lim_{\theta\to0}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & -\frac{1}{2}n(1+n),\qquad\lim_{\theta\to0}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{1}{2},\\
373 \lim_{\theta\to\pi}\frac{P_{n}^{1}(\cos\theta)}{\sin\theta} & = & \frac{\left(-1\right)^{n}}{2}n(1+n),\qquad\lim_{\theta\to\pi}\frac{P_{n}^{-1}(\cos\theta)}{\sin\theta}=\frac{\left(-1\right)^{n+1}}{2}.
378 NOT COMPLETELY SURE ABOUT THE SIGN/NORMALIZATION CONVENTION HERE.
379 IT HAS TO BE CHECKED.
382 \begin_layout Standard
383 Expansions for the scattered fields are
384 \begin_inset CommandInset citation
387 key "xu_electromagnetic_1995"
394 \vect E_{s}(j) & = & \sum_{n=1}^{\infty}\sum_{m=-n}^{n}iE_{mn}\left[a_{mn}^{j}\vect N_{mn}^{(3)}+b_{mn}^{j}\vect M_{mn}^{(3)}\right],\\
395 \vect H_{s}(j) & = & \frac{k}{\omega\mu}\sum_{n=1}^{\infty}\sum_{m=-n}^{n}E_{mn}\left[b_{mn}^{j}\vect N_{mn}^{(3)}+a_{mn}^{j}\vect M_{mn}^{(3)}\right].
400 These expansions should be OK in SI units (take the Fourier transform of
402 \begin_inset Formula $\nabla\times\vect E=-\partial\vect B/\partial t$
406 \begin_inset Formula $\vect B=\mu\vect H$
410 For internal field of a sphere, the (regular-wave) expansion reads
413 \vect E_{I}(j) & = & -\sum_{n=1}^{\infty}\sum_{m=-n}^{n}iE_{mn}\left[d_{mn}^{j}\vect N_{mn}^{(1)}+c_{mn}^{j}\vect M_{mn}^{(1)}\right],\\
414 \vect H_{I}(j) & = & -\frac{k}{\omega\mu}\sum_{n=1}^{\infty}\sum_{m=-n}^{n}E_{mn}\left[c_{mn}^{j}\vect N_{mn}^{(1)}+d_{mn}^{j}\vect M_{mn}^{(1)}\right]
419 (note the minus sign; I am not sure about its role) and the incident field
421 field from the other scatterers) is assumed to have the same regular-wave
425 \vect E_{i}(j) & = & -\sum_{n=1}^{\infty}\sum_{m=-n}^{n}iE_{mn}\left[p_{mn}^{j}\vect N_{mn}^{(1)}+q_{mn}^{j}\vect M_{mn}^{(1)}\right],\\
426 \vect H_{i}(j) & = & -\frac{k}{\omega\mu}\sum_{n=1}^{\infty}\sum_{m=-n}^{n}E_{mn}\left[q_{mn}^{j}\vect N_{mn}^{(1)}+p_{mn}^{j}\vect M_{mn}^{(1)}\right].
432 \begin_inset Formula $k/\omega\mu=\sqrt{\varepsilon_{r}\varepsilon_{0}/\mu_{r}\mu_{0}}=1/\eta_{r}\eta_{0}.$
436 \begin_inset Quotes eld
440 \begin_inset Quotes erd
444 \begin_inset Formula $H/E$
448 \begin_inset Formula $-ik/\omega\mu=-i\sqrt{\varepsilon_{r}\varepsilon_{0}/\mu_{r}\mu_{0}}$
451 , which is important in determining the Mie coefficients.
454 \begin_layout Standard
455 The common multipole-dependent factor is given by
458 E_{mn}=\left|E_{0}\right|i^{n}(2n+1)\frac{\left(n-m\right)!}{\left(n+m\right)!}
464 \begin_inset Quotes eld
467 is desired for keeping the formulation of the multisphere scattering theory
468 consistent with that of the Mie theory.
469 It ensures that all the expressions in the multisphere theory turn out
470 to be identical to those in the Mie theory when one is dealing with a cluster
471 containing only one sphere and illuminated by a single plane wave
472 \begin_inset Quotes erd
476 (According to Bohren&Huffman
477 \begin_inset CommandInset citation
480 key "bohren_absorption_1983"
484 , the decomposition of a plane wave reads
487 \vect E=E_{0}\sum_{n=1}^{\infty}i^{n}\frac{2n+1}{n(n+1)}\left(\vect M_{o1n}^{(1)}-i\vect N_{e1n}^{(1)}\right),
492 where the even/odd VSWF and
493 \begin_inset Formula $m\ge0$
499 \begin_layout Standard
502 It should be possible to just take it away and the abovementioned expansions
503 are still consistent, are they not?
506 \begin_layout Standard
508 \begin_inset CommandInset citation
511 key "xu_electromagnetic_1995"
515 , there are formulae for translation of the plane wave between VSWF with
519 \begin_layout Standard
523 \begin_layout Subsubsection
527 \begin_layout Standard
528 For the exact form of the coefficients following from the boundary conditions
529 on the spherical surface, cf.
531 \begin_inset CommandInset citation
534 key "xu_electromagnetic_1995"
539 For the particular case of spherical nanoparticle, it is important that
540 they can be written as
541 \begin_inset CommandInset citation
544 key "xu_electromagnetic_1995"
551 a_{mn}^{j} & =R_{n}^{V}p_{mn}^{j},\quad b_{mn}^{j}=R_{n}^{H}q_{mn}^{j},\\
552 c_{mn}^{j} & =T_{n}^{H}q_{mn}^{j},\quad d_{mn}^{j}=T_{n}^{V}p_{mn}^{j},
557 in other words, the Mie coefficients do not depend on
558 \begin_inset Formula $m$
562 \begin_inset Formula $n$
565 (which is not surprising and probably follows from the Wigner-Eckart theorem).
568 \begin_layout Standard
569 Respecting the conventions for decomposition in the previous section (i.e.
570 there is opposite sign in the scattered part), the reflection and
571 \begin_inset Quotes eld
575 \begin_inset Quotes erd
578 coefficients become (adopted from
579 \begin_inset CommandInset citation
582 key "bohren_absorption_1983"
589 R_{n}^{V} & =\frac{a_{n}}{p_{n}}= & \frac{\mu_{e}m^{2}z^{i}ž^{e}-\mu_{i}z^{e}ž^{i}}{\mu_{e}m^{2}z^{i}ž^{s}-\mu_{i}z^{s}ž^{i}}\\
590 R_{n}^{H} & =\frac{b_{n}}{q_{n}}= & \frac{\mu_{i}z^{i}ž^{e}-\mu_{e}z^{e}ž^{i}}{\mu_{i}z^{i}ž^{s}-\mu_{e}z^{s}ž^{i}}\\
591 T_{n}^{V} & =\frac{d_{n}}{p_{n}}= & \frac{\mu_{i}mz^{e}ž^{s}-\mu_{i}mz^{s}ž^{e}}{\mu_{e}m^{2}z^{i}ž^{s}-\mu_{i}z^{s}ž^{i}}\\
592 T_{n}^{H} & =\frac{c_{n}}{q_{n}}= & \frac{\mu_{i}z^{e}ž^{s}-\mu_{i}z^{s}ž^{e}}{\mu_{i}z^{i}ž^{s}-\mu_{e}z^{s}ž^{i}}
598 \begin_inset Formula $\mu_{i}|\mu_{e}$
601 is (absolute) permeability of the sphere|envinronment,
602 \begin_inset Formula $m=k_{i}/k_{e}=\sqrt{\mu_{i}\varepsilon_{i}/\mu_{e}\varepsilon_{e}}$
608 z^{i} & = & z_{n}^{(J_{i}=1)}(k_{i}R)=j_{n}(k_{i}R),\\
609 z^{e} & = & z_{n}^{(J_{e})}(k_{e}R),\\
610 z^{s} & = & z_{n}^{(J_{s})}(k_{e}R),\\
611 ž^{i/e/s} & = & \frac{\ud(k_{i/e/e}R\cdot z_{n}^{(J_{i/e/e})}(k_{i/e/e}R)}{\ud(k_{i/e/e}R)}.
619 \begin_layout Subsubsection
620 Translation coefficients
623 \begin_layout Standard
624 A quite detailed study can be found in
625 \begin_inset CommandInset citation
627 key "xu_calculation_1996"
631 , I have not read the recenter one
632 \begin_inset CommandInset citation
634 key "xu_efficient_1998"
638 which deals with efficient evaluation of Wigner 3jm symbols and Gaunt coefficie
643 \begin_layout Standard
645 \begin_inset CommandInset ref
651 and translation relations in the form
652 \begin_inset CommandInset citation
655 key "xu_calculation_1996"
662 \vect M_{\mu\nu}^{(J)l} & = & \sum_{n=1}^{\infty}\sum_{m=-n}^{n}\left[A_{mn}^{\mu\nu}\vect M_{mn}^{(1)j}+B_{mn}^{\mu\nu}\vect N_{mn}^{(1)j}\right],\quad r\le d_{lj},\\
663 \vect N_{\mu\nu}^{(J)l} & = & \sum_{n=1}^{\infty}\sum_{m=-n}^{n}\left[B_{mn}^{\mu\nu}\vect M_{mn}^{(1)j}+A_{mn}^{\mu\nu}\vect N_{mn}^{(1)j}\right],\quad r\le d_{lj},\\
664 \vect M_{\mu\nu}^{(J)l} & = & \sum_{n=1}^{\infty}\sum_{m=-n}^{n}\left[A_{mn}^{\mu\nu}\vect M_{mn}^{(J)j}+B_{mn}^{\mu\nu}\vect N_{mn}^{(J)j}\right],\quad r\ge d_{lj},\\
665 \vect N_{\mu\nu}^{(J)l} & = & \sum_{n=1}^{\infty}\sum_{m=-n}^{n}\left[B_{mn}^{\mu\nu}\vect M_{mn}^{(J)j}+A_{mn}^{\mu\nu}\vect N_{mn}^{(J)j}\right],\quad r\ge d_{lj},
670 the translation coefficients (which should in fact be also labeled with
672 \begin_inset Formula $l,j$
676 \begin_inset CommandInset citation
679 key "xu_calculation_1996"
686 \begin_layout Standard
690 \frac{(-1)^{m}i^{\nu+n}(n+2)_{n-1}\left(\nu+2\right)_{\nu+1}(n+\nu+m-\mu)!}{4n(n+\nu+1)_{n+\nu}(n-m)!(\nu+m)!}\\
691 \times e^{i(\mu-m)\phi_{lj}}\sum_{q=0}^{q_{\mathrm{max}}}(-1)^{q}\left[n(n+1)+\nu(\nu+1)-p(p+1)\right]\\
692 \times\tilde{a}_{1q}\begin{pmatrix}z_{p}^{(J)}(kd_{lj})\\
694 \end{pmatrix}P_{p}^{\mu-m}(\cos\theta_{lj}),\qquad\begin{pmatrix}r\le d_{lj}\\
705 \frac{(-1)^{m}i^{\nu+n+1}(n+2)_{n+1}\left(\nu+2\right)_{\nu+1}(n+\nu+m-\mu+1)!}{4n(n+1)(n+m+1)(n+\nu+2)_{n+\nu+1}(n-m)!(\nu+m)!}\\
706 \times e^{i(\mu-m)\phi_{lj}}\sum_{q=0}^{Q_{\mathrm{max}}}(-1)^{q}\Big\{2(n+1)(\nu-\mu)\tilde{a}_{2q}-\\
707 -\left[p(p+3)-\nu(\nu+1)-n(n+3)-2\mu(n+1)\right]\tilde{a}_{3q}\Big\}\\
708 \times\begin{pmatrix}z_{p+1}^{(J)}(kd_{lj})\\
710 \end{pmatrix}P_{p+1}^{\mu-m}(\cos\theta_{lj}),\qquad\begin{pmatrix}r\le d_{lj}\\
718 \begin_inset CommandInset citation
721 key "xu_calculation_1996"
728 \tilde{a}_{1q} & = & a(-m,n,\mu,\nu,n+\nu-2q)/a(-m,n,\mu,\nu,n+\nu),\\
729 \tilde{a}_{2q} & = & a(-m-1,n+1,\mu+1,\nu,n+\nu+1-2q)/\\
730 & & /a(-m-1,n+1,\mu+1,\nu,n+\nu+1),\\
731 \tilde{a}_{3q} & = & a(-m,n+1,\mu,\nu,n+\nu+1-2q)/\\
732 & & /a(-m,n+1,\mu,\nu,\mu+\nu+1),
741 q_{\max} & = & \min\left(n,\nu,\frac{n+\nu-\left|m-\mu\right|}{2}\right),\\
742 Q_{\max} & = & \min\left(n+1,\nu,\frac{n+\nu+1-\left|m-\mu\right|}{2}\right),
747 where the parentheses with lower index mean most likely the Pochhammer symbol
755 \left(x\right)_{n}=x(x+1)(x+2)\dots(x+n-1)=\frac{(x+n-1)!}{(x-1)!}=\frac{\Gamma(x+n)}{\Gamma(x)},
760 which is damn confusing (because this can also mean the falling factorial,
762 Wikipedia); and Xu does not bother explaining the notation
767 The fact that it is the rising factorial has been checked by comparing
769 \begin_inset Formula $a_{0}$
773 \begin_inset CommandInset citation
776 key "xu_calculation_1996"
780 to some implementation from the internets
784 \begin_layout Plain Layout
787 \begin_inset CommandInset href
789 name "https://raw.githubusercontent.com/michael-hartmann/gaunt/master/gaunt.py"
790 target "https://raw.githubusercontent.com/michael-hartmann/gaunt/master/gaunt.py"
802 \begin_layout Standard
803 The implementation should be checked with
804 \begin_inset CommandInset citation
807 key "xu_calculation_1996"
814 \begin_layout Subsubsection
815 Equations for the scattering problem
818 \begin_layout Standard
819 The linear system for the scattering problem reads
820 \begin_inset CommandInset citation
823 key "xu_electromagnetic_1995"
830 a_{mn}^{j} & = & a_{n}^{j}\left\{ p_{mn}^{j,j}-\sum_{l\neq j}^{(1,L)}\sum_{\nu=1}^{\infty}\sum_{\mu=-\nu}^{\nu}\left[a_{\mu\nu}^{l}A_{mn}^{\mu\nu;lj}+b_{\mu\nu}^{l}B_{mn}^{\mu\nu;lj}\right]\right\} \\
831 b_{mn}^{j} & = & b_{n}^{j}\left\{ q_{mn}^{j,j}-\sum_{l\neq j}^{(1,L)}\sum_{\nu=1}^{\infty}\sum_{\mu=-\nu}^{\nu}\left[a_{\mu\nu}^{l}B_{mn}^{\mu\nu;lj}+b_{\mu\nu}^{l}A_{mn}^{\mu\nu;lj}\right]\right\}
837 \begin_inset Formula $p_{mn}^{j,j},q_{mn}^{j,j}$
840 are the expansion coefficients of the initial incident waves in the
841 \begin_inset Formula $j$
844 -th particle's coordinate system
845 \begin_inset CommandInset citation
848 key "xu_electromagnetic_1995"
856 \begin_inset Formula $p_{mn}^{j,j},q_{mn}^{j,j}$
859 in the case of dipole initial wave.
862 \begin_layout Subsubsection
863 Solving the linear system
866 \begin_layout Standard
867 \begin_inset CommandInset citation
870 key "xu_electromagnetic_1995"
877 \begin_layout Subsection
878 T-Matrix resummation (multiple scatterers)
881 \begin_layout Subsection
882 Boundary element method
885 \begin_layout Subsection
889 \begin_layout Standard
892 \begin_inset CommandInset ref
894 reference "sub:SCUFF-TMATRIX"
901 \begin_layout Section
905 \begin_layout Itemize
906 TODO which of them can calculate the VSWF translation coefficients?
909 \begin_layout Subsection
911 \begin_inset CommandInset citation
913 key "reid_scuff-em_2015"
920 \begin_layout Subsubsection
926 \begin_inset CommandInset label
928 name "sub:SCUFF-TMATRIX"
935 \begin_layout Subsubsection
941 \begin_inset CommandInset label
943 name "sub:SCUFF-SCATTER"
950 \begin_layout Subsubsection
954 \begin_layout Description
960 's Angular frequencies specified using the
968 arguments are interpreted in units of
969 \begin_inset Formula $c/1\,\mathrm{μm}=3\cdot10^{14}\,\mathrm{rad/s}$
976 \begin_layout Plain Layout
979 \begin_inset CommandInset href
981 name "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml"
982 target "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml"
994 TODO what are the output units?
997 \begin_layout Subsection
999 \begin_inset CommandInset citation
1001 key "mackowski_mstm_2013"
1008 \begin_layout Itemize
1009 The incident field is a gaussian beam or a plane wave in the vanilla code
1010 (no multipole radiation as input!).
1013 \begin_layout Itemize
1014 The bulk of the useful code is in the
1016 mstm-modules-v3.0.f90
1021 \begin_layout Itemize
1022 For solving the interaction equations
1023 \begin_inset CommandInset citation
1026 key "mackowski_mstm_2013"
1030 , the BCGM (biconjugate gradient method) is used.
1031 (According to Wikipedia, this method is numerically unstable but has a
1032 stabilized version (stabilized BCGM).)
1035 \begin_layout Itemize
1036 According to the manual
1037 \begin_inset CommandInset citation
1040 key "mackowski_mstm_2013"
1044 , they use some method (rotational-axial translation decomposition of the
1045 translation operation), which
1046 \begin_inset Quotes eld
1049 reduces the operation from an
1050 \begin_inset Formula $L_{S}^{4}$
1054 \begin_inset Formula $L_{S}^{3}$
1058 \begin_inset Formula $L_{S}$
1061 is the truncation order of the expansion
1062 \begin_inset Quotes erd
1065 (more details can probably be found at
1066 \begin_inset CommandInset citation
1069 key "mackowski_calculation_1996"
1078 \begin_layout Itemize
1081 Not sure if this holds also for nonspherical particles, I should either
1085 \begin_inset CommandInset citation
1087 key "mackowski_calculation_1996"
1094 \begin_inset CommandInset citation
1096 key "mishchenko_electromagnetic_2003"
1100 which is also cited in the manual.
1104 \begin_layout Itemize
1105 By default spheres, it is possible to add own T-Matrix coefficients instead.
1110 \begin_layout Itemize
1113 Is it then possible to insert a T-Matrix of an arbitrary shape, or is it
1115 \begin_inset Quotes eld
1119 \begin_inset Quotes erd
1126 \begin_layout Itemize
1127 Why the heck are the T-matrix options listed in the
1128 \begin_inset Quotes eld
1131 Options for random orientation calculations
1132 \begin_inset Quotes erd
1135 ? Well, it seems that for fixed orientation, it is not possible to specify
1139 fixed_or_random_orientation
1142 \begin_inset CommandInset citation
1145 key "mackowski_mstm_2013"
1152 \begin_layout Subsubsection
1153 Interesting subroutines
1156 \begin_layout Itemize
1162 \begin_inset Quotes eld
1165 far field formula for outgoing vswf translation
1166 \begin_inset Quotes erd
1170 What is that and how does it differ from whatever else (near field?) formula?
1173 \begin_layout Subsection
1175 \begin_inset CommandInset citation
1177 key "pellegrini_py_gmm_2015"
1184 \begin_layout Itemize
1185 Fortran code, already (partially) pythonized using
1189 by the authors(?); under GNU GPLv3.
1190 This could save my day.
1193 \begin_layout Itemize
1194 Lots of unnecessary code duplication (see e.g.
1206 \begin_layout Itemize
1207 Has comments!!! (Sometimes they are slightly inaccurate due to the copy-pasting,
1208 but it is still one of the most readable FORTRAN codes I have seen.)
1211 \begin_layout Itemize
1212 The subroutines seem not to be bloated with dependencies on static/global
1213 variables, so they should be quite easily reusable.
1216 \begin_layout Itemize
1217 The FORTRAN code was apparently used in
1218 \begin_inset CommandInset citation
1220 key "pellegrini_interacting_2007"
1225 Uses the multiple-scattering formalism described in
1226 \begin_inset CommandInset citation
1228 key "xu_efficient_1998"
1235 \begin_layout Subsubsection
1236 Interesting subroutines
1239 \begin_layout Standard
1243 \begin_layout Itemize
1248 : calculation of the Mie scattering coefficients (
1249 \begin_inset Formula $\overline{a}_{n}^{l},\overline{b}_{n}^{l}$
1253 \begin_inset CommandInset citation
1255 after "(1), (2), \\ldots"
1256 key "pellegrini_py_gmm_2015"
1260 ), for a set of spheres (therefore all the parameters have +1 dimension).
1264 \begin_layout Itemize
1265 What does the input parameter
1271 vettore raggi equivalenti
1276 \begin_layout Itemize
1277 How do I put in the environment permittivity?
1280 \begin_layout Itemize
1285 are real and imaginary parts of the permittivity (which are then transformed
1293 \begin_layout Itemize
1298 is the environment refractive index (called
1302 in the example ipython notebook)
1305 \begin_layout Itemize
1310 are the sphere radii?
1313 \begin_layout Itemize
1318 is the maximum order of the
1319 \begin_inset Formula $n$
1325 \begin_layout Itemize
1330 is ns, number of spheres for which the calculation is performed apparently,
1331 it is connected to some
1332 \begin_inset Quotes eld
1335 dirty hack to interface fortran and python properly
1336 \begin_inset Quotes erd
1348 \begin_layout Section
1349 Implementation / code integration
1352 \begin_layout Standard
1353 There are several scipy functions to compute the Legendre polynomials.
1354 lpmv is ufunc, whereas lpmn is not; lpmn can, however, compute also the
1356 This is a bit annoying, because I have to iterate the positions with a
1360 \begin_layout Standard
1361 The default gsl legendre function (gsl_sf_legendre_array) without additional
1362 parameters has opposite sign than the scipy.special.lpmn, and it should contain
1363 the Condon-Shortley phase; thus scipy.special.lpmn probably does NOT include
1365 But again, this should hopefully play no role.
1366 The overall normalisation, on the other hand, plays huge role.
1369 \begin_layout Subsection
1370 Scattering-Taylor.ipynb
1373 \begin_layout Standard
1374 In the conventions used in the code and the corresponding libraries, the
1375 following symmetries hold for
1376 \begin_inset Formula $J=1$
1379 (regular wavefunctions):
1380 \begin_inset Formula
1382 \widetilde{\vect M}_{m,n}^{(1)} & = & (-1)^{m}\widetilde{\vect M}_{-m,n}^{(1)},\\
1383 \widetilde{\vect N}_{m,n}^{(1)} & = & (-1)^{m}\widetilde{\vect N}_{-m,n}^{(1)}.
1391 \begin_layout Section
1392 Testing and reproduction of foreign results
1395 \begin_layout Subsection
1397 \begin_inset CommandInset citation
1399 key "delga_quantum_2014"
1406 \begin_layout Subsubsection
1410 \begin_layout Itemize
1411 Surrounding lossless dielectric
1416 \begin_inset Formula $\epsilon_{d}=2.13$
1422 \begin_layout Itemize
1428 \begin_inset Formula $\mu=0.19\, e\cdot\mathrm{nm}=9.12\,\mathrm{D}$
1432 \begin_inset Formula $N\in\left\{ 1,50,100,200\right\} $
1435 , radial orientation,
1436 \begin_inset Formula $h=1\,\mathrm{nm}$
1439 above the sphere (except for Fig.
1440 5 where variable), natural frequency
1441 \begin_inset Formula $\Omega_{n}=\omega_{0}-i\gamma_{\mathrm{QE}}/2,$
1445 \begin_inset Formula $\omega_{0}=$
1449 \begin_inset Formula $\gamma_{\mathrm{QE}}=15\,\mathrm{meV}$
1455 \begin_layout Itemize
1462 \begin_layout Itemize
1464 \begin_inset Formula $a=7\,\mathrm{nm}$
1470 \begin_layout Itemize
1472 \begin_inset Formula $\epsilon_{m}(\omega)=\epsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega\left(\omega+i\gamma_{p}\right)}$
1479 \begin_layout Itemize
1481 \begin_inset Formula $\omega_{p}=9\,\mathrm{eV}$
1485 \begin_inset Formula $\epsilon_{\infty}=4.6$
1489 \begin_inset Formula $\gamma_{p}=0.1\,\mathrm{eV}$
1496 \begin_layout Itemize
1497 background permittivity
1498 \begin_inset Formula $\epsilon_{d}(\omega)=2.13$
1504 \begin_layout Itemize
1505 (approximate?; not really a parameter) LSP resonances
1506 \begin_inset Formula $\omega_{l}=\omega_{p}/\sqrt{\epsilon_{\infty}+\left(1+1/l\right)\epsilon_{d}}$
1510 \begin_inset Formula $\omega_{1}\approx3.0236\,\mathrm{eV}$
1514 \begin_inset Formula $\omega_{2}\approx3.2236\,\mathrm{eV}$
1518 \begin_inset Formula $\omega_{3}\approx3.30\,\mathrm{eV}$
1522 \begin_inset Formula $\omega_{4}\approx3.34\,\mathrm{eV}$
1526 \begin_inset Formula $\omega_{5}\approx3.364\,\mathrm{eV}$
1530 \begin_inset Formula $\omega_{\infty}\approx3.4692\,\mathrm{eV}$
1537 \begin_layout Itemize
1546 \begin_layout Itemize
1548 \begin_inset Formula $1\,\mathrm{\mu m}$
1551 away from the center of the nanoparticle along the
1552 \begin_inset Formula $y$
1559 \begin_layout Itemize
1560 Near field: position not specified in the paper; but in Fig.
1562 \begin_inset Quotes eld
1565 polarization spectra
1566 \begin_inset Quotes erd
1570 \begin_inset Quotes eld
1574 \begin_inset Quotes erd
1580 Does this mean that they are evaluated somewhere in/on the sphere? Or in
1581 the particle? The latter is likely, as it is given by
1582 \begin_inset Formula $P_{n}\left(\omega\right)=\left\langle \sigma_{n}^{+}\left(-\omega\right)\sigma_{n}^{-}(\omega)\right\rangle $
1586 the column below Fig.
1591 \begin_layout Subsubsection
1595 \begin_layout Standard
1597 \begin_inset Quotes eld
1601 \begin_inset Quotes erd
1604 code, there no splitting observable around
1605 \begin_inset Formula $\omega\approx\omega_{0}\approx\omega_{\infty}\approx3.46\,\mathrm{eV}$
1609 This is perhaps because the couplings to the higher multipoles is miscalculated
1611 No splitting around the NP dipole (
1612 \begin_inset Formula $\approx3,02\,\mathrm{eV}$
1615 ) should be OK for single QE in far field (cf.
1618 And there are yet the
1619 \begin_inset Quotes eld
1623 \begin_inset Quotes erd
1629 \begin_layout Standard
1630 If I set the dipole reflection coefficients RH[1], RV[1] to zero, and multiply
1631 the the quadrupole reflection coefficients RH[2], RV[2] by
1632 \begin_inset Formula $10^{6}$
1636 \begin_inset Formula $3.0\,\mathrm{eV}$
1639 dissapears and a tiny(!) peak appears around the (expected) position of
1641 \begin_inset Formula $3.0\,\mathrm{eV}$
1645 Have I fucked up the Mie reflection coefficients? Sounds like if I forgot
1647 \begin_inset Formula $c$
1653 \begin_layout Subsection
1655 \begin_inset CommandInset citation
1657 key "delga_theory_2014"
1664 \begin_layout Subsubsection
1668 \begin_layout Itemize
1674 \begin_inset Formula $\mu=0.38\, e\cdot\mathrm{nm}=18.24\,\mathrm{D}$
1677 (double), otherwise the same parameters as in
1678 \begin_inset CommandInset citation
1680 key "delga_quantum_2014"
1687 \begin_layout Itemize
1693 \begin_inset CommandInset citation
1695 key "delga_quantum_2014"
1702 \begin_layout Itemize
1707 not stated in the paper
1710 \begin_layout Itemize
1715 looking at the leftmost ball in Fig.
1716 3, it seems that their SVW cutoff is around 12.
1719 \begin_layout Section
1723 \begin_layout Itemize
1725 \begin_inset Quotes eld
1729 \begin_inset Quotes erd
1733 \begin_inset Formula $\tilde{\pi},\tilde{\tau}$
1736 functions in Taylor's normalisation can be expressed as
1739 \begin_inset Formula
1741 \lim_{\theta\to0}\tilde{\pi}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1})\\
1742 \lim_{\theta\to0}\tilde{\tau}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1})
1750 \begin_layout Standard
1751 \begin_inset CommandInset bibtex