Fix saving lists of arrays with recent versions of numpy
[qpms.git] / qpms / beyn.h
blob13a43aabea0fe73ac8d5b6421ea888fa77335c66
1 /** \file beyn.h
2 * \brief Beyn's algorithm for nonlinear eigenvalue problems.
3 */
4 #ifndef BEYN_H
5 #define BEYN_H
7 #include <stddef.h>
8 #include <complex.h>
10 /// User-supplied function that provides the (row-major) m × m matrix M(z) whose "roots" are to be found.
11 /** Pure C array version */
12 typedef int (*beyn_function_M_t)(complex double *target_M, size_t m, complex double z, void *params);
14 /// (optional) User-supplied function that, given \f$ \hat V \f$, calculates \f$ M(z)^{-1} \hat V \f$.
15 /** Pure C array version */
16 typedef int (*beyn_function_M_inv_Vhat_t)(complex double *target_M_inv_Vhat, size_t m, size_t l,
17 const complex double *Vhat, complex double z, void *params);
19 /// Complex plane integration contour structure.
20 typedef struct beyn_contour_t {
21 size_t n; ///< Number of discretisation points.
22 /// "Centre" of the contour.
23 /**
24 * This point is used in the rescaling of the \f$ A_1 \f$ matrix as in
25 * Beyn's Remark 3.2 (b) in order to improve the numerical stability.
26 * It does not have to be a centre in some strictly defined sense,
27 * but it should be "somewhere around" where the contour is.
29 complex double centre;
30 /// Function testing that a point \a z lies inside the contour (optional).
31 _Bool (*inside_test)(struct beyn_contour_t *, complex double z);
32 complex double z_dz[][2]; ///< Pairs of contour points and derivatives in that points.
33 } beyn_contour_t;
35 /// Complex plane elliptic integration contour with axes parallel to the real, imaginary axes.
36 /** Free using free(). */
37 beyn_contour_t *beyn_contour_ellipse(complex double centre, double halfax_re, double halfax_im, size_t npoints);
40 typedef enum {
41 BEYN_CONTOUR_HALFELLIPSE_RE_PLUS = 3,
42 BEYN_CONTOUR_HALFELLIPSE_RE_MINUS = 1,
43 BEYN_CONTOUR_HALFELLIPSE_IM_PLUS = 0,
44 BEYN_CONTOUR_HALFELLIPSE_IM_MINUS = 2,
45 } beyn_contour_halfellipse_orientation;
48 /// Complex plane "half-elliptic" integration contour with axes parallel to the real, imaginary axes.
49 /** Free using free(). */
50 beyn_contour_t *beyn_contour_halfellipse(complex double centre, double halfax_re, double halfax_im, size_t npoints,
51 beyn_contour_halfellipse_orientation or);
53 /// Similar to halfellipse but with rounded corners.
54 beyn_contour_t *beyn_contour_kidney(complex double centre, double halfax_re, double halfax_im,
55 double rounding, ///< Must be in interval [0, 0.5)
56 size_t n, beyn_contour_halfellipse_orientation or);
59 /// Beyn algorithm result structure (pure C array version).
60 typedef struct beyn_result_t {
61 size_t neig; ///< Number of eigenvalues found.
62 size_t vlen; ///< Vector space dimension (also the leading dimension of eigvec).
63 complex double *eigval;
64 complex double *eigval_err;
65 double *residuals;
66 complex double *eigvec; // Rows are the eigenvectors
67 double *ranktest_SV;
69 } beyn_result_t;
71 void beyn_result_free(beyn_result_t *result);
73 /// Solve a non-linear eigenproblem using Beyn's algorithm
74 beyn_result_t *beyn_solve(
75 size_t m, ///< Dimension of the matrix \a M.
76 size_t l, ///< Number of columns of the random matrix \f$ \hat V \f$ (larger than the expected number of solutions).
77 beyn_function_M_t M, ///< Function providing the matrix \f$ M(z) \f$.
78 beyn_function_M_inv_Vhat_t M_inv_Vhat, ///< Fuction providing the matrix \f$ M^{-1}(z) \hat V \f$ (optional).
79 void *params, ///< Parameter pointer passed to M() and M_inv_Vhat().
80 const beyn_contour_t *contour, ///< Integration contour.
81 double rank_tol, ///< (default: `1e-4`) TODO DOC.
82 size_t rank_min_sel, ///< Minimum number of eigenvalue candidates, even if they don't pass \a rank_tol.
83 double res_tol ///< (default: `0.0`) TODO DOC.
86 #endif // BEYN_H