1 /****************************************************************
3 The author of this software is David M. Gay.
5 Copyright (C) 1998, 1999 by Lucent Technologies
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27 ****************************************************************/
29 /* Please send bug reports to David M. Gay (dmg at acm dot org,
30 * with " at " changed at "@" and " dot " changed to "."). */
34 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
36 * Inspired by "How to Print Floating-Point Numbers Accurately" by
37 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
40 * 1. Rather than iterating, we use a simple numeric overestimate
41 * to determine k = floor(log10(d)). We scale relevant
42 * quantities using O(log2(k)) rather than O(k) multiplications.
43 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
44 * try to generate digits strictly left to right. Instead, we
45 * compute with fewer bits and propagate the carry if necessary
46 * when rounding the final digit up. This is often faster.
47 * 3. Under the assumption that input will be rounded nearest,
48 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
49 * That is, we allow equality in stopping tests when the
50 * round-nearest rule will give the same floating-point value
51 * as would satisfaction of the stopping test with strict
53 * 4. We remove common factors of powers of 2 from relevant
55 * 5. When converting floating-point integers less than 1e16,
56 * we use floating-point arithmetic rather than resorting
57 * to multiple-precision integers.
58 * 6. When asked to produce fewer than 15 digits, we first try
59 * to get by with floating-point arithmetic; we resort to
60 * multiple-precision integer arithmetic only if we cannot
61 * guarantee that the floating-point calculation has given
62 * the correctly rounded result. For k requested digits and
63 * "uniformly" distributed input, the probability is
64 * something like 10^(k-15) that we must resort to the Long
68 #ifdef Honor_FLT_ROUNDS
69 #define Rounding rounding
70 #undef Check_FLT_ROUNDS
71 #define Check_FLT_ROUNDS
73 #define Rounding Flt_Rounds
79 (d
, mode
, ndigits
, decpt
, sign
, rve
)
80 double d
; int mode
, ndigits
, *decpt
, *sign
; char **rve
;
82 (double d
, int mode
, int ndigits
, int *decpt
, int *sign
, char **rve
)
85 /* Arguments ndigits, decpt, sign are similar to those
86 of ecvt and fcvt; trailing zeros are suppressed from
87 the returned string. If not null, *rve is set to point
88 to the end of the return value. If d is +-Infinity or NaN,
89 then *decpt is set to 9999.
92 0 ==> shortest string that yields d when read in
93 and rounded to nearest.
94 1 ==> like 0, but with Steele & White stopping rule;
95 e.g. with IEEE P754 arithmetic , mode 0 gives
96 1e23 whereas mode 1 gives 9.999999999999999e22.
97 2 ==> max(1,ndigits) significant digits. This gives a
98 return value similar to that of ecvt, except
99 that trailing zeros are suppressed.
100 3 ==> through ndigits past the decimal point. This
101 gives a return value similar to that from fcvt,
102 except that trailing zeros are suppressed, and
103 ndigits can be negative.
104 4,5 ==> similar to 2 and 3, respectively, but (in
105 round-nearest mode) with the tests of mode 0 to
106 possibly return a shorter string that rounds to d.
107 With IEEE arithmetic and compilation with
108 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
109 as modes 2 and 3 when FLT_ROUNDS != 1.
110 6-9 ==> Debugging modes similar to mode - 4: don't try
111 fast floating-point estimate (if applicable).
113 Values of mode other than 0-9 are treated as mode 0.
115 Sufficient space is allocated to the return value
116 to hold the suppressed trailing zeros.
119 int bbits
, b2
, b5
, be
, dig
, i
, ieps
, ilim
= 0, ilim0
, ilim1
= 0,
120 j
, j1
, k
, k0
, k_check
, leftright
, m2
, m5
, s2
, s5
,
121 spec_case
, try_quick
;
123 #ifndef Sudden_Underflow
127 Bigint
*b
, *b1
, *delta
, *mlo
= NULL
, *mhi
, *S
;
130 #ifdef Honor_FLT_ROUNDS
134 int inexact
, oldinexact
;
137 #ifndef MULTIPLE_THREADS
139 freedtoa(dtoa_result
);
144 if (word0(d
) & Sign_bit
) {
145 /* set sign for everything, including 0's and NaNs */
147 word0(d
) &= ~Sign_bit
; /* clear sign bit */
152 #if defined(IEEE_Arith) + defined(VAX)
154 if ((word0(d
) & Exp_mask
) == Exp_mask
)
156 if (word0(d
) == 0x8000)
159 /* Infinity or NaN */
162 if (!word1(d
) && !(word0(d
) & 0xfffff))
163 return nrv_alloc("Infinity", rve
, 8);
165 return nrv_alloc("NaN", rve
, 3);
169 dval(d
) += 0; /* normalize */
173 return nrv_alloc("0", rve
, 1);
177 try_quick
= oldinexact
= get_inexact();
180 #ifdef Honor_FLT_ROUNDS
181 if ((rounding
= Flt_Rounds
) >= 2) {
183 rounding
= rounding
== 2 ? 0 : 2;
190 b
= d2b(dval(d
), &be
, &bbits
);
191 #ifdef Sudden_Underflow
192 i
= (int)(word0(d
) >> Exp_shift1
& (Exp_mask
>>Exp_shift1
));
194 if (( i
= (int)(word0(d
) >> Exp_shift1
& (Exp_mask
>>Exp_shift1
)) )!=0) {
197 word0(d2
) &= Frac_mask1
;
200 if (( j
= 11 - hi0bits(word0(d2
) & Frac_mask
) )!=0)
204 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
205 * log10(x) = log(x) / log(10)
206 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
207 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
209 * This suggests computing an approximation k to log10(d) by
211 * k = (i - Bias)*0.301029995663981
212 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
214 * We want k to be too large rather than too small.
215 * The error in the first-order Taylor series approximation
216 * is in our favor, so we just round up the constant enough
217 * to compensate for any error in the multiplication of
218 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
219 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
220 * adding 1e-13 to the constant term more than suffices.
221 * Hence we adjust the constant term to 0.1760912590558.
222 * (We could get a more accurate k by invoking log10,
223 * but this is probably not worthwhile.)
231 #ifndef Sudden_Underflow
235 /* d is denormalized */
237 i
= bbits
+ be
+ (Bias
+ (P
-1) - 1);
238 x
= i
> 32 ? (word0(d
) << (64 - i
)) | (word1(d
) >> (i
- 32))
239 : word1(d
) << (32 - i
);
241 word0(d2
) -= 31*Exp_msk1
; /* adjust exponent */
242 i
-= (Bias
+ (P
-1) - 1) + 1;
246 ds
= (dval(d2
)-1.5)*0.289529654602168 + 0.1760912590558 + i
*0.301029995663981;
248 if (ds
< 0. && ds
!= k
)
249 k
--; /* want k = floor(ds) */
251 if (k
>= 0 && k
<= Ten_pmax
) {
252 if (dval(d
) < tens
[k
])
275 if (mode
< 0 || mode
> 9)
279 #ifdef Check_FLT_ROUNDS
280 try_quick
= Rounding
== 1;
284 #endif /*SET_INEXACT*/
304 ilim
= ilim1
= i
= ndigits
;
316 s
= s0
= rv_alloc(i
);
318 #ifdef Honor_FLT_ROUNDS
319 if (mode
> 1 && rounding
!= 1)
323 if (ilim
>= 0 && ilim
<= Quick_max
&& try_quick
) {
325 /* Try to get by with floating-point arithmetic. */
331 ieps
= 2; /* conservative */
336 /* prevent overflows */
338 dval(d
) /= bigtens
[n_bigtens
-1];
341 for(; j
; j
>>= 1, i
++)
348 else if (( j1
= -k
)!=0) {
349 dval(d
) *= tens
[j1
& 0xf];
350 for(j
= j1
>> 4; j
; j
>>= 1, i
++)
353 dval(d
) *= bigtens
[i
];
356 if (k_check
&& dval(d
) < 1. && ilim
> 0) {
364 dval(eps
) = ieps
*dval(d
) + 7.;
365 word0(eps
) -= (P
-1)*Exp_msk1
;
369 if (dval(d
) > dval(eps
))
371 if (dval(d
) < -dval(eps
))
377 /* Use Steele & White method of only
378 * generating digits needed.
380 dval(eps
) = 0.5/tens
[ilim
-1] - dval(eps
);
385 if (dval(d
) < dval(eps
))
387 if (1. - dval(d
) < dval(eps
))
397 /* Generate ilim digits, then fix them up. */
398 dval(eps
) *= tens
[ilim
-1];
399 for(i
= 1;; i
++, dval(d
) *= 10.) {
405 if (dval(d
) > 0.5 + dval(eps
))
407 else if (dval(d
) < 0.5 - dval(eps
)) {
425 /* Do we have a "small" integer? */
427 if (be
>= 0 && k
<= Int_max
) {
430 if (ndigits
< 0 && ilim
<= 0) {
432 if (ilim
< 0 || dval(d
) <= 5*ds
)
436 for(i
= 1;; i
++, dval(d
) *= 10.) {
437 L
= (Long
)(dval(d
) / ds
);
439 #ifdef Check_FLT_ROUNDS
440 /* If FLT_ROUNDS == 2, L will usually be high by 1 */
454 #ifdef Honor_FLT_ROUNDS
458 case 2: goto bump_up
;
462 if (dval(d
) > ds
|| (dval(d
) == ds
&& L
& 1)) {
483 #ifndef Sudden_Underflow
484 denorm
? be
+ (Bias
+ (P
-1) - 1 + 1) :
487 1 + 4*P
- 3 - bbits
+ ((bbits
+ be
- 1) & 3);
495 if (m2
> 0 && s2
> 0) {
496 i
= m2
< s2
? m2
: s2
;
504 mhi
= pow5mult(mhi
, m5
);
509 if (( j
= b5
- m5
)!=0)
519 /* Check for special case that d is a normalized power of 2. */
522 if ((mode
< 2 || leftright
)
523 #ifdef Honor_FLT_ROUNDS
527 if (!word1(d
) && !(word0(d
) & Bndry_mask
)
528 #ifndef Sudden_Underflow
529 && word0(d
) & (Exp_mask
& ~Exp_msk1
)
532 /* The special case */
539 /* Arrange for convenient computation of quotients:
540 * shift left if necessary so divisor has 4 leading 0 bits.
542 * Perhaps we should just compute leading 28 bits of S once
543 * and for all and pass them and a shift to quorem, so it
544 * can do shifts and ors to compute the numerator for q.
547 if (( i
= ((s5
? 32 - hi0bits(S
->x
[S
->wds
-1]) : 1) + s2
) & 0x1f )!=0)
550 if (( i
= ((s5
? 32 - hi0bits(S
->x
[S
->wds
-1]) : 1) + s2
) & 0xf )!=0)
572 b
= multadd(b
, 10, 0); /* we botched the k estimate */
574 mhi
= multadd(mhi
, 10, 0);
578 if (ilim
<= 0 && (mode
== 3 || mode
== 5)) {
579 if (ilim
< 0 || cmp(b
,S
= multadd(S
,5,0)) <= 0) {
580 /* no digits, fcvt style */
592 mhi
= lshift(mhi
, m2
);
594 /* Compute mlo -- check for special case
595 * that d is a normalized power of 2.
600 mhi
= Balloc(mhi
->k
);
602 mhi
= lshift(mhi
, Log2P
);
606 dig
= quorem(b
,S
) + '0';
607 /* Do we yet have the shortest decimal string
608 * that will round to d?
611 delta
= diff(S
, mhi
);
612 j1
= delta
->sign
? 1 : cmp(b
, delta
);
615 if (j1
== 0 && mode
!= 1 && !(word1(d
) & 1)
616 #ifdef Honor_FLT_ROUNDS
625 else if (!b
->x
[0] && b
->wds
<= 1)
632 if (j
< 0 || (j
== 0 && mode
!= 1
637 if (!b
->x
[0] && b
->wds
<= 1) {
643 #ifdef Honor_FLT_ROUNDS
646 case 0: goto accept_dig
;
647 case 2: goto keep_dig
;
649 #endif /*Honor_FLT_ROUNDS*/
653 if ((j1
> 0 || (j1
== 0 && dig
& 1))
662 #ifdef Honor_FLT_ROUNDS
666 if (dig
== '9') { /* possible if i == 1 */
674 #ifdef Honor_FLT_ROUNDS
680 b
= multadd(b
, 10, 0);
682 mlo
= mhi
= multadd(mhi
, 10, 0);
684 mlo
= multadd(mlo
, 10, 0);
685 mhi
= multadd(mhi
, 10, 0);
691 *s
++ = dig
= quorem(b
,S
) + '0';
692 if (!b
->x
[0] && b
->wds
<= 1) {
700 b
= multadd(b
, 10, 0);
703 /* Round off last digit */
705 #ifdef Honor_FLT_ROUNDS
707 case 0: goto trimzeros
;
708 case 2: goto roundoff
;
713 if (j
> 0 || (j
== 0 && dig
& 1)) {
731 if (mlo
&& mlo
!= mhi
)
739 word0(d
) = Exp_1
+ (70 << Exp_shift
);
744 else if (!oldinexact
)