1 /* $NetBSD: sha1.c,v 1.2 2001/03/22 09:51:48 agc Exp $ */
2 /* $OpenBSD: sha1.c,v 1.9 1997/07/23 21:12:32 kstailey Exp $ */
3 /* $RoughId: sha1.c,v 1.2 2001/07/13 19:49:10 knu Exp $ */
4 /* $Id: sha1.c 11708 2007-02-12 23:01:19Z shyouhei $ */
8 * By Steve Reid <steve@edmweb.com>
11 * Test Vectors (from FIPS PUB 180-1)
13 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
14 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
15 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
16 * A million repetitions of "a"
17 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
22 #define SHA1HANDSOFF /* Copies data before messing with it. */
24 #if defined(_KERNEL) || defined(_STANDALONE)
25 #include <sys/param.h>
26 #include <sys/systm.h>
27 #define _DIAGASSERT(x) (void)0
29 /* #include "namespace.h" */
35 #define _DIAGASSERT(cond) assert(cond)
39 * XXX Kludge until there is resolution regarding mem*() functions
42 #if defined(_KERNEL) || defined(_STANDALONE)
43 #define memcpy(s, d, l) bcopy((d), (s), (l))
46 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
49 * blk0() and blk() perform the initial expand.
50 * I got the idea of expanding during the round function from SSLeay
52 #ifndef WORDS_BIGENDIAN
53 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
54 |(rol(block->l[i],8)&0x00FF00FF))
56 # define blk0(i) block->l[i]
58 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
59 ^block->l[(i+2)&15]^block->l[i&15],1))
62 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
64 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
65 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
66 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
67 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
68 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
77 void do_R01(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*);
78 void do_R2(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*);
79 void do_R3(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*);
80 void do_R4(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*);
82 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
83 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
84 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
85 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
86 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
89 do_R01(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*block
)
91 nR0(a
,b
,c
,d
,e
, 0); nR0(e
,a
,b
,c
,d
, 1); nR0(d
,e
,a
,b
,c
, 2); nR0(c
,d
,e
,a
,b
, 3);
92 nR0(b
,c
,d
,e
,a
, 4); nR0(a
,b
,c
,d
,e
, 5); nR0(e
,a
,b
,c
,d
, 6); nR0(d
,e
,a
,b
,c
, 7);
93 nR0(c
,d
,e
,a
,b
, 8); nR0(b
,c
,d
,e
,a
, 9); nR0(a
,b
,c
,d
,e
,10); nR0(e
,a
,b
,c
,d
,11);
94 nR0(d
,e
,a
,b
,c
,12); nR0(c
,d
,e
,a
,b
,13); nR0(b
,c
,d
,e
,a
,14); nR0(a
,b
,c
,d
,e
,15);
95 nR1(e
,a
,b
,c
,d
,16); nR1(d
,e
,a
,b
,c
,17); nR1(c
,d
,e
,a
,b
,18); nR1(b
,c
,d
,e
,a
,19);
99 do_R2(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*block
)
101 nR2(a
,b
,c
,d
,e
,20); nR2(e
,a
,b
,c
,d
,21); nR2(d
,e
,a
,b
,c
,22); nR2(c
,d
,e
,a
,b
,23);
102 nR2(b
,c
,d
,e
,a
,24); nR2(a
,b
,c
,d
,e
,25); nR2(e
,a
,b
,c
,d
,26); nR2(d
,e
,a
,b
,c
,27);
103 nR2(c
,d
,e
,a
,b
,28); nR2(b
,c
,d
,e
,a
,29); nR2(a
,b
,c
,d
,e
,30); nR2(e
,a
,b
,c
,d
,31);
104 nR2(d
,e
,a
,b
,c
,32); nR2(c
,d
,e
,a
,b
,33); nR2(b
,c
,d
,e
,a
,34); nR2(a
,b
,c
,d
,e
,35);
105 nR2(e
,a
,b
,c
,d
,36); nR2(d
,e
,a
,b
,c
,37); nR2(c
,d
,e
,a
,b
,38); nR2(b
,c
,d
,e
,a
,39);
109 do_R3(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*block
)
111 nR3(a
,b
,c
,d
,e
,40); nR3(e
,a
,b
,c
,d
,41); nR3(d
,e
,a
,b
,c
,42); nR3(c
,d
,e
,a
,b
,43);
112 nR3(b
,c
,d
,e
,a
,44); nR3(a
,b
,c
,d
,e
,45); nR3(e
,a
,b
,c
,d
,46); nR3(d
,e
,a
,b
,c
,47);
113 nR3(c
,d
,e
,a
,b
,48); nR3(b
,c
,d
,e
,a
,49); nR3(a
,b
,c
,d
,e
,50); nR3(e
,a
,b
,c
,d
,51);
114 nR3(d
,e
,a
,b
,c
,52); nR3(c
,d
,e
,a
,b
,53); nR3(b
,c
,d
,e
,a
,54); nR3(a
,b
,c
,d
,e
,55);
115 nR3(e
,a
,b
,c
,d
,56); nR3(d
,e
,a
,b
,c
,57); nR3(c
,d
,e
,a
,b
,58); nR3(b
,c
,d
,e
,a
,59);
119 do_R4(uint32_t *a
, uint32_t *b
, uint32_t *c
, uint32_t *d
, uint32_t *e
, CHAR64LONG16
*block
)
121 nR4(a
,b
,c
,d
,e
,60); nR4(e
,a
,b
,c
,d
,61); nR4(d
,e
,a
,b
,c
,62); nR4(c
,d
,e
,a
,b
,63);
122 nR4(b
,c
,d
,e
,a
,64); nR4(a
,b
,c
,d
,e
,65); nR4(e
,a
,b
,c
,d
,66); nR4(d
,e
,a
,b
,c
,67);
123 nR4(c
,d
,e
,a
,b
,68); nR4(b
,c
,d
,e
,a
,69); nR4(a
,b
,c
,d
,e
,70); nR4(e
,a
,b
,c
,d
,71);
124 nR4(d
,e
,a
,b
,c
,72); nR4(c
,d
,e
,a
,b
,73); nR4(b
,c
,d
,e
,a
,74); nR4(a
,b
,c
,d
,e
,75);
125 nR4(e
,a
,b
,c
,d
,76); nR4(d
,e
,a
,b
,c
,77); nR4(c
,d
,e
,a
,b
,78); nR4(b
,c
,d
,e
,a
,79);
130 * Hash a single 512-bit block. This is the core of the algorithm.
132 void SHA1_Transform(uint32_t state
[5], const uint8_t buffer
[64])
134 uint32_t a
, b
, c
, d
, e
;
138 CHAR64LONG16 workspace
;
141 _DIAGASSERT(buffer
!= 0);
142 _DIAGASSERT(state
!= 0);
146 (void)memcpy(block
, buffer
, 64);
148 block
= (CHAR64LONG16
*)(void *)buffer
;
151 /* Copy context->state[] to working vars */
159 do_R01(&a
, &b
, &c
, &d
, &e
, block
);
160 do_R2(&a
, &b
, &c
, &d
, &e
, block
);
161 do_R3(&a
, &b
, &c
, &d
, &e
, block
);
162 do_R4(&a
, &b
, &c
, &d
, &e
, block
);
164 /* 4 rounds of 20 operations each. Loop unrolled. */
165 R0(a
,b
,c
,d
,e
, 0); R0(e
,a
,b
,c
,d
, 1); R0(d
,e
,a
,b
,c
, 2); R0(c
,d
,e
,a
,b
, 3);
166 R0(b
,c
,d
,e
,a
, 4); R0(a
,b
,c
,d
,e
, 5); R0(e
,a
,b
,c
,d
, 6); R0(d
,e
,a
,b
,c
, 7);
167 R0(c
,d
,e
,a
,b
, 8); R0(b
,c
,d
,e
,a
, 9); R0(a
,b
,c
,d
,e
,10); R0(e
,a
,b
,c
,d
,11);
168 R0(d
,e
,a
,b
,c
,12); R0(c
,d
,e
,a
,b
,13); R0(b
,c
,d
,e
,a
,14); R0(a
,b
,c
,d
,e
,15);
169 R1(e
,a
,b
,c
,d
,16); R1(d
,e
,a
,b
,c
,17); R1(c
,d
,e
,a
,b
,18); R1(b
,c
,d
,e
,a
,19);
170 R2(a
,b
,c
,d
,e
,20); R2(e
,a
,b
,c
,d
,21); R2(d
,e
,a
,b
,c
,22); R2(c
,d
,e
,a
,b
,23);
171 R2(b
,c
,d
,e
,a
,24); R2(a
,b
,c
,d
,e
,25); R2(e
,a
,b
,c
,d
,26); R2(d
,e
,a
,b
,c
,27);
172 R2(c
,d
,e
,a
,b
,28); R2(b
,c
,d
,e
,a
,29); R2(a
,b
,c
,d
,e
,30); R2(e
,a
,b
,c
,d
,31);
173 R2(d
,e
,a
,b
,c
,32); R2(c
,d
,e
,a
,b
,33); R2(b
,c
,d
,e
,a
,34); R2(a
,b
,c
,d
,e
,35);
174 R2(e
,a
,b
,c
,d
,36); R2(d
,e
,a
,b
,c
,37); R2(c
,d
,e
,a
,b
,38); R2(b
,c
,d
,e
,a
,39);
175 R3(a
,b
,c
,d
,e
,40); R3(e
,a
,b
,c
,d
,41); R3(d
,e
,a
,b
,c
,42); R3(c
,d
,e
,a
,b
,43);
176 R3(b
,c
,d
,e
,a
,44); R3(a
,b
,c
,d
,e
,45); R3(e
,a
,b
,c
,d
,46); R3(d
,e
,a
,b
,c
,47);
177 R3(c
,d
,e
,a
,b
,48); R3(b
,c
,d
,e
,a
,49); R3(a
,b
,c
,d
,e
,50); R3(e
,a
,b
,c
,d
,51);
178 R3(d
,e
,a
,b
,c
,52); R3(c
,d
,e
,a
,b
,53); R3(b
,c
,d
,e
,a
,54); R3(a
,b
,c
,d
,e
,55);
179 R3(e
,a
,b
,c
,d
,56); R3(d
,e
,a
,b
,c
,57); R3(c
,d
,e
,a
,b
,58); R3(b
,c
,d
,e
,a
,59);
180 R4(a
,b
,c
,d
,e
,60); R4(e
,a
,b
,c
,d
,61); R4(d
,e
,a
,b
,c
,62); R4(c
,d
,e
,a
,b
,63);
181 R4(b
,c
,d
,e
,a
,64); R4(a
,b
,c
,d
,e
,65); R4(e
,a
,b
,c
,d
,66); R4(d
,e
,a
,b
,c
,67);
182 R4(c
,d
,e
,a
,b
,68); R4(b
,c
,d
,e
,a
,69); R4(a
,b
,c
,d
,e
,70); R4(e
,a
,b
,c
,d
,71);
183 R4(d
,e
,a
,b
,c
,72); R4(c
,d
,e
,a
,b
,73); R4(b
,c
,d
,e
,a
,74); R4(a
,b
,c
,d
,e
,75);
184 R4(e
,a
,b
,c
,d
,76); R4(d
,e
,a
,b
,c
,77); R4(c
,d
,e
,a
,b
,78); R4(b
,c
,d
,e
,a
,79);
187 /* Add the working vars back into context.state[] */
195 a
= b
= c
= d
= e
= 0;
200 * SHA1_Init - Initialize new context
202 void SHA1_Init(SHA1_CTX
*context
)
205 _DIAGASSERT(context
!= 0);
207 /* SHA1 initialization constants */
208 context
->state
[0] = 0x67452301;
209 context
->state
[1] = 0xEFCDAB89;
210 context
->state
[2] = 0x98BADCFE;
211 context
->state
[3] = 0x10325476;
212 context
->state
[4] = 0xC3D2E1F0;
213 context
->count
[0] = context
->count
[1] = 0;
218 * Run your data through this.
220 void SHA1_Update(SHA1_CTX
*context
, const uint8_t *data
, size_t len
)
224 _DIAGASSERT(context
!= 0);
225 _DIAGASSERT(data
!= 0);
227 j
= context
->count
[0];
228 if ((context
->count
[0] += len
<< 3) < j
)
229 context
->count
[1] += (len
>>29)+1;
231 if ((j
+ len
) > 63) {
232 (void)memcpy(&context
->buffer
[j
], data
, (i
= 64-j
));
233 SHA1_Transform(context
->state
, context
->buffer
);
234 for ( ; i
+ 63 < len
; i
+= 64)
235 SHA1_Transform(context
->state
, &data
[i
]);
240 (void)memcpy(&context
->buffer
[j
], &data
[i
], len
- i
);
245 * Add padding and return the message digest.
247 void SHA1_Finish(SHA1_CTX
* context
, uint8_t digest
[20])
250 uint8_t finalcount
[8];
252 _DIAGASSERT(digest
!= 0);
253 _DIAGASSERT(context
!= 0);
255 for (i
= 0; i
< 8; i
++) {
256 finalcount
[i
] = (uint8_t)((context
->count
[(i
>= 4 ? 0 : 1)]
257 >> ((3-(i
& 3)) * 8) ) & 255); /* Endian independent */
259 SHA1_Update(context
, (const uint8_t *)"\200", 1);
260 while ((context
->count
[0] & 504) != 448)
261 SHA1_Update(context
, (const uint8_t *)"\0", 1);
262 SHA1_Update(context
, finalcount
, 8); /* Should cause a SHA1_Transform() */
265 for (i
= 0; i
< 20; i
++)
266 digest
[i
] = (uint8_t)
267 ((context
->state
[i
>>2] >> ((3-(i
& 3)) * 8) ) & 255);