Fix up Rubinius specific library specs.
[rbx.git] / lib / ext / digest / sha1 / sha1.c
blob85102c80a698ab38875fce2580e1494546dce51e
1 /* $NetBSD: sha1.c,v 1.2 2001/03/22 09:51:48 agc Exp $ */
2 /* $OpenBSD: sha1.c,v 1.9 1997/07/23 21:12:32 kstailey Exp $ */
3 /* $RoughId: sha1.c,v 1.2 2001/07/13 19:49:10 knu Exp $ */
4 /* $Id: sha1.c 11708 2007-02-12 23:01:19Z shyouhei $ */
6 /*
7 * SHA-1 in C
8 * By Steve Reid <steve@edmweb.com>
9 * 100% Public Domain
11 * Test Vectors (from FIPS PUB 180-1)
12 * "abc"
13 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
14 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
15 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
16 * A million repetitions of "a"
17 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
20 #include "sha1.h"
22 #define SHA1HANDSOFF /* Copies data before messing with it. */
24 #if defined(_KERNEL) || defined(_STANDALONE)
25 #include <sys/param.h>
26 #include <sys/systm.h>
27 #define _DIAGASSERT(x) (void)0
28 #else
29 /* #include "namespace.h" */
30 #include <assert.h>
31 #include <string.h>
32 #endif
34 #ifndef _DIAGASSERT
35 #define _DIAGASSERT(cond) assert(cond)
36 #endif
39 * XXX Kludge until there is resolution regarding mem*() functions
40 * XXX in the kernel.
42 #if defined(_KERNEL) || defined(_STANDALONE)
43 #define memcpy(s, d, l) bcopy((d), (s), (l))
44 #endif
46 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
49 * blk0() and blk() perform the initial expand.
50 * I got the idea of expanding during the round function from SSLeay
52 #ifndef WORDS_BIGENDIAN
53 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
54 |(rol(block->l[i],8)&0x00FF00FF))
55 #else
56 # define blk0(i) block->l[i]
57 #endif
58 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
59 ^block->l[(i+2)&15]^block->l[i&15],1))
62 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
64 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
65 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
66 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
67 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
68 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
71 typedef union {
72 uint8_t c[64];
73 uint32_t l[16];
74 } CHAR64LONG16;
76 #ifdef __sparc_v9__
77 void do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
78 void do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
79 void do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
80 void do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *);
82 #define nR0(v,w,x,y,z,i) R0(*v,*w,*x,*y,*z,i)
83 #define nR1(v,w,x,y,z,i) R1(*v,*w,*x,*y,*z,i)
84 #define nR2(v,w,x,y,z,i) R2(*v,*w,*x,*y,*z,i)
85 #define nR3(v,w,x,y,z,i) R3(*v,*w,*x,*y,*z,i)
86 #define nR4(v,w,x,y,z,i) R4(*v,*w,*x,*y,*z,i)
88 void
89 do_R01(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
91 nR0(a,b,c,d,e, 0); nR0(e,a,b,c,d, 1); nR0(d,e,a,b,c, 2); nR0(c,d,e,a,b, 3);
92 nR0(b,c,d,e,a, 4); nR0(a,b,c,d,e, 5); nR0(e,a,b,c,d, 6); nR0(d,e,a,b,c, 7);
93 nR0(c,d,e,a,b, 8); nR0(b,c,d,e,a, 9); nR0(a,b,c,d,e,10); nR0(e,a,b,c,d,11);
94 nR0(d,e,a,b,c,12); nR0(c,d,e,a,b,13); nR0(b,c,d,e,a,14); nR0(a,b,c,d,e,15);
95 nR1(e,a,b,c,d,16); nR1(d,e,a,b,c,17); nR1(c,d,e,a,b,18); nR1(b,c,d,e,a,19);
98 void
99 do_R2(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
101 nR2(a,b,c,d,e,20); nR2(e,a,b,c,d,21); nR2(d,e,a,b,c,22); nR2(c,d,e,a,b,23);
102 nR2(b,c,d,e,a,24); nR2(a,b,c,d,e,25); nR2(e,a,b,c,d,26); nR2(d,e,a,b,c,27);
103 nR2(c,d,e,a,b,28); nR2(b,c,d,e,a,29); nR2(a,b,c,d,e,30); nR2(e,a,b,c,d,31);
104 nR2(d,e,a,b,c,32); nR2(c,d,e,a,b,33); nR2(b,c,d,e,a,34); nR2(a,b,c,d,e,35);
105 nR2(e,a,b,c,d,36); nR2(d,e,a,b,c,37); nR2(c,d,e,a,b,38); nR2(b,c,d,e,a,39);
108 void
109 do_R3(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
111 nR3(a,b,c,d,e,40); nR3(e,a,b,c,d,41); nR3(d,e,a,b,c,42); nR3(c,d,e,a,b,43);
112 nR3(b,c,d,e,a,44); nR3(a,b,c,d,e,45); nR3(e,a,b,c,d,46); nR3(d,e,a,b,c,47);
113 nR3(c,d,e,a,b,48); nR3(b,c,d,e,a,49); nR3(a,b,c,d,e,50); nR3(e,a,b,c,d,51);
114 nR3(d,e,a,b,c,52); nR3(c,d,e,a,b,53); nR3(b,c,d,e,a,54); nR3(a,b,c,d,e,55);
115 nR3(e,a,b,c,d,56); nR3(d,e,a,b,c,57); nR3(c,d,e,a,b,58); nR3(b,c,d,e,a,59);
118 void
119 do_R4(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, CHAR64LONG16 *block)
121 nR4(a,b,c,d,e,60); nR4(e,a,b,c,d,61); nR4(d,e,a,b,c,62); nR4(c,d,e,a,b,63);
122 nR4(b,c,d,e,a,64); nR4(a,b,c,d,e,65); nR4(e,a,b,c,d,66); nR4(d,e,a,b,c,67);
123 nR4(c,d,e,a,b,68); nR4(b,c,d,e,a,69); nR4(a,b,c,d,e,70); nR4(e,a,b,c,d,71);
124 nR4(d,e,a,b,c,72); nR4(c,d,e,a,b,73); nR4(b,c,d,e,a,74); nR4(a,b,c,d,e,75);
125 nR4(e,a,b,c,d,76); nR4(d,e,a,b,c,77); nR4(c,d,e,a,b,78); nR4(b,c,d,e,a,79);
127 #endif
130 * Hash a single 512-bit block. This is the core of the algorithm.
132 void SHA1_Transform(uint32_t state[5], const uint8_t buffer[64])
134 uint32_t a, b, c, d, e;
135 CHAR64LONG16 *block;
137 #ifdef SHA1HANDSOFF
138 CHAR64LONG16 workspace;
139 #endif
141 _DIAGASSERT(buffer != 0);
142 _DIAGASSERT(state != 0);
144 #ifdef SHA1HANDSOFF
145 block = &workspace;
146 (void)memcpy(block, buffer, 64);
147 #else
148 block = (CHAR64LONG16 *)(void *)buffer;
149 #endif
151 /* Copy context->state[] to working vars */
152 a = state[0];
153 b = state[1];
154 c = state[2];
155 d = state[3];
156 e = state[4];
158 #ifdef __sparc_v9__
159 do_R01(&a, &b, &c, &d, &e, block);
160 do_R2(&a, &b, &c, &d, &e, block);
161 do_R3(&a, &b, &c, &d, &e, block);
162 do_R4(&a, &b, &c, &d, &e, block);
163 #else
164 /* 4 rounds of 20 operations each. Loop unrolled. */
165 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
166 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
167 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
168 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
169 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
170 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
171 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
172 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
173 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
174 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
175 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
176 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
177 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
178 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
179 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
180 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
181 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
182 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
183 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
184 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
185 #endif
187 /* Add the working vars back into context.state[] */
188 state[0] += a;
189 state[1] += b;
190 state[2] += c;
191 state[3] += d;
192 state[4] += e;
194 /* Wipe variables */
195 a = b = c = d = e = 0;
200 * SHA1_Init - Initialize new context
202 void SHA1_Init(SHA1_CTX *context)
205 _DIAGASSERT(context != 0);
207 /* SHA1 initialization constants */
208 context->state[0] = 0x67452301;
209 context->state[1] = 0xEFCDAB89;
210 context->state[2] = 0x98BADCFE;
211 context->state[3] = 0x10325476;
212 context->state[4] = 0xC3D2E1F0;
213 context->count[0] = context->count[1] = 0;
218 * Run your data through this.
220 void SHA1_Update(SHA1_CTX *context, const uint8_t *data, size_t len)
222 uint32_t i, j;
224 _DIAGASSERT(context != 0);
225 _DIAGASSERT(data != 0);
227 j = context->count[0];
228 if ((context->count[0] += len << 3) < j)
229 context->count[1] += (len>>29)+1;
230 j = (j >> 3) & 63;
231 if ((j + len) > 63) {
232 (void)memcpy(&context->buffer[j], data, (i = 64-j));
233 SHA1_Transform(context->state, context->buffer);
234 for ( ; i + 63 < len; i += 64)
235 SHA1_Transform(context->state, &data[i]);
236 j = 0;
237 } else {
238 i = 0;
240 (void)memcpy(&context->buffer[j], &data[i], len - i);
245 * Add padding and return the message digest.
247 void SHA1_Finish(SHA1_CTX* context, uint8_t digest[20])
249 size_t i;
250 uint8_t finalcount[8];
252 _DIAGASSERT(digest != 0);
253 _DIAGASSERT(context != 0);
255 for (i = 0; i < 8; i++) {
256 finalcount[i] = (uint8_t)((context->count[(i >= 4 ? 0 : 1)]
257 >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
259 SHA1_Update(context, (const uint8_t *)"\200", 1);
260 while ((context->count[0] & 504) != 448)
261 SHA1_Update(context, (const uint8_t *)"\0", 1);
262 SHA1_Update(context, finalcount, 8); /* Should cause a SHA1_Transform() */
264 if (digest) {
265 for (i = 0; i < 20; i++)
266 digest[i] = (uint8_t)
267 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);