Mention more NEWS items.
[rsync.git] / simd-checksum-x86_64.cpp
blob11e82ab2fb3c99ce690d0dfdb175715cfe30f268
1 /*
2 * SSE2/SSSE3/AVX2-optimized routines to support checksumming of bytes.
4 * Copyright (C) 1996 Andrew Tridgell
5 * Copyright (C) 1996 Paul Mackerras
6 * Copyright (C) 2004-2020 Wayne Davison
7 * Copyright (C) 2020 Jorrit Jongma
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 3 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, visit the http://fsf.org website.
23 * Optimization target for get_checksum1() was the Intel Atom D2700, the
24 * slowest CPU in the test set and the most likely to be CPU limited during
25 * transfers. The combination of intrinsics was chosen specifically for the
26 * most gain on that CPU, other combinations were occasionally slightly
27 * faster on the others.
29 * While on more modern CPUs transfers are less likely to be CPU limited
30 * (at least by this specific function), lower CPU usage is always better.
31 * Improvements may still be seen when matching chunks from NVMe storage
32 * even on newer CPUs.
34 * Benchmarks (in MB/s) C SSE2 SSSE3 AVX2
35 * - Intel Atom D2700 550 750 1000 N/A
36 * - Intel i7-7700hq 1850 2550 4050 6200
37 * - AMD ThreadRipper 2950x 2900 5600 8950 8100
39 * Curiously the AMD is slower with AVX2 than SSSE3, while the Intel is
40 * significantly faster. AVX2 is kept because it's more likely to relieve
41 * the bottleneck on the slower CPU.
43 * This optimization for get_checksum1() is intentionally limited to x86-64
44 * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half
45 * the available xmm registers, this optimized version may not be faster than
46 * the pure C version anyway. Note that all x86-64 CPUs support at least SSE2.
48 * This file is compiled using GCC 4.8+'s C++ front end to allow the use of
49 * the target attribute, selecting the fastest code path based on runtime
50 * detection of CPU capabilities.
53 #ifdef __x86_64__
54 #ifdef __cplusplus
56 #include "rsync.h"
58 #ifdef HAVE_SIMD
60 #include <immintrin.h>
62 /* Compatibility functions to let our SSSE3 algorithm run on SSE2 */
64 __attribute__ ((target("sse2"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b)
66 return _mm_packs_epi32(
67 _mm_srai_epi32(a, 16),
68 _mm_srai_epi32(b, 16)
72 __attribute__ ((target("sse2"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b)
74 return sse_interleave_odd_epi16(
75 _mm_slli_si128(a, 2),
76 _mm_slli_si128(b, 2)
80 __attribute__ ((target("sse2"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b)
82 return _mm_mullo_epi16(
83 _mm_srli_epi16(a, 8),
84 _mm_srai_epi16(b, 8)
88 __attribute__ ((target("sse2"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b)
90 return _mm_mullo_epi16(
91 _mm_and_si128(a, _mm_set1_epi16(0xFF)),
92 _mm_srai_epi16(_mm_slli_si128(b, 1), 8)
96 __attribute__ ((target("sse2"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b)
98 return _mm_adds_epi16(
99 sse_interleave_even_epi16(a, b),
100 sse_interleave_odd_epi16(a, b)
104 __attribute__ ((target("ssse3"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b)
106 return _mm_hadds_epi16(a, b);
109 __attribute__ ((target("sse2"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b)
111 return _mm_adds_epi16(
112 sse_mulu_even_epi8(a, b),
113 sse_mulu_odd_epi8(a, b)
117 __attribute__ ((target("ssse3"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b)
119 return _mm_maddubs_epi16(a, b);
122 /* These don't actually get called, but we need to define them. */
123 __attribute__ ((target("default"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { return a; }
124 __attribute__ ((target("default"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { return a; }
125 __attribute__ ((target("default"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { return a; }
126 __attribute__ ((target("default"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { return a; }
127 __attribute__ ((target("default"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { return a; }
128 __attribute__ ((target("default"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { return a; }
131 Original loop per 4 bytes:
132 s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
133 s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET;
135 SSE2/SSSE3 loop per 32 bytes:
136 int16 t1[8];
137 int16 t2[8];
138 for (int j = 0; j < 8; j++) {
139 t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
140 t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
142 s2 += 32*s1 + (uint32)(
143 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] +
144 t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
145 ) + 528*CHAR_OFFSET;
146 s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]) +
147 32*CHAR_OFFSET;
150 Both sse2 and ssse3 targets must be specified here or we lose (a lot) of
151 performance, possibly due to not unrolling+inlining the called targeted
152 functions.
154 __attribute__ ((target("sse2", "ssse3"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
156 if (len > 32) {
157 int aligned = ((uintptr_t)buf & 15) == 0;
159 uint32 x[4] = {0};
160 x[0] = *ps1;
161 __m128i ss1 = _mm_loadu_si128((__m128i_u*)x);
162 x[0] = *ps2;
163 __m128i ss2 = _mm_loadu_si128((__m128i_u*)x);
165 const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0};
166 __m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf);
168 for (; i < (len-32); i+=32) {
169 // Load ... 2*[int8*16]
170 // SSSE3 has _mm_lqqdu_si128, but this requires another
171 // target function for each SSE2 and SSSE3 loads. For reasons
172 // unknown (to me) we lose about 10% performance on some CPUs if
173 // we do that right here. We just use _mm_loadu_si128 as for all
174 // but a handful of specific old CPUs they are synonymous, and
175 // take the 1-5% hit on those specific CPUs where it isn't.
176 __m128i in8_1, in8_2;
177 if (!aligned) {
178 in8_1 = _mm_loadu_si128((__m128i_u*)&buf[i]);
179 in8_2 = _mm_loadu_si128((__m128i_u*)&buf[i + 16]);
180 } else {
181 in8_1 = _mm_load_si128((__m128i_u*)&buf[i]);
182 in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]);
185 // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
186 // Fastest, even though multiply by 1
187 __m128i mul_one = _mm_set1_epi8(1);
188 __m128i add16_1 = sse_maddubs_epi16(mul_one, in8_1);
189 __m128i add16_2 = sse_maddubs_epi16(mul_one, in8_2);
191 // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
192 __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
193 __m128i mul_add16_1 = sse_maddubs_epi16(mul_const, in8_1);
194 __m128i mul_add16_2 = sse_maddubs_epi16(mul_const, in8_2);
196 // s2 += 32*s1
197 ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5));
199 // [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
200 // Shifting left, then shifting right again and shuffling (rather than just
201 // shifting right as with mul32 below) to cheaply end up with the correct sign
202 // extension as we go from int16 to int32.
203 __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2);
204 sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2));
205 sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4));
206 sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8));
207 sum_add32 = _mm_srai_epi32(sum_add32, 16);
208 sum_add32 = _mm_shuffle_epi32(sum_add32, 3);
210 // [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
211 __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2);
212 sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2));
213 sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4));
214 sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8));
215 sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16);
216 sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3);
218 // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
219 ss1 = _mm_add_epi32(ss1, sum_add32);
221 // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
222 ss2 = _mm_add_epi32(ss2, sum_mul_add32);
224 // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
225 // We could've combined this with generating sum_add32 above and
226 // save an instruction but benchmarking shows that as being slower
227 __m128i add16 = sse_hadds_epi16(add16_1, add16_2);
229 // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
230 __m128i mul32 = _mm_madd_epi16(add16, mul_t1);
232 // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
233 mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4));
234 mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8));
236 // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
237 ss2 = _mm_add_epi32(ss2, mul32);
239 #if CHAR_OFFSET != 0
240 // s1 += 32*CHAR_OFFSET
241 __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
242 ss1 = _mm_add_epi32(ss1, char_offset_multiplier);
244 // s2 += 528*CHAR_OFFSET
245 char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
246 ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
247 #endif
250 _mm_store_si128((__m128i_u*)x, ss1);
251 *ps1 = x[0];
252 _mm_store_si128((__m128i_u*)x, ss2);
253 *ps2 = x[0];
255 return i;
259 AVX2 loop per 64 bytes:
260 int16 t1[16];
261 int16 t2[16];
262 for (int j = 0; j < 16; j++) {
263 t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
264 t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
266 s2 += 64*s1 + (uint32)(
267 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] +
268 t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
269 ) + 2080*CHAR_OFFSET;
270 s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]) +
271 64*CHAR_OFFSET;
273 __attribute__ ((target("avx2"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
275 if (len > 64) {
276 // Instructions reshuffled compared to SSE2 for slightly better performance
277 int aligned = ((uintptr_t)buf & 31) == 0;
279 uint32 x[8] = {0};
280 x[0] = *ps1;
281 __m256i ss1 = _mm256_lddqu_si256((__m256i_u*)x);
282 x[0] = *ps2;
283 __m256i ss2 = _mm256_lddqu_si256((__m256i_u*)x);
285 // The order gets shuffled compared to SSE2
286 const int16 mul_t1_buf[16] = {60, 56, 52, 48, 28, 24, 20, 16, 44, 40, 36, 32, 12, 8, 4, 0};
287 __m256i mul_t1 = _mm256_lddqu_si256((__m256i_u*)mul_t1_buf);
289 for (; i < (len-64); i+=64) {
290 // Load ... 2*[int8*32]
291 __m256i in8_1, in8_2;
292 if (!aligned) {
293 in8_1 = _mm256_lddqu_si256((__m256i_u*)&buf[i]);
294 in8_2 = _mm256_lddqu_si256((__m256i_u*)&buf[i + 32]);
295 } else {
296 in8_1 = _mm256_load_si256((__m256i_u*)&buf[i]);
297 in8_2 = _mm256_load_si256((__m256i_u*)&buf[i + 32]);
300 // Prefetch for next loops. This has no observable effect on the
301 // tested AMD but makes as much as 20% difference on the Intel.
302 // Curiously that same Intel sees no benefit from this with SSE2
303 // or SSSE3.
304 _mm_prefetch(&buf[i + 64], _MM_HINT_T0);
305 _mm_prefetch(&buf[i + 96], _MM_HINT_T0);
306 _mm_prefetch(&buf[i + 128], _MM_HINT_T0);
307 _mm_prefetch(&buf[i + 160], _MM_HINT_T0);
309 // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*16]
310 // Fastest, even though multiply by 1
311 __m256i mul_one = _mm256_set1_epi8(1);
312 __m256i add16_1 = _mm256_maddubs_epi16(mul_one, in8_1);
313 __m256i add16_2 = _mm256_maddubs_epi16(mul_one, in8_2);
315 // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*16]
316 __m256i mul_const = _mm256_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
317 __m256i mul_add16_1 = _mm256_maddubs_epi16(mul_const, in8_1);
318 __m256i mul_add16_2 = _mm256_maddubs_epi16(mul_const, in8_2);
320 // s2 += 64*s1
321 ss2 = _mm256_add_epi32(ss2, _mm256_slli_epi32(ss1, 6));
323 // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*16]
324 __m256i add16 = _mm256_hadds_epi16(add16_1, add16_2);
326 // [t1[0], t1[1], ...] -> [t1[0]*60 + t1[1]*56, ...] [int32*8]
327 __m256i mul32 = _mm256_madd_epi16(add16, mul_t1);
329 // [sum(t1[0]..t1[15]), X, X, X, X, X, X, X] [int32*8]
330 __m256i sum_add32 = _mm256_add_epi16(add16_1, add16_2);
331 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_permute4x64_epi64(sum_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
332 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 2));
333 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 4));
334 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 8));
335 sum_add32 = _mm256_srai_epi32(sum_add32, 16);
336 sum_add32 = _mm256_shuffle_epi32(sum_add32, 3);
338 // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]
339 ss1 = _mm256_add_epi32(ss1, sum_add32);
341 // [sum(t2[0]..t2[15]), X, X, X, X, X, X, X] [int32*8]
342 __m256i sum_mul_add32 = _mm256_add_epi16(mul_add16_1, mul_add16_2);
343 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_permute4x64_epi64(sum_mul_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
344 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 2));
345 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 4));
346 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 8));
347 sum_mul_add32 = _mm256_srai_epi32(sum_mul_add32, 16);
348 sum_mul_add32 = _mm256_shuffle_epi32(sum_mul_add32, 3);
350 // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
351 ss2 = _mm256_add_epi32(ss2, sum_mul_add32);
353 // [sum(mul32), X, X, X, X, X, X, X] [int32*8]
354 mul32 = _mm256_add_epi32(mul32, _mm256_permute2x128_si256(mul32, mul32, 1));
355 mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 4));
356 mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 8));
358 // s2 += 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14]
359 ss2 = _mm256_add_epi32(ss2, mul32);
361 #if CHAR_OFFSET != 0
362 // s1 += 64*CHAR_OFFSET
363 __m256i char_offset_multiplier = _mm256_set1_epi32(64 * CHAR_OFFSET);
364 ss1 = _mm256_add_epi32(ss1, char_offset_multiplier);
366 // s2 += 2080*CHAR_OFFSET
367 char_offset_multiplier = _mm256_set1_epi32(2080 * CHAR_OFFSET);
368 ss2 = _mm256_add_epi32(ss2, char_offset_multiplier);
369 #endif
372 _mm256_store_si256((__m256i_u*)x, ss1);
373 *ps1 = x[0];
374 _mm256_store_si256((__m256i_u*)x, ss2);
375 *ps2 = x[0];
377 return i;
380 __attribute__ ((target("default"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
382 return i;
385 __attribute__ ((target("default"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
387 return i;
390 static inline int32 get_checksum1_default_1(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
392 uint32 s1 = *ps1;
393 uint32 s2 = *ps2;
394 for (; i < (len-4); i+=4) {
395 s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
396 s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET);
398 for (; i < len; i++) {
399 s1 += (buf[i]+CHAR_OFFSET); s2 += s1;
401 *ps1 = s1;
402 *ps2 = s2;
403 return i;
406 extern "C" {
408 uint32 get_checksum1(char *buf1, int32 len)
410 int32 i = 0;
411 uint32 s1 = 0;
412 uint32 s2 = 0;
414 // multiples of 64 bytes using AVX2 (if available)
415 i = get_checksum1_avx2_64((schar*)buf1, len, i, &s1, &s2);
417 // multiples of 32 bytes using SSE2/SSSE3 (if available)
418 i = get_checksum1_sse2_32((schar*)buf1, len, i, &s1, &s2);
420 // whatever is left
421 i = get_checksum1_default_1((schar*)buf1, len, i, &s1, &s2);
423 return (s1 & 0xffff) + (s2 << 16);
426 } // "C"
428 #endif /* HAVE_SIMD */
429 #endif /* __cplusplus */
430 #endif /* __x86_64__ */