AVX2 optimized version of get_checksum1() for x86-64
[rsync.git] / simd-checksum-x86_64.cpp
blobcfbc8adf9cde104726f6d9b632ec723b9523a7a2
1 /*
2 * SSE2/SSSE3/AVX2-optimized routines to support checksumming of bytes.
4 * Copyright (C) 1996 Andrew Tridgell
5 * Copyright (C) 1996 Paul Mackerras
6 * Copyright (C) 2004-2020 Wayne Davison
7 * Copyright (C) 2020 Jorrit Jongma
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 3 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, visit the http://fsf.org website.
23 * Optimization target for get_checksum1() was the Intel Atom D2700, the
24 * slowest CPU in the test set and the most likely to be CPU limited during
25 * transfers. The combination of intrinsics was chosen specifically for the
26 * most gain on that CPU, other combinations were occasionally slightly
27 * faster on the others.
29 * While on more modern CPUs transfers are less likely to be CPU limited
30 * (at least by this specific function), lower CPU usage is always better.
31 * Improvements may still be seen when matching chunks from NVMe storage
32 * even on newer CPUs.
34 * Benchmarks (in MB/s) C SSE2 SSSE3 AVX2
35 * - Intel Atom D2700 550 750 1000 N/A
36 * - Intel i7-7700hq 1850 2550 4050 6200
37 * - AMD ThreadRipper 2950x 2900 5600 8950 8100
39 * Curiously the AMD is slower with AVX2 than SSSE3, while the Intel is
40 * significantly faster. AVX2 is kept because it's more likely to relieve
41 * the bottleneck on the slower CPU.
43 * This optimization for get_checksum1() is intentionally limited to x86-64
44 * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half
45 * the available xmm registers, this optimized version may not be faster than
46 * the pure C version anyway. Note that all x86-64 CPUs support at least SSE2.
48 * This file is compiled using GCC 4.8+'s C++ front end to allow the use of
49 * the target attribute, selecting the fastest code path based on runtime
50 * detection of CPU capabilities.
53 #ifdef __x86_64__
54 #ifdef __cplusplus
56 #include "rsync.h"
58 #ifdef HAVE_SIMD
60 #include <immintrin.h>
62 /* Compatibility functions to let our SSSE3 algorithm run on SSE2 */
64 __attribute__ ((target("sse2"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) {
65 return _mm_packs_epi32(
66 _mm_srai_epi32(a, 16),
67 _mm_srai_epi32(b, 16)
71 __attribute__ ((target("sse2"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) {
72 return sse_interleave_odd_epi16(
73 _mm_slli_si128(a, 2),
74 _mm_slli_si128(b, 2)
78 __attribute__ ((target("sse2"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) {
79 return _mm_mullo_epi16(
80 _mm_srli_epi16(a, 8),
81 _mm_srai_epi16(b, 8)
85 __attribute__ ((target("sse2"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) {
86 return _mm_mullo_epi16(
87 _mm_and_si128(a, _mm_set1_epi16(0xFF)),
88 _mm_srai_epi16(_mm_slli_si128(b, 1), 8)
92 __attribute__ ((target("sse2"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) {
93 return _mm_adds_epi16(
94 sse_interleave_even_epi16(a, b),
95 sse_interleave_odd_epi16(a, b)
99 __attribute__ ((target("ssse3"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) {
100 return _mm_hadds_epi16(a, b);
103 __attribute__ ((target("sse2"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) {
104 return _mm_adds_epi16(
105 sse_mulu_even_epi8(a, b),
106 sse_mulu_odd_epi8(a, b)
110 __attribute__ ((target("ssse3"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) {
111 return _mm_maddubs_epi16(a, b);
114 __attribute__ ((target("default"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { }
115 __attribute__ ((target("default"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { }
116 __attribute__ ((target("default"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { }
117 __attribute__ ((target("default"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { }
118 __attribute__ ((target("default"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { }
119 __attribute__ ((target("default"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { }
122 Original loop per 4 bytes:
123 s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
124 s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET;
126 SSE2/SSSE3 loop per 32 bytes:
127 int16 t1[8];
128 int16 t2[8];
129 for (int j = 0; j < 8; j++) {
130 t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
131 t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
133 s2 += 32*s1 + (uint32)(
134 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] +
135 t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
136 ) + 528*CHAR_OFFSET;
137 s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]) +
138 32*CHAR_OFFSET;
141 Both sse2 and ssse3 targets must be specified here or we lose (a lot) of
142 performance, possibly due to not unrolling+inlining the called targeted
143 functions.
145 __attribute__ ((target("sse2", "ssse3"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) {
146 if (len > 32) {
147 int aligned = ((uintptr_t)buf & 15) == 0;
149 uint32 x[4] = {0};
150 x[0] = *ps1;
151 __m128i ss1 = _mm_loadu_si128((__m128i_u*)x);
152 x[0] = *ps2;
153 __m128i ss2 = _mm_loadu_si128((__m128i_u*)x);
155 const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0};
156 __m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf);
158 for (; i < (len-32); i+=32) {
159 // Load ... 2*[int8*16]
160 // SSSE3 has _mm_lqqdu_si128, but this requires another
161 // target function for each SSE2 and SSSE3 loads. For reasons
162 // unknown (to me) we lose about 10% performance on some CPUs if
163 // we do that right here. We just use _mm_loadu_si128 as for all
164 // but a handful of specific old CPUs they are synonymous, and
165 // take the 1-5% hit on those specific CPUs where it isn't.
166 __m128i in8_1, in8_2;
167 if (!aligned) {
168 in8_1 = _mm_loadu_si128((__m128i_u*)&buf[i]);
169 in8_2 = _mm_loadu_si128((__m128i_u*)&buf[i + 16]);
170 } else {
171 in8_1 = _mm_load_si128((__m128i_u*)&buf[i]);
172 in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]);
175 // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
176 // Fastest, even though multiply by 1
177 __m128i mul_one = _mm_set1_epi8(1);
178 __m128i add16_1 = sse_maddubs_epi16(mul_one, in8_1);
179 __m128i add16_2 = sse_maddubs_epi16(mul_one, in8_2);
181 // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
182 __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
183 __m128i mul_add16_1 = sse_maddubs_epi16(mul_const, in8_1);
184 __m128i mul_add16_2 = sse_maddubs_epi16(mul_const, in8_2);
186 // s2 += 32*s1
187 ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5));
189 // [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
190 // Shifting left, then shifting right again and shuffling (rather than just
191 // shifting right as with mul32 below) to cheaply end up with the correct sign
192 // extension as we go from int16 to int32.
193 __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2);
194 sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2));
195 sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4));
196 sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8));
197 sum_add32 = _mm_srai_epi32(sum_add32, 16);
198 sum_add32 = _mm_shuffle_epi32(sum_add32, 3);
200 // [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
201 __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2);
202 sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2));
203 sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4));
204 sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8));
205 sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16);
206 sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3);
208 // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
209 ss1 = _mm_add_epi32(ss1, sum_add32);
211 // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
212 ss2 = _mm_add_epi32(ss2, sum_mul_add32);
214 // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
215 // We could've combined this with generating sum_add32 above and
216 // save an instruction but benchmarking shows that as being slower
217 __m128i add16 = sse_hadds_epi16(add16_1, add16_2);
219 // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
220 __m128i mul32 = _mm_madd_epi16(add16, mul_t1);
222 // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
223 mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4));
224 mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8));
226 // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
227 ss2 = _mm_add_epi32(ss2, mul32);
229 #if CHAR_OFFSET != 0
230 // s1 += 32*CHAR_OFFSET
231 __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
232 ss1 = _mm_add_epi32(ss1, char_offset_multiplier);
234 // s2 += 528*CHAR_OFFSET
235 char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
236 ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
237 #endif
240 _mm_store_si128((__m128i_u*)x, ss1);
241 *ps1 = x[0];
242 _mm_store_si128((__m128i_u*)x, ss2);
243 *ps2 = x[0];
245 return i;
249 AVX2 loop per 64 bytes:
250 int16 t1[16];
251 int16 t2[16];
252 for (int j = 0; j < 16; j++) {
253 t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
254 t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
256 s2 += 64*s1 + (uint32)(
257 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] +
258 t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
259 ) + 2080*CHAR_OFFSET;
260 s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]) +
261 64*CHAR_OFFSET;
263 __attribute__ ((target("avx2"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) {
264 if (len > 64) {
265 // Instructions reshuffled compared to SSE2 for slightly better performance
266 int aligned = ((uintptr_t)buf & 31) == 0;
268 uint32 x[8] = {0};
269 x[0] = *ps1;
270 __m256i ss1 = _mm256_lddqu_si256((__m256i_u*)x);
271 x[0] = *ps2;
272 __m256i ss2 = _mm256_lddqu_si256((__m256i_u*)x);
274 // The order gets shuffled compared to SSE2
275 const int16 mul_t1_buf[16] = {60, 56, 52, 48, 28, 24, 20, 16, 44, 40, 36, 32, 12, 8, 4, 0};
276 __m256i mul_t1 = _mm256_lddqu_si256((__m256i_u*)mul_t1_buf);
278 for (; i < (len-64); i+=64) {
279 // Load ... 2*[int8*32]
280 __m256i in8_1, in8_2;
281 if (!aligned) {
282 in8_1 = _mm256_lddqu_si256((__m256i_u*)&buf[i]);
283 in8_2 = _mm256_lddqu_si256((__m256i_u*)&buf[i + 32]);
284 } else {
285 in8_1 = _mm256_load_si256((__m256i_u*)&buf[i]);
286 in8_2 = _mm256_load_si256((__m256i_u*)&buf[i + 32]);
289 // Prefetch for next loops. This has no observable effect on the
290 // tested AMD but makes as much as 20% difference on the Intel.
291 // Curiously that same Intel sees no benefit from this with SSE2
292 // or SSSE3.
293 _mm_prefetch(&buf[i + 64], _MM_HINT_T0);
294 _mm_prefetch(&buf[i + 96], _MM_HINT_T0);
295 _mm_prefetch(&buf[i + 128], _MM_HINT_T0);
296 _mm_prefetch(&buf[i + 160], _MM_HINT_T0);
298 // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*16]
299 // Fastest, even though multiply by 1
300 __m256i mul_one = _mm256_set1_epi8(1);
301 __m256i add16_1 = _mm256_maddubs_epi16(mul_one, in8_1);
302 __m256i add16_2 = _mm256_maddubs_epi16(mul_one, in8_2);
304 // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*16]
305 __m256i mul_const = _mm256_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
306 __m256i mul_add16_1 = _mm256_maddubs_epi16(mul_const, in8_1);
307 __m256i mul_add16_2 = _mm256_maddubs_epi16(mul_const, in8_2);
309 // s2 += 64*s1
310 ss2 = _mm256_add_epi32(ss2, _mm256_slli_epi32(ss1, 6));
312 // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*16]
313 __m256i add16 = _mm256_hadds_epi16(add16_1, add16_2);
315 // [t1[0], t1[1], ...] -> [t1[0]*60 + t1[1]*56, ...] [int32*8]
316 __m256i mul32 = _mm256_madd_epi16(add16, mul_t1);
318 // [sum(t1[0]..t1[15]), X, X, X, X, X, X, X] [int32*8]
319 __m256i sum_add32 = _mm256_add_epi16(add16_1, add16_2);
320 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_permute4x64_epi64(sum_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
321 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 2));
322 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 4));
323 sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 8));
324 sum_add32 = _mm256_srai_epi32(sum_add32, 16);
325 sum_add32 = _mm256_shuffle_epi32(sum_add32, 3);
327 // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]
328 ss1 = _mm256_add_epi32(ss1, sum_add32);
330 // [sum(t2[0]..t2[15]), X, X, X, X, X, X, X] [int32*8]
331 __m256i sum_mul_add32 = _mm256_add_epi16(mul_add16_1, mul_add16_2);
332 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_permute4x64_epi64(sum_mul_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
333 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 2));
334 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 4));
335 sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 8));
336 sum_mul_add32 = _mm256_srai_epi32(sum_mul_add32, 16);
337 sum_mul_add32 = _mm256_shuffle_epi32(sum_mul_add32, 3);
339 // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
340 ss2 = _mm256_add_epi32(ss2, sum_mul_add32);
342 // [sum(mul32), X, X, X, X, X, X, X] [int32*8]
343 mul32 = _mm256_add_epi32(mul32, _mm256_permute2x128_si256(mul32, mul32, 1));
344 mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 4));
345 mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 8));
347 // s2 += 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14]
348 ss2 = _mm256_add_epi32(ss2, mul32);
350 #if CHAR_OFFSET != 0
351 // s1 += 64*CHAR_OFFSET
352 __m256i char_offset_multiplier = _mm256_set1_epi32(64 * CHAR_OFFSET);
353 ss1 = _mm256_add_epi32(ss1, char_offset_multiplier);
355 // s2 += 2080*CHAR_OFFSET
356 char_offset_multiplier = _mm256_set1_epi32(2080 * CHAR_OFFSET);
357 ss2 = _mm256_add_epi32(ss2, char_offset_multiplier);
358 #endif
361 _mm256_store_si256((__m256i_u*)x, ss1);
362 *ps1 = x[0];
363 _mm256_store_si256((__m256i_u*)x, ss2);
364 *ps2 = x[0];
366 return i;
369 __attribute__ ((target("default"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) {
370 return i;
373 __attribute__ ((target("default"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) {
374 return i;
377 static inline int32 get_checksum1_default_1(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) {
378 uint32 s1 = *ps1;
379 uint32 s2 = *ps2;
380 for (; i < (len-4); i+=4) {
381 s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
382 s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET);
384 for (; i < len; i++) {
385 s1 += (buf[i]+CHAR_OFFSET); s2 += s1;
387 *ps1 = s1;
388 *ps2 = s2;
389 return i;
392 extern "C" {
394 uint32 get_checksum1(char *buf1, int32 len) {
395 int32 i = 0;
396 uint32 s1 = 0;
397 uint32 s2 = 0;
399 // multiples of 64 bytes using AVX2 (if available)
400 i = get_checksum1_avx2_64((schar*)buf1, len, i, &s1, &s2);
402 // multiples of 32 bytes using SSE2/SSSE3 (if available)
403 i = get_checksum1_sse2_32((schar*)buf1, len, i, &s1, &s2);
405 // whatever is left
406 i = get_checksum1_default_1((schar*)buf1, len, i, &s1, &s2);
408 return (s1 & 0xffff) + (s2 << 16);
412 #endif /* HAVE_SIMD */
413 #endif /* __cplusplus */
414 #endif /* __x86_64__ */