2 * SSE2/SSSE3/AVX2-optimized routines to support checksumming of bytes.
4 * Copyright (C) 1996 Andrew Tridgell
5 * Copyright (C) 1996 Paul Mackerras
6 * Copyright (C) 2004-2020 Wayne Davison
7 * Copyright (C) 2020 Jorrit Jongma
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 3 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, visit the http://fsf.org website.
23 * Optimization target for get_checksum1() was the Intel Atom D2700, the
24 * slowest CPU in the test set and the most likely to be CPU limited during
25 * transfers. The combination of intrinsics was chosen specifically for the
26 * most gain on that CPU, other combinations were occasionally slightly
27 * faster on the others.
29 * While on more modern CPUs transfers are less likely to be CPU limited
30 * (at least by this specific function), lower CPU usage is always better.
31 * Improvements may still be seen when matching chunks from NVMe storage
34 * Benchmarks (in MB/s) C SSE2 SSSE3 AVX2
35 * - Intel Atom D2700 550 750 1000 N/A
36 * - Intel i7-7700hq 1850 2550 4050 6200
37 * - AMD ThreadRipper 2950x 2900 5600 8950 8100
39 * Curiously the AMD is slower with AVX2 than SSSE3, while the Intel is
40 * significantly faster. AVX2 is kept because it's more likely to relieve
41 * the bottleneck on the slower CPU.
43 * This optimization for get_checksum1() is intentionally limited to x86-64
44 * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half
45 * the available xmm registers, this optimized version may not be faster than
46 * the pure C version anyway. Note that all x86-64 CPUs support at least SSE2.
48 * This file is compiled using GCC 4.8+'s C++ front end to allow the use of
49 * the target attribute, selecting the fastest code path based on runtime
50 * detection of CPU capabilities.
60 #include <immintrin.h>
62 /* Compatibility functions to let our SSSE3 algorithm run on SSE2 */
64 __attribute__ ((target("sse2"))) static inline __m128i
sse_interleave_odd_epi16(__m128i a
, __m128i b
) {
65 return _mm_packs_epi32(
66 _mm_srai_epi32(a
, 16),
71 __attribute__ ((target("sse2"))) static inline __m128i
sse_interleave_even_epi16(__m128i a
, __m128i b
) {
72 return sse_interleave_odd_epi16(
78 __attribute__ ((target("sse2"))) static inline __m128i
sse_mulu_odd_epi8(__m128i a
, __m128i b
) {
79 return _mm_mullo_epi16(
85 __attribute__ ((target("sse2"))) static inline __m128i
sse_mulu_even_epi8(__m128i a
, __m128i b
) {
86 return _mm_mullo_epi16(
87 _mm_and_si128(a
, _mm_set1_epi16(0xFF)),
88 _mm_srai_epi16(_mm_slli_si128(b
, 1), 8)
92 __attribute__ ((target("sse2"))) static inline __m128i
sse_hadds_epi16(__m128i a
, __m128i b
) {
93 return _mm_adds_epi16(
94 sse_interleave_even_epi16(a
, b
),
95 sse_interleave_odd_epi16(a
, b
)
99 __attribute__ ((target("ssse3"))) static inline __m128i
sse_hadds_epi16(__m128i a
, __m128i b
) {
100 return _mm_hadds_epi16(a
, b
);
103 __attribute__ ((target("sse2"))) static inline __m128i
sse_maddubs_epi16(__m128i a
, __m128i b
) {
104 return _mm_adds_epi16(
105 sse_mulu_even_epi8(a
, b
),
106 sse_mulu_odd_epi8(a
, b
)
110 __attribute__ ((target("ssse3"))) static inline __m128i
sse_maddubs_epi16(__m128i a
, __m128i b
) {
111 return _mm_maddubs_epi16(a
, b
);
114 __attribute__ ((target("default"))) static inline __m128i
sse_interleave_odd_epi16(__m128i a
, __m128i b
) { }
115 __attribute__ ((target("default"))) static inline __m128i
sse_interleave_even_epi16(__m128i a
, __m128i b
) { }
116 __attribute__ ((target("default"))) static inline __m128i
sse_mulu_odd_epi8(__m128i a
, __m128i b
) { }
117 __attribute__ ((target("default"))) static inline __m128i
sse_mulu_even_epi8(__m128i a
, __m128i b
) { }
118 __attribute__ ((target("default"))) static inline __m128i
sse_hadds_epi16(__m128i a
, __m128i b
) { }
119 __attribute__ ((target("default"))) static inline __m128i
sse_maddubs_epi16(__m128i a
, __m128i b
) { }
122 Original loop per 4 bytes:
123 s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
124 s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET;
126 SSE2/SSSE3 loop per 32 bytes:
129 for (int j = 0; j < 8; j++) {
130 t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
131 t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
133 s2 += 32*s1 + (uint32)(
134 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] +
135 t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
137 s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]) +
141 Both sse2 and ssse3 targets must be specified here or we lose (a lot) of
142 performance, possibly due to not unrolling+inlining the called targeted
145 __attribute__ ((target("sse2", "ssse3"))) static int32
get_checksum1_sse2_32(schar
* buf
, int32 len
, int32 i
, uint32
* ps1
, uint32
* ps2
) {
147 int aligned
= ((uintptr_t)buf
& 15) == 0;
151 __m128i ss1
= _mm_loadu_si128((__m128i_u
*)x
);
153 __m128i ss2
= _mm_loadu_si128((__m128i_u
*)x
);
155 const int16 mul_t1_buf
[8] = {28, 24, 20, 16, 12, 8, 4, 0};
156 __m128i mul_t1
= _mm_loadu_si128((__m128i_u
*)mul_t1_buf
);
158 for (; i
< (len
-32); i
+=32) {
159 // Load ... 2*[int8*16]
160 // SSSE3 has _mm_lqqdu_si128, but this requires another
161 // target function for each SSE2 and SSSE3 loads. For reasons
162 // unknown (to me) we lose about 10% performance on some CPUs if
163 // we do that right here. We just use _mm_loadu_si128 as for all
164 // but a handful of specific old CPUs they are synonymous, and
165 // take the 1-5% hit on those specific CPUs where it isn't.
166 __m128i in8_1
, in8_2
;
168 in8_1
= _mm_loadu_si128((__m128i_u
*)&buf
[i
]);
169 in8_2
= _mm_loadu_si128((__m128i_u
*)&buf
[i
+ 16]);
171 in8_1
= _mm_load_si128((__m128i_u
*)&buf
[i
]);
172 in8_2
= _mm_load_si128((__m128i_u
*)&buf
[i
+ 16]);
175 // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
176 // Fastest, even though multiply by 1
177 __m128i mul_one
= _mm_set1_epi8(1);
178 __m128i add16_1
= sse_maddubs_epi16(mul_one
, in8_1
);
179 __m128i add16_2
= sse_maddubs_epi16(mul_one
, in8_2
);
181 // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
182 __m128i mul_const
= _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
183 __m128i mul_add16_1
= sse_maddubs_epi16(mul_const
, in8_1
);
184 __m128i mul_add16_2
= sse_maddubs_epi16(mul_const
, in8_2
);
187 ss2
= _mm_add_epi32(ss2
, _mm_slli_epi32(ss1
, 5));
189 // [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
190 // Shifting left, then shifting right again and shuffling (rather than just
191 // shifting right as with mul32 below) to cheaply end up with the correct sign
192 // extension as we go from int16 to int32.
193 __m128i sum_add32
= _mm_add_epi16(add16_1
, add16_2
);
194 sum_add32
= _mm_add_epi16(sum_add32
, _mm_slli_si128(sum_add32
, 2));
195 sum_add32
= _mm_add_epi16(sum_add32
, _mm_slli_si128(sum_add32
, 4));
196 sum_add32
= _mm_add_epi16(sum_add32
, _mm_slli_si128(sum_add32
, 8));
197 sum_add32
= _mm_srai_epi32(sum_add32
, 16);
198 sum_add32
= _mm_shuffle_epi32(sum_add32
, 3);
200 // [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
201 __m128i sum_mul_add32
= _mm_add_epi16(mul_add16_1
, mul_add16_2
);
202 sum_mul_add32
= _mm_add_epi16(sum_mul_add32
, _mm_slli_si128(sum_mul_add32
, 2));
203 sum_mul_add32
= _mm_add_epi16(sum_mul_add32
, _mm_slli_si128(sum_mul_add32
, 4));
204 sum_mul_add32
= _mm_add_epi16(sum_mul_add32
, _mm_slli_si128(sum_mul_add32
, 8));
205 sum_mul_add32
= _mm_srai_epi32(sum_mul_add32
, 16);
206 sum_mul_add32
= _mm_shuffle_epi32(sum_mul_add32
, 3);
208 // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
209 ss1
= _mm_add_epi32(ss1
, sum_add32
);
211 // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
212 ss2
= _mm_add_epi32(ss2
, sum_mul_add32
);
214 // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
215 // We could've combined this with generating sum_add32 above and
216 // save an instruction but benchmarking shows that as being slower
217 __m128i add16
= sse_hadds_epi16(add16_1
, add16_2
);
219 // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
220 __m128i mul32
= _mm_madd_epi16(add16
, mul_t1
);
222 // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
223 mul32
= _mm_add_epi32(mul32
, _mm_srli_si128(mul32
, 4));
224 mul32
= _mm_add_epi32(mul32
, _mm_srli_si128(mul32
, 8));
226 // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
227 ss2
= _mm_add_epi32(ss2
, mul32
);
230 // s1 += 32*CHAR_OFFSET
231 __m128i char_offset_multiplier
= _mm_set1_epi32(32 * CHAR_OFFSET
);
232 ss1
= _mm_add_epi32(ss1
, char_offset_multiplier
);
234 // s2 += 528*CHAR_OFFSET
235 char_offset_multiplier
= _mm_set1_epi32(528 * CHAR_OFFSET
);
236 ss2
= _mm_add_epi32(ss2
, char_offset_multiplier
);
240 _mm_store_si128((__m128i_u
*)x
, ss1
);
242 _mm_store_si128((__m128i_u
*)x
, ss2
);
249 AVX2 loop per 64 bytes:
252 for (int j = 0; j < 16; j++) {
253 t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
254 t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
256 s2 += 64*s1 + (uint32)(
257 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] +
258 t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
259 ) + 2080*CHAR_OFFSET;
260 s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]) +
263 __attribute__ ((target("avx2"))) static int32
get_checksum1_avx2_64(schar
* buf
, int32 len
, int32 i
, uint32
* ps1
, uint32
* ps2
) {
265 // Instructions reshuffled compared to SSE2 for slightly better performance
266 int aligned
= ((uintptr_t)buf
& 31) == 0;
270 __m256i ss1
= _mm256_lddqu_si256((__m256i_u
*)x
);
272 __m256i ss2
= _mm256_lddqu_si256((__m256i_u
*)x
);
274 // The order gets shuffled compared to SSE2
275 const int16 mul_t1_buf
[16] = {60, 56, 52, 48, 28, 24, 20, 16, 44, 40, 36, 32, 12, 8, 4, 0};
276 __m256i mul_t1
= _mm256_lddqu_si256((__m256i_u
*)mul_t1_buf
);
278 for (; i
< (len
-64); i
+=64) {
279 // Load ... 2*[int8*32]
280 __m256i in8_1
, in8_2
;
282 in8_1
= _mm256_lddqu_si256((__m256i_u
*)&buf
[i
]);
283 in8_2
= _mm256_lddqu_si256((__m256i_u
*)&buf
[i
+ 32]);
285 in8_1
= _mm256_load_si256((__m256i_u
*)&buf
[i
]);
286 in8_2
= _mm256_load_si256((__m256i_u
*)&buf
[i
+ 32]);
289 // Prefetch for next loops. This has no observable effect on the
290 // tested AMD but makes as much as 20% difference on the Intel.
291 // Curiously that same Intel sees no benefit from this with SSE2
293 _mm_prefetch(&buf
[i
+ 64], _MM_HINT_T0
);
294 _mm_prefetch(&buf
[i
+ 96], _MM_HINT_T0
);
295 _mm_prefetch(&buf
[i
+ 128], _MM_HINT_T0
);
296 _mm_prefetch(&buf
[i
+ 160], _MM_HINT_T0
);
298 // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*16]
299 // Fastest, even though multiply by 1
300 __m256i mul_one
= _mm256_set1_epi8(1);
301 __m256i add16_1
= _mm256_maddubs_epi16(mul_one
, in8_1
);
302 __m256i add16_2
= _mm256_maddubs_epi16(mul_one
, in8_2
);
304 // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*16]
305 __m256i mul_const
= _mm256_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
306 __m256i mul_add16_1
= _mm256_maddubs_epi16(mul_const
, in8_1
);
307 __m256i mul_add16_2
= _mm256_maddubs_epi16(mul_const
, in8_2
);
310 ss2
= _mm256_add_epi32(ss2
, _mm256_slli_epi32(ss1
, 6));
312 // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*16]
313 __m256i add16
= _mm256_hadds_epi16(add16_1
, add16_2
);
315 // [t1[0], t1[1], ...] -> [t1[0]*60 + t1[1]*56, ...] [int32*8]
316 __m256i mul32
= _mm256_madd_epi16(add16
, mul_t1
);
318 // [sum(t1[0]..t1[15]), X, X, X, X, X, X, X] [int32*8]
319 __m256i sum_add32
= _mm256_add_epi16(add16_1
, add16_2
);
320 sum_add32
= _mm256_add_epi16(sum_add32
, _mm256_permute4x64_epi64(sum_add32
, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
321 sum_add32
= _mm256_add_epi16(sum_add32
, _mm256_slli_si256(sum_add32
, 2));
322 sum_add32
= _mm256_add_epi16(sum_add32
, _mm256_slli_si256(sum_add32
, 4));
323 sum_add32
= _mm256_add_epi16(sum_add32
, _mm256_slli_si256(sum_add32
, 8));
324 sum_add32
= _mm256_srai_epi32(sum_add32
, 16);
325 sum_add32
= _mm256_shuffle_epi32(sum_add32
, 3);
327 // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]
328 ss1
= _mm256_add_epi32(ss1
, sum_add32
);
330 // [sum(t2[0]..t2[15]), X, X, X, X, X, X, X] [int32*8]
331 __m256i sum_mul_add32
= _mm256_add_epi16(mul_add16_1
, mul_add16_2
);
332 sum_mul_add32
= _mm256_add_epi16(sum_mul_add32
, _mm256_permute4x64_epi64(sum_mul_add32
, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
333 sum_mul_add32
= _mm256_add_epi16(sum_mul_add32
, _mm256_slli_si256(sum_mul_add32
, 2));
334 sum_mul_add32
= _mm256_add_epi16(sum_mul_add32
, _mm256_slli_si256(sum_mul_add32
, 4));
335 sum_mul_add32
= _mm256_add_epi16(sum_mul_add32
, _mm256_slli_si256(sum_mul_add32
, 8));
336 sum_mul_add32
= _mm256_srai_epi32(sum_mul_add32
, 16);
337 sum_mul_add32
= _mm256_shuffle_epi32(sum_mul_add32
, 3);
339 // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
340 ss2
= _mm256_add_epi32(ss2
, sum_mul_add32
);
342 // [sum(mul32), X, X, X, X, X, X, X] [int32*8]
343 mul32
= _mm256_add_epi32(mul32
, _mm256_permute2x128_si256(mul32
, mul32
, 1));
344 mul32
= _mm256_add_epi32(mul32
, _mm256_srli_si256(mul32
, 4));
345 mul32
= _mm256_add_epi32(mul32
, _mm256_srli_si256(mul32
, 8));
347 // s2 += 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14]
348 ss2
= _mm256_add_epi32(ss2
, mul32
);
351 // s1 += 64*CHAR_OFFSET
352 __m256i char_offset_multiplier
= _mm256_set1_epi32(64 * CHAR_OFFSET
);
353 ss1
= _mm256_add_epi32(ss1
, char_offset_multiplier
);
355 // s2 += 2080*CHAR_OFFSET
356 char_offset_multiplier
= _mm256_set1_epi32(2080 * CHAR_OFFSET
);
357 ss2
= _mm256_add_epi32(ss2
, char_offset_multiplier
);
361 _mm256_store_si256((__m256i_u
*)x
, ss1
);
363 _mm256_store_si256((__m256i_u
*)x
, ss2
);
369 __attribute__ ((target("default"))) static int32
get_checksum1_avx2_64(schar
* buf
, int32 len
, int32 i
, uint32
* ps1
, uint32
* ps2
) {
373 __attribute__ ((target("default"))) static int32
get_checksum1_sse2_32(schar
* buf
, int32 len
, int32 i
, uint32
* ps1
, uint32
* ps2
) {
377 static inline int32
get_checksum1_default_1(schar
* buf
, int32 len
, int32 i
, uint32
* ps1
, uint32
* ps2
) {
380 for (; i
< (len
-4); i
+=4) {
381 s2
+= 4*(s1
+ buf
[i
]) + 3*buf
[i
+1] + 2*buf
[i
+2] + buf
[i
+3] + 10*CHAR_OFFSET
;
382 s1
+= (buf
[i
+0] + buf
[i
+1] + buf
[i
+2] + buf
[i
+3] + 4*CHAR_OFFSET
);
384 for (; i
< len
; i
++) {
385 s1
+= (buf
[i
]+CHAR_OFFSET
); s2
+= s1
;
394 uint32
get_checksum1(char *buf1
, int32 len
) {
399 // multiples of 64 bytes using AVX2 (if available)
400 i
= get_checksum1_avx2_64((schar
*)buf1
, len
, i
, &s1
, &s2
);
402 // multiples of 32 bytes using SSE2/SSSE3 (if available)
403 i
= get_checksum1_sse2_32((schar
*)buf1
, len
, i
, &s1
, &s2
);
406 i
= get_checksum1_default_1((schar
*)buf1
, len
, i
, &s1
, &s2
);
408 return (s1
& 0xffff) + (s2
<< 16);
412 #endif /* HAVE_SIMD */
413 #endif /* __cplusplus */
414 #endif /* __x86_64__ */