1 header {* Miscellaneous lemmas *}
6 lemma bij_f_inv_f [simp]:
8 shows "f (inv f x) = x"
9 by (metis UNIV_I assms bij_betw_imp_surj f_inv_into_f)
11 lemma bij_f_x_equiv_inv_f_y [simp]:
13 shows "inv f y = x \<longleftrightarrow> f x = y"
14 by (metis assms bij_betw_def bij_f_inv_f inv_f_eq)
16 lemma bij_map_f_map_inv_f [simp]:
18 shows "map f (map (inv f) xs) = xs"
19 by (metis assms bij_betw_imp_surj list.map_id map_map surj_iff)