1 /**********************************************************************
6 created at: Fri Dec 24 16:39:21 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
10 **********************************************************************/
12 #include "ruby/internal/config.h"
24 #include <sys/types.h>
31 #if defined(HAVE_SYS_TIME_H)
32 # include <sys/time.h>
37 #elif defined HAVE_SYS_SYSCALL_H
38 # include <sys/syscall.h>
42 # include <winsock2.h>
44 # include <wincrypt.h>
48 #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__)
49 /* to define OpenBSD and FreeBSD for version check */
50 # include <sys/param.h>
53 #if defined HAVE_GETRANDOM || defined HAVE_GETENTROPY
54 # if defined(HAVE_SYS_RANDOM_H)
55 # include <sys/random.h>
57 #elif defined __linux__ && defined __NR_getrandom
58 # include <linux/random.h>
62 # include <AvailabilityMacros.h>
66 #include "internal/array.h"
67 #include "internal/compilers.h"
68 #include "internal/numeric.h"
69 #include "internal/random.h"
70 #include "internal/sanitizers.h"
71 #include "internal/variable.h"
72 #include "ruby_atomic.h"
73 #include "ruby/random.h"
74 #include "ruby/ractor.h"
76 typedef int int_must_be_32bit_at_least
[sizeof(int) * CHAR_BIT
< 32 ? -1 : 1];
78 #include "missing/mt19937.c"
80 /* generates a random number on [0,1) with 53-bit resolution*/
81 static double int_pair_to_real_exclusive(uint32_t a
, uint32_t b
);
83 genrand_real(struct MT
*mt
)
85 /* mt must be initialized */
86 unsigned int a
= genrand_int32(mt
), b
= genrand_int32(mt
);
87 return int_pair_to_real_exclusive(a
, b
);
90 static const double dbl_reduce_scale
= /* 2**(-DBL_MANT_DIG) */
92 / (double)(DBL_MANT_DIG
> 2*31 ? (1ul<<31) : 1.0)
93 / (double)(DBL_MANT_DIG
> 1*31 ? (1ul<<31) : 1.0)
94 / (double)(1ul<<(DBL_MANT_DIG
%31)));
97 int_pair_to_real_exclusive(uint32_t a
, uint32_t b
)
99 static const int a_shift
= DBL_MANT_DIG
< 64 ?
100 (64-DBL_MANT_DIG
)/2 : 0;
101 static const int b_shift
= DBL_MANT_DIG
< 64 ?
102 (65-DBL_MANT_DIG
)/2 : 0;
105 return (a
*(double)(1ul<<(32-b_shift
))+b
)*dbl_reduce_scale
;
108 /* generates a random number on [0,1] with 53-bit resolution*/
109 static double int_pair_to_real_inclusive(uint32_t a
, uint32_t b
);
112 genrand_real2(struct MT
*mt
)
114 /* mt must be initialized */
115 uint32_t a
= genrand_int32(mt
), b
= genrand_int32(mt
);
116 return int_pair_to_real_inclusive(a
, b
);
120 /* These real versions are due to Isaku Wada, 2002/01/09 added */
130 #define DEFAULT_SEED_CNT 4
132 static VALUE
rand_init(const rb_random_interface_t
*, rb_random_t
*, VALUE
);
133 static VALUE
random_seed(VALUE
);
134 static void fill_random_seed(uint32_t *seed
, size_t cnt
);
135 static VALUE
make_seed_value(uint32_t *ptr
, size_t len
);
137 RB_RANDOM_INTERFACE_DECLARE(rand_mt
);
138 static const rb_random_interface_t random_mt_if
= {
139 DEFAULT_SEED_CNT
* 32,
140 RB_RANDOM_INTERFACE_DEFINE(rand_mt
)
143 static rb_random_mt_t
*
144 rand_mt_start(rb_random_mt_t
*r
)
146 if (!genrand_initialized(&r
->mt
)) {
147 r
->base
.seed
= rand_init(&random_mt_if
, &r
->base
, random_seed(Qundef
));
153 rand_start(rb_random_mt_t
*r
)
155 return &rand_mt_start(r
)->base
;
158 static rb_ractor_local_key_t default_rand_key
;
161 default_rand_mark(void *ptr
)
163 rb_random_mt_t
*rnd
= (rb_random_mt_t
*)ptr
;
164 rb_gc_mark(rnd
->base
.seed
);
167 static const struct rb_ractor_local_storage_type default_rand_key_storage_type
= {
172 static rb_random_mt_t
*
177 if ((rnd
= rb_ractor_local_storage_ptr(default_rand_key
)) == NULL
) {
178 rnd
= ZALLOC(rb_random_mt_t
);
179 rb_ractor_local_storage_ptr_set(default_rand_key
, rnd
);
185 static rb_random_mt_t
*
188 return rand_mt_start(default_rand());
192 rb_genrand_int32(void)
194 struct MT
*mt
= &default_mt()->mt
;
195 return genrand_int32(mt
);
199 rb_genrand_real(void)
201 struct MT
*mt
= &default_mt()->mt
;
202 return genrand_real(mt
);
205 #define SIZEOF_INT32 (31/CHAR_BIT + 1)
208 int_pair_to_real_inclusive(uint32_t a
, uint32_t b
)
211 enum {dig
= DBL_MANT_DIG
};
212 enum {dig_u
= dig
-32, dig_r64
= 64-dig
, bmask
= ~(~0u<<(dig_r64
))};
213 #if defined HAVE_UINT128_T
214 const uint128_t m
= ((uint128_t
)1 << dig
) | 1;
215 uint128_t x
= ((uint128_t
)a
<< 32) | b
;
216 r
= (double)(uint64_t)((x
* m
) >> 64);
217 #elif defined HAVE_UINT64_T && !MSC_VERSION_BEFORE(1300)
218 uint64_t x
= ((uint64_t)a
<< dig_u
) +
219 (((uint64_t)b
+ (a
>> dig_u
)) >> dig_r64
);
222 /* shift then add to get rid of overflow */
223 b
= (b
>> dig_r64
) + (((a
>> dig_u
) + (b
& bmask
)) >> dig_r64
);
224 r
= (double)a
* (1 << dig_u
) + b
;
226 return r
* dbl_reduce_scale
;
232 static ID id_rand
, id_bytes
;
233 NORETURN(static void domain_error(void));
236 #define random_mark rb_random_mark
239 random_mark(void *ptr
)
241 rb_gc_mark(((rb_random_t
*)ptr
)->seed
);
244 #define random_free RUBY_TYPED_DEFAULT_FREE
247 random_memsize(const void *ptr
)
249 return sizeof(rb_random_t
);
252 const rb_data_type_t rb_random_data_type
= {
259 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
262 #define random_mt_mark rb_random_mark
263 #define random_mt_free RUBY_TYPED_DEFAULT_FREE
266 random_mt_memsize(const void *ptr
)
268 return sizeof(rb_random_mt_t
);
271 static const rb_data_type_t random_mt_type
= {
278 &rb_random_data_type
,
279 (void *)&random_mt_if
,
280 RUBY_TYPED_FREE_IMMEDIATELY
287 TypedData_Get_Struct(obj
, rb_random_t
, &rb_random_data_type
, ptr
);
288 if (RTYPEDDATA_TYPE(obj
) == &random_mt_type
)
289 return rand_start((rb_random_mt_t
*)ptr
);
293 static rb_random_mt_t
*
294 get_rnd_mt(VALUE obj
)
297 TypedData_Get_Struct(obj
, rb_random_mt_t
, &random_mt_type
, ptr
);
302 try_get_rnd(VALUE obj
)
304 if (obj
== rb_cRandom
) {
305 return rand_start(default_rand());
307 if (!rb_typeddata_is_kind_of(obj
, &rb_random_data_type
)) return NULL
;
308 if (RTYPEDDATA_TYPE(obj
) == &random_mt_type
)
309 return rand_start(DATA_PTR(obj
));
310 rb_random_t
*rnd
= DATA_PTR(obj
);
312 rb_raise(rb_eArgError
, "uninitialized random: %s",
313 RTYPEDDATA_TYPE(obj
)->wrap_struct_name
);
318 static const rb_random_interface_t
*
319 try_rand_if(VALUE obj
, rb_random_t
*rnd
)
321 if (rnd
== &default_rand()->base
) {
322 return &random_mt_if
;
324 return rb_rand_if(obj
);
329 rb_random_base_init(rb_random_t
*rnd
)
331 rnd
->seed
= INT2FIX(0);
336 random_alloc(VALUE klass
)
339 VALUE obj
= TypedData_Make_Struct(klass
, rb_random_mt_t
, &random_mt_type
, rnd
);
340 rb_random_base_init(&rnd
->base
);
345 rand_init_default(const rb_random_interface_t
*rng
, rb_random_t
*rnd
)
347 VALUE seed
, buf0
= 0;
348 size_t len
= roomof(rng
->default_seed_bits
, 32);
349 uint32_t *buf
= ALLOCV_N(uint32_t, buf0
, len
+1);
351 fill_random_seed(buf
, len
);
352 rng
->init(rnd
, buf
, len
);
353 seed
= make_seed_value(buf
, len
);
354 explicit_bzero(buf
, len
* sizeof(*buf
));
360 rand_init(const rb_random_interface_t
*rng
, rb_random_t
*rnd
, VALUE seed
)
367 len
= rb_absint_numwords(seed
, 32, NULL
);
368 if (len
== 0) len
= 1;
369 buf
= ALLOCV_N(uint32_t, buf0
, len
);
370 sign
= rb_integer_pack(seed
, buf
, len
, sizeof(uint32_t), 0,
371 INTEGER_PACK_LSWORD_FIRST
|INTEGER_PACK_NATIVE_BYTE_ORDER
);
375 if (sign
!= 2 && buf
[len
-1] == 1) /* remove leading-zero-guard */
378 rng
->init(rnd
, buf
, len
);
379 explicit_bzero(buf
, len
* sizeof(*buf
));
386 * Random.new(seed = Random.new_seed) -> prng
388 * Creates a new PRNG using +seed+ to set the initial state. If +seed+ is
389 * omitted, the generator is initialized with Random.new_seed.
391 * See Random.srand for more information on the use of seed values.
394 random_init(int argc
, VALUE
*argv
, VALUE obj
)
396 rb_random_t
*rnd
= try_get_rnd(obj
);
397 const rb_random_interface_t
*rng
= rb_rand_if(obj
);
400 rb_raise(rb_eTypeError
, "undefined random interface: %s",
401 RTYPEDDATA_TYPE(obj
)->wrap_struct_name
);
403 argc
= rb_check_arity(argc
, 0, 1);
404 rb_check_frozen(obj
);
406 rnd
->seed
= rand_init_default(rng
, rnd
);
409 rnd
->seed
= rand_init(rng
, rnd
, rb_to_int(argv
[0]));
414 #define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int32_t))
416 #if defined(S_ISCHR) && !defined(DOSISH)
417 # define USE_DEV_URANDOM 1
419 # define USE_DEV_URANDOM 0
422 #ifdef HAVE_GETENTROPY
423 # define MAX_SEED_LEN_PER_READ 256
425 fill_random_bytes_urandom(void *seed
, size_t size
)
427 unsigned char *p
= (unsigned char *)seed
;
429 size_t len
= size
< MAX_SEED_LEN_PER_READ
? size
: MAX_SEED_LEN_PER_READ
;
430 if (getentropy(p
, len
) != 0) {
438 #elif USE_DEV_URANDOM
440 fill_random_bytes_urandom(void *seed
, size_t size
)
443 O_NONBLOCK and O_NOCTTY is meaningless if /dev/urandom correctly points
444 to a urandom device. But it protects from several strange hazard if
445 /dev/urandom is not a urandom device.
447 int fd
= rb_cloexec_open("/dev/urandom",
459 if (fd
< 0) return -1;
460 rb_update_max_fd(fd
);
461 if (fstat(fd
, &statbuf
) == 0 && S_ISCHR(statbuf
.st_mode
)) {
463 ret
= read(fd
, ((char*)seed
) + offset
, size
- offset
);
468 offset
+= (size_t)ret
;
469 } while (offset
< size
);
475 # define fill_random_bytes_urandom(seed, size) -1
478 #if ! defined HAVE_GETRANDOM && defined __linux__ && defined __NR_getrandom
479 # ifndef GRND_NONBLOCK
480 # define GRND_NONBLOCK 0x0001 /* not defined in musl libc */
482 # define getrandom(ptr, size, flags) \
483 (ssize_t)syscall(__NR_getrandom, (ptr), (size), (flags))
484 # define HAVE_GETRANDOM 1
488 #elif defined MAC_OS_X_VERSION_10_7 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7
490 # if defined MAC_OS_X_VERSION_10_10 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_10
491 # include <CommonCrypto/CommonCryptoError.h> /* for old Xcode */
492 # include <CommonCrypto/CommonRandom.h>
493 # define USE_COMMON_RANDOM 1
495 # include <Security/SecRandom.h>
496 # define USE_COMMON_RANDOM 0
500 fill_random_bytes_syscall(void *seed
, size_t size
, int unused
)
502 #if USE_COMMON_RANDOM
503 int failed
= CCRandomGenerateBytes(seed
, size
) != kCCSuccess
;
505 int failed
= SecRandomCopyBytes(kSecRandomDefault
, size
, seed
) != errSecSuccess
;
510 # if USE_COMMON_RANDOM
511 /* How to get the error message? */
513 CFStringRef s
= SecCopyErrorMessageString(status
, NULL
);
514 const char *m
= s
? CFStringGetCStringPtr(s
, kCFStringEncodingUTF8
) : NULL
;
515 fprintf(stderr
, "SecRandomCopyBytes failed: %d: %s\n", status
,
524 #elif defined(HAVE_ARC4RANDOM_BUF)
526 fill_random_bytes_syscall(void *buf
, size_t size
, int unused
)
528 #if (defined(__OpenBSD__) && OpenBSD >= 201411) || \
529 (defined(__NetBSD__) && __NetBSD_Version__ >= 700000000) || \
530 (defined(__FreeBSD__) && __FreeBSD_version >= 1200079)
531 arc4random_buf(buf
, size
);
537 #elif defined(_WIN32)
540 # define DWORD_MAX (~(DWORD)0UL)
543 # if defined(CRYPT_VERIFYCONTEXT)
544 STATIC_ASSERT(sizeof_HCRYPTPROV
, sizeof(HCRYPTPROV
) == sizeof(size_t));
546 /* Although HCRYPTPROV is not a HANDLE, it looks like
547 * INVALID_HANDLE_VALUE is not a valid value */
548 static const HCRYPTPROV INVALID_HCRYPTPROV
= (HCRYPTPROV
)INVALID_HANDLE_VALUE
;
551 release_crypt(void *p
)
554 HCRYPTPROV prov
= (HCRYPTPROV
)ATOMIC_SIZE_EXCHANGE(*ptr
, INVALID_HCRYPTPROV
);
555 if (prov
&& prov
!= INVALID_HCRYPTPROV
) {
556 CryptReleaseContext(prov
, 0);
561 fill_random_bytes_crypt(void *seed
, size_t size
)
563 static HCRYPTPROV perm_prov
;
564 HCRYPTPROV prov
= perm_prov
, old_prov
;
566 if (!CryptAcquireContext(&prov
, NULL
, NULL
, PROV_RSA_FULL
, CRYPT_VERIFYCONTEXT
)) {
567 prov
= INVALID_HCRYPTPROV
;
569 old_prov
= (HCRYPTPROV
)ATOMIC_SIZE_CAS(perm_prov
, 0, prov
);
570 if (LIKELY(!old_prov
)) { /* no other threads acquired */
571 if (prov
!= INVALID_HCRYPTPROV
) {
572 #undef RUBY_UNTYPED_DATA_WARNING
573 #define RUBY_UNTYPED_DATA_WARNING 0
574 rb_gc_register_mark_object(Data_Wrap_Struct(0, 0, release_crypt
, &perm_prov
));
577 else { /* another thread acquired */
578 if (prov
!= INVALID_HCRYPTPROV
) {
579 CryptReleaseContext(prov
, 0);
584 if (prov
== INVALID_HCRYPTPROV
) return -1;
586 DWORD n
= (size
> (size_t)DWORD_MAX
) ? DWORD_MAX
: (DWORD
)size
;
587 if (!CryptGenRandom(prov
, n
, seed
)) return -1;
588 seed
= (char *)seed
+ n
;
594 # define fill_random_bytes_crypt(seed, size) -1
598 fill_random_bytes_bcrypt(void *seed
, size_t size
)
601 ULONG n
= (size
> (size_t)ULONG_MAX
) ? LONG_MAX
: (ULONG
)size
;
602 if (BCryptGenRandom(NULL
, seed
, n
, BCRYPT_USE_SYSTEM_PREFERRED_RNG
))
604 seed
= (char *)seed
+ n
;
611 fill_random_bytes_syscall(void *seed
, size_t size
, int unused
)
613 if (fill_random_bytes_bcrypt(seed
, size
) == 0) return 0;
614 return fill_random_bytes_crypt(seed
, size
);
616 #elif defined HAVE_GETRANDOM
618 fill_random_bytes_syscall(void *seed
, size_t size
, int need_secure
)
620 static rb_atomic_t try_syscall
= 1;
625 flags
= GRND_NONBLOCK
;
628 ssize_t ret
= getrandom(((char*)seed
) + offset
, size
- offset
, flags
);
630 ATOMIC_SET(try_syscall
, 0);
633 offset
+= (size_t)ret
;
634 } while (offset
< size
);
640 # define fill_random_bytes_syscall(seed, size, need_secure) -1
644 ruby_fill_random_bytes(void *seed
, size_t size
, int need_secure
)
646 int ret
= fill_random_bytes_syscall(seed
, size
, need_secure
);
647 if (ret
== 0) return ret
;
648 return fill_random_bytes_urandom(seed
, size
);
651 #define fill_random_bytes ruby_fill_random_bytes
653 /* cnt must be 4 or more */
655 fill_random_seed(uint32_t *seed
, size_t cnt
)
657 static rb_atomic_t n
= 0;
658 #if defined HAVE_CLOCK_GETTIME
660 #elif defined HAVE_GETTIMEOFDAY
663 size_t len
= cnt
* sizeof(*seed
);
665 memset(seed
, 0, len
);
667 fill_random_bytes(seed
, len
, FALSE
);
669 #if defined HAVE_CLOCK_GETTIME
670 clock_gettime(CLOCK_REALTIME
, &tv
);
671 seed
[0] ^= tv
.tv_nsec
;
672 #elif defined HAVE_GETTIMEOFDAY
673 gettimeofday(&tv
, 0);
674 seed
[0] ^= tv
.tv_usec
;
676 seed
[1] ^= (uint32_t)tv
.tv_sec
;
677 #if SIZEOF_TIME_T > SIZEOF_INT
678 seed
[0] ^= (uint32_t)((time_t)tv
.tv_sec
>> SIZEOF_INT
* CHAR_BIT
);
680 seed
[2] ^= getpid() ^ (ATOMIC_FETCH_ADD(n
, 1) << 16);
681 seed
[3] ^= (uint32_t)(VALUE
)&seed
;
682 #if SIZEOF_VOIDP > SIZEOF_INT
683 seed
[2] ^= (uint32_t)((VALUE
)&seed
>> SIZEOF_INT
* CHAR_BIT
);
688 make_seed_value(uint32_t *ptr
, size_t len
)
692 if (ptr
[len
-1] <= 1) {
693 /* set leading-zero-guard */
697 seed
= rb_integer_unpack(ptr
, len
, sizeof(uint32_t), 0,
698 INTEGER_PACK_LSWORD_FIRST
|INTEGER_PACK_NATIVE_BYTE_ORDER
);
703 #define with_random_seed(size, add) \
704 for (uint32_t seedbuf[(size)+(add)], loop = (fill_random_seed(seedbuf, (size)), 1); \
705 loop; explicit_bzero(seedbuf, (size)*sizeof(seedbuf[0])), loop = 0)
708 * call-seq: Random.new_seed -> integer
710 * Returns an arbitrary seed value. This is used by Random.new
711 * when no seed value is specified as an argument.
713 * Random.new_seed #=> 115032730400174366788466674494640623225
719 with_random_seed(DEFAULT_SEED_CNT
, 1) {
720 v
= make_seed_value(seedbuf
, DEFAULT_SEED_CNT
);
726 * call-seq: Random.urandom(size) -> string
728 * Returns a string, using platform providing features.
729 * Returned value is expected to be a cryptographically secure
730 * pseudo-random number in binary form.
731 * This method raises a RuntimeError if the feature provided by platform
732 * failed to prepare the result.
734 * In 2017, Linux manpage random(7) writes that "no cryptographic
735 * primitive available today can hope to promise more than 256 bits of
736 * security". So it might be questionable to pass size > 32 to this
739 * Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"
742 random_raw_seed(VALUE self
, VALUE size
)
744 long n
= NUM2ULONG(size
);
745 VALUE buf
= rb_str_new(0, n
);
746 if (n
== 0) return buf
;
747 if (fill_random_bytes(RSTRING_PTR(buf
), n
, TRUE
))
748 rb_raise(rb_eRuntimeError
, "failed to get urandom");
753 * call-seq: prng.seed -> integer
755 * Returns the seed value used to initialize the generator. This may be used to
756 * initialize another generator with the same state at a later time, causing it
757 * to produce the same sequence of numbers.
759 * prng1 = Random.new(1234)
760 * prng1.seed #=> 1234
761 * prng1.rand(100) #=> 47
763 * prng2 = Random.new(prng1.seed)
764 * prng2.rand(100) #=> 47
767 random_get_seed(VALUE obj
)
769 return get_rnd(obj
)->seed
;
774 rand_mt_copy(VALUE obj
, VALUE orig
)
776 rb_random_mt_t
*rnd1
, *rnd2
;
779 if (!OBJ_INIT_COPY(obj
, orig
)) return obj
;
781 rnd1
= get_rnd_mt(obj
);
782 rnd2
= get_rnd_mt(orig
);
786 mt
->next
= mt
->state
+ numberof(mt
->state
) - mt
->left
+ 1;
791 mt_state(const struct MT
*mt
)
793 return rb_integer_unpack(mt
->state
, numberof(mt
->state
),
794 sizeof(*mt
->state
), 0,
795 INTEGER_PACK_LSWORD_FIRST
|INTEGER_PACK_NATIVE_BYTE_ORDER
);
800 rand_mt_state(VALUE obj
)
802 rb_random_mt_t
*rnd
= get_rnd_mt(obj
);
803 return mt_state(&rnd
->mt
);
808 random_s_state(VALUE klass
)
810 return mt_state(&default_rand()->mt
);
815 rand_mt_left(VALUE obj
)
817 rb_random_mt_t
*rnd
= get_rnd_mt(obj
);
818 return INT2FIX(rnd
->mt
.left
);
823 random_s_left(VALUE klass
)
825 return INT2FIX(default_rand()->mt
.left
);
830 rand_mt_dump(VALUE obj
)
832 rb_random_mt_t
*rnd
= rb_check_typeddata(obj
, &random_mt_type
);
833 VALUE dump
= rb_ary_new2(3);
835 rb_ary_push(dump
, mt_state(&rnd
->mt
));
836 rb_ary_push(dump
, INT2FIX(rnd
->mt
.left
));
837 rb_ary_push(dump
, rnd
->base
.seed
);
844 rand_mt_load(VALUE obj
, VALUE dump
)
846 rb_random_mt_t
*rnd
= rb_check_typeddata(obj
, &random_mt_type
);
847 struct MT
*mt
= &rnd
->mt
;
848 VALUE state
, left
= INT2FIX(1), seed
= INT2FIX(0);
851 rb_check_copyable(obj
, dump
);
852 Check_Type(dump
, T_ARRAY
);
853 switch (RARRAY_LEN(dump
)) {
855 seed
= RARRAY_AREF(dump
, 2);
857 left
= RARRAY_AREF(dump
, 1);
859 state
= RARRAY_AREF(dump
, 0);
862 rb_raise(rb_eArgError
, "wrong dump data");
864 rb_integer_pack(state
, mt
->state
, numberof(mt
->state
),
865 sizeof(*mt
->state
), 0,
866 INTEGER_PACK_LSWORD_FIRST
|INTEGER_PACK_NATIVE_BYTE_ORDER
);
868 if (x
> numberof(mt
->state
)) {
869 rb_raise(rb_eArgError
, "wrong value");
871 mt
->left
= (unsigned int)x
;
872 mt
->next
= mt
->state
+ numberof(mt
->state
) - x
+ 1;
873 rnd
->base
.seed
= rb_to_int(seed
);
879 rand_mt_init(rb_random_t
*rnd
, const uint32_t *buf
, size_t len
)
881 struct MT
*mt
= &((rb_random_mt_t
*)rnd
)->mt
;
883 init_genrand(mt
, len
? buf
[0] : 0);
886 init_by_array(mt
, buf
, (int)len
);
891 rand_mt_get_int32(rb_random_t
*rnd
)
893 struct MT
*mt
= &((rb_random_mt_t
*)rnd
)->mt
;
894 return genrand_int32(mt
);
898 rand_mt_get_bytes(rb_random_t
*rnd
, void *ptr
, size_t n
)
900 rb_rand_bytes_int32(rand_mt_get_int32
, rnd
, ptr
, n
);
905 * srand(number = Random.new_seed) -> old_seed
907 * Seeds the system pseudo-random number generator, with +number+.
908 * The previous seed value is returned.
910 * If +number+ is omitted, seeds the generator using a source of entropy
911 * provided by the operating system, if available (/dev/urandom on Unix systems
912 * or the RSA cryptographic provider on Windows), which is then combined with
913 * the time, the process id, and a sequence number.
915 * srand may be used to ensure repeatable sequences of pseudo-random numbers
916 * between different runs of the program. By setting the seed to a known value,
917 * programs can be made deterministic during testing.
919 * srand 1234 # => 268519324636777531569100071560086917274
920 * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
921 * [ rand(10), rand(1000) ] # => [4, 664]
922 * srand 1234 # => 1234
923 * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
927 rb_f_srand(int argc
, VALUE
*argv
, VALUE obj
)
930 rb_random_mt_t
*r
= rand_mt_start(default_rand());
932 if (rb_check_arity(argc
, 0, 1) == 0) {
933 seed
= random_seed(obj
);
936 seed
= rb_to_int(argv
[0]);
939 rand_init(&random_mt_if
, &r
->base
, seed
);
946 make_mask(unsigned long x
)
960 limited_rand(const rb_random_interface_t
*rng
, rb_random_t
*rnd
, unsigned long limit
)
962 /* mt must be initialized */
963 unsigned long val
, mask
;
965 if (!limit
) return 0;
966 mask
= make_mask(limit
);
969 if (0xffffffff < limit
) {
973 for (i
= SIZEOF_LONG
/SIZEOF_INT32
-1; 0 <= i
; i
--) {
974 if ((mask
>> (i
* 32)) & 0xffffffff) {
975 val
|= (unsigned long)rng
->get_int32(rnd
) << (i
* 32);
986 val
= rng
->get_int32(rnd
) & mask
;
987 } while (limit
< val
);
992 limited_big_rand(const rb_random_interface_t
*rng
, rb_random_t
*rnd
, VALUE limit
)
994 /* mt must be initialized */
1001 uint32_t *tmp
, *lim_array
, *rnd_array
;
1005 len
= rb_absint_numwords(limit
, 32, NULL
);
1006 tmp
= ALLOCV_N(uint32_t, vtmp
, len
*2);
1008 rnd_array
= tmp
+ len
;
1009 rb_integer_pack(limit
, lim_array
, len
, sizeof(uint32_t), 0,
1010 INTEGER_PACK_LSWORD_FIRST
|INTEGER_PACK_NATIVE_BYTE_ORDER
);
1015 for (i
= len
-1; 0 <= i
; i
--) {
1017 uint32_t lim
= lim_array
[i
];
1018 mask
= mask
? 0xffffffff : (uint32_t)make_mask(lim
);
1020 r
= rng
->get_int32(rnd
) & mask
;
1030 val
= rb_integer_unpack(rnd_array
, len
, sizeof(uint32_t), 0,
1031 INTEGER_PACK_LSWORD_FIRST
|INTEGER_PACK_NATIVE_BYTE_ORDER
);
1038 * Returns random unsigned long value in [0, +limit+].
1040 * Note that +limit+ is included, and the range of the argument and the
1041 * return value depends on environments.
1044 rb_genrand_ulong_limited(unsigned long limit
)
1046 rb_random_mt_t
*mt
= default_mt();
1047 return limited_rand(&random_mt_if
, &mt
->base
, limit
);
1051 obj_random_bytes(VALUE obj
, void *p
, long n
)
1053 VALUE len
= LONG2NUM(n
);
1054 VALUE v
= rb_funcallv_public(obj
, id_bytes
, 1, &len
);
1056 Check_Type(v
, T_STRING
);
1059 rb_raise(rb_eRangeError
, "random data too short %ld", l
);
1061 rb_raise(rb_eRangeError
, "random data too long %ld", l
);
1062 if (p
) memcpy(p
, RSTRING_PTR(v
), n
);
1067 random_int32(const rb_random_interface_t
*rng
, rb_random_t
*rnd
)
1069 return rng
->get_int32(rnd
);
1073 rb_random_int32(VALUE obj
)
1075 rb_random_t
*rnd
= try_get_rnd(obj
);
1078 obj_random_bytes(obj
, &x
, sizeof(x
));
1079 return (unsigned int)x
;
1081 return random_int32(try_rand_if(obj
, rnd
), rnd
);
1085 random_real(VALUE obj
, rb_random_t
*rnd
, int excl
)
1090 uint32_t x
[2] = {0, 0};
1091 obj_random_bytes(obj
, x
, sizeof(x
));
1096 const rb_random_interface_t
*rng
= try_rand_if(obj
, rnd
);
1097 if (rng
->get_real
) return rng
->get_real(rnd
, excl
);
1098 a
= random_int32(rng
, rnd
);
1099 b
= random_int32(rng
, rnd
);
1101 return rb_int_pair_to_real(a
, b
, excl
);
1105 rb_int_pair_to_real(uint32_t a
, uint32_t b
, int excl
)
1108 return int_pair_to_real_exclusive(a
, b
);
1111 return int_pair_to_real_inclusive(a
, b
);
1116 rb_random_real(VALUE obj
)
1118 rb_random_t
*rnd
= try_get_rnd(obj
);
1120 VALUE v
= rb_funcallv(obj
, id_rand
, 0, 0);
1121 double d
= NUM2DBL(v
);
1123 rb_raise(rb_eRangeError
, "random number too small %g", d
);
1125 else if (d
>= 1.0) {
1126 rb_raise(rb_eRangeError
, "random number too big %g", d
);
1130 return random_real(obj
, rnd
, TRUE
);
1134 ulong_to_num_plus_1(unsigned long n
)
1137 return ULL2NUM((LONG_LONG
)n
+1);
1139 if (n
>= ULONG_MAX
) {
1140 return rb_big_plus(ULONG2NUM(n
), INT2FIX(1));
1142 return ULONG2NUM(n
+1);
1146 static unsigned long
1147 random_ulong_limited(VALUE obj
, rb_random_t
*rnd
, unsigned long limit
)
1149 if (!limit
) return 0;
1151 const int w
= sizeof(limit
) * CHAR_BIT
- nlz_long(limit
);
1152 const int n
= w
> 32 ? sizeof(unsigned long) : sizeof(uint32_t);
1153 const unsigned long mask
= ~(~0UL << w
);
1154 const unsigned long full
=
1155 (size_t)n
>= sizeof(unsigned long) ? ~0UL :
1156 ~(~0UL << n
* CHAR_BIT
);
1157 unsigned long val
, bits
= 0, rest
= 0;
1160 union {uint32_t u32
; unsigned long ul
;} buf
;
1161 obj_random_bytes(obj
, &buf
, n
);
1163 bits
= (n
== sizeof(uint32_t)) ? buf
.u32
: buf
.ul
;
1169 } while (limit
< val
);
1172 return limited_rand(try_rand_if(obj
, rnd
), rnd
, limit
);
1176 rb_random_ulong_limited(VALUE obj
, unsigned long limit
)
1178 rb_random_t
*rnd
= try_get_rnd(obj
);
1180 VALUE lim
= ulong_to_num_plus_1(limit
);
1181 VALUE v
= rb_to_int(rb_funcallv_public(obj
, id_rand
, 1, &lim
));
1182 unsigned long r
= NUM2ULONG(v
);
1183 if (rb_num_negative_p(v
)) {
1184 rb_raise(rb_eRangeError
, "random number too small %ld", r
);
1187 rb_raise(rb_eRangeError
, "random number too big %ld", r
);
1191 return limited_rand(try_rand_if(obj
, rnd
), rnd
, limit
);
1195 random_ulong_limited_big(VALUE obj
, rb_random_t
*rnd
, VALUE vmax
)
1199 size_t i
, nlz
, len
= rb_absint_numwords(vmax
, 32, &nlz
);
1200 uint32_t *tmp
= ALLOCV_N(uint32_t, vtmp
, len
* 2);
1201 uint32_t mask
= (uint32_t)~0 >> nlz
;
1202 uint32_t *lim_array
= tmp
;
1203 uint32_t *rnd_array
= tmp
+ len
;
1204 int flag
= INTEGER_PACK_MSWORD_FIRST
|INTEGER_PACK_NATIVE_BYTE_ORDER
;
1205 rb_integer_pack(vmax
, lim_array
, len
, sizeof(uint32_t), 0, flag
);
1208 obj_random_bytes(obj
, rnd_array
, len
* sizeof(uint32_t));
1209 rnd_array
[0] &= mask
;
1210 for (i
= 0; i
< len
; ++i
) {
1211 if (lim_array
[i
] < rnd_array
[i
])
1213 if (rnd_array
[i
] < lim_array
[i
])
1216 v
= rb_integer_unpack(rnd_array
, len
, sizeof(uint32_t), 0, flag
);
1220 return limited_big_rand(try_rand_if(obj
, rnd
), rnd
, vmax
);
1224 rand_bytes(const rb_random_interface_t
*rng
, rb_random_t
*rnd
, long n
)
1229 bytes
= rb_str_new(0, n
);
1230 ptr
= RSTRING_PTR(bytes
);
1231 rng
->get_bytes(rnd
, ptr
, n
);
1236 * call-seq: prng.bytes(size) -> string
1238 * Returns a random binary string containing +size+ bytes.
1240 * random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
1241 * random_string.size # => 10
1244 random_bytes(VALUE obj
, VALUE len
)
1246 rb_random_t
*rnd
= try_get_rnd(obj
);
1247 return rand_bytes(rb_rand_if(obj
), rnd
, NUM2LONG(rb_to_int(len
)));
1251 rb_rand_bytes_int32(rb_random_get_int32_func
*get_int32
,
1252 rb_random_t
*rnd
, void *p
, size_t n
)
1256 for (; n
>= SIZEOF_INT32
; n
-= SIZEOF_INT32
) {
1274 rb_random_bytes(VALUE obj
, long n
)
1276 rb_random_t
*rnd
= try_get_rnd(obj
);
1278 return obj_random_bytes(obj
, NULL
, n
);
1280 return rand_bytes(try_rand_if(obj
, rnd
), rnd
, n
);
1284 * call-seq: Random.bytes(size) -> string
1286 * Returns a random binary string.
1287 * The argument +size+ specifies the length of the returned string.
1290 random_s_bytes(VALUE obj
, VALUE len
)
1292 rb_random_t
*rnd
= rand_start(default_rand());
1293 return rand_bytes(&random_mt_if
, rnd
, NUM2LONG(rb_to_int(len
)));
1297 * call-seq: Random.seed -> integer
1299 * Returns the seed value used to initialize the Ruby system PRNG.
1300 * This may be used to initialize another generator with the same
1301 * state at a later time, causing it to produce the same sequence of
1304 * Random.seed #=> 1234
1305 * prng1 = Random.new(Random.seed)
1306 * prng1.seed #=> 1234
1307 * prng1.rand(100) #=> 47
1308 * Random.seed #=> 1234
1309 * Random.rand(100) #=> 47
1312 random_s_seed(VALUE obj
)
1314 rb_random_mt_t
*rnd
= rand_mt_start(default_rand());
1315 return rnd
->base
.seed
;
1319 range_values(VALUE vmax
, VALUE
*begp
, VALUE
*endp
, int *exclp
)
1323 if (!rb_range_values(vmax
, &beg
, &end
, exclp
)) return Qfalse
;
1324 if (begp
) *begp
= beg
;
1325 if (NIL_P(beg
)) return Qnil
;
1326 if (endp
) *endp
= end
;
1327 if (NIL_P(end
)) return Qnil
;
1328 return rb_check_funcall_default(end
, id_minus
, 1, begp
, Qfalse
);
1332 rand_int(VALUE obj
, rb_random_t
*rnd
, VALUE vmax
, int restrictive
)
1334 /* mt must be initialized */
1337 if (FIXNUM_P(vmax
)) {
1338 long max
= FIX2LONG(vmax
);
1339 if (!max
) return Qnil
;
1341 if (restrictive
) return Qnil
;
1344 r
= random_ulong_limited(obj
, rnd
, (unsigned long)max
- 1);
1345 return ULONG2NUM(r
);
1349 if (rb_bigzero_p(vmax
)) return Qnil
;
1350 if (!BIGNUM_SIGN(vmax
)) {
1351 if (restrictive
) return Qnil
;
1352 vmax
= rb_big_uminus(vmax
);
1354 vmax
= rb_big_minus(vmax
, INT2FIX(1));
1355 if (FIXNUM_P(vmax
)) {
1356 long max
= FIX2LONG(vmax
);
1357 if (max
== -1) return Qnil
;
1358 r
= random_ulong_limited(obj
, rnd
, max
);
1361 ret
= random_ulong_limited_big(obj
, rnd
, vmax
);
1370 VALUE error
= INT2FIX(EDOM
);
1371 rb_exc_raise(rb_class_new_instance(1, &error
, rb_eSystemCallError
));
1374 NORETURN(static void invalid_argument(VALUE
));
1376 invalid_argument(VALUE arg0
)
1378 rb_raise(rb_eArgError
, "invalid argument - %"PRIsVALUE
, arg0
);
1382 check_random_number(VALUE v
, const VALUE
*argv
)
1386 (void)NUM2LONG(argv
[0]);
1389 invalid_argument(argv
[0]);
1394 static inline double
1395 float_value(VALUE v
)
1397 double x
= RFLOAT_VALUE(v
);
1405 rand_range(VALUE obj
, rb_random_t
* rnd
, VALUE range
)
1407 VALUE beg
= Qundef
, end
= Qundef
, vmax
, v
;
1410 if ((v
= vmax
= range_values(range
, &beg
, &end
, &excl
)) == Qfalse
)
1412 if (NIL_P(v
)) domain_error();
1413 if (!RB_FLOAT_TYPE_P(vmax
) && (v
= rb_check_to_int(vmax
), !NIL_P(v
))) {
1418 if (FIXNUM_P(vmax
)) {
1419 if ((max
= FIX2LONG(vmax
) - excl
) >= 0) {
1420 unsigned long r
= random_ulong_limited(obj
, rnd
, (unsigned long)max
);
1424 else if (BUILTIN_TYPE(vmax
) == T_BIGNUM
&& BIGNUM_SIGN(vmax
) && !rb_bigzero_p(vmax
)) {
1425 vmax
= excl
? rb_big_minus(vmax
, INT2FIX(1)) : rb_big_norm(vmax
);
1426 if (FIXNUM_P(vmax
)) {
1430 v
= random_ulong_limited_big(obj
, rnd
, vmax
);
1433 else if (v
= rb_check_to_float(vmax
), !NIL_P(v
)) {
1435 double max
= RFLOAT_VALUE(v
), mid
= 0.5, r
;
1437 double min
= float_value(rb_to_float(beg
)) / 2.0;
1438 max
= float_value(rb_to_float(end
)) / 2.0;
1443 else if (isnan(max
)) {
1448 r
= random_real(obj
, rnd
, excl
);
1450 return rb_float_new(+(+(+(r
- 0.5) * max
) * scale
) + mid
);
1452 v
= rb_float_new(r
* max
);
1454 else if (max
== 0.0 && !excl
) {
1455 v
= rb_float_new(0.0);
1459 if (FIXNUM_P(beg
) && FIXNUM_P(v
)) {
1460 long x
= FIX2LONG(beg
) + FIX2LONG(v
);
1467 return rb_big_plus(v
, beg
);
1469 VALUE f
= rb_check_to_float(beg
);
1471 return DBL2NUM(RFLOAT_VALUE(v
) + RFLOAT_VALUE(f
));
1475 return rb_funcallv(beg
, id_plus
, 1, &v
);
1481 static VALUE
rand_random(int argc
, VALUE
*argv
, VALUE obj
, rb_random_t
*rnd
);
1485 * prng.rand -> float
1486 * prng.rand(max) -> number
1487 * prng.rand(range) -> number
1489 * When +max+ is an Integer, +rand+ returns a random integer greater than
1490 * or equal to zero and less than +max+. Unlike Kernel.rand, when +max+
1491 * is a negative integer or zero, +rand+ raises an ArgumentError.
1494 * prng.rand(100) # => 42
1496 * When +max+ is a Float, +rand+ returns a random floating point number
1497 * between 0.0 and +max+, including 0.0 and excluding +max+.
1499 * prng.rand(1.5) # => 1.4600282860034115
1501 * When +range+ is a Range, +rand+ returns a random number where
1502 * <code>range.member?(number) == true</code>.
1504 * prng.rand(5..9) # => one of [5, 6, 7, 8, 9]
1505 * prng.rand(5...9) # => one of [5, 6, 7, 8]
1506 * prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0
1507 * prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
1509 * Both the beginning and ending values of the range must respond to subtract
1510 * (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an
1514 random_rand(int argc
, VALUE
*argv
, VALUE obj
)
1516 VALUE v
= rand_random(argc
, argv
, obj
, try_get_rnd(obj
));
1517 check_random_number(v
, argv
);
1522 rand_random(int argc
, VALUE
*argv
, VALUE obj
, rb_random_t
*rnd
)
1526 if (rb_check_arity(argc
, 0, 1) == 0) {
1527 return rb_float_new(random_real(obj
, rnd
, TRUE
));
1530 if (NIL_P(vmax
)) return Qnil
;
1531 if (!RB_FLOAT_TYPE_P(vmax
)) {
1532 v
= rb_check_to_int(vmax
);
1533 if (!NIL_P(v
)) return rand_int(obj
, rnd
, v
, 1);
1535 v
= rb_check_to_float(vmax
);
1537 const double max
= float_value(v
);
1542 double r
= random_real(obj
, rnd
, TRUE
);
1543 if (max
> 0.0) r
*= max
;
1544 return rb_float_new(r
);
1547 return rand_range(obj
, rnd
, vmax
);
1552 * prng.random_number -> float
1553 * prng.random_number(max) -> number
1554 * prng.random_number(range) -> number
1555 * prng.rand -> float
1556 * prng.rand(max) -> number
1557 * prng.rand(range) -> number
1559 * Generates formatted random number from raw random bytes.
1563 rand_random_number(int argc
, VALUE
*argv
, VALUE obj
)
1565 rb_random_t
*rnd
= try_get_rnd(obj
);
1566 VALUE v
= rand_random(argc
, argv
, obj
, rnd
);
1567 if (NIL_P(v
)) v
= rand_random(0, 0, obj
, rnd
);
1568 else if (!v
) invalid_argument(argv
[0]);
1574 * prng1 == prng2 -> true or false
1576 * Returns true if the two generators have the same internal state, otherwise
1577 * false. Equivalent generators will return the same sequence of
1578 * pseudo-random numbers. Two generators will generally have the same state
1579 * only if they were initialized with the same seed
1581 * Random.new == Random.new # => false
1582 * Random.new(1234) == Random.new(1234) # => true
1584 * and have the same invocation history.
1586 * prng1 = Random.new(1234)
1587 * prng2 = Random.new(1234)
1588 * prng1 == prng2 # => true
1590 * prng1.rand # => 0.1915194503788923
1591 * prng1 == prng2 # => false
1593 * prng2.rand # => 0.1915194503788923
1594 * prng1 == prng2 # => true
1597 rand_mt_equal(VALUE self
, VALUE other
)
1599 rb_random_mt_t
*r1
, *r2
;
1600 if (rb_obj_class(self
) != rb_obj_class(other
)) return Qfalse
;
1601 r1
= get_rnd_mt(self
);
1602 r2
= get_rnd_mt(other
);
1603 if (memcmp(r1
->mt
.state
, r2
->mt
.state
, sizeof(r1
->mt
.state
))) return Qfalse
;
1604 if ((r1
->mt
.next
- r1
->mt
.state
) != (r2
->mt
.next
- r2
->mt
.state
)) return Qfalse
;
1605 if (r1
->mt
.left
!= r2
->mt
.left
) return Qfalse
;
1606 return rb_equal(r1
->base
.seed
, r2
->base
.seed
);
1611 * rand(max=0) -> number
1613 * If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand
1614 * returns a pseudo-random floating point number between 0.0 and 1.0,
1615 * including 0.0 and excluding 1.0.
1617 * rand #=> 0.2725926052826416
1619 * When +max.abs+ is greater than or equal to 1, +rand+ returns a pseudo-random
1620 * integer greater than or equal to 0 and less than +max.to_i.abs+.
1624 * When +max+ is a Range, +rand+ returns a random number where
1625 * <code>range.member?(number) == true</code>.
1627 * Negative or floating point values for +max+ are allowed, but may give
1628 * surprising results.
1630 * rand(-100) # => 87
1631 * rand(-0.5) # => 0.8130921818028143
1632 * rand(1.9) # equivalent to rand(1), which is always 0
1634 * Kernel.srand may be used to ensure that sequences of random numbers are
1635 * reproducible between different runs of a program.
1637 * See also Random.rand.
1641 rb_f_rand(int argc
, VALUE
*argv
, VALUE obj
)
1644 rb_random_t
*rnd
= rand_start(default_rand());
1646 if (rb_check_arity(argc
, 0, 1) && !NIL_P(vmax
= argv
[0])) {
1647 VALUE v
= rand_range(obj
, rnd
, vmax
);
1648 if (v
!= Qfalse
) return v
;
1649 vmax
= rb_to_int(vmax
);
1650 if (vmax
!= INT2FIX(0)) {
1651 v
= rand_int(obj
, rnd
, vmax
, 0);
1652 if (!NIL_P(v
)) return v
;
1655 return DBL2NUM(random_real(obj
, rnd
, TRUE
));
1660 * Random.rand -> float
1661 * Random.rand(max) -> number
1662 * Random.rand(range) -> number
1664 * Returns a random number using the Ruby system PRNG.
1666 * See also Random#rand.
1669 random_s_rand(int argc
, VALUE
*argv
, VALUE obj
)
1671 VALUE v
= rand_random(argc
, argv
, Qnil
, rand_start(default_rand()));
1672 check_random_number(v
, argv
);
1676 #define SIP_HASH_STREAMING 0
1677 #define sip_hash13 ruby_sip_hash13
1678 #if !defined _WIN32 && !defined BYTE_ORDER
1679 # ifdef WORDS_BIGENDIAN
1680 # define BYTE_ORDER BIG_ENDIAN
1682 # define BYTE_ORDER LITTLE_ENDIAN
1684 # ifndef LITTLE_ENDIAN
1685 # define LITTLE_ENDIAN 1234
1688 # define BIG_ENDIAN 4321
1691 #include "siphash.c"
1700 uint32_t u32
[type_roomof(hash_salt_t
, uint32_t)];
1704 init_hash_salt(struct MT
*mt
)
1708 for (i
= 0; i
< numberof(hash_salt
.u32
); ++i
)
1709 hash_salt
.u32
[i
] = genrand_int32(mt
);
1712 NO_SANITIZE("unsigned-integer-overflow", extern st_index_t
rb_hash_start(st_index_t h
));
1714 rb_hash_start(st_index_t h
)
1716 return st_hash_start(hash_salt
.key
.hash
+ h
);
1720 rb_memhash(const void *ptr
, long len
)
1722 sip_uint64_t h
= sip_hash13(hash_salt
.key
.sip
, ptr
, len
);
1723 #ifdef HAVE_UINT64_T
1724 return (st_index_t
)h
;
1726 return (st_index_t
)(h
.u32
[0] ^ h
.u32
[1]);
1730 /* Initialize Ruby internal seeds. This function is called at very early stage
1731 * of Ruby startup. Thus, you can't use Ruby's object. */
1733 Init_RandomSeedCore(void)
1735 if (!fill_random_bytes(&hash_salt
, sizeof(hash_salt
), FALSE
)) return;
1738 If failed to fill siphash's salt with random data, expand less random
1741 Don't reuse this MT for default_rand(). default_rand()::seed shouldn't
1742 provide a hint that an attacker guess siphash's seed.
1746 with_random_seed(DEFAULT_SEED_CNT
, 0) {
1747 init_by_array(&mt
, seedbuf
, DEFAULT_SEED_CNT
);
1750 init_hash_salt(&mt
);
1751 explicit_bzero(&mt
, sizeof(mt
));
1755 rb_reset_random_seed(void)
1757 rb_random_mt_t
*r
= default_rand();
1758 uninit_genrand(&r
->mt
);
1759 r
->base
.seed
= INT2FIX(0);
1763 * Document-class: Random
1765 * Random provides an interface to Ruby's pseudo-random number generator, or
1766 * PRNG. The PRNG produces a deterministic sequence of bits which approximate
1767 * true randomness. The sequence may be represented by integers, floats, or
1770 * The generator may be initialized with either a system-generated or
1771 * user-supplied seed value by using Random.srand.
1773 * The class method Random.rand provides the base functionality of Kernel.rand
1774 * along with better handling of floating point values. These are both
1775 * interfaces to the Ruby system PRNG.
1777 * Random.new will create a new PRNG with a state independent of the Ruby
1778 * system PRNG, allowing multiple generators with different seed values or
1779 * sequence positions to exist simultaneously. Random objects can be
1780 * marshaled, allowing sequences to be saved and resumed.
1782 * PRNGs are currently implemented as a modified Mersenne Twister with a period
1783 * of 2**19937-1. As this algorithm is _not_ for cryptographical use, you must
1784 * use SecureRandom for security purpose, instead of this PRNG.
1791 ID id_base
= rb_intern_const("Base");
1793 rb_define_global_function("srand", rb_f_srand
, -1);
1794 rb_define_global_function("rand", rb_f_rand
, -1);
1796 base
= rb_define_class_id(id_base
, rb_cObject
);
1797 rb_undef_alloc_func(base
);
1798 rb_cRandom
= rb_define_class("Random", base
);
1799 rb_const_set(rb_cRandom
, id_base
, base
);
1800 rb_define_alloc_func(rb_cRandom
, random_alloc
);
1801 rb_define_method(base
, "initialize", random_init
, -1);
1802 rb_define_method(base
, "rand", random_rand
, -1);
1803 rb_define_method(base
, "bytes", random_bytes
, 1);
1804 rb_define_method(base
, "seed", random_get_seed
, 0);
1805 rb_define_method(rb_cRandom
, "initialize_copy", rand_mt_copy
, 1);
1806 rb_define_private_method(rb_cRandom
, "marshal_dump", rand_mt_dump
, 0);
1807 rb_define_private_method(rb_cRandom
, "marshal_load", rand_mt_load
, 1);
1808 rb_define_private_method(rb_cRandom
, "state", rand_mt_state
, 0);
1809 rb_define_private_method(rb_cRandom
, "left", rand_mt_left
, 0);
1810 rb_define_method(rb_cRandom
, "==", rand_mt_equal
, 1);
1812 #if 0 /* for RDoc: it can't handle unnamed base class */
1813 rb_define_method(rb_cRandom
, "initialize", random_init
, -1);
1814 rb_define_method(rb_cRandom
, "rand", random_rand
, -1);
1815 rb_define_method(rb_cRandom
, "bytes", random_bytes
, 1);
1816 rb_define_method(rb_cRandom
, "seed", random_get_seed
, 0);
1819 rb_define_singleton_method(rb_cRandom
, "srand", rb_f_srand
, -1);
1820 rb_define_singleton_method(rb_cRandom
, "rand", random_s_rand
, -1);
1821 rb_define_singleton_method(rb_cRandom
, "bytes", random_s_bytes
, 1);
1822 rb_define_singleton_method(rb_cRandom
, "seed", random_s_seed
, 0);
1823 rb_define_singleton_method(rb_cRandom
, "new_seed", random_seed
, 0);
1824 rb_define_singleton_method(rb_cRandom
, "urandom", random_raw_seed
, 1);
1825 rb_define_private_method(CLASS_OF(rb_cRandom
), "state", random_s_state
, 0);
1826 rb_define_private_method(CLASS_OF(rb_cRandom
), "left", random_s_left
, 0);
1830 * Generate a random number in the given range as Random does
1832 * prng.random_number #=> 0.5816771641321361
1833 * prng.random_number(1000) #=> 485
1834 * prng.random_number(1..6) #=> 3
1835 * prng.rand #=> 0.5816771641321361
1836 * prng.rand(1000) #=> 485
1837 * prng.rand(1..6) #=> 3
1839 VALUE m
= rb_define_module_under(rb_cRandom
, "Formatter");
1840 rb_include_module(base
, m
);
1841 rb_extend_object(base
, m
);
1842 rb_define_method(m
, "random_number", rand_random_number
, -1);
1843 rb_define_method(m
, "rand", rand_random_number
, -1);
1846 default_rand_key
= rb_ractor_local_storage_ptr_newkey(&default_rand_key_storage_type
);
1853 id_rand
= rb_intern("rand");
1854 id_bytes
= rb_intern("bytes");