1 // This file is a fragment of the yjit.o compilation unit. See yjit.c.
4 #include "vm_callinfo.h"
8 #include "internal/compile.h"
9 #include "internal/class.h"
11 #include "yjit_iface.h"
12 #include "yjit_codegen.h"
13 #include "yjit_core.h"
16 #ifdef HAVE_LIBCAPSTONE
17 #include <capstone/capstone.h>
18 static VALUE cYjitDisasm
;
19 static VALUE cYjitDisasmInsn
;
23 static VALUE cYjitBlock
;
26 static VALUE cYjitCodeComment
;
30 extern const int rb_vm_max_insn_name_size
;
31 static int64_t exit_op_count
[VM_INSTRUCTION_SIZE
] = { 0 };
34 // Hash table of encoded instructions
35 extern st_table
*rb_encoded_insn_data
;
37 struct rb_yjit_options rb_yjit_opts
;
39 // Size of code pages to allocate
40 #define CODE_PAGE_SIZE 16 * 1024
42 // How many code pages to allocate at once
43 #define PAGES_PER_ALLOC 512
45 static const rb_data_type_t yjit_block_type
= {
48 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
51 // Get the PC for a given index in an iseq
53 yjit_iseq_pc_at_idx(const rb_iseq_t
*iseq
, uint32_t insn_idx
)
55 RUBY_ASSERT(iseq
!= NULL
);
56 RUBY_ASSERT(insn_idx
< iseq
->body
->iseq_size
);
57 VALUE
*encoded
= iseq
->body
->iseq_encoded
;
58 VALUE
*pc
= &encoded
[insn_idx
];
62 // For debugging. Print the disassembly of an iseq.
63 RBIMPL_ATTR_MAYBE_UNUSED()
65 yjit_print_iseq(const rb_iseq_t
*iseq
)
69 VALUE disassembly
= rb_iseq_disasm(iseq
);
70 RSTRING_GETMEM(disassembly
, ptr
, len
);
71 fprintf(stderr
, "%.*s\n", (int)len
, ptr
);
75 yjit_opcode_at_pc(const rb_iseq_t
*iseq
, const VALUE
*pc
)
77 const VALUE at_pc
= *pc
;
78 if (FL_TEST_RAW((VALUE
)iseq
, ISEQ_TRANSLATED
)) {
79 return rb_vm_insn_addr2opcode((const void *)at_pc
);
86 // Verify that calling with cd on receiver goes to callee
88 check_cfunc_dispatch(VALUE receiver
, struct rb_callinfo
*ci
, void *callee
, rb_callable_method_entry_t
*compile_time_cme
)
90 if (METHOD_ENTRY_INVALIDATED(compile_time_cme
)) {
91 rb_bug("yjit: output code uses invalidated cme %p", (void *)compile_time_cme
);
94 bool callee_correct
= false;
95 const rb_callable_method_entry_t
*cme
= rb_callable_method_entry(CLASS_OF(receiver
), vm_ci_mid(ci
));
96 if (cme
->def
->type
== VM_METHOD_TYPE_CFUNC
) {
97 const rb_method_cfunc_t
*cfunc
= UNALIGNED_MEMBER_PTR(cme
->def
, body
.cfunc
);
98 if ((void *)cfunc
->func
== callee
) {
99 callee_correct
= true;
102 if (!callee_correct
) {
103 rb_bug("yjit: output code calls wrong method");
107 MJIT_FUNC_EXPORTED VALUE
rb_hash_has_key(VALUE hash
, VALUE key
);
109 // GC root for interacting with the GC
110 struct yjit_root_struct
{
111 int unused
; // empty structs are not legal in C99
114 // Hash table of BOP blocks
115 static st_table
*blocks_assuming_bops
;
118 assume_bop_not_redefined(jitstate_t
*jit
, int redefined_flag
, enum ruby_basic_operators bop
)
120 if (BASIC_OP_UNREDEFINED_P(bop
, redefined_flag
)) {
121 RUBY_ASSERT(blocks_assuming_bops
);
123 jit_ensure_block_entry_exit(jit
);
124 st_insert(blocks_assuming_bops
, (st_data_t
)jit
->block
, 0);
132 // Map klass => id_table[mid, set of blocks]
133 // While a block `b` is in the table, b->callee_cme == rb_callable_method_entry(klass, mid).
134 // See assume_method_lookup_stable()
135 static st_table
*method_lookup_dependency
;
137 // For adding to method_lookup_dependency data with st_update
138 struct lookup_dependency_insertion
{
143 // Map cme => set of blocks
144 // See assume_method_lookup_stable()
145 static st_table
*cme_validity_dependency
;
148 add_cme_validity_dependency_i(st_data_t
*key
, st_data_t
*value
, st_data_t new_block
, int existing
)
152 block_set
= (st_table
*)*value
;
155 // Make the set and put it into cme_validity_dependency
156 block_set
= st_init_numtable();
157 *value
= (st_data_t
)block_set
;
160 // Put block into set
161 st_insert(block_set
, new_block
, 1);
167 add_lookup_dependency_i(st_data_t
*key
, st_data_t
*value
, st_data_t data
, int existing
)
169 struct lookup_dependency_insertion
*info
= (void *)data
;
171 // Find or make an id table
172 struct rb_id_table
*id2blocks
;
174 id2blocks
= (void *)*value
;
177 // Make an id table and put it into the st_table
178 id2blocks
= rb_id_table_create(1);
179 *value
= (st_data_t
)id2blocks
;
182 // Find or make a block set
186 if (rb_id_table_lookup(id2blocks
, info
->mid
, &blocks
)) {
188 block_set
= (st_table
*)blocks
;
191 // Make new block set and put it into the id table
192 block_set
= st_init_numtable();
193 rb_id_table_insert(id2blocks
, info
->mid
, (VALUE
)block_set
);
197 st_insert(block_set
, (st_data_t
)info
->block
, 1);
202 // Remember that a block assumes that
203 // `rb_callable_method_entry(receiver_klass, cme->called_id) == cme` and that
205 // When either of these assumptions becomes invalid, rb_yjit_method_lookup_change() or
206 // rb_yjit_cme_invalidate() invalidates the block.
208 // @raise NoMemoryError
210 assume_method_lookup_stable(VALUE receiver_klass
, const rb_callable_method_entry_t
*cme
, jitstate_t
*jit
)
212 RUBY_ASSERT(cme_validity_dependency
);
213 RUBY_ASSERT(method_lookup_dependency
);
214 RUBY_ASSERT(rb_callable_method_entry(receiver_klass
, cme
->called_id
) == cme
);
215 RUBY_ASSERT_ALWAYS(RB_TYPE_P(receiver_klass
, T_CLASS
) || RB_TYPE_P(receiver_klass
, T_ICLASS
));
216 RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(receiver_klass
));
218 jit_ensure_block_entry_exit(jit
);
220 block_t
*block
= jit
->block
;
222 cme_dependency_t cme_dep
= { receiver_klass
, (VALUE
)cme
};
223 rb_darray_append(&block
->cme_dependencies
, cme_dep
);
225 st_update(cme_validity_dependency
, (st_data_t
)cme
, add_cme_validity_dependency_i
, (st_data_t
)block
);
227 struct lookup_dependency_insertion info
= { block
, cme
->called_id
};
228 st_update(method_lookup_dependency
, (st_data_t
)receiver_klass
, add_lookup_dependency_i
, (st_data_t
)&info
);
231 static st_table
*blocks_assuming_single_ractor_mode
;
233 // Can raise NoMemoryError.
234 RBIMPL_ATTR_NODISCARD()
236 assume_single_ractor_mode(jitstate_t
*jit
)
238 if (rb_multi_ractor_p()) return false;
240 jit_ensure_block_entry_exit(jit
);
242 st_insert(blocks_assuming_single_ractor_mode
, (st_data_t
)jit
->block
, 1);
246 static st_table
*blocks_assuming_stable_global_constant_state
;
248 // Assume that the global constant state has not changed since call to this function.
249 // Can raise NoMemoryError.
251 assume_stable_global_constant_state(jitstate_t
*jit
)
253 jit_ensure_block_entry_exit(jit
);
254 st_insert(blocks_assuming_stable_global_constant_state
, (st_data_t
)jit
->block
, 1);
258 mark_and_pin_keys_i(st_data_t k
, st_data_t v
, st_data_t ignore
)
260 rb_gc_mark((VALUE
)k
);
265 // GC callback during mark phase
267 yjit_root_mark(void *ptr
)
269 if (method_lookup_dependency
) {
270 // TODO: This is a leak. Unused blocks linger in the table forever, preventing the
271 // callee class they speculate on from being collected.
272 // We could do a bespoke weak reference scheme on classes similar to
273 // the interpreter's call cache. See finalizer for T_CLASS and cc_table_free().
274 st_foreach(method_lookup_dependency
, mark_and_pin_keys_i
, 0);
277 if (cme_validity_dependency
) {
278 // Why not let the GC move the cme keys in this table?
279 // Because this is basically a compare_by_identity Hash.
280 // If a key moves, we would need to reinsert it into the table so it is rehashed.
281 // That is tricky to do, espcially as it could trigger allocation which could
282 // trigger GC. Not sure if it is okay to trigger GC while the GC is updating
284 st_foreach(cme_validity_dependency
, mark_and_pin_keys_i
, 0);
289 yjit_root_free(void *ptr
)
291 // Do nothing. The root lives as long as the process.
295 yjit_root_memsize(const void *ptr
)
297 // Count off-gc-heap allocation size of the dependency table
298 return st_memsize(method_lookup_dependency
); // TODO: more accurate accounting
301 // GC callback during compaction
303 yjit_root_update_references(void *ptr
)
307 // Custom type for interacting with the GC
308 // TODO: make this write barrier protected
309 static const rb_data_type_t yjit_root_type
= {
311 {yjit_root_mark
, yjit_root_free
, yjit_root_memsize
, yjit_root_update_references
},
312 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
315 // st_table iterator for invalidating blocks that are keys to the table.
317 block_set_invalidate_i(st_data_t key
, st_data_t v
, st_data_t ignore
)
319 block_t
*version
= (block_t
*)key
;
321 // Thankfully, st_table supports deleting while iterating.
322 invalidate_block_version(version
);
327 // Callback for when rb_callable_method_entry(klass, mid) is going to change.
328 // Invalidate blocks that assume stable method lookup of `mid` in `klass` when this happens.
330 rb_yjit_method_lookup_change(VALUE klass
, ID mid
)
332 if (!method_lookup_dependency
) return;
337 st_data_t key
= (st_data_t
)klass
;
338 if (st_lookup(method_lookup_dependency
, key
, &image
)) {
339 struct rb_id_table
*id2blocks
= (void *)image
;
342 // Invalidate all blocks in method_lookup_dependency[klass][mid]
343 if (rb_id_table_lookup(id2blocks
, mid
, &blocks
)) {
344 rb_id_table_delete(id2blocks
, mid
);
346 st_table
*block_set
= (st_table
*)blocks
;
349 yjit_runtime_counters
.invalidate_method_lookup
+= block_set
->num_entries
;
352 st_foreach(block_set
, block_set_invalidate_i
, 0);
354 st_free_table(block_set
);
361 // Callback for when a cme becomes invalid.
362 // Invalidate all blocks that depend on cme being valid.
364 rb_yjit_cme_invalidate(VALUE cme
)
366 if (!cme_validity_dependency
) return;
368 RUBY_ASSERT(IMEMO_TYPE_P(cme
, imemo_ment
));
372 // Delete the block set from the table
373 st_data_t cme_as_st_data
= (st_data_t
)cme
;
375 if (st_delete(cme_validity_dependency
, &cme_as_st_data
, &blocks
)) {
376 st_table
*block_set
= (st_table
*)blocks
;
379 yjit_runtime_counters
.invalidate_method_lookup
+= block_set
->num_entries
;
382 // Invalidate each block
383 st_foreach(block_set
, block_set_invalidate_i
, 0);
385 st_free_table(block_set
);
391 // For dealing with refinements
393 rb_yjit_invalidate_all_method_lookup_assumptions(void)
395 // It looks like Module#using actually doesn't need to invalidate all the
396 // method caches, so we do nothing here for now.
399 // Remove a block from the method lookup dependency table
401 remove_method_lookup_dependency(block_t
*block
, VALUE receiver_klass
, const rb_callable_method_entry_t
*callee_cme
)
403 RUBY_ASSERT(receiver_klass
);
404 RUBY_ASSERT(callee_cme
); // callee_cme should be set when receiver_klass is set
407 st_data_t key
= (st_data_t
)receiver_klass
;
408 if (st_lookup(method_lookup_dependency
, key
, &image
)) {
409 struct rb_id_table
*id2blocks
= (void *)image
;
410 ID mid
= callee_cme
->called_id
;
414 if (rb_id_table_lookup(id2blocks
, mid
, &blocks
)) {
415 st_table
*block_set
= (st_table
*)blocks
;
417 // Remove block from block set
418 st_data_t block_as_st_data
= (st_data_t
)block
;
419 (void)st_delete(block_set
, &block_as_st_data
, NULL
);
421 if (block_set
->num_entries
== 0) {
422 // Block set now empty. Remove from id table.
423 rb_id_table_delete(id2blocks
, mid
);
424 st_free_table(block_set
);
430 // Remove a block from cme_validity_dependency
432 remove_cme_validity_dependency(block_t
*block
, const rb_callable_method_entry_t
*callee_cme
)
434 RUBY_ASSERT(callee_cme
);
437 if (st_lookup(cme_validity_dependency
, (st_data_t
)callee_cme
, &blocks
)) {
438 st_table
*block_set
= (st_table
*)blocks
;
440 st_data_t block_as_st_data
= (st_data_t
)block
;
441 (void)st_delete(block_set
, &block_as_st_data
, NULL
);
446 yjit_unlink_method_lookup_dependency(block_t
*block
)
448 cme_dependency_t
*cme_dep
;
449 rb_darray_foreach(block
->cme_dependencies
, cme_dependency_idx
, cme_dep
) {
450 remove_method_lookup_dependency(block
, cme_dep
->receiver_klass
, (const rb_callable_method_entry_t
*)cme_dep
->callee_cme
);
451 remove_cme_validity_dependency(block
, (const rb_callable_method_entry_t
*)cme_dep
->callee_cme
);
453 rb_darray_free(block
->cme_dependencies
);
457 yjit_block_assumptions_free(block_t
*block
)
459 st_data_t as_st_data
= (st_data_t
)block
;
460 if (blocks_assuming_stable_global_constant_state
) {
461 st_delete(blocks_assuming_stable_global_constant_state
, &as_st_data
, NULL
);
464 if (blocks_assuming_single_ractor_mode
) {
465 st_delete(blocks_assuming_single_ractor_mode
, &as_st_data
, NULL
);
468 if (blocks_assuming_bops
) {
469 st_delete(blocks_assuming_bops
, &as_st_data
, NULL
);
473 typedef VALUE (*yjit_func_t
)(rb_execution_context_t
*, rb_control_frame_t
*);
476 rb_yjit_compile_iseq(const rb_iseq_t
*iseq
, rb_execution_context_t
*ec
)
478 #if (OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE) && JIT_ENABLED
483 // Compile a block version starting at the first instruction
484 uint8_t *code_ptr
= gen_entry_point(iseq
, 0, ec
);
487 iseq
->body
->jit_func
= (yjit_func_t
)code_ptr
;
490 iseq
->body
->jit_func
= 0;
501 struct yjit_block_itr
{
502 const rb_iseq_t
*iseq
;
506 /* Get a list of the YJIT blocks associated with `rb_iseq` */
508 yjit_blocks_for(VALUE mod
, VALUE rb_iseq
)
510 if (CLASS_OF(rb_iseq
) != rb_cISeq
) {
514 const rb_iseq_t
*iseq
= rb_iseqw_to_iseq(rb_iseq
);
516 VALUE all_versions
= rb_ary_new();
517 rb_darray_for(iseq
->body
->yjit_blocks
, version_array_idx
) {
518 rb_yjit_block_array_t versions
= rb_darray_get(iseq
->body
->yjit_blocks
, version_array_idx
);
520 rb_darray_for(versions
, block_idx
) {
521 block_t
*block
= rb_darray_get(versions
, block_idx
);
523 // FIXME: The object craeted here can outlive the block itself
524 VALUE rb_block
= TypedData_Wrap_Struct(cYjitBlock
, &yjit_block_type
, block
);
525 rb_ary_push(all_versions
, rb_block
);
532 /* Get the address of the code associated with a YJIT::Block */
534 block_address(VALUE self
)
537 TypedData_Get_Struct(self
, block_t
, &yjit_block_type
, block
);
538 return LONG2NUM((intptr_t)block
->start_addr
);
541 /* Get the machine code for YJIT::Block as a binary string */
543 block_code(VALUE self
)
546 TypedData_Get_Struct(self
, block_t
, &yjit_block_type
, block
);
548 return (VALUE
)rb_str_new(
549 (const char*)block
->start_addr
,
550 block
->end_addr
- block
->start_addr
554 /* Get the start index in the Instruction Sequence that corresponds to this
557 iseq_start_index(VALUE self
)
560 TypedData_Get_Struct(self
, block_t
, &yjit_block_type
, block
);
562 return INT2NUM(block
->blockid
.idx
);
565 /* Get the end index in the Instruction Sequence that corresponds to this
568 iseq_end_index(VALUE self
)
571 TypedData_Get_Struct(self
, block_t
, &yjit_block_type
, block
);
573 return INT2NUM(block
->end_idx
);
576 /* Called when a basic operation is redefined */
578 rb_yjit_bop_redefined(VALUE klass
, const rb_method_entry_t
*me
, enum ruby_basic_operators bop
)
580 if (blocks_assuming_bops
) {
582 yjit_runtime_counters
.invalidate_bop_redefined
+= blocks_assuming_bops
->num_entries
;
585 st_foreach(blocks_assuming_bops
, block_set_invalidate_i
, 0);
589 /* Called when the constant state changes */
591 rb_yjit_constant_state_changed(void)
593 if (blocks_assuming_stable_global_constant_state
) {
595 yjit_runtime_counters
.constant_state_bumps
++;
596 yjit_runtime_counters
.invalidate_constant_state_bump
+= blocks_assuming_stable_global_constant_state
->num_entries
;
599 st_foreach(blocks_assuming_stable_global_constant_state
, block_set_invalidate_i
, 0);
603 // Callback from the opt_setinlinecache instruction in the interpreter.
604 // Invalidate the block for the matching opt_getinlinecache so it could regenerate code
605 // using the new value in the constant cache.
607 rb_yjit_constant_ic_update(const rb_iseq_t
*const iseq
, IC ic
)
609 if (!rb_yjit_enabled_p()) return;
611 // We can't generate code in these situations, so no need to invalidate.
612 // See gen_opt_getinlinecache.
613 if (ic
->entry
->ic_cref
|| rb_multi_ractor_p()) {
618 rb_vm_barrier(); // Stop other ractors since we are going to patch machine code.
620 const struct rb_iseq_constant_body
*const body
= iseq
->body
;
621 VALUE
*code
= body
->iseq_encoded
;
622 const unsigned get_insn_idx
= ic
->get_insn_idx
;
624 // This should come from a running iseq, so direct threading translation
625 // should have been done
626 RUBY_ASSERT(FL_TEST((VALUE
)iseq
, ISEQ_TRANSLATED
));
627 RUBY_ASSERT(get_insn_idx
< body
->iseq_size
);
628 RUBY_ASSERT(rb_vm_insn_addr2insn((const void *)code
[get_insn_idx
]) == BIN(opt_getinlinecache
));
630 // Find the matching opt_getinlinecache and invalidate all the blocks there
631 RUBY_ASSERT(insn_op_type(BIN(opt_getinlinecache
), 1) == TS_IC
);
632 if (ic
== (IC
)code
[get_insn_idx
+ 1 + 1]) {
633 rb_yjit_block_array_t getinlinecache_blocks
= yjit_get_version_array(iseq
, get_insn_idx
);
635 // Put a bound for loop below to be defensive
636 const int32_t initial_version_count
= rb_darray_size(getinlinecache_blocks
);
637 for (int32_t iteration
=0; iteration
<initial_version_count
; ++iteration
) {
638 getinlinecache_blocks
= yjit_get_version_array(iseq
, get_insn_idx
);
640 if (rb_darray_size(getinlinecache_blocks
) > 0) {
641 block_t
*block
= rb_darray_get(getinlinecache_blocks
, 0);
642 invalidate_block_version(block
);
644 yjit_runtime_counters
.invalidate_constant_ic_fill
++;
652 // All versions at get_insn_idx should now be gone
653 RUBY_ASSERT(0 == rb_darray_size(yjit_get_version_array(iseq
, get_insn_idx
)));
656 RUBY_ASSERT(false && "ic->get_insn_diex not set properly");
663 rb_yjit_before_ractor_spawn(void)
665 if (blocks_assuming_single_ractor_mode
) {
667 yjit_runtime_counters
.invalidate_ractor_spawn
+= blocks_assuming_single_ractor_mode
->num_entries
;
670 st_foreach(blocks_assuming_single_ractor_mode
, block_set_invalidate_i
, 0);
674 #ifdef HAVE_LIBCAPSTONE
675 static const rb_data_type_t yjit_disasm_type
= {
677 {0, (void(*)(void *))cs_close
, 0, },
678 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
682 yjit_disasm_init(VALUE klass
)
685 VALUE disasm
= TypedData_Make_Struct(klass
, csh
, &yjit_disasm_type
, handle
);
686 if (cs_open(CS_ARCH_X86
, CS_MODE_64
, handle
) != CS_ERR_OK
) {
687 rb_raise(rb_eRuntimeError
, "failed to make Capstone handle");
693 yjit_disasm(VALUE self
, VALUE code
, VALUE from
)
699 TypedData_Get_Struct(self
, csh
, &yjit_disasm_type
, handle
);
700 count
= cs_disasm(*handle
, (uint8_t*)StringValuePtr(code
), RSTRING_LEN(code
), NUM2ULL(from
), 0, &insns
);
701 VALUE insn_list
= rb_ary_new_capa(count
);
703 for (size_t i
= 0; i
< count
; i
++) {
704 VALUE vals
= rb_ary_new_from_args(3, LONG2NUM(insns
[i
].address
),
705 rb_str_new2(insns
[i
].mnemonic
),
706 rb_str_new2(insns
[i
].op_str
));
707 rb_ary_push(insn_list
, rb_struct_alloc(cYjitDisasmInsn
, vals
));
709 cs_free(insns
, count
);
714 // Primitive called in yjit.rb. Export all machine code comments as a Ruby array.
716 comments_for(rb_execution_context_t
*ec
, VALUE self
, VALUE start_address
, VALUE end_address
)
718 VALUE comment_array
= rb_ary_new();
720 uint8_t *start
= (void *)NUM2ULL(start_address
);
721 uint8_t *end
= (void *)NUM2ULL(end_address
);
723 rb_darray_for(yjit_code_comments
, i
) {
724 struct yjit_comment comment
= rb_darray_get(yjit_code_comments
, i
);
725 uint8_t *comment_pos
= cb_get_ptr(cb
, comment
.offset
);
727 if (comment_pos
>= end
) {
730 if (comment_pos
>= start
) {
731 VALUE vals
= rb_ary_new_from_args(
733 LL2NUM((long long) comment_pos
),
734 rb_str_new_cstr(comment
.comment
)
736 rb_ary_push(comment_array
, rb_struct_alloc(cYjitCodeComment
, vals
));
740 #endif // if RUBY_DEBUG
742 return comment_array
;
746 yjit_stats_enabled_p(rb_execution_context_t
*ec
, VALUE self
)
748 return RBOOL(YJIT_STATS
&& rb_yjit_opts
.gen_stats
);
751 // Primitive called in yjit.rb. Export all YJIT statistics as a Ruby hash.
753 get_yjit_stats(rb_execution_context_t
*ec
, VALUE self
)
755 // Return Qnil if YJIT isn't enabled
760 VALUE hash
= rb_hash_new();
765 VALUE key
= ID2SYM(rb_intern("inline_code_size"));
766 VALUE value
= LL2NUM((long long)cb
->write_pos
);
767 rb_hash_aset(hash
, key
, value
);
769 key
= ID2SYM(rb_intern("outlined_code_size"));
770 value
= LL2NUM((long long)ocb
->write_pos
);
771 rb_hash_aset(hash
, key
, value
);
775 if (rb_yjit_opts
.gen_stats
) {
776 // Indicate that the complete set of stats is available
777 rb_hash_aset(hash
, ID2SYM(rb_intern("all_stats")), Qtrue
);
779 int64_t *counter_reader
= (int64_t *)&yjit_runtime_counters
;
780 int64_t *counter_reader_end
= &yjit_runtime_counters
.last_member
;
782 // For each counter in yjit_counter_names, add that counter as
785 // Iterate through comma separated counter name list
786 char *name_reader
= yjit_counter_names
;
787 char *counter_name_end
= yjit_counter_names
+ sizeof(yjit_counter_names
);
788 while (name_reader
< counter_name_end
&& counter_reader
< counter_reader_end
) {
789 if (*name_reader
== ',' || *name_reader
== ' ') {
794 // Compute length of counter name
798 name_end
= strchr(name_reader
, ',');
799 if (name_end
== NULL
) break;
800 name_len
= (int)(name_end
- name_reader
);
803 // Put counter into hash
804 VALUE key
= ID2SYM(rb_intern2(name_reader
, name_len
));
805 VALUE value
= LL2NUM((long long)*counter_reader
);
806 rb_hash_aset(hash
, key
, value
);
809 name_reader
= name_end
;
812 // For each entry in exit_op_count, add a stats entry with key "exit_INSTRUCTION_NAME"
813 // and the value is the count of side exits for that instruction.
815 char key_string
[rb_vm_max_insn_name_size
+ 6]; // Leave room for "exit_" and a final NUL
816 for (int i
= 0; i
< VM_INSTRUCTION_SIZE
; i
++) {
817 const char *i_name
= insn_name(i
); // Look up Ruby's NUL-terminated insn name string
818 snprintf(key_string
, rb_vm_max_insn_name_size
+ 6, "%s%s", "exit_", i_name
);
820 VALUE key
= ID2SYM(rb_intern(key_string
));
821 VALUE value
= LL2NUM((long long)exit_op_count
[i
]);
822 rb_hash_aset(hash
, key
, value
);
832 // Primitive called in yjit.rb. Zero out all the counters.
834 reset_stats_bang(rb_execution_context_t
*ec
, VALUE self
)
837 memset(&exit_op_count
, 0, sizeof(exit_op_count
));
838 memset(&yjit_runtime_counters
, 0, sizeof(yjit_runtime_counters
));
839 #endif // if YJIT_STATS
843 // Primitive for yjit.rb. For testing running out of executable memory
845 simulate_oom_bang(rb_execution_context_t
*ec
, VALUE self
)
847 if (RUBY_DEBUG
&& cb
&& ocb
) {
848 // Only simulate in debug builds for paranoia.
849 cb_set_pos(cb
, cb
->mem_size
-1);
850 cb_set_pos(ocb
, ocb
->mem_size
-1);
855 #include "yjit.rbinc"
859 rb_yjit_collect_vm_usage_insn(int insn
)
861 yjit_runtime_counters
.vm_insns_count
++;
865 rb_yjit_collect_binding_alloc(void)
867 yjit_runtime_counters
.binding_allocations
++;
871 rb_yjit_collect_binding_set(void)
873 yjit_runtime_counters
.binding_set
++;
877 yjit_count_side_exit_op(const VALUE
*exit_pc
)
879 int insn
= rb_vm_insn_addr2opcode((const void *)*exit_pc
);
880 exit_op_count
[insn
]++;
881 return exit_pc
; // This function must return exit_pc!
886 rb_yjit_iseq_mark(const struct rb_iseq_constant_body
*body
)
888 rb_darray_for(body
->yjit_blocks
, version_array_idx
) {
889 rb_yjit_block_array_t version_array
= rb_darray_get(body
->yjit_blocks
, version_array_idx
);
891 rb_darray_for(version_array
, block_idx
) {
892 block_t
*block
= rb_darray_get(version_array
, block_idx
);
894 rb_gc_mark_movable((VALUE
)block
->blockid
.iseq
);
896 cme_dependency_t
*cme_dep
;
897 rb_darray_foreach(block
->cme_dependencies
, cme_dependency_idx
, cme_dep
) {
898 rb_gc_mark_movable(cme_dep
->receiver_klass
);
899 rb_gc_mark_movable(cme_dep
->callee_cme
);
902 // Mark outgoing branch entries
903 rb_darray_for(block
->outgoing
, branch_idx
) {
904 branch_t
*branch
= rb_darray_get(block
->outgoing
, branch_idx
);
905 for (int i
= 0; i
< 2; ++i
) {
906 rb_gc_mark_movable((VALUE
)branch
->targets
[i
].iseq
);
910 // Walk over references to objects in generated code.
911 uint32_t *offset_element
;
912 rb_darray_foreach(block
->gc_object_offsets
, offset_idx
, offset_element
) {
913 uint32_t offset_to_value
= *offset_element
;
914 uint8_t *value_address
= cb_get_ptr(cb
, offset_to_value
);
917 memcpy(&object
, value_address
, SIZEOF_VALUE
);
918 rb_gc_mark_movable(object
);
921 // Mark the machine code page this block lives on
922 //rb_gc_mark_movable(block->code_page);
928 rb_yjit_iseq_update_references(const struct rb_iseq_constant_body
*body
)
932 rb_darray_for(body
->yjit_blocks
, version_array_idx
) {
933 rb_yjit_block_array_t version_array
= rb_darray_get(body
->yjit_blocks
, version_array_idx
);
935 rb_darray_for(version_array
, block_idx
) {
936 block_t
*block
= rb_darray_get(version_array
, block_idx
);
938 block
->blockid
.iseq
= (const rb_iseq_t
*)rb_gc_location((VALUE
)block
->blockid
.iseq
);
940 cme_dependency_t
*cme_dep
;
941 rb_darray_foreach(block
->cme_dependencies
, cme_dependency_idx
, cme_dep
) {
942 cme_dep
->receiver_klass
= rb_gc_location(cme_dep
->receiver_klass
);
943 cme_dep
->callee_cme
= rb_gc_location(cme_dep
->callee_cme
);
946 // Update outgoing branch entries
947 rb_darray_for(block
->outgoing
, branch_idx
) {
948 branch_t
*branch
= rb_darray_get(block
->outgoing
, branch_idx
);
949 for (int i
= 0; i
< 2; ++i
) {
950 branch
->targets
[i
].iseq
= (const void *)rb_gc_location((VALUE
)branch
->targets
[i
].iseq
);
954 // Walk over references to objects in generated code.
955 uint32_t *offset_element
;
956 rb_darray_foreach(block
->gc_object_offsets
, offset_idx
, offset_element
) {
957 uint32_t offset_to_value
= *offset_element
;
958 uint8_t *value_address
= cb_get_ptr(cb
, offset_to_value
);
961 memcpy(&object
, value_address
, SIZEOF_VALUE
);
962 VALUE possibly_moved
= rb_gc_location(object
);
963 // Only write when the VALUE moves, to be CoW friendly.
964 if (possibly_moved
!= object
) {
965 // Possibly unlock the page we need to update
966 cb_mark_position_writeable(cb
, offset_to_value
);
968 // Object could cross a page boundary, so unlock there as well
969 cb_mark_position_writeable(cb
, offset_to_value
+ SIZEOF_VALUE
- 1);
970 memcpy(value_address
, &possibly_moved
, SIZEOF_VALUE
);
974 // Update the machine code page this block lives on
975 //block->code_page = rb_gc_location(block->code_page);
979 /* If YJIT isn't initialized, then cb or ocb could be NULL. */
981 cb_mark_all_executable(cb
);
985 cb_mark_all_executable(ocb
);
989 // Free the yjit resources associated with an iseq
991 rb_yjit_iseq_free(const struct rb_iseq_constant_body
*body
)
993 rb_darray_for(body
->yjit_blocks
, version_array_idx
) {
994 rb_yjit_block_array_t version_array
= rb_darray_get(body
->yjit_blocks
, version_array_idx
);
996 rb_darray_for(version_array
, block_idx
) {
997 block_t
*block
= rb_darray_get(version_array
, block_idx
);
998 yjit_free_block(block
);
1001 rb_darray_free(version_array
);
1004 rb_darray_free(body
->yjit_blocks
);
1007 // Struct representing a code page
1008 typedef struct code_page_struct
1010 // Chunk of executable memory
1013 // Size of the executable memory chunk
1016 // Inline code block
1019 // Outlined code block
1022 // Next node in the free list (private)
1023 struct code_page_struct
* _next
;
1027 // Current code page we are writing machine code into
1028 static VALUE yjit_cur_code_page
= Qfalse
;
1030 // Head of the list of free code pages
1031 static code_page_t
*code_page_freelist
= NULL
;
1033 // Free a code page, add it to the free list
1035 yjit_code_page_free(void *voidp
)
1037 code_page_t
* code_page
= (code_page_t
*)voidp
;
1038 code_page
->_next
= code_page_freelist
;
1039 code_page_freelist
= code_page
;
1042 // Custom type for interacting with the GC
1043 static const rb_data_type_t yjit_code_page_type
= {
1045 {NULL
, yjit_code_page_free
, NULL
, NULL
},
1046 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
1049 // Allocate a code page and wrap it into a Ruby object owned by the GC
1051 rb_yjit_code_page_alloc(void)
1053 // If the free list is empty
1054 if (!code_page_freelist
) {
1055 // Allocate many pages at once
1056 uint8_t* code_chunk
= alloc_exec_mem(PAGES_PER_ALLOC
* CODE_PAGE_SIZE
);
1058 // Do this in reverse order so we allocate our pages in order
1059 for (int i
= PAGES_PER_ALLOC
- 1; i
>= 0; --i
) {
1060 code_page_t
* code_page
= malloc(sizeof(code_page_t
));
1061 code_page
->mem_block
= code_chunk
+ i
* CODE_PAGE_SIZE
;
1062 assert ((intptr_t)code_page
->mem_block
% CODE_PAGE_SIZE
== 0);
1063 code_page
->page_size
= CODE_PAGE_SIZE
;
1064 code_page
->_next
= code_page_freelist
;
1065 code_page_freelist
= code_page
;
1069 code_page_t
* code_page
= code_page_freelist
;
1070 code_page_freelist
= code_page_freelist
->_next
;
1072 // Create a Ruby wrapper struct for the code page object
1073 VALUE wrapper
= TypedData_Wrap_Struct(0, &yjit_code_page_type
, code_page
);
1075 // Write a pointer to the wrapper object on the page
1076 *((VALUE
*)code_page
->mem_block
) = wrapper
;
1078 // Initialize the code blocks
1079 uint8_t* page_start
= code_page
->mem_block
+ sizeof(VALUE
);
1080 uint8_t* page_end
= code_page
->mem_block
+ CODE_PAGE_SIZE
;
1081 uint32_t halfsize
= (uint32_t)(page_end
- page_start
) / 2;
1082 cb_init(&code_page
->cb
, page_start
, halfsize
);
1083 cb_init(&code_page
->cb
, page_start
+ halfsize
, halfsize
);
1088 // Unwrap the Ruby object representing a code page
1089 static code_page_t
*
1090 rb_yjit_code_page_unwrap(VALUE cp_obj
)
1092 code_page_t
* code_page
;
1093 TypedData_Get_Struct(cp_obj
, code_page_t
, &yjit_code_page_type
, code_page
);
1097 // Get the code page wrapper object for a code pointer
1099 rb_yjit_code_page_from_ptr(uint8_t* code_ptr
)
1101 VALUE
* page_start
= (VALUE
*)((intptr_t)code_ptr
& ~(CODE_PAGE_SIZE
- 1));
1102 VALUE wrapper
= *page_start
;
1106 // Get the inline code block corresponding to a code pointer
1108 yjit_get_cb(codeblock_t
* cb
, uint8_t* code_ptr
)
1110 VALUE page_wrapper
= rb_yjit_code_page_from_ptr(code_ptr
);
1111 code_page_t
*code_page
= rb_yjit_code_page_unwrap(page_wrapper
);
1113 // A pointer to the page wrapper object is written at the start of the code page
1114 uint8_t* mem_block
= code_page
->mem_block
+ sizeof(VALUE
);
1115 uint32_t mem_size
= (code_page
->page_size
/2) - sizeof(VALUE
);
1116 RUBY_ASSERT(mem_block
);
1118 // Map the code block to this memory region
1119 cb_init(cb
, mem_block
, mem_size
);
1122 // Get the outlined code block corresponding to a code pointer
1124 yjit_get_ocb(codeblock_t
* cb
, uint8_t* code_ptr
)
1126 VALUE page_wrapper
= rb_yjit_code_page_from_ptr(code_ptr
);
1127 code_page_t
*code_page
= rb_yjit_code_page_unwrap(page_wrapper
);
1129 // A pointer to the page wrapper object is written at the start of the code page
1130 uint8_t* mem_block
= code_page
->mem_block
+ (code_page
->page_size
/2);
1131 uint32_t mem_size
= code_page
->page_size
/2;
1132 RUBY_ASSERT(mem_block
);
1134 // Map the code block to this memory region
1135 cb_init(cb
, mem_block
, mem_size
);
1138 // Get the current code page or allocate a new one
1140 yjit_get_code_page(uint32_t cb_bytes_needed
, uint32_t ocb_bytes_needed
)
1142 // If this is the first code page
1143 if (yjit_cur_code_page
== Qfalse
) {
1144 yjit_cur_code_page
= rb_yjit_code_page_alloc();
1147 // Get the current code page
1148 code_page_t
*code_page
= rb_yjit_code_page_unwrap(yjit_cur_code_page
);
1150 // Compute how many bytes are left in the code blocks
1151 uint32_t cb_bytes_left
= code_page
->cb
.mem_size
- code_page
->cb
.write_pos
;
1152 uint32_t ocb_bytes_left
= code_page
->ocb
.mem_size
- code_page
->ocb
.write_pos
;
1153 RUBY_ASSERT_ALWAYS(cb_bytes_needed
<= code_page
->cb
.mem_size
);
1154 RUBY_ASSERT_ALWAYS(ocb_bytes_needed
<= code_page
->ocb
.mem_size
);
1156 // If there's enough space left in the current code page
1157 if (cb_bytes_needed
<= cb_bytes_left
&& ocb_bytes_needed
<= ocb_bytes_left
) {
1158 return yjit_cur_code_page
;
1161 // Allocate a new code page
1162 yjit_cur_code_page
= rb_yjit_code_page_alloc();
1163 code_page_t
*new_code_page
= rb_yjit_code_page_unwrap(yjit_cur_code_page
);
1165 // Jump to the new code page
1166 jmp_ptr(&code_page
->cb
, cb_get_ptr(&new_code_page
->cb
, 0));
1168 return yjit_cur_code_page
;
1172 rb_yjit_enabled_p(void)
1174 return rb_yjit_opts
.yjit_enabled
;
1178 rb_yjit_call_threshold(void)
1180 return rb_yjit_opts
.call_threshold
;
1183 # define PTR2NUM(x) (rb_int2inum((intptr_t)(void *)(x)))
1186 * call-seq: block.id -> unique_id
1188 * Returns a unique integer ID for the block. For example:
1190 * blocks = blocks_for(iseq)
1191 * blocks.group_by(&:id)
1194 block_id(VALUE self
)
1197 TypedData_Get_Struct(self
, block_t
, &yjit_block_type
, block
);
1198 return PTR2NUM(block
);
1202 * call-seq: block.outgoing_ids -> list
1204 * Returns a list of outgoing ids for the current block. This list can be used
1205 * in conjunction with Block#id to construct a graph of block objects.
1208 outgoing_ids(VALUE self
)
1211 TypedData_Get_Struct(self
, block_t
, &yjit_block_type
, block
);
1213 VALUE ids
= rb_ary_new();
1215 rb_darray_for(block
->outgoing
, branch_idx
) {
1216 branch_t
*out_branch
= rb_darray_get(block
->outgoing
, branch_idx
);
1218 for (size_t succ_idx
= 0; succ_idx
< 2; succ_idx
++) {
1219 block_t
*succ
= out_branch
->blocks
[succ_idx
];
1224 rb_ary_push(ids
, PTR2NUM(succ
));
1232 // Can raise RuntimeError
1234 rb_yjit_init(struct rb_yjit_options
*options
)
1236 if (!YJIT_SUPPORTED_P
|| !JIT_ENABLED
) {
1240 rb_yjit_opts
= *options
;
1241 rb_yjit_opts
.yjit_enabled
= true;
1243 rb_yjit_opts
.gen_stats
= rb_yjit_opts
.gen_stats
|| getenv("RUBY_YJIT_STATS");
1246 if(rb_yjit_opts
.gen_stats
) {
1247 rb_warning("--yjit-stats requires that Ruby is compiled with CPPFLAGS='-DYJIT_STATS=1' or CPPFLAGS='-DRUBY_DEBUG=1'");
1251 // Normalize command-line options to default values
1252 if (rb_yjit_opts
.exec_mem_size
< 1) {
1253 rb_yjit_opts
.exec_mem_size
= 256;
1255 if (rb_yjit_opts
.call_threshold
< 1) {
1256 rb_yjit_opts
.call_threshold
= YJIT_DEFAULT_CALL_THRESHOLD
;
1258 if (rb_yjit_opts
.max_versions
< 1) {
1259 rb_yjit_opts
.max_versions
= 4;
1262 // If type propagation is disabled, max 1 version per block
1263 if (rb_yjit_opts
.no_type_prop
) {
1264 rb_yjit_opts
.max_versions
= 1;
1267 blocks_assuming_stable_global_constant_state
= st_init_numtable();
1268 blocks_assuming_single_ractor_mode
= st_init_numtable();
1269 blocks_assuming_bops
= st_init_numtable();
1271 yjit_init_codegen();
1275 mYjit
= rb_define_module_under(rb_cRubyVM
, "YJIT");
1276 rb_define_module_function(mYjit
, "blocks_for", yjit_blocks_for
, 1);
1278 // YJIT::Block (block version, code block)
1279 cYjitBlock
= rb_define_class_under(mYjit
, "Block", rb_cObject
);
1280 rb_undef_alloc_func(cYjitBlock
);
1281 rb_define_method(cYjitBlock
, "address", block_address
, 0);
1282 rb_define_method(cYjitBlock
, "id", block_id
, 0);
1283 rb_define_method(cYjitBlock
, "code", block_code
, 0);
1284 rb_define_method(cYjitBlock
, "iseq_start_index", iseq_start_index
, 0);
1285 rb_define_method(cYjitBlock
, "iseq_end_index", iseq_end_index
, 0);
1286 rb_define_method(cYjitBlock
, "outgoing_ids", outgoing_ids
, 0);
1288 // YJIT disassembler interface
1289 #ifdef HAVE_LIBCAPSTONE
1290 cYjitDisasm
= rb_define_class_under(mYjit
, "Disasm", rb_cObject
);
1291 rb_define_alloc_func(cYjitDisasm
, yjit_disasm_init
);
1292 rb_define_method(cYjitDisasm
, "disasm", yjit_disasm
, 2);
1293 cYjitDisasmInsn
= rb_struct_define_under(cYjitDisasm
, "Insn", "address", "mnemonic", "op_str", NULL
);
1295 cYjitCodeComment
= rb_struct_define_under(cYjitDisasm
, "Comment", "address", "comment", NULL
);
1299 // Make dependency tables
1300 method_lookup_dependency
= st_init_numtable();
1301 cme_validity_dependency
= st_init_numtable();
1303 // Initialize the GC hooks
1304 struct yjit_root_struct
*root
;
1305 VALUE yjit_root
= TypedData_Make_Struct(0, struct yjit_root_struct
, &yjit_root_type
, root
);
1306 rb_gc_register_mark_object(yjit_root
);
1310 (void)yjit_get_code_page
;