* string.c (rb_str_each_line): return original string.
[ruby-svn.git] / array.c
blob18bceeb7c3961692cc8490d7ee5826aa1a5eaeb0
1 /**********************************************************************
3 array.c -
5 $Author$
6 created at: Fri Aug 6 09:46:12 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
12 **********************************************************************/
14 #include "ruby/ruby.h"
15 #include "ruby/util.h"
16 #include "ruby/st.h"
18 VALUE rb_cArray;
20 static ID id_cmp;
22 #define ARY_DEFAULT_SIZE 16
24 void
25 rb_mem_clear(register VALUE *mem, register long size)
27 while (size--) {
28 *mem++ = Qnil;
32 static inline void
33 memfill(register VALUE *mem, register long size, register VALUE val)
35 while (size--) {
36 *mem++ = val;
40 #define ARY_SHARED_P(a) FL_TEST(a, ELTS_SHARED)
42 #define ARY_SET_LEN(ary, n) do { \
43 RARRAY(ary)->len = (n);\
44 } while (0)
46 #define ARY_CAPA(ary) RARRAY(ary)->aux.capa
47 #define RESIZE_CAPA(ary,capacity) do {\
48 REALLOC_N(RARRAY(ary)->ptr, VALUE, (capacity));\
49 RARRAY(ary)->aux.capa = (capacity);\
50 } while (0)
52 static inline void
53 rb_ary_modify_check(VALUE ary)
55 if (OBJ_FROZEN(ary)) rb_error_frozen("array");
56 if (!OBJ_TAINTED(ary) && rb_safe_level() >= 4)
57 rb_raise(rb_eSecurityError, "Insecure: can't modify array");
60 static void
61 rb_ary_modify(VALUE ary)
63 VALUE *ptr;
65 rb_ary_modify_check(ary);
66 if (ARY_SHARED_P(ary)) {
67 ptr = ALLOC_N(VALUE, RARRAY_LEN(ary));
68 FL_UNSET(ary, ELTS_SHARED);
69 RARRAY(ary)->aux.capa = RARRAY_LEN(ary);
70 MEMCPY(ptr, RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
71 RARRAY(ary)->ptr = ptr;
75 VALUE
76 rb_ary_freeze(VALUE ary)
78 return rb_obj_freeze(ary);
82 * call-seq:
83 * array.frozen? -> true or false
85 * Return <code>true</code> if this array is frozen (or temporarily frozen
86 * while being sorted).
89 static VALUE
90 rb_ary_frozen_p(VALUE ary)
92 if (OBJ_FROZEN(ary)) return Qtrue;
93 return Qfalse;
96 static VALUE
97 ary_alloc(VALUE klass)
99 NEWOBJ(ary, struct RArray);
100 OBJSETUP(ary, klass, T_ARRAY);
102 ary->len = 0;
103 ary->ptr = 0;
104 ary->aux.capa = 0;
106 return (VALUE)ary;
109 static VALUE
110 ary_new(VALUE klass, long len)
112 VALUE ary;
114 if (len < 0) {
115 rb_raise(rb_eArgError, "negative array size (or size too big)");
117 if (len > LONG_MAX / sizeof(VALUE)) {
118 rb_raise(rb_eArgError, "array size too big");
120 ary = ary_alloc(klass);
121 if (len == 0) len++;
122 RARRAY(ary)->ptr = ALLOC_N(VALUE, len);
123 RARRAY(ary)->aux.capa = len;
125 return ary;
128 VALUE
129 rb_ary_new2(long len)
131 return ary_new(rb_cArray, len);
135 VALUE
136 rb_ary_new(void)
138 return rb_ary_new2(ARY_DEFAULT_SIZE);
141 #include <stdarg.h>
143 VALUE
144 rb_ary_new3(long n, ...)
146 va_list ar;
147 VALUE ary;
148 long i;
150 ary = rb_ary_new2(n);
152 va_start(ar, n);
153 for (i=0; i<n; i++) {
154 RARRAY_PTR(ary)[i] = va_arg(ar, VALUE);
156 va_end(ar);
158 RARRAY(ary)->len = n;
159 return ary;
162 VALUE
163 rb_ary_new4(long n, const VALUE *elts)
165 VALUE ary;
167 ary = rb_ary_new2(n);
168 if (n > 0 && elts) {
169 MEMCPY(RARRAY_PTR(ary), elts, VALUE, n);
170 RARRAY(ary)->len = n;
173 return ary;
176 void
177 rb_ary_free(VALUE ary)
179 if (!ARY_SHARED_P(ary)) {
180 xfree(RARRAY(ary)->ptr);
184 static VALUE
185 ary_make_shared(VALUE ary)
187 if (ARY_SHARED_P(ary)) {
188 return RARRAY(ary)->aux.shared;
190 else {
191 NEWOBJ(shared, struct RArray);
192 OBJSETUP(shared, 0, T_ARRAY);
194 shared->len = RARRAY(ary)->len;
195 shared->ptr = RARRAY(ary)->ptr;
196 shared->aux.capa = RARRAY(ary)->aux.capa;
197 RARRAY(ary)->aux.shared = (VALUE)shared;
198 FL_SET(ary, ELTS_SHARED);
199 OBJ_FREEZE(shared);
200 return (VALUE)shared;
204 VALUE
205 rb_assoc_new(VALUE car, VALUE cdr)
207 return rb_ary_new3(2, car, cdr);
210 static VALUE
211 to_ary(VALUE ary)
213 return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
216 VALUE
217 rb_check_array_type(VALUE ary)
219 return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
223 * call-seq:
224 * Array.try_convert(obj) -> array or nil
226 * Try to convert <i>obj</i> into an array, using to_ary method.
227 * Returns converted array or nil if <i>obj</i> cannot be converted
228 * for any reason. This method is to check if an argument is an
229 * array.
231 * Array.try_convert([1]) # => [1]
232 * Array.try_convert("1") # => nil
234 * if tmp = Array.try_convert(arg)
235 * # the argument is an array
236 * elsif tmp = String.try_convert(arg)
237 * # the argument is a string
238 * end
242 static VALUE
243 rb_ary_s_try_convert(VALUE dummy, VALUE ary)
245 return rb_check_array_type(ary);
249 * call-seq:
250 * Array.new(size=0, obj=nil)
251 * Array.new(array)
252 * Array.new(size) {|index| block }
254 * Returns a new array. In the first form, the new array is
255 * empty. In the second it is created with _size_ copies of _obj_
256 * (that is, _size_ references to the same
257 * _obj_). The third form creates a copy of the array
258 * passed as a parameter (the array is generated by calling
259 * to_ary on the parameter). In the last form, an array
260 * of the given size is created. Each element in this array is
261 * calculated by passing the element's index to the given block and
262 * storing the return value.
264 * Array.new
265 * Array.new(2)
266 * Array.new(5, "A")
268 * # only one copy of the object is created
269 * a = Array.new(2, Hash.new)
270 * a[0]['cat'] = 'feline'
272 * a[1]['cat'] = 'Felix'
275 * # here multiple copies are created
276 * a = Array.new(2) { Hash.new }
277 * a[0]['cat'] = 'feline'
280 * squares = Array.new(5) {|i| i*i}
281 * squares
283 * copy = Array.new(squares)
286 static VALUE
287 rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
289 long len;
290 VALUE size, val;
292 rb_ary_modify(ary);
293 if (argc == 0) {
294 if (RARRAY_PTR(ary) && !ARY_SHARED_P(ary)) {
295 free(RARRAY(ary)->ptr);
297 RARRAY(ary)->len = 0;
298 if (rb_block_given_p()) {
299 rb_warning("given block not used");
301 return ary;
303 rb_scan_args(argc, argv, "02", &size, &val);
304 if (argc == 1 && !FIXNUM_P(size)) {
305 val = rb_check_array_type(size);
306 if (!NIL_P(val)) {
307 rb_ary_replace(ary, val);
308 return ary;
312 len = NUM2LONG(size);
313 if (len < 0) {
314 rb_raise(rb_eArgError, "negative array size");
316 if (len > LONG_MAX / sizeof(VALUE)) {
317 rb_raise(rb_eArgError, "array size too big");
319 rb_ary_modify(ary);
320 RESIZE_CAPA(ary, len);
321 if (rb_block_given_p()) {
322 long i;
324 if (argc == 2) {
325 rb_warn("block supersedes default value argument");
327 for (i=0; i<len; i++) {
328 rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
329 RARRAY(ary)->len = i + 1;
332 else {
333 memfill(RARRAY_PTR(ary), len, val);
334 RARRAY(ary)->len = len;
336 return ary;
341 * Returns a new array populated with the given objects.
343 * Array.[]( 1, 'a', /^A/ )
344 * Array[ 1, 'a', /^A/ ]
345 * [ 1, 'a', /^A/ ]
348 static VALUE
349 rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
351 VALUE ary = ary_alloc(klass);
353 if (argc < 0) {
354 rb_raise(rb_eArgError, "negative array size");
356 RARRAY(ary)->ptr = ALLOC_N(VALUE, argc);
357 RARRAY(ary)->aux.capa = argc;
358 MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
359 RARRAY(ary)->len = argc;
361 return ary;
364 void
365 rb_ary_store(VALUE ary, long idx, VALUE val)
367 if (idx < 0) {
368 idx += RARRAY_LEN(ary);
369 if (idx < 0) {
370 rb_raise(rb_eIndexError, "index %ld out of array",
371 idx - RARRAY_LEN(ary));
375 rb_ary_modify(ary);
376 if (idx >= ARY_CAPA(ary)) {
377 long new_capa = ARY_CAPA(ary) / 2;
379 if (new_capa < ARY_DEFAULT_SIZE) {
380 new_capa = ARY_DEFAULT_SIZE;
382 if (new_capa + idx < new_capa) {
383 rb_raise(rb_eArgError, "index too big");
385 new_capa += idx;
386 if (new_capa * (long)sizeof(VALUE) <= new_capa) {
387 rb_raise(rb_eArgError, "index too big");
389 RESIZE_CAPA(ary, new_capa);
391 if (idx > RARRAY_LEN(ary)) {
392 rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary),
393 idx-RARRAY_LEN(ary) + 1);
396 if (idx >= RARRAY_LEN(ary)) {
397 RARRAY(ary)->len = idx + 1;
399 RARRAY_PTR(ary)[idx] = val;
402 static VALUE
403 ary_shared_array(VALUE klass, VALUE ary)
405 VALUE val = ary_alloc(klass);
407 ary_make_shared(ary);
408 RARRAY(val)->ptr = RARRAY(ary)->ptr;
409 RARRAY(val)->len = RARRAY(ary)->len;
410 RARRAY(val)->aux.shared = RARRAY(ary)->aux.shared;
411 FL_SET(val, ELTS_SHARED);
412 return val;
415 static VALUE
416 ary_shared_first(int argc, VALUE *argv, VALUE ary, int last)
418 VALUE nv, result;
419 long n;
420 long offset = 0;
422 rb_scan_args(argc, argv, "1", &nv);
423 n = NUM2LONG(nv);
424 if (n > RARRAY_LEN(ary)) {
425 n = RARRAY_LEN(ary);
427 else if (n < 0) {
428 rb_raise(rb_eArgError, "negative array size");
430 if (last) {
431 offset = RARRAY_LEN(ary) - n;
433 result = ary_shared_array(rb_cArray, ary);
434 RARRAY(result)->ptr += offset;
435 RARRAY(result)->len = n;
437 return result;
441 * call-seq:
442 * array << obj -> array
444 * Append---Pushes the given object on to the end of this array. This
445 * expression returns the array itself, so several appends
446 * may be chained together.
448 * [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
449 * #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
453 VALUE
454 rb_ary_push(VALUE ary, VALUE item)
456 rb_ary_store(ary, RARRAY_LEN(ary), item);
457 return ary;
461 * call-seq:
462 * array.push(obj, ... ) -> array
464 * Append---Pushes the given object(s) on to the end of this array. This
465 * expression returns the array itself, so several appends
466 * may be chained together.
468 * a = [ "a", "b", "c" ]
469 * a.push("d", "e", "f")
470 * #=> ["a", "b", "c", "d", "e", "f"]
473 static VALUE
474 rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
476 while (argc--) {
477 rb_ary_push(ary, *argv++);
479 return ary;
482 VALUE
483 rb_ary_pop(VALUE ary)
485 long n;
486 rb_ary_modify_check(ary);
487 if (RARRAY_LEN(ary) == 0) return Qnil;
488 if (!ARY_SHARED_P(ary) &&
489 RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) &&
490 ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
492 RESIZE_CAPA(ary, RARRAY_LEN(ary) * 2);
494 n = RARRAY_LEN(ary)-1;
495 RARRAY(ary)->len = n;
496 return RARRAY_PTR(ary)[n];
500 * call-seq:
501 * array.pop -> obj or nil
502 * array.pop(n) -> array
504 * Removes the last element from <i>self</i> and returns it, or
505 * <code>nil</code> if the array is empty.
507 * If a number _n_ is given, returns an array of the last n elements
508 * (or less) just like <code>array.slice!(-n, n)</code> does.
510 * a = [ "a", "b", "c", "d" ]
511 * a.pop #=> "d"
512 * a.pop(2) #=> ["b", "c"]
513 * a #=> ["a"]
516 static VALUE
517 rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
519 VALUE result;
521 if (argc == 0) {
522 return rb_ary_pop(ary);
525 rb_ary_modify_check(ary);
526 result = ary_shared_first(argc, argv, ary, Qtrue);
527 RARRAY(ary)->len -= RARRAY_LEN(result);
528 return result;
531 VALUE
532 rb_ary_shift(VALUE ary)
534 VALUE top;
536 rb_ary_modify_check(ary);
537 if (RARRAY_LEN(ary) == 0) return Qnil;
538 top = RARRAY_PTR(ary)[0];
539 if (!ARY_SHARED_P(ary)) {
540 if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) {
541 MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1);
542 RARRAY(ary)->len--;
543 return top;
545 RARRAY_PTR(ary)[0] = Qnil;
546 ary_make_shared(ary);
548 RARRAY(ary)->ptr++; /* shift ptr */
549 RARRAY(ary)->len--;
551 return top;
555 * call-seq:
556 * array.shift -> obj or nil
557 * array.shift(n) -> array
559 * Returns the first element of <i>self</i> and removes it (shifting all
560 * other elements down by one). Returns <code>nil</code> if the array
561 * is empty.
563 * If a number _n_ is given, returns an array of the first n elements
564 * (or less) just like <code>array.slice!(0, n)</code> does.
566 * args = [ "-m", "-q", "filename" ]
567 * args.shift #=> "-m"
568 * args #=> ["-q", "filename"]
570 * args = [ "-m", "-q", "filename" ]
571 * args.shift(2) #=> ["-m", "-q"]
572 * args #=> ["filename"]
575 static VALUE
576 rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
578 VALUE result;
579 long n;
581 if (argc == 0) {
582 return rb_ary_shift(ary);
585 rb_ary_modify_check(ary);
586 result = ary_shared_first(argc, argv, ary, Qfalse);
587 n = RARRAY_LEN(result);
588 if (ARY_SHARED_P(ary)) {
589 RARRAY(ary)->ptr += n;
590 RARRAY(ary)->len -= n;
592 else {
593 MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
594 RARRAY(ary)->len -= n;
597 return result;
601 * call-seq:
602 * array.unshift(obj, ...) -> array
604 * Prepends objects to the front of <i>array</i>.
605 * other elements up one.
607 * a = [ "b", "c", "d" ]
608 * a.unshift("a") #=> ["a", "b", "c", "d"]
609 * a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
612 static VALUE
613 rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
615 long len;
617 if (argc == 0) return ary;
618 rb_ary_modify(ary);
619 if (RARRAY(ary)->aux.capa <= (len = RARRAY(ary)->len) + argc) {
620 RESIZE_CAPA(ary, len + argc + ARY_DEFAULT_SIZE);
623 /* sliding items */
624 MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len);
625 MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc);
626 RARRAY(ary)->len += argc;
628 return ary;
631 VALUE
632 rb_ary_unshift(VALUE ary, VALUE item)
634 return rb_ary_unshift_m(1,&item,ary);
637 /* faster version - use this if you don't need to treat negative offset */
638 static inline VALUE
639 rb_ary_elt(VALUE ary, long offset)
641 if (RARRAY_LEN(ary) == 0) return Qnil;
642 if (offset < 0 || RARRAY_LEN(ary) <= offset) {
643 return Qnil;
645 return RARRAY_PTR(ary)[offset];
648 VALUE
649 rb_ary_entry(VALUE ary, long offset)
651 if (offset < 0) {
652 offset += RARRAY_LEN(ary);
654 return rb_ary_elt(ary, offset);
657 VALUE
658 rb_ary_subseq(VALUE ary, long beg, long len)
660 VALUE klass, ary2, shared;
661 VALUE *ptr;
663 if (beg > RARRAY_LEN(ary)) return Qnil;
664 if (beg < 0 || len < 0) return Qnil;
666 if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
667 len = RARRAY_LEN(ary) - beg;
669 klass = rb_obj_class(ary);
670 if (len == 0) return ary_new(klass, 0);
672 shared = ary_make_shared(ary);
673 ptr = RARRAY_PTR(ary);
674 ary2 = ary_alloc(klass);
675 RARRAY(ary2)->ptr = ptr + beg;
676 RARRAY(ary2)->len = len;
677 RARRAY(ary2)->aux.shared = shared;
678 FL_SET(ary2, ELTS_SHARED);
680 return ary2;
684 * call-seq:
685 * array[index] -> obj or nil
686 * array[start, length] -> an_array or nil
687 * array[range] -> an_array or nil
688 * array.slice(index) -> obj or nil
689 * array.slice(start, length) -> an_array or nil
690 * array.slice(range) -> an_array or nil
692 * Element Reference---Returns the element at _index_,
693 * or returns a subarray starting at _start_ and
694 * continuing for _length_ elements, or returns a subarray
695 * specified by _range_.
696 * Negative indices count backward from the end of the
697 * array (-1 is the last element). Returns nil if the index
698 * (or starting index) are out of range.
700 * a = [ "a", "b", "c", "d", "e" ]
701 * a[2] + a[0] + a[1] #=> "cab"
702 * a[6] #=> nil
703 * a[1, 2] #=> [ "b", "c" ]
704 * a[1..3] #=> [ "b", "c", "d" ]
705 * a[4..7] #=> [ "e" ]
706 * a[6..10] #=> nil
707 * a[-3, 3] #=> [ "c", "d", "e" ]
708 * # special cases
709 * a[5] #=> nil
710 * a[5, 1] #=> []
711 * a[5..10] #=> []
715 VALUE
716 rb_ary_aref(int argc, VALUE *argv, VALUE ary)
718 VALUE arg;
719 long beg, len;
721 if (argc == 2) {
722 beg = NUM2LONG(argv[0]);
723 len = NUM2LONG(argv[1]);
724 if (beg < 0) {
725 beg += RARRAY_LEN(ary);
727 return rb_ary_subseq(ary, beg, len);
729 if (argc != 1) {
730 rb_scan_args(argc, argv, "11", 0, 0);
732 arg = argv[0];
733 /* special case - speeding up */
734 if (FIXNUM_P(arg)) {
735 return rb_ary_entry(ary, FIX2LONG(arg));
737 /* check if idx is Range */
738 switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
739 case Qfalse:
740 break;
741 case Qnil:
742 return Qnil;
743 default:
744 return rb_ary_subseq(ary, beg, len);
746 return rb_ary_entry(ary, NUM2LONG(arg));
750 * call-seq:
751 * array.at(index) -> obj or nil
753 * Returns the element at _index_. A
754 * negative index counts from the end of _self_. Returns +nil+
755 * if the index is out of range. See also <code>Array#[]</code>.
757 * a = [ "a", "b", "c", "d", "e" ]
758 * a.at(0) #=> "a"
759 * a.at(-1) #=> "e"
762 static VALUE
763 rb_ary_at(VALUE ary, VALUE pos)
765 return rb_ary_entry(ary, NUM2LONG(pos));
769 * call-seq:
770 * array.first -> obj or nil
771 * array.first(n) -> an_array
773 * Returns the first element, or the first +n+ elements, of the array.
774 * If the array is empty, the first form returns <code>nil</code>, and the
775 * second form returns an empty array.
777 * a = [ "q", "r", "s", "t" ]
778 * a.first #=> "q"
779 * a.first(2) #=> ["q", "r"]
782 static VALUE
783 rb_ary_first(int argc, VALUE *argv, VALUE ary)
785 if (argc == 0) {
786 if (RARRAY_LEN(ary) == 0) return Qnil;
787 return RARRAY_PTR(ary)[0];
789 else {
790 return ary_shared_first(argc, argv, ary, Qfalse);
795 * call-seq:
796 * array.last -> obj or nil
797 * array.last(n) -> an_array
799 * Returns the last element(s) of <i>self</i>. If the array is empty,
800 * the first form returns <code>nil</code>.
802 * a = [ "w", "x", "y", "z" ]
803 * a.last #=> "z"
804 * a.last(2) #=> ["y", "z"]
807 VALUE
808 rb_ary_last(int argc, VALUE *argv, VALUE ary)
810 if (argc == 0) {
811 if (RARRAY_LEN(ary) == 0) return Qnil;
812 return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
814 else {
815 return ary_shared_first(argc, argv, ary, Qtrue);
820 * call-seq:
821 * array.fetch(index) -> obj
822 * array.fetch(index, default ) -> obj
823 * array.fetch(index) {|index| block } -> obj
825 * Tries to return the element at position <i>index</i>. If the index
826 * lies outside the array, the first form throws an
827 * <code>IndexError</code> exception, the second form returns
828 * <i>default</i>, and the third form returns the value of invoking
829 * the block, passing in the index. Negative values of <i>index</i>
830 * count from the end of the array.
832 * a = [ 11, 22, 33, 44 ]
833 * a.fetch(1) #=> 22
834 * a.fetch(-1) #=> 44
835 * a.fetch(4, 'cat') #=> "cat"
836 * a.fetch(4) { |i| i*i } #=> 16
839 static VALUE
840 rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
842 VALUE pos, ifnone;
843 long block_given;
844 long idx;
846 rb_scan_args(argc, argv, "11", &pos, &ifnone);
847 block_given = rb_block_given_p();
848 if (block_given && argc == 2) {
849 rb_warn("block supersedes default value argument");
851 idx = NUM2LONG(pos);
853 if (idx < 0) {
854 idx += RARRAY_LEN(ary);
856 if (idx < 0 || RARRAY_LEN(ary) <= idx) {
857 if (block_given) return rb_yield(pos);
858 if (argc == 1) {
859 rb_raise(rb_eIndexError, "index %ld out of array", idx);
861 return ifnone;
863 return RARRAY_PTR(ary)[idx];
867 * call-seq:
868 * array.index(obj) -> int or nil
869 * array.index {|item| block} -> int or nil
871 * Returns the index of the first object in <i>self</i> such that is
872 * <code>==</code> to <i>obj</i>. If a block is given instead of an
873 * argument, returns first object for which <em>block</em> is true.
874 * Returns <code>nil</code> if no match is found.
876 * a = [ "a", "b", "c" ]
877 * a.index("b") #=> 1
878 * a.index("z") #=> nil
879 * a.index{|x|x=="b"} #=> 1
881 * This is an alias of <code>#find_index</code>.
884 static VALUE
885 rb_ary_index(int argc, VALUE *argv, VALUE ary)
887 VALUE val;
888 long i;
890 if (argc == 0) {
891 RETURN_ENUMERATOR(ary, 0, 0);
892 for (i=0; i<RARRAY_LEN(ary); i++) {
893 if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
894 return LONG2NUM(i);
897 return Qnil;
899 rb_scan_args(argc, argv, "01", &val);
900 for (i=0; i<RARRAY_LEN(ary); i++) {
901 if (rb_equal(RARRAY_PTR(ary)[i], val))
902 return LONG2NUM(i);
904 return Qnil;
908 * call-seq:
909 * array.rindex(obj) -> int or nil
911 * Returns the index of the last object in <i>array</i>
912 * <code>==</code> to <i>obj</i>. If a block is given instead of an
913 * argument, returns first object for which <em>block</em> is
914 * true. Returns <code>nil</code> if no match is found.
916 * a = [ "a", "b", "b", "b", "c" ]
917 * a.rindex("b") #=> 3
918 * a.rindex("z") #=> nil
919 * a.rindex{|x|x=="b"} #=> 3
922 static VALUE
923 rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
925 VALUE val;
926 long i = RARRAY_LEN(ary);
928 if (argc == 0) {
929 RETURN_ENUMERATOR(ary, 0, 0);
930 while (i--) {
931 if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
932 return LONG2NUM(i);
933 if (i > RARRAY_LEN(ary)) {
934 i = RARRAY_LEN(ary);
937 return Qnil;
939 rb_scan_args(argc, argv, "01", &val);
940 while (i--) {
941 if (rb_equal(RARRAY_PTR(ary)[i], val))
942 return LONG2NUM(i);
943 if (i > RARRAY_LEN(ary)) {
944 i = RARRAY_LEN(ary);
947 return Qnil;
950 VALUE
951 rb_ary_to_ary(VALUE obj)
953 if (TYPE(obj) == T_ARRAY) {
954 return obj;
956 if (rb_respond_to(obj, rb_intern("to_ary"))) {
957 return to_ary(obj);
959 return rb_ary_new3(1, obj);
962 static void
963 rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl)
965 long rlen;
967 if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
968 if (beg < 0) {
969 beg += RARRAY_LEN(ary);
970 if (beg < 0) {
971 beg -= RARRAY_LEN(ary);
972 rb_raise(rb_eIndexError, "index %ld out of array", beg);
975 if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
976 len = RARRAY_LEN(ary) - beg;
979 if (rpl == Qundef) {
980 rlen = 0;
982 else {
983 rpl = rb_ary_to_ary(rpl);
984 rlen = RARRAY_LEN(rpl);
986 rb_ary_modify(ary);
987 if (beg >= RARRAY_LEN(ary)) {
988 len = beg + rlen;
989 if (len >= ARY_CAPA(ary)) {
990 RESIZE_CAPA(ary, len);
992 rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary));
993 if (rlen > 0) {
994 MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
996 RARRAY(ary)->len = len;
998 else {
999 long alen;
1001 if (beg + len > RARRAY_LEN(ary)) {
1002 len = RARRAY_LEN(ary) - beg;
1005 alen = RARRAY_LEN(ary) + rlen - len;
1006 if (alen >= ARY_CAPA(ary)) {
1007 RESIZE_CAPA(ary, alen);
1010 if (len != rlen) {
1011 MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len,
1012 VALUE, RARRAY_LEN(ary) - (beg + len));
1013 RARRAY(ary)->len = alen;
1015 if (rlen > 0) {
1016 MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
1022 * call-seq:
1023 * array[index] = obj -> obj
1024 * array[start, length] = obj or an_array or nil -> obj or an_array or nil
1025 * array[range] = obj or an_array or nil -> obj or an_array or nil
1027 * Element Assignment---Sets the element at _index_,
1028 * or replaces a subarray starting at _start_ and
1029 * continuing for _length_ elements, or replaces a subarray
1030 * specified by _range_. If indices are greater than
1031 * the current capacity of the array, the array grows
1032 * automatically. A negative indices will count backward
1033 * from the end of the array. Inserts elements if _length_ is
1034 * zero. An +IndexError+ is raised if a negative index points
1035 * past the beginning of the array. See also
1036 * <code>Array#push</code>, and <code>Array#unshift</code>.
1038 * a = Array.new
1039 * a[4] = "4"; #=> [nil, nil, nil, nil, "4"]
1040 * a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
1041 * a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"]
1042 * a[0, 2] = "?" #=> ["?", 2, nil, "4"]
1043 * a[0..2] = "A" #=> ["A", "4"]
1044 * a[-1] = "Z" #=> ["A", "Z"]
1045 * a[1..-1] = nil #=> ["A", nil]
1046 * a[1..-1] = [] #=> ["A"]
1049 static VALUE
1050 rb_ary_aset(int argc, VALUE *argv, VALUE ary)
1052 long offset, beg, len;
1054 if (argc == 3) {
1055 rb_ary_splice(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]);
1056 return argv[2];
1058 if (argc != 2) {
1059 rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
1061 if (FIXNUM_P(argv[0])) {
1062 offset = FIX2LONG(argv[0]);
1063 goto fixnum;
1065 if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
1066 /* check if idx is Range */
1067 rb_ary_splice(ary, beg, len, argv[1]);
1068 return argv[1];
1071 offset = NUM2LONG(argv[0]);
1072 fixnum:
1073 rb_ary_store(ary, offset, argv[1]);
1074 return argv[1];
1078 * call-seq:
1079 * array.insert(index, obj...) -> array
1081 * Inserts the given values before the element with the given index
1082 * (which may be negative).
1084 * a = %w{ a b c d }
1085 * a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
1086 * a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
1089 static VALUE
1090 rb_ary_insert(int argc, VALUE *argv, VALUE ary)
1092 long pos;
1094 if (argc == 1) return ary;
1095 if (argc < 1) {
1096 rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
1098 pos = NUM2LONG(argv[0]);
1099 if (pos == -1) {
1100 pos = RARRAY_LEN(ary);
1102 if (pos < 0) {
1103 pos++;
1105 rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
1106 return ary;
1110 * call-seq:
1111 * array.each {|item| block } -> array
1113 * Calls <i>block</i> once for each element in <i>self</i>, passing that
1114 * element as a parameter.
1116 * a = [ "a", "b", "c" ]
1117 * a.each {|x| print x, " -- " }
1119 * produces:
1121 * a -- b -- c --
1124 VALUE
1125 rb_ary_each(VALUE ary)
1127 long i;
1129 RETURN_ENUMERATOR(ary, 0, 0);
1130 for (i=0; i<RARRAY_LEN(ary); i++) {
1131 rb_yield(RARRAY_PTR(ary)[i]);
1133 return ary;
1137 * call-seq:
1138 * array.each_index {|index| block } -> array
1140 * Same as <code>Array#each</code>, but passes the index of the element
1141 * instead of the element itself.
1143 * a = [ "a", "b", "c" ]
1144 * a.each_index {|x| print x, " -- " }
1146 * produces:
1148 * 0 -- 1 -- 2 --
1151 static VALUE
1152 rb_ary_each_index(VALUE ary)
1154 long i;
1155 RETURN_ENUMERATOR(ary, 0, 0);
1157 for (i=0; i<RARRAY_LEN(ary); i++) {
1158 rb_yield(LONG2NUM(i));
1160 return ary;
1164 * call-seq:
1165 * array.reverse_each {|item| block }
1167 * Same as <code>Array#each</code>, but traverses <i>self</i> in reverse
1168 * order.
1170 * a = [ "a", "b", "c" ]
1171 * a.reverse_each {|x| print x, " " }
1173 * produces:
1175 * c b a
1178 static VALUE
1179 rb_ary_reverse_each(VALUE ary)
1181 long len;
1183 RETURN_ENUMERATOR(ary, 0, 0);
1184 len = RARRAY_LEN(ary);
1185 while (len--) {
1186 rb_yield(RARRAY_PTR(ary)[len]);
1187 if (RARRAY_LEN(ary) < len) {
1188 len = RARRAY_LEN(ary);
1191 return ary;
1195 * call-seq:
1196 * array.length -> int
1198 * Returns the number of elements in <i>self</i>. May be zero.
1200 * [ 1, 2, 3, 4, 5 ].length #=> 5
1203 static VALUE
1204 rb_ary_length(VALUE ary)
1206 long len = RARRAY_LEN(ary);
1207 return LONG2NUM(len);
1211 * call-seq:
1212 * array.empty? -> true or false
1214 * Returns <code>true</code> if <i>self</i> array contains no elements.
1216 * [].empty? #=> true
1219 static VALUE
1220 rb_ary_empty_p(VALUE ary)
1222 if (RARRAY_LEN(ary) == 0)
1223 return Qtrue;
1224 return Qfalse;
1227 VALUE
1228 rb_ary_dup(VALUE ary)
1230 VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
1232 MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
1233 RARRAY(dup)->len = RARRAY_LEN(ary);
1234 OBJ_INFECT(dup, ary);
1236 return dup;
1239 extern VALUE rb_output_fs;
1241 static VALUE
1242 recursive_join(VALUE ary, VALUE argp, int recur)
1244 VALUE *arg = (VALUE *)argp;
1245 if (recur) {
1246 return rb_usascii_str_new2("[...]");
1248 return rb_ary_join(arg[0], arg[1]);
1251 VALUE
1252 rb_ary_join(VALUE ary, VALUE sep)
1254 long len = 1, i;
1255 int taint = Qfalse;
1256 VALUE result, tmp;
1258 if (RARRAY_LEN(ary) == 0) return rb_str_new(0, 0);
1259 if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = Qtrue;
1261 for (i=0; i<RARRAY_LEN(ary); i++) {
1262 tmp = rb_check_string_type(RARRAY_PTR(ary)[i]);
1263 len += NIL_P(tmp) ? 10 : RSTRING_LEN(tmp);
1265 if (!NIL_P(sep)) {
1266 StringValue(sep);
1267 len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
1269 result = rb_str_buf_new(len);
1270 for (i=0; i<RARRAY_LEN(ary); i++) {
1271 tmp = RARRAY_PTR(ary)[i];
1272 switch (TYPE(tmp)) {
1273 case T_STRING:
1274 break;
1275 case T_ARRAY:
1277 VALUE args[2];
1279 args[0] = tmp;
1280 args[1] = sep;
1281 tmp = rb_exec_recursive(recursive_join, ary, (VALUE)args);
1283 break;
1284 default:
1285 tmp = rb_obj_as_string(tmp);
1287 if (i > 0 && !NIL_P(sep))
1288 rb_str_buf_append(result, sep);
1289 rb_str_buf_append(result, tmp);
1290 if (OBJ_TAINTED(tmp)) taint = Qtrue;
1293 if (taint) OBJ_TAINT(result);
1294 return result;
1298 * call-seq:
1299 * array.join(sep=$,) -> str
1301 * Returns a string created by converting each element of the array to
1302 * a string, separated by <i>sep</i>.
1304 * [ "a", "b", "c" ].join #=> "abc"
1305 * [ "a", "b", "c" ].join("-") #=> "a-b-c"
1308 static VALUE
1309 rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
1311 VALUE sep;
1313 rb_scan_args(argc, argv, "01", &sep);
1314 if (NIL_P(sep)) sep = rb_output_fs;
1316 return rb_ary_join(ary, sep);
1319 static VALUE
1320 inspect_ary(VALUE ary, VALUE dummy, int recur)
1322 int tainted = OBJ_TAINTED(ary);
1323 long i;
1324 VALUE s, str;
1326 if (recur) return rb_tainted_str_new2("[...]");
1327 str = rb_str_buf_new2("[");
1328 for (i=0; i<RARRAY_LEN(ary); i++) {
1329 s = rb_inspect(RARRAY_PTR(ary)[i]);
1330 if (OBJ_TAINTED(s)) tainted = Qtrue;
1331 if (i > 0) rb_str_buf_cat2(str, ", ");
1332 rb_str_buf_append(str, s);
1334 rb_str_buf_cat2(str, "]");
1335 if (tainted) OBJ_TAINT(str);
1336 return str;
1340 * call-seq:
1341 * array.to_s -> string
1342 * array.inspect -> string
1344 * Create a printable version of <i>array</i>.
1347 static VALUE
1348 rb_ary_inspect(VALUE ary)
1350 if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
1351 return rb_exec_recursive(inspect_ary, ary, 0);
1354 VALUE
1355 rb_ary_to_s(VALUE ary)
1357 return rb_ary_inspect(ary);
1361 * call-seq:
1362 * array.to_a -> array
1364 * Returns _self_. If called on a subclass of Array, converts
1365 * the receiver to an Array object.
1368 static VALUE
1369 rb_ary_to_a(VALUE ary)
1371 if (rb_obj_class(ary) != rb_cArray) {
1372 VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
1373 rb_ary_replace(dup, ary);
1374 return dup;
1376 return ary;
1380 * call-seq:
1381 * array.to_ary -> array
1383 * Returns _self_.
1386 static VALUE
1387 rb_ary_to_ary_m(VALUE ary)
1389 return ary;
1392 VALUE
1393 rb_ary_reverse(VALUE ary)
1395 VALUE *p1, *p2;
1396 VALUE tmp;
1398 rb_ary_modify(ary);
1399 if (RARRAY_LEN(ary) > 1) {
1400 p1 = RARRAY_PTR(ary);
1401 p2 = p1 + RARRAY_LEN(ary) - 1; /* points last item */
1403 while (p1 < p2) {
1404 tmp = *p1;
1405 *p1++ = *p2;
1406 *p2-- = tmp;
1409 return ary;
1413 * call-seq:
1414 * array.reverse! -> array
1416 * Reverses _self_ in place.
1418 * a = [ "a", "b", "c" ]
1419 * a.reverse! #=> ["c", "b", "a"]
1420 * a #=> ["c", "b", "a"]
1423 static VALUE
1424 rb_ary_reverse_bang(VALUE ary)
1426 return rb_ary_reverse(ary);
1430 * call-seq:
1431 * array.reverse -> an_array
1433 * Returns a new array containing <i>self</i>'s elements in reverse order.
1435 * [ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
1436 * [ 1 ].reverse #=> [1]
1439 static VALUE
1440 rb_ary_reverse_m(VALUE ary)
1442 return rb_ary_reverse(rb_ary_dup(ary));
1445 static int
1446 sort_1(const void *ap, const void *bp, void *dummy)
1448 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1449 VALUE retval = rb_yield_values(2, a, b);
1450 int n;
1452 n = rb_cmpint(retval, a, b);
1453 return n;
1456 static int
1457 sort_2(const void *ap, const void *bp, void *dummy)
1459 VALUE retval;
1460 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1461 int n;
1463 if (FIXNUM_P(a) && FIXNUM_P(b)) {
1464 if ((long)a > (long)b) return 1;
1465 if ((long)a < (long)b) return -1;
1466 return 0;
1468 if (TYPE(a) == T_STRING) {
1469 if (TYPE(b) == T_STRING) return rb_str_cmp(a, b);
1472 retval = rb_funcall(a, id_cmp, 1, b);
1473 n = rb_cmpint(retval, a, b);
1475 return n;
1479 * call-seq:
1480 * array.sort! -> array
1481 * array.sort! {| a,b | block } -> array
1483 * Sorts _self_. Comparisons for
1484 * the sort will be done using the <code><=></code> operator or using
1485 * an optional code block. The block implements a comparison between
1486 * <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
1487 * <code>Enumerable#sort_by</code>.
1489 * a = [ "d", "a", "e", "c", "b" ]
1490 * a.sort #=> ["a", "b", "c", "d", "e"]
1491 * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
1494 VALUE
1495 rb_ary_sort_bang(VALUE ary)
1497 rb_ary_modify(ary);
1498 if (RARRAY_LEN(ary) > 1) {
1499 VALUE tmp = ary_make_shared(ary);
1501 RBASIC(tmp)->klass = 0;
1502 ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE),
1503 rb_block_given_p()?sort_1:sort_2, 0);
1504 RARRAY(ary)->ptr = RARRAY(tmp)->ptr;
1505 RARRAY(ary)->len = RARRAY(tmp)->len;
1506 RARRAY(ary)->aux.capa = RARRAY(tmp)->aux.capa;
1507 FL_UNSET(ary, ELTS_SHARED);
1508 rb_gc_force_recycle(tmp);
1510 return ary;
1514 * call-seq:
1515 * array.sort -> an_array
1516 * array.sort {| a,b | block } -> an_array
1518 * Returns a new array created by sorting <i>self</i>. Comparisons for
1519 * the sort will be done using the <code><=></code> operator or using
1520 * an optional code block. The block implements a comparison between
1521 * <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
1522 * <code>Enumerable#sort_by</code>.
1524 * a = [ "d", "a", "e", "c", "b" ]
1525 * a.sort #=> ["a", "b", "c", "d", "e"]
1526 * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
1529 VALUE
1530 rb_ary_sort(VALUE ary)
1532 ary = rb_ary_dup(ary);
1533 rb_ary_sort_bang(ary);
1534 return ary;
1539 * call-seq:
1540 * array.collect {|item| block } -> an_array
1541 * array.map {|item| block } -> an_array
1543 * Invokes <i>block</i> once for each element of <i>self</i>. Creates a
1544 * new array containing the values returned by the block.
1545 * See also <code>Enumerable#collect</code>.
1547 * a = [ "a", "b", "c", "d" ]
1548 * a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
1549 * a #=> ["a", "b", "c", "d"]
1552 static VALUE
1553 rb_ary_collect(VALUE ary)
1555 long i;
1556 VALUE collect;
1558 RETURN_ENUMERATOR(ary, 0, 0);
1559 collect = rb_ary_new2(RARRAY_LEN(ary));
1560 for (i = 0; i < RARRAY_LEN(ary); i++) {
1561 rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
1563 return collect;
1568 * call-seq:
1569 * array.collect! {|item| block } -> array
1570 * array.map! {|item| block } -> array
1572 * Invokes the block once for each element of _self_, replacing the
1573 * element with the value returned by _block_.
1574 * See also <code>Enumerable#collect</code>.
1576 * a = [ "a", "b", "c", "d" ]
1577 * a.collect! {|x| x + "!" }
1578 * a #=> [ "a!", "b!", "c!", "d!" ]
1581 static VALUE
1582 rb_ary_collect_bang(VALUE ary)
1584 long i;
1586 RETURN_ENUMERATOR(ary, 0, 0);
1587 rb_ary_modify(ary);
1588 for (i = 0; i < RARRAY_LEN(ary); i++) {
1589 rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
1591 return ary;
1594 VALUE
1595 rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long))
1597 VALUE result = rb_ary_new2(argc);
1598 long beg, len, i, j;
1600 for (i=0; i<argc; i++) {
1601 if (FIXNUM_P(argv[i])) {
1602 rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
1603 continue;
1605 /* check if idx is Range */
1606 switch (rb_range_beg_len(argv[i], &beg, &len, olen, 0)) {
1607 case Qfalse:
1608 break;
1609 case Qnil:
1610 continue;
1611 default:
1612 for (j=0; j<len; j++) {
1613 rb_ary_push(result, (*func)(obj, j+beg));
1615 continue;
1617 rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
1619 return result;
1623 * call-seq:
1624 * array.values_at(selector,... ) -> an_array
1626 * Returns an array containing the elements in
1627 * _self_ corresponding to the given selector(s). The selectors
1628 * may be either integer indices or ranges.
1629 * See also <code>Array#select</code>.
1631 * a = %w{ a b c d e f }
1632 * a.values_at(1, 3, 5)
1633 * a.values_at(1, 3, 5, 7)
1634 * a.values_at(-1, -3, -5, -7)
1635 * a.values_at(1..3, 2...5)
1638 static VALUE
1639 rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
1641 return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
1646 * call-seq:
1647 * array.select {|item| block } -> an_array
1649 * Invokes the block passing in successive elements from <i>array</i>,
1650 * returning an array containing those elements for which the block
1651 * returns a true value (equivalent to <code>Enumerable#select</code>).
1653 * a = %w{ a b c d e f }
1654 * a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
1657 static VALUE
1658 rb_ary_select(VALUE ary)
1660 VALUE result;
1661 long i;
1663 RETURN_ENUMERATOR(ary, 0, 0);
1664 result = rb_ary_new2(RARRAY_LEN(ary));
1665 for (i = 0; i < RARRAY_LEN(ary); i++) {
1666 if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
1667 rb_ary_push(result, rb_ary_elt(ary, i));
1670 return result;
1674 * call-seq:
1675 * array.delete(obj) -> obj or nil
1676 * array.delete(obj) { block } -> obj or nil
1678 * Deletes items from <i>self</i> that are equal to <i>obj</i>. If
1679 * the item is not found, returns <code>nil</code>. If the optional
1680 * code block is given, returns the result of <i>block</i> if the item
1681 * is not found.
1683 * a = [ "a", "b", "b", "b", "c" ]
1684 * a.delete("b") #=> "b"
1685 * a #=> ["a", "c"]
1686 * a.delete("z") #=> nil
1687 * a.delete("z") { "not found" } #=> "not found"
1690 VALUE
1691 rb_ary_delete(VALUE ary, VALUE item)
1693 long i1, i2;
1695 for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
1696 VALUE e = RARRAY_PTR(ary)[i1];
1698 if (rb_equal(e, item)) continue;
1699 if (i1 != i2) {
1700 rb_ary_store(ary, i2, e);
1702 i2++;
1704 if (RARRAY_LEN(ary) == i2) {
1705 if (rb_block_given_p()) {
1706 return rb_yield(item);
1708 return Qnil;
1711 rb_ary_modify(ary);
1712 if (RARRAY_LEN(ary) > i2) {
1713 RARRAY(ary)->len = i2;
1714 if (i2 * 2 < ARY_CAPA(ary) &&
1715 ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
1716 RESIZE_CAPA(ary, i2*2);
1720 return item;
1723 VALUE
1724 rb_ary_delete_at(VALUE ary, long pos)
1726 long len = RARRAY_LEN(ary);
1727 VALUE del;
1729 if (pos >= len) return Qnil;
1730 if (pos < 0) {
1731 pos += len;
1732 if (pos < 0) return Qnil;
1735 rb_ary_modify(ary);
1736 del = RARRAY_PTR(ary)[pos];
1737 MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE,
1738 RARRAY_LEN(ary)-pos-1);
1739 RARRAY(ary)->len--;
1741 return del;
1745 * call-seq:
1746 * array.delete_at(index) -> obj or nil
1748 * Deletes the element at the specified index, returning that element,
1749 * or <code>nil</code> if the index is out of range. See also
1750 * <code>Array#slice!</code>.
1752 * a = %w( ant bat cat dog )
1753 * a.delete_at(2) #=> "cat"
1754 * a #=> ["ant", "bat", "dog"]
1755 * a.delete_at(99) #=> nil
1758 static VALUE
1759 rb_ary_delete_at_m(VALUE ary, VALUE pos)
1761 return rb_ary_delete_at(ary, NUM2LONG(pos));
1765 * call-seq:
1766 * array.slice!(index) -> obj or nil
1767 * array.slice!(start, length) -> sub_array or nil
1768 * array.slice!(range) -> sub_array or nil
1770 * Deletes the element(s) given by an index (optionally with a length)
1771 * or by a range. Returns the deleted object, subarray, or
1772 * <code>nil</code> if the index is out of range.
1774 * a = [ "a", "b", "c" ]
1775 * a.slice!(1) #=> "b"
1776 * a #=> ["a", "c"]
1777 * a.slice!(-1) #=> "c"
1778 * a #=> ["a"]
1779 * a.slice!(100) #=> nil
1780 * a #=> ["a"]
1783 static VALUE
1784 rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
1786 VALUE arg1, arg2;
1787 long pos, len;
1789 if (rb_scan_args(argc, argv, "11", &arg1, &arg2) == 2) {
1790 pos = NUM2LONG(arg1);
1791 len = NUM2LONG(arg2);
1792 delete_pos_len:
1793 if (pos < 0) {
1794 pos = RARRAY_LEN(ary) + pos;
1795 if (pos < 0) return Qnil;
1797 arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos);
1798 RBASIC(arg2)->klass = rb_obj_class(ary);
1799 rb_ary_splice(ary, pos, len, Qundef); /* Qnil/rb_ary_new2(0) */
1800 return arg2;
1803 if (!FIXNUM_P(arg1)) {
1804 switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
1805 case Qtrue:
1806 /* valid range */
1807 goto delete_pos_len;
1808 case Qnil:
1809 /* invalid range */
1810 return Qnil;
1811 default:
1812 /* not a range */
1813 break;
1817 return rb_ary_delete_at(ary, NUM2LONG(arg1));
1821 * call-seq:
1822 * array.reject! {|item| block } -> array or nil
1824 * Equivalent to <code>Array#delete_if</code>, deleting elements from
1825 * _self_ for which the block evaluates to true, but returns
1826 * <code>nil</code> if no changes were made. Also see
1827 * <code>Enumerable#reject</code>.
1830 static VALUE
1831 rb_ary_reject_bang(VALUE ary)
1833 long i1, i2;
1835 RETURN_ENUMERATOR(ary, 0, 0);
1836 rb_ary_modify(ary);
1837 for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
1838 VALUE v = RARRAY_PTR(ary)[i1];
1839 if (RTEST(rb_yield(v))) continue;
1840 if (i1 != i2) {
1841 rb_ary_store(ary, i2, v);
1843 i2++;
1846 if (RARRAY_LEN(ary) == i2) return Qnil;
1847 if (i2 < RARRAY_LEN(ary))
1848 RARRAY(ary)->len = i2;
1849 return ary;
1853 * call-seq:
1854 * array.reject {|item| block } -> an_array
1856 * Returns a new array containing the items in _self_
1857 * for which the block is not true.
1860 static VALUE
1861 rb_ary_reject(VALUE ary)
1863 RETURN_ENUMERATOR(ary, 0, 0);
1864 ary = rb_ary_dup(ary);
1865 rb_ary_reject_bang(ary);
1866 return ary;
1870 * call-seq:
1871 * array.delete_if {|item| block } -> array
1873 * Deletes every element of <i>self</i> for which <i>block</i> evaluates
1874 * to <code>true</code>.
1876 * a = [ "a", "b", "c" ]
1877 * a.delete_if {|x| x >= "b" } #=> ["a"]
1880 static VALUE
1881 rb_ary_delete_if(VALUE ary)
1883 rb_ary_reject_bang(ary);
1884 return ary;
1887 static VALUE
1888 take_i(VALUE val, VALUE *args, int argc, VALUE *argv)
1890 if (args[1]-- == 0) rb_iter_break();
1891 if (argc > 1) val = rb_ary_new4(argc, argv);
1892 rb_ary_push(args[0], val);
1893 return Qnil;
1896 static VALUE
1897 take_items(VALUE obj, long n)
1899 VALUE result = rb_ary_new2(n);
1900 VALUE args[2];
1902 args[0] = result; args[1] = (VALUE)n;
1903 rb_block_call(obj, rb_intern("each"), 0, 0, take_i, (VALUE)args);
1904 return result;
1909 * call-seq:
1910 * array.zip(arg, ...) -> an_array
1911 * array.zip(arg, ...) {| arr | block } -> nil
1913 * Converts any arguments to arrays, then merges elements of
1914 * <i>self</i> with corresponding elements from each argument. This
1915 * generates a sequence of <code>self.size</code> <em>n</em>-element
1916 * arrays, where <em>n</em> is one more that the count of arguments. If
1917 * the size of any argument is less than <code>enumObj.size</code>,
1918 * <code>nil</code> values are supplied. If a block given, it is
1919 * invoked for each output array, otherwise an array of arrays is
1920 * returned.
1922 * a = [ 4, 5, 6 ]
1923 * b = [ 7, 8, 9 ]
1924 * [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
1925 * [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]]
1926 * a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
1929 static VALUE
1930 rb_ary_zip(argc, argv, ary)
1931 int argc;
1932 VALUE *argv;
1933 VALUE ary;
1935 int i, j;
1936 long len;
1937 VALUE result = Qnil;
1939 len = RARRAY_LEN(ary);
1940 for (i=0; i<argc; i++) {
1941 argv[i] = take_items(argv[i], len);
1943 if (!rb_block_given_p()) {
1944 result = rb_ary_new2(len);
1947 for (i=0; i<RARRAY_LEN(ary); i++) {
1948 VALUE tmp = rb_ary_new2(argc+1);
1950 rb_ary_push(tmp, rb_ary_elt(ary, i));
1951 for (j=0; j<argc; j++) {
1952 rb_ary_push(tmp, rb_ary_elt(argv[j], i));
1954 if (NIL_P(result)) {
1955 rb_yield(tmp);
1957 else {
1958 rb_ary_push(result, tmp);
1961 return result;
1965 * call-seq:
1966 * array.transpose -> an_array
1968 * Assumes that <i>self</i> is an array of arrays and transposes the
1969 * rows and columns.
1971 * a = [[1,2], [3,4], [5,6]]
1972 * a.transpose #=> [[1, 3, 5], [2, 4, 6]]
1975 static VALUE
1976 rb_ary_transpose(VALUE ary)
1978 long elen = -1, alen, i, j;
1979 VALUE tmp, result = 0;
1981 alen = RARRAY_LEN(ary);
1982 if (alen == 0) return rb_ary_dup(ary);
1983 for (i=0; i<alen; i++) {
1984 tmp = to_ary(rb_ary_elt(ary, i));
1985 if (elen < 0) { /* first element */
1986 elen = RARRAY_LEN(tmp);
1987 result = rb_ary_new2(elen);
1988 for (j=0; j<elen; j++) {
1989 rb_ary_store(result, j, rb_ary_new2(alen));
1992 else if (elen != RARRAY_LEN(tmp)) {
1993 rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
1994 RARRAY_LEN(tmp), elen);
1996 for (j=0; j<elen; j++) {
1997 rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
2000 return result;
2004 * call-seq:
2005 * array.replace(other_array) -> array
2007 * Replaces the contents of <i>self</i> with the contents of
2008 * <i>other_array</i>, truncating or expanding if necessary.
2010 * a = [ "a", "b", "c", "d", "e" ]
2011 * a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
2012 * a #=> ["x", "y", "z"]
2015 VALUE
2016 rb_ary_replace(VALUE copy, VALUE orig)
2018 VALUE shared;
2019 VALUE *ptr;
2021 orig = to_ary(orig);
2022 rb_ary_modify_check(copy);
2023 if (copy == orig) return copy;
2024 shared = ary_make_shared(orig);
2025 if (!ARY_SHARED_P(copy)) {
2026 ptr = RARRAY(copy)->ptr;
2027 xfree(ptr);
2029 RARRAY(copy)->ptr = RARRAY(orig)->ptr;
2030 RARRAY(copy)->len = RARRAY(orig)->len;
2031 RARRAY(copy)->aux.shared = shared;
2032 FL_SET(copy, ELTS_SHARED);
2034 return copy;
2038 * call-seq:
2039 * array.clear -> array
2041 * Removes all elements from _self_.
2043 * a = [ "a", "b", "c", "d", "e" ]
2044 * a.clear #=> [ ]
2047 VALUE
2048 rb_ary_clear(VALUE ary)
2050 rb_ary_modify(ary);
2051 RARRAY(ary)->len = 0;
2052 if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
2053 RESIZE_CAPA(ary, ARY_DEFAULT_SIZE * 2);
2055 return ary;
2059 * call-seq:
2060 * array.fill(obj) -> array
2061 * array.fill(obj, start [, length]) -> array
2062 * array.fill(obj, range ) -> array
2063 * array.fill {|index| block } -> array
2064 * array.fill(start [, length] ) {|index| block } -> array
2065 * array.fill(range) {|index| block } -> array
2067 * The first three forms set the selected elements of <i>self</i> (which
2068 * may be the entire array) to <i>obj</i>. A <i>start</i> of
2069 * <code>nil</code> is equivalent to zero. A <i>length</i> of
2070 * <code>nil</code> is equivalent to <i>self.length</i>. The last three
2071 * forms fill the array with the value of the block. The block is
2072 * passed the absolute index of each element to be filled.
2074 * a = [ "a", "b", "c", "d" ]
2075 * a.fill("x") #=> ["x", "x", "x", "x"]
2076 * a.fill("z", 2, 2) #=> ["x", "x", "z", "z"]
2077 * a.fill("y", 0..1) #=> ["y", "y", "z", "z"]
2078 * a.fill {|i| i*i} #=> [0, 1, 4, 9]
2079 * a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
2082 static VALUE
2083 rb_ary_fill(int argc, VALUE *argv, VALUE ary)
2085 VALUE item, arg1, arg2;
2086 long beg = 0, end = 0, len = 0;
2087 VALUE *p, *pend;
2088 int block_p = Qfalse;
2090 if (rb_block_given_p()) {
2091 block_p = Qtrue;
2092 rb_scan_args(argc, argv, "02", &arg1, &arg2);
2093 argc += 1; /* hackish */
2095 else {
2096 rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
2098 switch (argc) {
2099 case 1:
2100 beg = 0;
2101 len = RARRAY_LEN(ary);
2102 break;
2103 case 2:
2104 if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
2105 break;
2107 /* fall through */
2108 case 3:
2109 beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
2110 if (beg < 0) {
2111 beg = RARRAY_LEN(ary) + beg;
2112 if (beg < 0) beg = 0;
2114 len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
2115 if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
2116 break;
2118 rb_ary_modify(ary);
2119 end = beg + len;
2120 if (end < 0) {
2121 rb_raise(rb_eArgError, "argument too big");
2123 if (RARRAY_LEN(ary) < end) {
2124 if (end >= ARY_CAPA(ary)) {
2125 RESIZE_CAPA(ary, end);
2127 rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
2128 RARRAY(ary)->len = end;
2131 if (block_p) {
2132 VALUE v;
2133 long i;
2135 for (i=beg; i<end; i++) {
2136 v = rb_yield(LONG2NUM(i));
2137 if (i>=RARRAY_LEN(ary)) break;
2138 RARRAY_PTR(ary)[i] = v;
2141 else {
2142 p = RARRAY_PTR(ary) + beg;
2143 pend = p + len;
2144 while (p < pend) {
2145 *p++ = item;
2148 return ary;
2152 * call-seq:
2153 * array + other_array -> an_array
2155 * Concatenation---Returns a new array built by concatenating the
2156 * two arrays together to produce a third array.
2158 * [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
2161 VALUE
2162 rb_ary_plus(VALUE x, VALUE y)
2164 VALUE z;
2165 long len;
2167 y = to_ary(y);
2168 len = RARRAY_LEN(x) + RARRAY_LEN(y);
2169 z = rb_ary_new2(len);
2170 MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
2171 MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
2172 RARRAY(z)->len = len;
2173 return z;
2177 * call-seq:
2178 * array.concat(other_array) -> array
2180 * Appends the elements in other_array to _self_.
2182 * [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
2186 VALUE
2187 rb_ary_concat(VALUE x, VALUE y)
2189 y = to_ary(y);
2190 if (RARRAY_LEN(y) > 0) {
2191 rb_ary_splice(x, RARRAY_LEN(x), 0, y);
2193 return x;
2198 * call-seq:
2199 * array * int -> an_array
2200 * array * str -> a_string
2202 * Repetition---With a String argument, equivalent to
2203 * self.join(str). Otherwise, returns a new array
2204 * built by concatenating the _int_ copies of _self_.
2207 * [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
2208 * [ 1, 2, 3 ] * "," #=> "1,2,3"
2212 static VALUE
2213 rb_ary_times(VALUE ary, VALUE times)
2215 VALUE ary2, tmp;
2216 long i, len;
2218 tmp = rb_check_string_type(times);
2219 if (!NIL_P(tmp)) {
2220 return rb_ary_join(ary, tmp);
2223 len = NUM2LONG(times);
2224 if (len == 0) return ary_new(rb_obj_class(ary), 0);
2225 if (len < 0) {
2226 rb_raise(rb_eArgError, "negative argument");
2228 if (LONG_MAX/len < RARRAY_LEN(ary)) {
2229 rb_raise(rb_eArgError, "argument too big");
2231 len *= RARRAY_LEN(ary);
2233 ary2 = ary_new(rb_obj_class(ary), len);
2234 RARRAY(ary2)->len = len;
2236 for (i=0; i<len; i+=RARRAY_LEN(ary)) {
2237 MEMCPY(RARRAY_PTR(ary2)+i, RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
2239 OBJ_INFECT(ary2, ary);
2241 return ary2;
2245 * call-seq:
2246 * array.assoc(obj) -> an_array or nil
2248 * Searches through an array whose elements are also arrays
2249 * comparing _obj_ with the first element of each contained array
2250 * using obj.==.
2251 * Returns the first contained array that matches (that
2252 * is, the first associated array),
2253 * or +nil+ if no match is found.
2254 * See also <code>Array#rassoc</code>.
2256 * s1 = [ "colors", "red", "blue", "green" ]
2257 * s2 = [ "letters", "a", "b", "c" ]
2258 * s3 = "foo"
2259 * a = [ s1, s2, s3 ]
2260 * a.assoc("letters") #=> [ "letters", "a", "b", "c" ]
2261 * a.assoc("foo") #=> nil
2264 VALUE
2265 rb_ary_assoc(VALUE ary, VALUE key)
2267 long i;
2268 VALUE v;
2270 for (i = 0; i < RARRAY_LEN(ary); ++i) {
2271 v = rb_check_array_type(RARRAY_PTR(ary)[i]);
2272 if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
2273 rb_equal(RARRAY_PTR(v)[0], key))
2274 return v;
2276 return Qnil;
2280 * call-seq:
2281 * array.rassoc(obj) -> an_array or nil
2283 * Searches through the array whose elements are also arrays. Compares
2284 * _obj_ with the second element of each contained array using
2285 * <code>==</code>. Returns the first contained array that matches. See
2286 * also <code>Array#assoc</code>.
2288 * a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
2289 * a.rassoc("two") #=> [2, "two"]
2290 * a.rassoc("four") #=> nil
2293 VALUE
2294 rb_ary_rassoc(VALUE ary, VALUE value)
2296 long i;
2297 VALUE v;
2299 for (i = 0; i < RARRAY_LEN(ary); ++i) {
2300 v = RARRAY_PTR(ary)[i];
2301 if (TYPE(v) == T_ARRAY &&
2302 RARRAY_LEN(v) > 1 &&
2303 rb_equal(RARRAY_PTR(v)[1], value))
2304 return v;
2306 return Qnil;
2309 static VALUE
2310 recursive_equal(VALUE ary1, VALUE ary2, int recur)
2312 long i;
2314 if (recur) return Qfalse;
2315 for (i=0; i<RARRAY_LEN(ary1); i++) {
2316 if (!rb_equal(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
2317 return Qfalse;
2319 return Qtrue;
2323 * call-seq:
2324 * array == other_array -> bool
2326 * Equality---Two arrays are equal if they contain the same number
2327 * of elements and if each element is equal to (according to
2328 * Object.==) the corresponding element in the other array.
2330 * [ "a", "c" ] == [ "a", "c", 7 ] #=> false
2331 * [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true
2332 * [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
2336 static VALUE
2337 rb_ary_equal(VALUE ary1, VALUE ary2)
2339 if (ary1 == ary2) return Qtrue;
2340 if (TYPE(ary2) != T_ARRAY) {
2341 if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
2342 return Qfalse;
2344 return rb_equal(ary2, ary1);
2346 if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
2347 return rb_exec_recursive(recursive_equal, ary1, ary2);
2350 static VALUE
2351 recursive_eql(VALUE ary1, VALUE ary2, int recur)
2353 long i;
2355 if (recur) return Qfalse;
2356 for (i=0; i<RARRAY_LEN(ary1); i++) {
2357 if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
2358 return Qfalse;
2360 return Qtrue;
2364 * call-seq:
2365 * array.eql?(other) -> true or false
2367 * Returns <code>true</code> if _array_ and _other_ are the same object,
2368 * or are both arrays with the same content.
2371 static VALUE
2372 rb_ary_eql(VALUE ary1, VALUE ary2)
2374 if (ary1 == ary2) return Qtrue;
2375 if (TYPE(ary2) != T_ARRAY) return Qfalse;
2376 if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
2377 return rb_exec_recursive(recursive_eql, ary1, ary2);
2380 static VALUE
2381 recursive_hash(VALUE ary, VALUE dummy, int recur)
2383 long i, h;
2384 VALUE n;
2386 if (recur) {
2387 return LONG2FIX(0);
2389 h = RARRAY_LEN(ary);
2390 for (i=0; i<RARRAY_LEN(ary); i++) {
2391 h = (h << 1) | (h<0 ? 1 : 0);
2392 n = rb_hash(RARRAY_PTR(ary)[i]);
2393 h ^= NUM2LONG(n);
2395 return LONG2FIX(h);
2399 * call-seq:
2400 * array.hash -> fixnum
2402 * Compute a hash-code for this array. Two arrays with the same content
2403 * will have the same hash code (and will compare using <code>eql?</code>).
2406 static VALUE
2407 rb_ary_hash(VALUE ary)
2409 return rb_exec_recursive(recursive_hash, ary, 0);
2413 * call-seq:
2414 * array.include?(obj) -> true or false
2416 * Returns <code>true</code> if the given object is present in
2417 * <i>self</i> (that is, if any object <code>==</code> <i>anObject</i>),
2418 * <code>false</code> otherwise.
2420 * a = [ "a", "b", "c" ]
2421 * a.include?("b") #=> true
2422 * a.include?("z") #=> false
2425 VALUE
2426 rb_ary_includes(VALUE ary, VALUE item)
2428 long i;
2430 for (i=0; i<RARRAY_LEN(ary); i++) {
2431 if (rb_equal(RARRAY_PTR(ary)[i], item)) {
2432 return Qtrue;
2435 return Qfalse;
2439 static VALUE
2440 recursive_cmp(VALUE ary1, VALUE ary2, int recur)
2442 long i, len;
2444 if (recur) return Qnil;
2445 len = RARRAY_LEN(ary1);
2446 if (len > RARRAY_LEN(ary2)) {
2447 len = RARRAY_LEN(ary2);
2449 for (i=0; i<len; i++) {
2450 VALUE v = rb_funcall(rb_ary_elt(ary1, i), id_cmp, 1, rb_ary_elt(ary2, i));
2451 if (v != INT2FIX(0)) {
2452 return v;
2455 return Qundef;
2459 * call-seq:
2460 * array <=> other_array -> -1, 0, +1
2462 * Comparison---Returns an integer (-1, 0,
2463 * or +1) if this array is less than, equal to, or greater than
2464 * other_array. Each object in each array is compared
2465 * (using <=>). If any value isn't
2466 * equal, then that inequality is the return value. If all the
2467 * values found are equal, then the return is based on a
2468 * comparison of the array lengths. Thus, two arrays are
2469 * ``equal'' according to <code>Array#<=></code> if and only if they have
2470 * the same length and the value of each element is equal to the
2471 * value of the corresponding element in the other array.
2473 * [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1
2474 * [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
2478 VALUE
2479 rb_ary_cmp(VALUE ary1, VALUE ary2)
2481 long len;
2482 VALUE v;
2484 ary2 = to_ary(ary2);
2485 if (ary1 == ary2) return INT2FIX(0);
2486 v = rb_exec_recursive(recursive_cmp, ary1, ary2);
2487 if (v != Qundef) return v;
2488 len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
2489 if (len == 0) return INT2FIX(0);
2490 if (len > 0) return INT2FIX(1);
2491 return INT2FIX(-1);
2494 static VALUE
2495 ary_make_hash(VALUE ary1, VALUE ary2)
2497 VALUE hash = rb_hash_new();
2498 long i;
2500 for (i=0; i<RARRAY_LEN(ary1); i++) {
2501 rb_hash_aset(hash, RARRAY_PTR(ary1)[i], Qtrue);
2503 if (ary2) {
2504 for (i=0; i<RARRAY_LEN(ary2); i++) {
2505 rb_hash_aset(hash, RARRAY_PTR(ary2)[i], Qtrue);
2508 return hash;
2512 * call-seq:
2513 * array - other_array -> an_array
2515 * Array Difference---Returns a new array that is a copy of
2516 * the original array, removing any items that also appear in
2517 * other_array. (If you need set-like behavior, see the
2518 * library class Set.)
2520 * [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
2523 static VALUE
2524 rb_ary_diff(VALUE ary1, VALUE ary2)
2526 VALUE ary3;
2527 volatile VALUE hash;
2528 long i;
2530 hash = ary_make_hash(to_ary(ary2), 0);
2531 ary3 = rb_ary_new();
2533 for (i=0; i<RARRAY_LEN(ary1); i++) {
2534 if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
2535 rb_ary_push(ary3, rb_ary_elt(ary1, i));
2537 return ary3;
2541 * call-seq:
2542 * array & other_array
2544 * Set Intersection---Returns a new array
2545 * containing elements common to the two arrays, with no duplicates.
2547 * [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
2551 static VALUE
2552 rb_ary_and(VALUE ary1, VALUE ary2)
2554 VALUE hash, ary3, v, vv;
2555 long i;
2557 ary2 = to_ary(ary2);
2558 ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
2559 RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
2560 hash = ary_make_hash(ary2, 0);
2562 if (RHASH_EMPTY_P(hash))
2563 return ary3;
2565 for (i=0; i<RARRAY_LEN(ary1); i++) {
2566 v = vv = rb_ary_elt(ary1, i);
2567 if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
2568 rb_ary_push(ary3, v);
2572 return ary3;
2576 * call-seq:
2577 * array | other_array -> an_array
2579 * Set Union---Returns a new array by joining this array with
2580 * other_array, removing duplicates.
2582 * [ "a", "b", "c" ] | [ "c", "d", "a" ]
2583 * #=> [ "a", "b", "c", "d" ]
2586 static VALUE
2587 rb_ary_or(VALUE ary1, VALUE ary2)
2589 VALUE hash, ary3;
2590 VALUE v, vv;
2591 long i;
2593 ary2 = to_ary(ary2);
2594 ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
2595 hash = ary_make_hash(ary1, ary2);
2597 for (i=0; i<RARRAY_LEN(ary1); i++) {
2598 v = vv = rb_ary_elt(ary1, i);
2599 if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
2600 rb_ary_push(ary3, v);
2603 for (i=0; i<RARRAY_LEN(ary2); i++) {
2604 v = vv = rb_ary_elt(ary2, i);
2605 if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
2606 rb_ary_push(ary3, v);
2609 return ary3;
2613 * call-seq:
2614 * array.uniq! -> array or nil
2616 * Removes duplicate elements from _self_.
2617 * Returns <code>nil</code> if no changes are made (that is, no
2618 * duplicates are found).
2620 * a = [ "a", "a", "b", "b", "c" ]
2621 * a.uniq! #=> ["a", "b", "c"]
2622 * b = [ "a", "b", "c" ]
2623 * b.uniq! #=> nil
2626 static VALUE
2627 rb_ary_uniq_bang(VALUE ary)
2629 VALUE hash, v, vv;
2630 long i, j;
2632 hash = ary_make_hash(ary, 0);
2634 if (RARRAY_LEN(ary) == RHASH_SIZE(hash)) {
2635 return Qnil;
2637 for (i=j=0; i<RARRAY_LEN(ary); i++) {
2638 v = vv = rb_ary_elt(ary, i);
2639 if (st_delete(RHASH_TBL(hash), (st_data_t*)&vv, 0)) {
2640 rb_ary_store(ary, j++, v);
2643 RARRAY(ary)->len = j;
2645 return ary;
2649 * call-seq:
2650 * array.uniq -> an_array
2652 * Returns a new array by removing duplicate values in <i>self</i>.
2654 * a = [ "a", "a", "b", "b", "c" ]
2655 * a.uniq #=> ["a", "b", "c"]
2658 static VALUE
2659 rb_ary_uniq(VALUE ary)
2661 ary = rb_ary_dup(ary);
2662 rb_ary_uniq_bang(ary);
2663 return ary;
2667 * call-seq:
2668 * array.compact! -> array or nil
2670 * Removes +nil+ elements from array.
2671 * Returns +nil+ if no changes were made.
2673 * [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
2674 * [ "a", "b", "c" ].compact! #=> nil
2677 static VALUE
2678 rb_ary_compact_bang(VALUE ary)
2680 VALUE *p, *t, *end;
2681 long n;
2683 rb_ary_modify(ary);
2684 p = t = RARRAY_PTR(ary);
2685 end = p + RARRAY_LEN(ary);
2687 while (t < end) {
2688 if (NIL_P(*t)) t++;
2689 else *p++ = *t++;
2691 if (RARRAY_LEN(ary) == (p - RARRAY_PTR(ary))) {
2692 return Qnil;
2694 n = p - RARRAY_PTR(ary);
2695 RESIZE_CAPA(ary, n);
2696 RARRAY(ary)->len = n;
2698 return ary;
2702 * call-seq:
2703 * array.compact -> an_array
2705 * Returns a copy of _self_ with all +nil+ elements removed.
2707 * [ "a", nil, "b", nil, "c", nil ].compact
2708 * #=> [ "a", "b", "c" ]
2711 static VALUE
2712 rb_ary_compact(VALUE ary)
2714 ary = rb_ary_dup(ary);
2715 rb_ary_compact_bang(ary);
2716 return ary;
2720 * call-seq:
2721 * array.nitems -> int
2722 * array.nitems { |item| block } -> int
2724 * Returns the number of non-<code>nil</code> elements in _self_.
2725 * If a block is given, the elements yielding a true value are
2726 * counted.
2728 * May be zero.
2730 * [ 1, nil, 3, nil, 5 ].nitems #=> 3
2731 * [5,6,7,8,9].nitems { |x| x % 2 != 0 } #=> 3
2734 static VALUE
2735 rb_ary_nitems(VALUE ary)
2737 long n = 0;
2739 if (rb_block_given_p()) {
2740 long i;
2742 for (i=0; i<RARRAY_LEN(ary); i++) {
2743 VALUE v = RARRAY_PTR(ary)[i];
2744 if (RTEST(rb_yield(v))) n++;
2747 else {
2748 VALUE *p = RARRAY_PTR(ary);
2749 VALUE *pend = p + RARRAY_LEN(ary);
2751 while (p < pend) {
2752 if (!NIL_P(*p)) n++;
2753 p++;
2756 return LONG2NUM(n);
2759 static VALUE
2760 flatten(VALUE ary, int level, int *modified)
2762 long i = 0;
2763 VALUE stack, result, tmp, elt;
2764 st_table *memo;
2765 st_data_t id;
2767 stack = rb_ary_new();
2768 result = ary_new(rb_class_of(ary), RARRAY_LEN(ary));
2769 memo = st_init_numtable();
2770 st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
2771 *modified = 0;
2773 while (1) {
2774 while (i < RARRAY_LEN(ary)) {
2775 elt = RARRAY_PTR(ary)[i++];
2776 tmp = rb_check_array_type(elt);
2777 if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) {
2778 rb_ary_push(result, elt);
2780 else {
2781 *modified = 1;
2782 id = (st_data_t)tmp;
2783 if (st_lookup(memo, id, 0)) {
2784 rb_raise(rb_eArgError, "tried to flatten recursive array");
2786 st_insert(memo, id, (st_data_t)Qtrue);
2787 rb_ary_push(stack, ary);
2788 rb_ary_push(stack, LONG2NUM(i));
2789 ary = tmp;
2790 i = 0;
2793 if (RARRAY_LEN(stack) == 0) {
2794 break;
2796 id = (st_data_t)ary;
2797 st_delete(memo, &id, 0);
2798 tmp = rb_ary_pop(stack);
2799 i = NUM2LONG(tmp);
2800 ary = rb_ary_pop(stack);
2803 return result;
2807 * call-seq:
2808 * array.flatten! -> array or nil
2809 * array.flatten!(level) -> array or nil
2811 * Flattens _self_ in place.
2812 * Returns <code>nil</code> if no modifications were made (i.e.,
2813 * <i>array</i> contains no subarrays.) If the optional <i>level</i>
2814 * argument determines the level of recursion to flatten.
2816 * a = [ 1, 2, [3, [4, 5] ] ]
2817 * a.flatten! #=> [1, 2, 3, 4, 5]
2818 * a.flatten! #=> nil
2819 * a #=> [1, 2, 3, 4, 5]
2820 * a = [ 1, 2, [3, [4, 5] ] ]
2821 * a.flatten!(1) #=> [1, 2, 3, [4, 5]]
2824 static VALUE
2825 rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
2827 int mod = 0, level = -1;
2828 VALUE result, lv;
2830 rb_scan_args(argc, argv, "01", &lv);
2831 if (!NIL_P(lv)) level = NUM2INT(lv);
2832 if (level == 0) return ary;
2834 result = flatten(ary, level, &mod);
2835 if (mod == 0) return Qnil;
2836 rb_ary_replace(ary, result);
2838 return ary;
2842 * call-seq:
2843 * array.flatten -> an_array
2844 * array.flatten(level) -> an_array
2846 * Returns a new array that is a one-dimensional flattening of this
2847 * array (recursively). That is, for every element that is an array,
2848 * extract its elements into the new array. If the optional
2849 * <i>level</i> argument determines the level of recursion to flatten.
2851 * s = [ 1, 2, 3 ] #=> [1, 2, 3]
2852 * t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]]
2853 * a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
2854 * a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2855 * a = [ 1, 2, [3, [4, 5] ] ]
2856 * a.flatten(1) #=> [1, 2, 3, [4, 5]]
2859 static VALUE
2860 rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
2862 int mod = 0, level = -1;
2863 VALUE result, lv;
2865 rb_scan_args(argc, argv, "01", &lv);
2866 if (!NIL_P(lv)) level = NUM2INT(lv);
2867 if (level == 0) return ary;
2869 result = flatten(ary, level, &mod);
2870 if (OBJ_TAINTED(ary)) OBJ_TAINT(result);
2872 return result;
2876 * call-seq:
2877 * array.shuffle! -> array or nil
2879 * Shuffles elements in _self_ in place.
2883 static VALUE
2884 rb_ary_shuffle_bang(VALUE ary)
2886 long i = RARRAY_LEN(ary);
2888 rb_ary_modify(ary);
2889 while (i) {
2890 long j = rb_genrand_real()*i;
2891 VALUE tmp = RARRAY_PTR(ary)[--i];
2892 RARRAY_PTR(ary)[i] = RARRAY_PTR(ary)[j];
2893 RARRAY_PTR(ary)[j] = tmp;
2895 return ary;
2900 * call-seq:
2901 * array.shuffle -> an_array
2903 * Returns a new array with elements of this array shuffled.
2905 * a = [ 1, 2, 3 ] #=> [1, 2, 3]
2906 * a.shuffle #=> [2, 3, 1]
2909 static VALUE
2910 rb_ary_shuffle(VALUE ary)
2912 ary = rb_ary_dup(ary);
2913 rb_ary_shuffle_bang(ary);
2914 return ary;
2919 * call-seq:
2920 * array.choice -> obj
2922 * Choose a random element from an array.
2926 static VALUE
2927 rb_ary_choice(VALUE ary)
2929 long i, j;
2931 i = RARRAY_LEN(ary);
2932 if (i == 0) return Qnil;
2933 j = rb_genrand_real()*i;
2934 return RARRAY_PTR(ary)[j];
2939 * call-seq:
2940 * ary.cycle {|obj| block }
2941 * ary.cycle(n) {|obj| block }
2943 * Calls <i>block</i> for each element repeatedly _n_ times or
2944 * forever if none or nil is given. If a non-positive number is
2945 * given or the array is empty, does nothing. Returns nil if the
2946 * loop has finished without getting interrupted.
2948 * a = ["a", "b", "c"]
2949 * a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
2950 * a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c.
2954 static VALUE
2955 rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
2957 long n, i;
2958 VALUE nv = Qnil;
2960 rb_scan_args(argc, argv, "01", &nv);
2962 RETURN_ENUMERATOR(ary, argc, argv);
2963 if (NIL_P(nv)) {
2964 n = -1;
2966 else {
2967 n = NUM2LONG(nv);
2968 if (n <= 0) return Qnil;
2971 while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
2972 for (i=0; i<RARRAY_LEN(ary); i++) {
2973 rb_yield(RARRAY_PTR(ary)[i]);
2976 return Qnil;
2979 #define tmpbuf(n, size) rb_str_tmp_new((n)*(size))
2982 * Recursively compute permutations of r elements of the set [0..n-1].
2983 * When we have a complete permutation of array indexes, copy the values
2984 * at those indexes into a new array and yield that array.
2986 * n: the size of the set
2987 * r: the number of elements in each permutation
2988 * p: the array (of size r) that we're filling in
2989 * index: what index we're filling in now
2990 * used: an array of booleans: whether a given index is already used
2991 * values: the Ruby array that holds the actual values to permute
2993 static void
2994 permute0(long n, long r, long *p, long index, int *used, VALUE values)
2996 long i,j;
2997 for (i = 0; i < n; i++) {
2998 if (used[i] == 0) {
2999 p[index] = i;
3000 if (index < r-1) { /* if not done yet */
3001 used[i] = 1; /* mark index used */
3002 permute0(n, r, p, index+1, /* recurse */
3003 used, values);
3004 used[i] = 0; /* index unused */
3006 else {
3007 /* We have a complete permutation of array indexes */
3008 /* Build a ruby array of the corresponding values */
3009 /* And yield it to the associated block */
3010 VALUE result = rb_ary_new2(r);
3011 VALUE *result_array = RARRAY_PTR(result);
3012 const VALUE *values_array = RARRAY_PTR(values);
3014 for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
3015 RARRAY(result)->len = r;
3016 rb_yield(result);
3023 * call-seq:
3024 * ary.permutation { |p| block } -> array
3025 * ary.permutation -> enumerator
3026 * ary.permutation(n) { |p| block } -> array
3027 * ary.permutation(n) -> enumerator
3029 * When invoked with a block, yield all permutations of length <i>n</i>
3030 * of the elements of <i>ary</i>, then return the array itself.
3031 * If <i>n</i> is not specified, yield all permutations of all elements.
3032 * The implementation makes no guarantees about the order in which
3033 * the permutations are yielded.
3035 * When invoked without a block, return an enumerator object instead.
3037 * Examples:
3039 * a = [1, 2, 3]
3040 * a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
3041 * a.permutation(1).to_a #=> [[1],[2],[3]]
3042 * a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
3043 * a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
3044 * a.permutation(0).to_a #=> [[]] # one permutation of length 0
3045 * a.permutation(4).to_a #=> [] # no permutations of length 4
3048 static VALUE
3049 rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
3051 VALUE num;
3052 long r, n, i;
3054 n = RARRAY_LEN(ary); /* Array length */
3055 RETURN_ENUMERATOR(ary, argc, argv); /* Return enumerator if no block */
3056 rb_scan_args(argc, argv, "01", &num);
3057 r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */
3059 if (r < 0 || n < r) {
3060 /* no permutations: yield nothing */
3062 else if (r == 0) { /* exactly one permutation: the zero-length array */
3063 rb_yield(rb_ary_new2(0));
3065 else if (r == 1) { /* this is a special, easy case */
3066 for (i = 0; i < RARRAY_LEN(ary); i++) {
3067 rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
3070 else { /* this is the general case */
3071 volatile VALUE t0 = tmpbuf(n,sizeof(long));
3072 long *p = (long*)RSTRING_PTR(t0);
3073 volatile VALUE t1 = tmpbuf(n,sizeof(int));
3074 int *used = (int*)RSTRING_PTR(t1);
3075 VALUE ary0 = ary_make_shared(ary); /* private defensive copy of ary */
3077 for (i = 0; i < n; i++) used[i] = 0; /* initialize array */
3079 permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
3080 RB_GC_GUARD(t0);
3081 RB_GC_GUARD(t1);
3083 return ary;
3086 static long
3087 combi_len(long n, long k)
3089 long i, val = 1;
3091 if (k*2 > n) k = n-k;
3092 if (k == 0) return 1;
3093 if (k < 0) return 0;
3094 val = 1;
3095 for (i=1; i <= k; i++,n--) {
3096 long m = val;
3097 val *= n;
3098 if (val < m) {
3099 rb_raise(rb_eRangeError, "too big for combination");
3101 val /= i;
3103 return val;
3107 * call-seq:
3108 * ary.combination(n) { |c| block } -> ary
3109 * ary.combination(n) -> enumerator
3111 * When invoked with a block, yields all combinations of length <i>n</i>
3112 * of elements from <i>ary</i> and then returns <i>ary</i> itself.
3113 * The implementation makes no guarantees about the order in which
3114 * the combinations are yielded.
3116 * When invoked without a block, returns an enumerator object instead.
3118 * Examples:
3120 * a = [1, 2, 3, 4]
3121 * a.combination(1).to_a #=> [[1],[2],[3],[4]]
3122 * a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
3123 * a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
3124 * a.combination(4).to_a #=> [[1,2,3,4]]
3125 * a.combination(0).to_a #=> [[]] # one combination of length 0
3126 * a.combination(5).to_a #=> [] # no combinations of length 5
3130 static VALUE
3131 rb_ary_combination(VALUE ary, VALUE num)
3133 long n, i, len;
3135 n = NUM2LONG(num);
3136 RETURN_ENUMERATOR(ary, 1, &num);
3137 len = RARRAY_LEN(ary);
3138 if (n < 0 || len < n) {
3139 /* yield nothing */
3141 else if (n == 0) {
3142 rb_yield(rb_ary_new2(0));
3144 else if (n == 1) {
3145 for (i = 0; i < len; i++) {
3146 rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
3149 else {
3150 volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
3151 long *stack = (long*)RSTRING_PTR(t0);
3152 long nlen = combi_len(len, n);
3153 volatile VALUE cc = rb_ary_new2(n);
3154 VALUE *chosen = RARRAY_PTR(cc);
3155 long lev = 0;
3157 RBASIC(cc)->klass = 0;
3158 MEMZERO(stack, long, n);
3159 stack[0] = -1;
3160 for (i = 0; i < nlen; i++) {
3161 chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
3162 for (lev++; lev < n; lev++) {
3163 chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
3165 rb_yield(rb_ary_new4(n, chosen));
3166 do {
3167 stack[lev--]++;
3168 } while (lev && (stack[lev+1]+n == len+lev+1));
3171 return ary;
3175 * call-seq:
3176 * ary.product(other_ary, ...)
3178 * Returns an array of all combinations of elements from all arrays.
3179 * The length of the returned array is the product of the length
3180 * of ary and the argument arrays
3182 * [1,2,3].product([4,5]) # => [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
3183 * [1,2].product([1,2]) # => [[1,1],[1,2],[2,1],[2,2]]
3184 * [1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
3185 * # [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
3186 * [1,2].product() # => [[1],[2]]
3187 * [1,2].product([]) # => []
3190 static VALUE
3191 rb_ary_product(int argc, VALUE *argv, VALUE ary)
3193 int n = argc+1; /* How many arrays we're operating on */
3194 volatile VALUE t0 = tmpbuf(n, sizeof(VALUE));
3195 volatile VALUE t1 = tmpbuf(n, sizeof(int));
3196 VALUE *arrays = (VALUE*)RSTRING_PTR(t0); /* The arrays we're computing the product of */
3197 int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
3198 VALUE result; /* The array we'll be returning */
3199 long i,j;
3200 long resultlen = 1;
3202 RBASIC(t0)->klass = 0;
3203 RBASIC(t1)->klass = 0;
3205 /* initialize the arrays of arrays */
3206 arrays[0] = ary;
3207 for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
3209 /* initialize the counters for the arrays */
3210 for (i = 0; i < n; i++) counters[i] = 0;
3212 /* Compute the length of the result array; return [] if any is empty */
3213 for (i = 0; i < n; i++) {
3214 long k = RARRAY_LEN(arrays[i]), l = resultlen;
3215 if (k == 0) return rb_ary_new2(0);
3216 resultlen *= k;
3217 if (resultlen < k || resultlen < l || resultlen / k != l) {
3218 rb_raise(rb_eRangeError, "too big to product");
3222 /* Otherwise, allocate and fill in an array of results */
3223 result = rb_ary_new2(resultlen);
3224 for (i = 0; i < resultlen; i++) {
3225 int m;
3226 /* fill in one subarray */
3227 VALUE subarray = rb_ary_new2(n);
3228 for (j = 0; j < n; j++) {
3229 rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
3232 /* put it on the result array */
3233 rb_ary_push(result, subarray);
3236 * Increment the last counter. If it overflows, reset to 0
3237 * and increment the one before it.
3239 m = n-1;
3240 counters[m]++;
3241 while (m > 0 && counters[m] == RARRAY_LEN(arrays[m])) {
3242 counters[m] = 0;
3243 m--;
3244 counters[m]++;
3248 return result;
3252 * call-seq:
3253 * ary.take(n) => array
3255 * Returns first n elements from <i>ary</i>.
3257 * a = [1, 2, 3, 4, 5, 0]
3258 * a.take(3) # => [1, 2, 3]
3262 static VALUE
3263 rb_ary_take(VALUE obj, VALUE n)
3265 long len = NUM2LONG(n);
3266 if (len < 0) {
3267 rb_raise(rb_eArgError, "attempt to take negative size");
3269 return rb_ary_subseq(obj, 0, len);
3273 * call-seq:
3274 * ary.take_while {|arr| block } => array
3276 * Passes elements to the block until the block returns nil or false,
3277 * then stops iterating and returns an array of all prior elements.
3279 * a = [1, 2, 3, 4, 5, 0]
3280 * a.take_while {|i| i < 3 } # => [1, 2]
3284 static VALUE
3285 rb_ary_take_while(VALUE ary)
3287 long i;
3289 RETURN_ENUMERATOR(ary, 0, 0);
3290 for (i = 0; i < RARRAY_LEN(ary); i++) {
3291 if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
3293 return rb_ary_take(ary, LONG2FIX(i));
3297 * call-seq:
3298 * ary.drop(n) => array
3300 * Drops first n elements from <i>ary</i>, and returns rest elements
3301 * in an array.
3303 * a = [1, 2, 3, 4, 5, 0]
3304 * a.drop(3) # => [4, 5, 0]
3308 static VALUE
3309 rb_ary_drop(VALUE ary, VALUE n)
3311 VALUE result;
3312 long pos = NUM2LONG(n);
3313 if (pos < 0) {
3314 rb_raise(rb_eArgError, "attempt to drop negative size");
3317 result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
3318 if (result == Qnil) result = rb_ary_new();
3319 return result;
3323 * call-seq:
3324 * ary.drop_while {|arr| block } => array
3326 * Drops elements up to, but not including, the first element for
3327 * which the block returns nil or false and returns an array
3328 * containing the remaining elements.
3330 * a = [1, 2, 3, 4, 5, 0]
3331 * a.drop_while {|i| i < 3 } # => [3, 4, 5, 0]
3335 static VALUE
3336 rb_ary_drop_while(VALUE ary)
3338 long i;
3340 RETURN_ENUMERATOR(ary, 0, 0);
3341 for (i = 0; i < RARRAY_LEN(ary); i++) {
3342 if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
3344 return rb_ary_drop(ary, LONG2FIX(i));
3349 /* Arrays are ordered, integer-indexed collections of any object.
3350 * Array indexing starts at 0, as in C or Java. A negative index is
3351 * assumed to be relative to the end of the array---that is, an index of -1
3352 * indicates the last element of the array, -2 is the next to last
3353 * element in the array, and so on.
3356 void
3357 Init_Array(void)
3359 rb_cArray = rb_define_class("Array", rb_cObject);
3360 rb_include_module(rb_cArray, rb_mEnumerable);
3362 rb_define_alloc_func(rb_cArray, ary_alloc);
3363 rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
3364 rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
3365 rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
3366 rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
3368 rb_define_method(rb_cArray, "to_s", rb_ary_inspect, 0);
3369 rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
3370 rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
3371 rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
3372 rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0);
3374 rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
3375 rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
3376 rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
3378 rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
3379 rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
3380 rb_define_method(rb_cArray, "at", rb_ary_at, 1);
3381 rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
3382 rb_define_method(rb_cArray, "first", rb_ary_first, -1);
3383 rb_define_method(rb_cArray, "last", rb_ary_last, -1);
3384 rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
3385 rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
3386 rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
3387 rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
3388 rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
3389 rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
3390 rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
3391 rb_define_method(rb_cArray, "each", rb_ary_each, 0);
3392 rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
3393 rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
3394 rb_define_method(rb_cArray, "length", rb_ary_length, 0);
3395 rb_define_alias(rb_cArray, "size", "length");
3396 rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
3397 rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
3398 rb_define_method(rb_cArray, "index", rb_ary_index, -1);
3399 rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
3400 rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
3401 rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
3402 rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
3403 rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
3404 rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
3405 rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
3406 rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
3407 rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
3408 rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
3409 rb_define_method(rb_cArray, "select", rb_ary_select, 0);
3410 rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
3411 rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
3412 rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
3413 rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
3414 rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
3415 rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
3416 rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
3417 rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
3418 rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
3419 rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
3420 rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
3421 rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
3422 rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
3424 rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
3425 rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
3427 rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
3428 rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
3430 rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
3431 rb_define_method(rb_cArray, "*", rb_ary_times, 1);
3433 rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
3434 rb_define_method(rb_cArray, "&", rb_ary_and, 1);
3435 rb_define_method(rb_cArray, "|", rb_ary_or, 1);
3437 rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
3438 rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
3439 rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
3440 rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
3441 rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
3442 rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
3443 rb_define_method(rb_cArray, "nitems", rb_ary_nitems, 0);
3444 rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, 0);
3445 rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, 0);
3446 rb_define_method(rb_cArray, "choice", rb_ary_choice, 0);
3447 rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
3448 rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
3449 rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
3450 rb_define_method(rb_cArray, "product", rb_ary_product, -1);
3452 rb_define_method(rb_cArray, "take", rb_ary_take, 1);
3453 rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
3454 rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
3455 rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
3457 id_cmp = rb_intern("<=>");