1 /**********************************************************************
6 created at: Thu Jul 15 12:01:24 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
12 **********************************************************************/
14 #include "ruby/ruby.h"
16 #include "ruby/util.h"
24 VALUE rb_cBasicObject
;
35 static ID id_eq
, id_eql
, id_match
, id_inspect
, id_init_copy
;
39 * obj === other => true or false
41 * Case Equality---For class <code>Object</code>, effectively the same
42 * as calling <code>#==</code>, but typically overridden by descendents
43 * to provide meaningful semantics in <code>case</code> statements.
47 rb_equal(VALUE obj1
, VALUE obj2
)
51 if (obj1
== obj2
) return Qtrue
;
52 result
= rb_funcall(obj1
, id_eq
, 1, obj2
);
53 if (RTEST(result
)) return Qtrue
;
58 rb_eql(VALUE obj1
, VALUE obj2
)
60 return RTEST(rb_funcall(obj1
, id_eql
, 1, obj2
));
65 * obj == other => true or false
66 * obj.equal?(other) => true or false
67 * obj.eql?(other) => true or false
69 * Equality---At the <code>Object</code> level, <code>==</code> returns
70 * <code>true</code> only if <i>obj</i> and <i>other</i> are the
71 * same object. Typically, this method is overridden in descendent
72 * classes to provide class-specific meaning.
74 * Unlike <code>==</code>, the <code>equal?</code> method should never be
75 * overridden by subclasses: it is used to determine object identity
76 * (that is, <code>a.equal?(b)</code> iff <code>a</code> is the same
77 * object as <code>b</code>).
79 * The <code>eql?</code> method returns <code>true</code> if
80 * <i>obj</i> and <i>anObject</i> have the same value. Used by
81 * <code>Hash</code> to test members for equality. For objects of
82 * class <code>Object</code>, <code>eql?</code> is synonymous with
83 * <code>==</code>. Subclasses normally continue this tradition, but
84 * there are exceptions. <code>Numeric</code> types, for example,
85 * perform type conversion across <code>==</code>, but not across
86 * <code>eql?</code>, so:
89 * 1.eql? 1.0 #=> false
93 rb_obj_equal(VALUE obj1
, VALUE obj2
)
95 if (obj1
== obj2
) return Qtrue
;
101 * !obj => true or false
107 rb_obj_not(VALUE obj
)
109 return RTEST(obj
) ? Qfalse
: Qtrue
;
114 * obj != other => true or false
116 * Returns true if two objects are not-equal, otherwise false.
120 rb_obj_not_equal(VALUE obj1
, VALUE obj2
)
122 VALUE result
= rb_funcall(obj1
, id_eq
, 1, obj2
);
123 return RTEST(result
) ? Qfalse
: Qtrue
;
127 rb_class_real(VALUE cl
)
131 while ((RBASIC(cl
)->flags
& FL_SINGLETON
) || BUILTIN_TYPE(cl
) == T_ICLASS
) {
132 cl
= RCLASS_SUPER(cl
);
141 * Returns the class of <i>obj</i>, now preferred over
142 * <code>Object#type</code>, as an object's type in Ruby is only
143 * loosely tied to that object's class. This method must always be
144 * called with an explicit receiver, as <code>class</code> is also a
145 * reserved word in Ruby.
148 * self.class #=> Object
152 rb_obj_class(VALUE obj
)
154 return rb_class_real(CLASS_OF(obj
));
158 init_copy(VALUE dest
, VALUE obj
)
160 if (OBJ_FROZEN(dest
)) {
161 rb_raise(rb_eTypeError
, "[bug] frozen object (%s) allocated", rb_obj_classname(dest
));
163 RBASIC(dest
)->flags
&= ~(T_MASK
|FL_EXIVAR
);
164 RBASIC(dest
)->flags
|= RBASIC(obj
)->flags
& (T_MASK
|FL_EXIVAR
|FL_TAINT
);
165 rb_copy_generic_ivar(dest
, obj
);
166 rb_gc_copy_finalizer(dest
, obj
);
169 if (!(RBASIC(dest
)->flags
& ROBJECT_EMBED
) && ROBJECT_IVPTR(dest
)) {
170 xfree(ROBJECT_IVPTR(dest
));
171 ROBJECT(dest
)->as
.heap
.ivptr
= 0;
172 ROBJECT(dest
)->as
.heap
.numiv
= 0;
173 ROBJECT(dest
)->as
.heap
.iv_index_tbl
= 0;
175 if (RBASIC(obj
)->flags
& ROBJECT_EMBED
) {
176 MEMCPY(ROBJECT(dest
)->as
.ary
, ROBJECT(obj
)->as
.ary
, VALUE
, ROBJECT_EMBED_LEN_MAX
);
177 RBASIC(dest
)->flags
|= ROBJECT_EMBED
;
180 long len
= ROBJECT(obj
)->as
.heap
.numiv
;
181 VALUE
*ptr
= ALLOC_N(VALUE
, len
);
182 MEMCPY(ptr
, ROBJECT(obj
)->as
.heap
.ivptr
, VALUE
, len
);
183 ROBJECT(dest
)->as
.heap
.ivptr
= ptr
;
184 ROBJECT(dest
)->as
.heap
.numiv
= len
;
185 ROBJECT(dest
)->as
.heap
.iv_index_tbl
= ROBJECT(obj
)->as
.heap
.iv_index_tbl
;
186 RBASIC(dest
)->flags
&= ~ROBJECT_EMBED
;
191 if (RCLASS_IV_TBL(dest
)) {
192 st_free_table(RCLASS_IV_TBL(dest
));
193 RCLASS_IV_TBL(dest
) = 0;
195 if (RCLASS_IV_TBL(obj
)) {
196 RCLASS_IV_TBL(dest
) = st_copy(RCLASS_IV_TBL(obj
));
200 rb_funcall(dest
, id_init_copy
, 1, obj
);
205 * obj.clone -> an_object
207 * Produces a shallow copy of <i>obj</i>---the instance variables of
208 * <i>obj</i> are copied, but not the objects they reference. Copies
209 * the frozen and tainted state of <i>obj</i>. See also the discussion
210 * under <code>Object#dup</code>.
215 * s1 = Klass.new #=> #<Klass:0x401b3a38>
216 * s1.str = "Hello" #=> "Hello"
217 * s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello">
218 * s2.str[1,4] = "i" #=> "i"
219 * s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
220 * s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
222 * This method may have class-specific behavior. If so, that
223 * behavior will be documented under the #+initialize_copy+ method of
228 rb_obj_clone(VALUE obj
)
232 if (rb_special_const_p(obj
)) {
233 rb_raise(rb_eTypeError
, "can't clone %s", rb_obj_classname(obj
));
235 clone
= rb_obj_alloc(rb_obj_class(obj
));
236 RBASIC(clone
)->klass
= rb_singleton_class_clone(obj
);
237 RBASIC(clone
)->flags
= (RBASIC(obj
)->flags
| FL_TEST(clone
, FL_TAINT
)) & ~(FL_FREEZE
|FL_FINALIZE
);
238 init_copy(clone
, obj
);
239 RBASIC(clone
)->flags
|= RBASIC(obj
)->flags
& FL_FREEZE
;
246 * obj.dup -> an_object
248 * Produces a shallow copy of <i>obj</i>---the instance variables of
249 * <i>obj</i> are copied, but not the objects they reference.
250 * <code>dup</code> copies the tainted state of <i>obj</i>. See also
251 * the discussion under <code>Object#clone</code>. In general,
252 * <code>clone</code> and <code>dup</code> may have different semantics
253 * in descendent classes. While <code>clone</code> is used to duplicate
254 * an object, including its internal state, <code>dup</code> typically
255 * uses the class of the descendent object to create the new instance.
257 * This method may have class-specific behavior. If so, that
258 * behavior will be documented under the #+initialize_copy+ method of
263 rb_obj_dup(VALUE obj
)
267 if (rb_special_const_p(obj
)) {
268 rb_raise(rb_eTypeError
, "can't dup %s", rb_obj_classname(obj
));
270 dup
= rb_obj_alloc(rb_obj_class(obj
));
278 rb_obj_init_copy(VALUE obj
, VALUE orig
)
280 if (obj
== orig
) return obj
;
281 rb_check_frozen(obj
);
282 if (TYPE(obj
) != TYPE(orig
) || rb_obj_class(obj
) != rb_obj_class(orig
)) {
283 rb_raise(rb_eTypeError
, "initialize_copy should take same class object");
292 * Returns a string representing <i>obj</i>. The default
293 * <code>to_s</code> prints the object's class and an encoding of the
294 * object id. As a special case, the top-level object that is the
295 * initial execution context of Ruby programs returns ``main.''
299 rb_any_to_s(VALUE obj
)
301 const char *cname
= rb_obj_classname(obj
);
304 str
= rb_sprintf("#<%s:%p>", cname
, (void*)obj
);
305 if (OBJ_TAINTED(obj
)) OBJ_TAINT(str
);
311 rb_inspect(VALUE obj
)
313 return rb_obj_as_string(rb_funcall(obj
, id_inspect
, 0, 0));
317 inspect_i(ID id
, VALUE value
, VALUE str
)
322 /* need not to show internal data */
323 if (CLASS_OF(value
) == 0) return ST_CONTINUE
;
324 if (!rb_is_instance_id(id
)) return ST_CONTINUE
;
325 if (RSTRING_PTR(str
)[0] == '-') { /* first element */
326 RSTRING_PTR(str
)[0] = '#';
327 rb_str_cat2(str
, " ");
330 rb_str_cat2(str
, ", ");
332 ivname
= rb_id2name(id
);
333 rb_str_cat2(str
, ivname
);
334 rb_str_cat2(str
, "=");
335 str2
= rb_inspect(value
);
336 rb_str_append(str
, str2
);
337 OBJ_INFECT(str
, str2
);
343 inspect_obj(VALUE obj
, VALUE str
, int recur
)
346 rb_str_cat2(str
, " ...");
349 rb_ivar_foreach(obj
, inspect_i
, str
);
351 rb_str_cat2(str
, ">");
352 RSTRING_PTR(str
)[0] = '#';
353 OBJ_INFECT(str
, obj
);
360 * obj.inspect => string
362 * Returns a string containing a human-readable representation of
363 * <i>obj</i>. If not overridden, uses the <code>to_s</code> method to
364 * generate the string.
366 * [ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]"
367 * Time.new.inspect #=> "2008-03-08 19:43:39 +0900"
372 rb_obj_inspect(VALUE obj
)
375 if (TYPE(obj
) == T_OBJECT
) {
377 VALUE
*ptr
= ROBJECT_IVPTR(obj
);
378 long len
= ROBJECT_NUMIV(obj
);
381 for (i
= 0; i
< len
; i
++) {
382 if (ptr
[i
] != Qundef
) {
390 const char *c
= rb_obj_classname(obj
);
392 str
= rb_sprintf("-<%s:%p", c
, (void*)obj
);
393 return rb_exec_recursive(inspect_obj
, obj
, str
);
396 return rb_funcall(obj
, rb_intern("to_s"), 0, 0);
402 * obj.instance_of?(class) => true or false
404 * Returns <code>true</code> if <i>obj</i> is an instance of the given
405 * class. See also <code>Object#kind_of?</code>.
409 rb_obj_is_instance_of(VALUE obj
, VALUE c
)
417 rb_raise(rb_eTypeError
, "class or module required");
420 if (rb_obj_class(obj
) == c
) return Qtrue
;
427 * obj.is_a?(class) => true or false
428 * obj.kind_of?(class) => true or false
430 * Returns <code>true</code> if <i>class</i> is the class of
431 * <i>obj</i>, or if <i>class</i> is one of the superclasses of
432 * <i>obj</i> or modules included in <i>obj</i>.
441 * b.instance_of? A #=> false
442 * b.instance_of? B #=> true
443 * b.instance_of? C #=> false
444 * b.instance_of? M #=> false
445 * b.kind_of? A #=> true
446 * b.kind_of? B #=> true
447 * b.kind_of? C #=> false
448 * b.kind_of? M #=> true
452 rb_obj_is_kind_of(VALUE obj
, VALUE c
)
454 VALUE cl
= CLASS_OF(obj
);
463 rb_raise(rb_eTypeError
, "class or module required");
467 if (cl
== c
|| RCLASS_M_TBL(cl
) == RCLASS_M_TBL(c
))
469 cl
= RCLASS_SUPER(cl
);
477 * obj.tap{|x|...} => obj
479 * Yields <code>x</code> to the block, and then returns <code>x</code>.
480 * The primary purpose of this method is to "tap into" a method chain,
481 * in order to perform operations on intermediate results within the chain.
483 * (1..10) .tap {|x| puts "original: #{x.inspect}"}
484 * .to_a .tap {|x| puts "array: #{x.inspect}"}
485 * .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"}
486 * .map { |x| x*x } .tap {|x| puts "squares: #{x.inspect}"}
491 rb_obj_tap(VALUE obj
)
499 * Document-method: inherited
502 * inherited(subclass)
504 * Callback invoked whenever a subclass of the current class is created.
509 * def self.inherited(subclass)
510 * puts "New subclass: #{subclass}"
527 * Document-method: singleton_method_added
530 * singleton_method_added(symbol)
532 * Invoked as a callback whenever a singleton method is added to the
536 * def Chatty.singleton_method_added(id)
537 * puts "Adding #{id.id2name}"
541 * def Chatty.three() end
546 * Adding singleton_method_added
553 * Document-method: singleton_method_removed
556 * singleton_method_removed(symbol)
558 * Invoked as a callback whenever a singleton method is removed from
562 * def Chatty.singleton_method_removed(id)
563 * puts "Removing #{id.id2name}"
567 * def Chatty.three() end
569 * remove_method :three
581 * Document-method: singleton_method_undefined
584 * singleton_method_undefined(symbol)
586 * Invoked as a callback whenever a singleton method is undefined in
590 * def Chatty.singleton_method_undefined(id)
591 * puts "Undefining #{id.id2name}"
593 * def Chatty.one() end
606 * Document-method: included
609 * included( othermod )
611 * Callback invoked whenever the receiver is included in another
612 * module or class. This should be used in preference to
613 * <tt>Module.append_features</tt> if your code wants to perform some
614 * action when a module is included in another.
617 * def A.included(mod)
618 * puts "#{self} included in #{mod}"
639 * obj.tainted? => true or false
641 * Returns <code>true</code> if the object is tainted.
645 rb_obj_tainted(VALUE obj
)
647 if (OBJ_TAINTED(obj
))
656 * Marks <i>obj</i> as tainted---if the <code>$SAFE</code> level is
657 * set appropriately, many method calls which might alter the running
658 * programs environment will refuse to accept tainted strings.
662 rb_obj_taint(VALUE obj
)
665 if (!OBJ_TAINTED(obj
)) {
666 if (OBJ_FROZEN(obj
)) {
667 rb_error_frozen("object");
679 * Removes the taint from <i>obj</i>.
683 rb_obj_untaint(VALUE obj
)
686 if (OBJ_TAINTED(obj
)) {
687 if (OBJ_FROZEN(obj
)) {
688 rb_error_frozen("object");
690 FL_UNSET(obj
, FL_TAINT
);
696 rb_obj_infect(VALUE obj1
, VALUE obj2
)
698 OBJ_INFECT(obj1
, obj2
);
701 static st_table
*immediate_frozen_tbl
= 0;
707 * Prevents further modifications to <i>obj</i>. A
708 * <code>TypeError</code> will be raised if modification is attempted.
709 * There is no way to unfreeze a frozen object. See also
710 * <code>Object#frozen?</code>.
712 * a = [ "a", "b", "c" ]
718 * prog.rb:3:in `<<': can't modify frozen array (TypeError)
723 rb_obj_freeze(VALUE obj
)
725 if (!OBJ_FROZEN(obj
)) {
726 if (rb_safe_level() >= 4 && !OBJ_TAINTED(obj
)) {
727 rb_raise(rb_eSecurityError
, "Insecure: can't freeze object");
730 if (SPECIAL_CONST_P(obj
)) {
731 if (!immediate_frozen_tbl
) {
732 immediate_frozen_tbl
= st_init_numtable();
734 st_insert(immediate_frozen_tbl
, obj
, (st_data_t
)Qtrue
);
742 * obj.frozen? => true or false
744 * Returns the freeze status of <i>obj</i>.
746 * a = [ "a", "b", "c" ]
747 * a.freeze #=> ["a", "b", "c"]
752 rb_obj_frozen_p(VALUE obj
)
754 if (OBJ_FROZEN(obj
)) return Qtrue
;
755 if (SPECIAL_CONST_P(obj
)) {
756 if (!immediate_frozen_tbl
) return Qfalse
;
757 if (st_lookup(immediate_frozen_tbl
, obj
, 0)) return Qtrue
;
764 * Document-class: NilClass
766 * The class of the singleton object <code>nil</code>.
773 * Always returns zero.
789 * Always returns zero.
797 return DOUBLE2NUM(0.0);
804 * Always returns the empty string.
810 return rb_usascii_str_new(0, 0);
814 * Document-method: to_a
819 * Always returns an empty array.
827 return rb_ary_new2(0);
832 * nil.inspect => "nil"
834 * Always returns the string "nil".
838 nil_inspect(VALUE obj
)
840 return rb_usascii_str_new2("nil");
843 /***********************************************************************
844 * Document-class: TrueClass
846 * The global value <code>true</code> is the only instance of class
847 * <code>TrueClass</code> and represents a logically true value in
848 * boolean expressions. The class provides operators allowing
849 * <code>true</code> to be used in logical expressions.
855 * true.to_s => "true"
857 * The string representation of <code>true</code> is "true".
863 return rb_usascii_str_new2("true");
869 * true & obj => true or false
871 * And---Returns <code>false</code> if <i>obj</i> is
872 * <code>nil</code> or <code>false</code>, <code>true</code> otherwise.
876 true_and(VALUE obj
, VALUE obj2
)
878 return RTEST(obj2
)?Qtrue
:Qfalse
;
885 * Or---Returns <code>true</code>. As <i>anObject</i> is an argument to
886 * a method call, it is always evaluated; there is no short-circuit
887 * evaluation in this case.
890 * true || puts("logical or")
898 true_or(VALUE obj
, VALUE obj2
)
908 * Exclusive Or---Returns <code>true</code> if <i>obj</i> is
909 * <code>nil</code> or <code>false</code>, <code>false</code>
914 true_xor(VALUE obj
, VALUE obj2
)
916 return RTEST(obj2
)?Qfalse
:Qtrue
;
921 * Document-class: FalseClass
923 * The global value <code>false</code> is the only instance of class
924 * <code>FalseClass</code> and represents a logically false value in
925 * boolean expressions. The class provides operators allowing
926 * <code>false</code> to participate correctly in logical expressions.
932 * false.to_s => "false"
938 false_to_s(VALUE obj
)
940 return rb_usascii_str_new2("false");
945 * false & obj => false
948 * And---Returns <code>false</code>. <i>obj</i> is always
949 * evaluated as it is the argument to a method call---there is no
950 * short-circuit evaluation in this case.
954 false_and(VALUE obj
, VALUE obj2
)
962 * false | obj => true or false
963 * nil | obj => true or false
965 * Or---Returns <code>false</code> if <i>obj</i> is
966 * <code>nil</code> or <code>false</code>; <code>true</code> otherwise.
970 false_or(VALUE obj
, VALUE obj2
)
972 return RTEST(obj2
)?Qtrue
:Qfalse
;
979 * false ^ obj => true or false
980 * nil ^ obj => true or false
982 * Exclusive Or---If <i>obj</i> is <code>nil</code> or
983 * <code>false</code>, returns <code>false</code>; otherwise, returns
989 false_xor(VALUE obj
, VALUE obj2
)
991 return RTEST(obj2
)?Qtrue
:Qfalse
;
998 * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
1010 * <anything_else>.nil? => false
1012 * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
1025 * obj =~ other => nil
1027 * Pattern Match---Overridden by descendents (notably
1028 * <code>Regexp</code> and <code>String</code>) to provide meaningful
1029 * pattern-match semantics.
1033 rb_obj_match(VALUE obj1
, VALUE obj2
)
1040 * obj !~ other => nil
1042 * Returns true if two objects does not match, using <i>=~</i> method.
1046 rb_obj_not_match(VALUE obj1
, VALUE obj2
)
1048 VALUE result
= rb_funcall(obj1
, id_match
, 1, obj2
);
1049 return RTEST(result
) ? Qfalse
: Qtrue
;
1053 /***********************************************************************
1055 * Document-class: Module
1057 * A <code>Module</code> is a collection of methods and constants. The
1058 * methods in a module may be instance methods or module methods.
1059 * Instance methods appear as methods in a class when the module is
1060 * included, module methods do not. Conversely, module methods may be
1061 * called without creating an encapsulating object, while instance
1062 * methods may not. (See <code>Module#module_function</code>)
1064 * In the descriptions that follow, the parameter <i>syml</i> refers
1065 * to a symbol, which is either a quoted string or a
1066 * <code>Symbol</code> (such as <code>:name</code>).
1075 * Mod.class #=> Module
1076 * Mod.constants #=> [:CONST, :PI, :E]
1077 * Mod.instance_methods #=> [:meth]
1083 * mod.to_s => string
1085 * Return a string representing this module or class. For basic
1086 * classes and modules, this is the name. For singletons, we
1087 * show information on the thing we're attached to as well.
1091 rb_mod_to_s(VALUE klass
)
1093 if (FL_TEST(klass
, FL_SINGLETON
)) {
1094 VALUE s
= rb_usascii_str_new2("#<");
1095 VALUE v
= rb_iv_get(klass
, "__attached__");
1097 rb_str_cat2(s
, "Class:");
1099 case T_CLASS
: case T_MODULE
:
1100 rb_str_append(s
, rb_inspect(v
));
1103 rb_str_append(s
, rb_any_to_s(v
));
1106 rb_str_cat2(s
, ">");
1110 return rb_str_dup(rb_class_name(klass
));
1117 * Prevents further modifications to <i>mod</i>.
1121 rb_mod_freeze(VALUE mod
)
1124 return rb_obj_freeze(mod
);
1129 * mod === obj => true or false
1131 * Case Equality---Returns <code>true</code> if <i>anObject</i> is an
1132 * instance of <i>mod</i> or one of <i>mod</i>'s descendents. Of
1133 * limited use for modules, but can be used in <code>case</code>
1134 * statements to classify objects by class.
1138 rb_mod_eqq(VALUE mod
, VALUE arg
)
1140 return rb_obj_is_kind_of(arg
, mod
);
1145 * mod <= other => true, false, or nil
1147 * Returns true if <i>mod</i> is a subclass of <i>other</i> or
1148 * is the same as <i>other</i>. Returns
1149 * <code>nil</code> if there's no relationship between the two.
1150 * (Think of the relationship in terms of the class definition:
1151 * "class A<B" implies "A<B").
1156 rb_class_inherited_p(VALUE mod
, VALUE arg
)
1160 if (mod
== arg
) return Qtrue
;
1161 switch (TYPE(arg
)) {
1166 rb_raise(rb_eTypeError
, "compared with non class/module");
1169 if (RCLASS_M_TBL(mod
) == RCLASS_M_TBL(arg
))
1171 mod
= RCLASS_SUPER(mod
);
1173 /* not mod < arg; check if mod > arg */
1175 if (RCLASS_M_TBL(arg
) == RCLASS_M_TBL(start
))
1177 arg
= RCLASS_SUPER(arg
);
1184 * mod < other => true, false, or nil
1186 * Returns true if <i>mod</i> is a subclass of <i>other</i>. Returns
1187 * <code>nil</code> if there's no relationship between the two.
1188 * (Think of the relationship in terms of the class definition:
1189 * "class A<B" implies "A<B").
1194 rb_mod_lt(VALUE mod
, VALUE arg
)
1196 if (mod
== arg
) return Qfalse
;
1197 return rb_class_inherited_p(mod
, arg
);
1203 * mod >= other => true, false, or nil
1205 * Returns true if <i>mod</i> is an ancestor of <i>other</i>, or the
1206 * two modules are the same. Returns
1207 * <code>nil</code> if there's no relationship between the two.
1208 * (Think of the relationship in terms of the class definition:
1209 * "class A<B" implies "B>A").
1214 rb_mod_ge(VALUE mod
, VALUE arg
)
1216 switch (TYPE(arg
)) {
1221 rb_raise(rb_eTypeError
, "compared with non class/module");
1224 return rb_class_inherited_p(arg
, mod
);
1229 * mod > other => true, false, or nil
1231 * Returns true if <i>mod</i> is an ancestor of <i>other</i>. Returns
1232 * <code>nil</code> if there's no relationship between the two.
1233 * (Think of the relationship in terms of the class definition:
1234 * "class A<B" implies "B>A").
1239 rb_mod_gt(VALUE mod
, VALUE arg
)
1241 if (mod
== arg
) return Qfalse
;
1242 return rb_mod_ge(mod
, arg
);
1247 * mod <=> other_mod => -1, 0, +1, or nil
1249 * Comparison---Returns -1 if <i>mod</i> includes <i>other_mod</i>, 0 if
1250 * <i>mod</i> is the same as <i>other_mod</i>, and +1 if <i>mod</i> is
1251 * included by <i>other_mod</i> or if <i>mod</i> has no relationship with
1252 * <i>other_mod</i>. Returns <code>nil</code> if <i>other_mod</i> is
1257 rb_mod_cmp(VALUE mod
, VALUE arg
)
1261 if (mod
== arg
) return INT2FIX(0);
1262 switch (TYPE(arg
)) {
1270 cmp
= rb_class_inherited_p(mod
, arg
);
1271 if (NIL_P(cmp
)) return Qnil
;
1279 rb_module_s_alloc(VALUE klass
)
1281 VALUE mod
= rb_module_new();
1283 RBASIC(mod
)->klass
= klass
;
1288 rb_class_s_alloc(VALUE klass
)
1290 return rb_class_boot(0);
1296 * Module.new {|mod| block } => mod
1298 * Creates a new anonymous module. If a block is given, it is passed
1299 * the module object, and the block is evaluated in the context of this
1300 * module using <code>module_eval</code>.
1302 * Fred = Module.new do
1311 * a.extend(Fred) #=> "my string"
1312 * a.meth1 #=> "hello"
1317 rb_mod_initialize(VALUE module
)
1319 extern VALUE
rb_mod_module_exec(int argc
, VALUE
*argv
, VALUE mod
);
1321 if (rb_block_given_p()) {
1322 rb_mod_module_exec(1, &module
, module
);
1329 * Class.new(super_class=Object) => a_class
1331 * Creates a new anonymous (unnamed) class with the given superclass
1332 * (or <code>Object</code> if no parameter is given). You can give a
1333 * class a name by assigning the class object to a constant.
1338 rb_class_initialize(int argc
, VALUE
*argv
, VALUE klass
)
1342 if (RCLASS_SUPER(klass
) != 0) {
1343 rb_raise(rb_eTypeError
, "already initialized class");
1349 rb_scan_args(argc
, argv
, "01", &super
);
1350 rb_check_inheritable(super
);
1352 RCLASS_SUPER(klass
) = super
;
1353 rb_make_metaclass(klass
, RBASIC(super
)->klass
);
1354 rb_class_inherited(super
, klass
);
1355 rb_mod_initialize(klass
);
1362 * class.allocate() => obj
1364 * Allocates space for a new object of <i>class</i>'s class and does not
1365 * call initialize on the new instance. The returned object must be an
1366 * instance of <i>class</i>.
1368 * klass = Class.new do
1369 * def initialize(*args)
1370 * @initialized = true
1374 * @initialized || false
1378 * klass.allocate.initialized? #=> false
1383 rb_obj_alloc(VALUE klass
)
1387 if (RCLASS_SUPER(klass
) == 0 && klass
!= rb_cBasicObject
) {
1388 rb_raise(rb_eTypeError
, "can't instantiate uninitialized class");
1390 if (FL_TEST(klass
, FL_SINGLETON
)) {
1391 rb_raise(rb_eTypeError
, "can't create instance of singleton class");
1393 obj
= rb_funcall(klass
, ID_ALLOCATOR
, 0, 0);
1394 if (rb_obj_class(obj
) != rb_class_real(klass
)) {
1395 rb_raise(rb_eTypeError
, "wrong instance allocation");
1401 rb_class_allocate_instance(VALUE klass
)
1403 NEWOBJ(obj
, struct RObject
);
1404 OBJSETUP(obj
, klass
, T_OBJECT
);
1410 * class.new(args, ...) => obj
1412 * Calls <code>allocate</code> to create a new object of
1413 * <i>class</i>'s class, then invokes that object's
1414 * <code>initialize</code> method, passing it <i>args</i>.
1415 * This is the method that ends up getting called whenever
1416 * an object is constructed using .new.
1421 rb_class_new_instance(int argc
, VALUE
*argv
, VALUE klass
)
1425 obj
= rb_obj_alloc(klass
);
1426 rb_obj_call_init(obj
, argc
, argv
);
1433 * class.superclass -> a_super_class or nil
1435 * Returns the superclass of <i>class</i>, or <code>nil</code>.
1437 * File.superclass #=> IO
1438 * IO.superclass #=> Object
1439 * Object.superclass #=> BasicObject
1441 * class Bar < Foo; end
1442 * Bar.superclass #=> Foo
1444 * returns nil when the given class hasn't a parent class:
1446 * BasicObject.superclass #=> nil
1451 rb_class_superclass(VALUE klass
)
1453 VALUE super
= RCLASS_SUPER(klass
);
1456 if (klass
== rb_cBasicObject
) return Qnil
;
1457 rb_raise(rb_eTypeError
, "uninitialized class");
1459 while (TYPE(super
) == T_ICLASS
) {
1460 super
= RCLASS_SUPER(super
);
1470 * attr_reader(symbol, ...) => nil
1471 * attr(symbol, ...) => nil
1473 * Creates instance variables and corresponding methods that return the
1474 * value of each instance variable. Equivalent to calling
1475 * ``<code>attr</code><i>:name</i>'' on each name in turn.
1479 rb_mod_attr_reader(int argc
, VALUE
*argv
, VALUE klass
)
1483 for (i
=0; i
<argc
; i
++) {
1484 rb_attr(klass
, rb_to_id(argv
[i
]), Qtrue
, Qfalse
, Qtrue
);
1490 rb_mod_attr(int argc
, VALUE
*argv
, VALUE klass
)
1492 if (argc
== 2 && (argv
[1] == Qtrue
|| argv
[1] == Qfalse
)) {
1493 rb_warning("optional boolean argument is obsoleted");
1494 rb_attr(klass
, rb_to_id(argv
[0]), 1, RTEST(argv
[1]), Qtrue
);
1497 return rb_mod_attr_reader(argc
, argv
, klass
);
1502 * attr_writer(symbol, ...) => nil
1504 * Creates an accessor method to allow assignment to the attribute
1505 * <i>aSymbol</i><code>.id2name</code>.
1509 rb_mod_attr_writer(int argc
, VALUE
*argv
, VALUE klass
)
1513 for (i
=0; i
<argc
; i
++) {
1514 rb_attr(klass
, rb_to_id(argv
[i
]), Qfalse
, Qtrue
, Qtrue
);
1521 * attr_accessor(symbol, ...) => nil
1523 * Defines a named attribute for this module, where the name is
1524 * <i>symbol.</i><code>id2name</code>, creating an instance variable
1525 * (<code>@name</code>) and a corresponding access method to read it.
1526 * Also creates a method called <code>name=</code> to set the attribute.
1529 * attr_accessor(:one, :two)
1531 * Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
1535 rb_mod_attr_accessor(int argc
, VALUE
*argv
, VALUE klass
)
1539 for (i
=0; i
<argc
; i
++) {
1540 rb_attr(klass
, rb_to_id(argv
[i
]), Qtrue
, Qtrue
, Qtrue
);
1547 * mod.const_get(sym, inherit=true) => obj
1549 * Returns the value of the named constant in <i>mod</i>.
1551 * Math.const_get(:PI) #=> 3.14159265358979
1553 * If the constant is not defined or is defined by the ancestors and
1554 * +inherit+ is false, +NameError+ will be raised.
1558 rb_mod_const_get(int argc
, VALUE
*argv
, VALUE mod
)
1568 rb_scan_args(argc
, argv
, "11", &name
, &recur
);
1570 id
= rb_to_id(name
);
1571 if (!rb_is_const_id(id
)) {
1572 rb_name_error(id
, "wrong constant name %s", rb_id2name(id
));
1574 return RTEST(recur
) ? rb_const_get(mod
, id
) : rb_const_get_at(mod
, id
);
1579 * mod.const_set(sym, obj) => obj
1581 * Sets the named constant to the given object, returning that object.
1582 * Creates a new constant if no constant with the given name previously
1585 * Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
1586 * Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
1590 rb_mod_const_set(VALUE mod
, VALUE name
, VALUE value
)
1592 ID id
= rb_to_id(name
);
1594 if (!rb_is_const_id(id
)) {
1595 rb_name_error(id
, "wrong constant name %s", rb_id2name(id
));
1597 rb_const_set(mod
, id
, value
);
1603 * mod.const_defined?(sym, inherit=true) => true or false
1605 * Returns <code>true</code> if a constant with the given name is
1606 * defined by <i>mod</i>, or its ancestors if +inherit+ is not false.
1608 * Math.const_defined? "PI" #=> true
1609 * IO.const_defined? "SYNC" #=> true
1610 * IO.const_defined? "SYNC", false #=> false
1614 rb_mod_const_defined(int argc
, VALUE
*argv
, VALUE mod
)
1624 rb_scan_args(argc
, argv
, "11", &name
, &recur
);
1626 id
= rb_to_id(name
);
1627 if (!rb_is_const_id(id
)) {
1628 rb_name_error(id
, "wrong constant name %s", rb_id2name(id
));
1630 return RTEST(recur
) ? rb_const_defined(mod
, id
) : rb_const_defined_at(mod
, id
);
1635 * obj.methods => array
1637 * Returns a list of the names of methods publicly accessible in
1638 * <i>obj</i>. This will include all the methods accessible in
1639 * <i>obj</i>'s ancestors.
1646 * k.methods[0..9] #=> ["kMethod", "freeze", "nil?", "is_a?",
1647 * # "class", "instance_variable_set",
1648 * # "methods", "extend", "__send__", "instance_eval"]
1649 * k.methods.length #=> 42
1653 rb_obj_methods(int argc
, VALUE
*argv
, VALUE obj
)
1660 return rb_class_instance_methods(1, args
, CLASS_OF(obj
));
1665 rb_scan_args(argc
, argv
, "1", &recur
);
1670 return rb_obj_singleton_methods(argc
, argv
, obj
);
1676 * obj.protected_methods(all=true) => array
1678 * Returns the list of protected methods accessible to <i>obj</i>. If
1679 * the <i>all</i> parameter is set to <code>false</code>, only those methods
1680 * in the receiver will be listed.
1684 rb_obj_protected_methods(int argc
, VALUE
*argv
, VALUE obj
)
1686 if (argc
== 0) { /* hack to stop warning */
1690 return rb_class_protected_instance_methods(1, args
, CLASS_OF(obj
));
1692 return rb_class_protected_instance_methods(argc
, argv
, CLASS_OF(obj
));
1697 * obj.private_methods(all=true) => array
1699 * Returns the list of private methods accessible to <i>obj</i>. If
1700 * the <i>all</i> parameter is set to <code>false</code>, only those methods
1701 * in the receiver will be listed.
1705 rb_obj_private_methods(int argc
, VALUE
*argv
, VALUE obj
)
1707 if (argc
== 0) { /* hack to stop warning */
1711 return rb_class_private_instance_methods(1, args
, CLASS_OF(obj
));
1713 return rb_class_private_instance_methods(argc
, argv
, CLASS_OF(obj
));
1718 * obj.public_methods(all=true) => array
1720 * Returns the list of public methods accessible to <i>obj</i>. If
1721 * the <i>all</i> parameter is set to <code>false</code>, only those methods
1722 * in the receiver will be listed.
1726 rb_obj_public_methods(int argc
, VALUE
*argv
, VALUE obj
)
1728 if (argc
== 0) { /* hack to stop warning */
1732 return rb_class_public_instance_methods(1, args
, CLASS_OF(obj
));
1734 return rb_class_public_instance_methods(argc
, argv
, CLASS_OF(obj
));
1739 * obj.instance_variable_get(symbol) => obj
1741 * Returns the value of the given instance variable, or nil if the
1742 * instance variable is not set. The <code>@</code> part of the
1743 * variable name should be included for regular instance
1744 * variables. Throws a <code>NameError</code> exception if the
1745 * supplied symbol is not valid as an instance variable name.
1748 * def initialize(p1, p2)
1752 * fred = Fred.new('cat', 99)
1753 * fred.instance_variable_get(:@a) #=> "cat"
1754 * fred.instance_variable_get("@b") #=> 99
1758 rb_obj_ivar_get(VALUE obj
, VALUE iv
)
1760 ID id
= rb_to_id(iv
);
1762 if (!rb_is_instance_id(id
)) {
1763 rb_name_error(id
, "`%s' is not allowed as an instance variable name", rb_id2name(id
));
1765 return rb_ivar_get(obj
, id
);
1770 * obj.instance_variable_set(symbol, obj) => obj
1772 * Sets the instance variable names by <i>symbol</i> to
1773 * <i>object</i>, thereby frustrating the efforts of the class's
1774 * author to attempt to provide proper encapsulation. The variable
1775 * did not have to exist prior to this call.
1778 * def initialize(p1, p2)
1782 * fred = Fred.new('cat', 99)
1783 * fred.instance_variable_set(:@a, 'dog') #=> "dog"
1784 * fred.instance_variable_set(:@c, 'cat') #=> "cat"
1785 * fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
1789 rb_obj_ivar_set(VALUE obj
, VALUE iv
, VALUE val
)
1791 ID id
= rb_to_id(iv
);
1793 if (!rb_is_instance_id(id
)) {
1794 rb_name_error(id
, "`%s' is not allowed as an instance variable name", rb_id2name(id
));
1796 return rb_ivar_set(obj
, id
, val
);
1801 * obj.instance_variable_defined?(symbol) => true or false
1803 * Returns <code>true</code> if the given instance variable is
1804 * defined in <i>obj</i>.
1807 * def initialize(p1, p2)
1811 * fred = Fred.new('cat', 99)
1812 * fred.instance_variable_defined?(:@a) #=> true
1813 * fred.instance_variable_defined?("@b") #=> true
1814 * fred.instance_variable_defined?("@c") #=> false
1818 rb_obj_ivar_defined(VALUE obj
, VALUE iv
)
1820 ID id
= rb_to_id(iv
);
1822 if (!rb_is_instance_id(id
)) {
1823 rb_name_error(id
, "`%s' is not allowed as an instance variable name", rb_id2name(id
));
1825 return rb_ivar_defined(obj
, id
);
1830 * mod.class_variable_get(symbol) => obj
1832 * Returns the value of the given class variable (or throws a
1833 * <code>NameError</code> exception). The <code>@@</code> part of the
1834 * variable name should be included for regular class variables
1839 * Fred.class_variable_get(:@@foo) #=> 99
1843 rb_mod_cvar_get(VALUE obj
, VALUE iv
)
1845 ID id
= rb_to_id(iv
);
1847 if (!rb_is_class_id(id
)) {
1848 rb_name_error(id
, "`%s' is not allowed as a class variable name", rb_id2name(id
));
1850 return rb_cvar_get(obj
, id
);
1855 * obj.class_variable_set(symbol, obj) => obj
1857 * Sets the class variable names by <i>symbol</i> to
1866 * Fred.class_variable_set(:@@foo, 101) #=> 101
1867 * Fred.new.foo #=> 101
1871 rb_mod_cvar_set(VALUE obj
, VALUE iv
, VALUE val
)
1873 ID id
= rb_to_id(iv
);
1875 if (!rb_is_class_id(id
)) {
1876 rb_name_error(id
, "`%s' is not allowed as a class variable name", rb_id2name(id
));
1878 rb_cvar_set(obj
, id
, val
);
1884 * obj.class_variable_defined?(symbol) => true or false
1886 * Returns <code>true</code> if the given class variable is defined
1892 * Fred.class_variable_defined?(:@@foo) #=> true
1893 * Fred.class_variable_defined?(:@@bar) #=> false
1897 rb_mod_cvar_defined(VALUE obj
, VALUE iv
)
1899 ID id
= rb_to_id(iv
);
1901 if (!rb_is_class_id(id
)) {
1902 rb_name_error(id
, "`%s' is not allowed as a class variable name", rb_id2name(id
));
1904 return rb_cvar_defined(obj
, id
);
1908 convert_type(VALUE val
, const char *tname
, const char *method
, int raise
)
1912 m
= rb_intern(method
);
1913 if (!rb_respond_to(val
, m
)) {
1915 rb_raise(rb_eTypeError
, "can't convert %s into %s",
1916 NIL_P(val
) ? "nil" :
1917 val
== Qtrue
? "true" :
1918 val
== Qfalse
? "false" :
1919 rb_obj_classname(val
),
1926 return rb_funcall(val
, m
, 0);
1930 rb_convert_type(VALUE val
, int type
, const char *tname
, const char *method
)
1934 if (TYPE(val
) == type
) return val
;
1935 v
= convert_type(val
, tname
, method
, Qtrue
);
1936 if (TYPE(v
) != type
) {
1937 const char *cname
= rb_obj_classname(val
);
1938 rb_raise(rb_eTypeError
, "can't convert %s to %s (%s#%s gives %s)",
1939 cname
, tname
, cname
, method
, rb_obj_classname(v
));
1945 rb_check_convert_type(VALUE val
, int type
, const char *tname
, const char *method
)
1949 /* always convert T_DATA */
1950 if (TYPE(val
) == type
&& type
!= T_DATA
) return val
;
1951 v
= convert_type(val
, tname
, method
, Qfalse
);
1952 if (NIL_P(v
)) return Qnil
;
1953 if (TYPE(v
) != type
) {
1954 const char *cname
= rb_obj_classname(val
);
1955 rb_raise(rb_eTypeError
, "can't convert %s to %s (%s#%s gives %s)",
1956 cname
, tname
, cname
, method
, rb_obj_classname(v
));
1963 rb_to_integer(VALUE val
, const char *method
)
1967 if (FIXNUM_P(val
)) return val
;
1968 v
= convert_type(val
, "Integer", method
, Qtrue
);
1969 if (!rb_obj_is_kind_of(v
, rb_cInteger
)) {
1970 const char *cname
= rb_obj_classname(val
);
1971 rb_raise(rb_eTypeError
, "can't convert %s to Integer (%s#%s gives %s)",
1972 cname
, cname
, method
, rb_obj_classname(v
));
1978 rb_check_to_integer(VALUE val
, const char *method
)
1982 if (FIXNUM_P(val
)) return val
;
1983 v
= convert_type(val
, "Integer", method
, Qfalse
);
1984 if (!rb_obj_is_kind_of(v
, rb_cInteger
)) {
1991 rb_to_int(VALUE val
)
1993 return rb_to_integer(val
, "to_int");
1997 rb_Integer(VALUE val
)
2001 switch (TYPE(val
)) {
2003 if (RFLOAT_VALUE(val
) <= (double)FIXNUM_MAX
2004 && RFLOAT_VALUE(val
) >= (double)FIXNUM_MIN
) {
2007 return rb_dbl2big(RFLOAT_VALUE(val
));
2014 return rb_str_to_inum(val
, 0, Qtrue
);
2017 rb_raise(rb_eTypeError
, "can't convert nil into Integer");
2023 tmp
= convert_type(val
, "Integer", "to_int", Qfalse
);
2025 return rb_to_integer(val
, "to_i");
2032 * Integer(arg) => integer
2034 * Converts <i>arg</i> to a <code>Fixnum</code> or <code>Bignum</code>.
2035 * Numeric types are converted directly (with floating point numbers
2036 * being truncated). If <i>arg</i> is a <code>String</code>, leading
2037 * radix indicators (<code>0</code>, <code>0b</code>, and
2038 * <code>0x</code>) are honored. Others are converted using
2039 * <code>to_int</code> and <code>to_i</code>. This behavior is
2040 * different from that of <code>String#to_i</code>.
2042 * Integer(123.999) #=> 123
2043 * Integer("0x1a") #=> 26
2044 * Integer(Time.new) #=> 1204973019
2048 rb_f_integer(VALUE obj
, VALUE arg
)
2050 return rb_Integer(arg
);
2054 rb_cstr_to_dbl(const char *p
, int badcheck
)
2059 const char *ellipsis
= "";
2061 #define OutOfRange() (((w = end - p) > 20) ? (w = 20, ellipsis = "...") : (ellipsis = ""))
2065 while (ISSPACE(*p
)) p
++;
2066 d
= strtod(p
, &end
);
2067 if (errno
== ERANGE
) {
2069 rb_warning("Float %.*s%s out of range", w
, p
, ellipsis
);
2075 rb_invalid_str(q
, "Float()");
2080 char buf
[DBL_DIG
* 4 + 10];
2082 char *e
= buf
+ sizeof(buf
) - 1;
2085 while (p
< end
&& n
< e
) prev
= *n
++ = *p
++;
2088 /* remove underscores between digits */
2090 if (n
== buf
|| !ISDIGIT(prev
)) goto bad
;
2092 if (!ISDIGIT(*p
)) goto bad
;
2095 while (*++p
== '_');
2100 if (n
< e
) *n
++ = prev
;
2104 d
= strtod(p
, &end
);
2105 if (errno
== ERANGE
) {
2107 rb_warning("Float %.*s%s out of range", w
, p
, ellipsis
);
2111 if (!end
|| p
== end
) goto bad
;
2112 while (*end
&& ISSPACE(*end
)) end
++;
2116 if (errno
== ERANGE
) {
2119 rb_raise(rb_eArgError
, "Float %.*s%s out of range", w
, q
, ellipsis
);
2125 rb_str_to_dbl(VALUE str
, int badcheck
)
2131 s
= RSTRING_PTR(str
);
2132 len
= RSTRING_LEN(str
);
2134 if (s
[len
]) { /* no sentinel somehow */
2135 char *p
= ALLOCA_N(char, len
+1);
2137 MEMCPY(p
, s
, char, len
);
2141 if (badcheck
&& len
!= strlen(s
)) {
2142 rb_raise(rb_eArgError
, "string for Float contains null byte");
2145 return rb_cstr_to_dbl(s
, badcheck
);
2151 switch (TYPE(val
)) {
2153 return DOUBLE2NUM((double)FIX2LONG(val
));
2159 return DOUBLE2NUM(rb_big2dbl(val
));
2162 return DOUBLE2NUM(rb_str_to_dbl(val
, Qtrue
));
2165 rb_raise(rb_eTypeError
, "can't convert nil into Float");
2169 return rb_convert_type(val
, T_FLOAT
, "Float", "to_f");
2175 * Float(arg) => float
2177 * Returns <i>arg</i> converted to a float. Numeric types are converted
2178 * directly, the rest are converted using <i>arg</i>.to_f. As of Ruby
2179 * 1.8, converting <code>nil</code> generates a <code>TypeError</code>.
2182 * Float("123.456") #=> 123.456
2186 rb_f_float(VALUE obj
, VALUE arg
)
2188 return rb_Float(arg
);
2192 rb_num2dbl(VALUE val
)
2194 switch (TYPE(val
)) {
2196 return RFLOAT_VALUE(val
);
2199 rb_raise(rb_eTypeError
, "no implicit conversion to float from string");
2203 rb_raise(rb_eTypeError
, "no implicit conversion to float from nil");
2210 return RFLOAT_VALUE(rb_Float(val
));
2214 rb_str2cstr(VALUE str
, long *len
)
2217 if (len
) *len
= RSTRING_LEN(str
);
2218 else if (RTEST(ruby_verbose
) && RSTRING_LEN(str
) != strlen(RSTRING_PTR(str
))) {
2219 rb_warn("string contains \\0 character");
2221 return RSTRING_PTR(str
);
2225 rb_String(VALUE val
)
2227 return rb_convert_type(val
, T_STRING
, "String", "to_s");
2233 * String(arg) => string
2235 * Converts <i>arg</i> to a <code>String</code> by calling its
2236 * <code>to_s</code> method.
2238 * String(self) #=> "main"
2239 * String(self.class) #=> "Object"
2240 * String(123456) #=> "123456"
2244 rb_f_string(VALUE obj
, VALUE arg
)
2246 return rb_String(arg
);
2252 VALUE tmp
= rb_check_array_type(val
);
2255 tmp
= rb_check_convert_type(val
, T_ARRAY
, "Array", "to_a");
2257 return rb_ary_new3(1, val
);
2265 * Array(arg) => array
2267 * Returns <i>arg</i> as an <code>Array</code>. First tries to call
2268 * <i>arg</i><code>.to_ary</code>, then <i>arg</i><code>.to_a</code>.
2270 * Array(1..5) #=> [1, 2, 3, 4, 5]
2274 rb_f_array(VALUE obj
, VALUE arg
)
2276 return rb_Array(arg
);
2280 boot_defclass(const char *name
, VALUE super
)
2282 extern st_table
*rb_class_tbl
;
2283 VALUE obj
= rb_class_boot(super
);
2284 ID id
= rb_intern(name
);
2286 rb_name_class(obj
, id
);
2287 st_add_direct(rb_class_tbl
, id
, obj
);
2288 rb_const_set((rb_cObject
? rb_cObject
: obj
), id
, obj
);
2293 * Document-class: Class
2295 * Classes in Ruby are first-class objects---each is an instance of
2296 * class <code>Class</code>.
2298 * When a new class is created (typically using <code>class Name ...
2299 * end</code>), an object of type <code>Class</code> is created and
2300 * assigned to a global constant (<code>Name</code> in this case). When
2301 * <code>Name.new</code> is called to create a new object, the
2302 * <code>new</code> method in <code>Class</code> is run by default.
2303 * This can be demonstrated by overriding <code>new</code> in
2304 * <code>Class</code>:
2309 * print "Creating a new ", self.name, "\n"
2321 * <em>produces:</em>
2323 * Creating a new Name
2325 * Classes, modules, and objects are interrelated. In the diagram
2326 * that follows, the vertical arrows represent inheritance, and the
2327 * parentheses meta-classes. All metaclasses are instances
2328 * of the class `Class'.
2330 * +-----------------+
2332 * BasicObject-->(BasicObject) |
2335 * Object---->(Object) |
2338 * | | +-----+ +---------+ |
2340 * | +-----------+ | |
2342 * +------+ | Module--->(Module) |
2344 * OtherClass-->(OtherClass) | | |
2346 * Class---->(Class) |
2349 * +----------------+
2354 * <code>BasicObject</code> is the parent class of all classes in Ruby.
2355 * It's an explicit blank class. <code>Object</code>, the root of Ruby's
2356 * class hierarchy is a direct subclass of <code>BasicObject</code>. Its
2357 * methods are therefore available to all objects unless explicitly
2360 * <code>Object</code> mixes in the <code>Kernel</code> module, making
2361 * the built-in kernel functions globally accessible. Although the
2362 * instance methods of <code>Object</code> are defined by the
2363 * <code>Kernel</code> module, we have chosen to document them here for
2366 * In the descriptions of Object's methods, the parameter <i>symbol</i> refers
2367 * to a symbol, which is either a quoted string or a
2368 * <code>Symbol</code> (such as <code>:name</code>).
2378 rb_cBasicObject
= boot_defclass("BasicObject", 0);
2379 rb_cObject
= boot_defclass("Object", rb_cBasicObject
);
2380 rb_cModule
= boot_defclass("Module", rb_cObject
);
2381 rb_cClass
= boot_defclass("Class", rb_cModule
);
2383 metaclass
= rb_make_metaclass(rb_cBasicObject
, rb_cClass
);
2384 metaclass
= rb_make_metaclass(rb_cObject
, metaclass
);
2385 metaclass
= rb_make_metaclass(rb_cModule
, metaclass
);
2386 metaclass
= rb_make_metaclass(rb_cClass
, metaclass
);
2388 rb_define_private_method(rb_cBasicObject
, "initialize", rb_obj_dummy
, 0);
2389 rb_define_alloc_func(rb_cBasicObject
, rb_class_allocate_instance
);
2390 rb_define_method(rb_cBasicObject
, "==", rb_obj_equal
, 1);
2391 rb_define_method(rb_cBasicObject
, "equal?", rb_obj_equal
, 1);
2392 rb_define_method(rb_cBasicObject
, "!", rb_obj_not
, 0);
2393 rb_define_method(rb_cBasicObject
, "!=", rb_obj_not_equal
, 1);
2395 rb_define_private_method(rb_cBasicObject
, "singleton_method_added", rb_obj_dummy
, 1);
2396 rb_define_private_method(rb_cBasicObject
, "singleton_method_removed", rb_obj_dummy
, 1);
2397 rb_define_private_method(rb_cBasicObject
, "singleton_method_undefined", rb_obj_dummy
, 1);
2399 rb_mKernel
= rb_define_module("Kernel");
2400 rb_include_module(rb_cObject
, rb_mKernel
);
2401 rb_define_private_method(rb_cClass
, "inherited", rb_obj_dummy
, 1);
2402 rb_define_private_method(rb_cModule
, "included", rb_obj_dummy
, 1);
2403 rb_define_private_method(rb_cModule
, "extended", rb_obj_dummy
, 1);
2404 rb_define_private_method(rb_cModule
, "method_added", rb_obj_dummy
, 1);
2405 rb_define_private_method(rb_cModule
, "method_removed", rb_obj_dummy
, 1);
2406 rb_define_private_method(rb_cModule
, "method_undefined", rb_obj_dummy
, 1);
2408 rb_define_method(rb_mKernel
, "nil?", rb_false
, 0);
2409 rb_define_method(rb_mKernel
, "===", rb_equal
, 1);
2410 rb_define_method(rb_mKernel
, "=~", rb_obj_match
, 1);
2411 rb_define_method(rb_mKernel
, "!~", rb_obj_not_match
, 1);
2412 rb_define_method(rb_mKernel
, "eql?", rb_obj_equal
, 1);
2414 rb_define_method(rb_mKernel
, "class", rb_obj_class
, 0);
2415 rb_define_method(rb_mKernel
, "clone", rb_obj_clone
, 0);
2416 rb_define_method(rb_mKernel
, "dup", rb_obj_dup
, 0);
2417 rb_define_method(rb_mKernel
, "initialize_copy", rb_obj_init_copy
, 1);
2419 rb_define_method(rb_mKernel
, "taint", rb_obj_taint
, 0);
2420 rb_define_method(rb_mKernel
, "tainted?", rb_obj_tainted
, 0);
2421 rb_define_method(rb_mKernel
, "untaint", rb_obj_untaint
, 0);
2422 rb_define_method(rb_mKernel
, "freeze", rb_obj_freeze
, 0);
2423 rb_define_method(rb_mKernel
, "frozen?", rb_obj_frozen_p
, 0);
2425 rb_define_method(rb_mKernel
, "to_s", rb_any_to_s
, 0);
2426 rb_define_method(rb_mKernel
, "inspect", rb_obj_inspect
, 0);
2427 rb_define_method(rb_mKernel
, "methods", rb_obj_methods
, -1);
2428 rb_define_method(rb_mKernel
, "singleton_methods", rb_obj_singleton_methods
, -1); /* in class.c */
2429 rb_define_method(rb_mKernel
, "protected_methods", rb_obj_protected_methods
, -1);
2430 rb_define_method(rb_mKernel
, "private_methods", rb_obj_private_methods
, -1);
2431 rb_define_method(rb_mKernel
, "public_methods", rb_obj_public_methods
, -1);
2432 rb_define_method(rb_mKernel
, "instance_variables", rb_obj_instance_variables
, 0); /* in variable.c */
2433 rb_define_method(rb_mKernel
, "instance_variable_get", rb_obj_ivar_get
, 1);
2434 rb_define_method(rb_mKernel
, "instance_variable_set", rb_obj_ivar_set
, 2);
2435 rb_define_method(rb_mKernel
, "instance_variable_defined?", rb_obj_ivar_defined
, 1);
2436 rb_define_private_method(rb_mKernel
, "remove_instance_variable",
2437 rb_obj_remove_instance_variable
, 1); /* in variable.c */
2439 rb_define_method(rb_mKernel
, "instance_of?", rb_obj_is_instance_of
, 1);
2440 rb_define_method(rb_mKernel
, "kind_of?", rb_obj_is_kind_of
, 1);
2441 rb_define_method(rb_mKernel
, "is_a?", rb_obj_is_kind_of
, 1);
2442 rb_define_method(rb_mKernel
, "tap", rb_obj_tap
, 0);
2444 rb_define_global_function("sprintf", rb_f_sprintf
, -1); /* in sprintf.c */
2445 rb_define_global_function("format", rb_f_sprintf
, -1); /* in sprintf.c */
2447 rb_define_global_function("Integer", rb_f_integer
, 1);
2448 rb_define_global_function("Float", rb_f_float
, 1);
2450 rb_define_global_function("String", rb_f_string
, 1);
2451 rb_define_global_function("Array", rb_f_array
, 1);
2453 rb_cNilClass
= rb_define_class("NilClass", rb_cObject
);
2454 rb_define_method(rb_cNilClass
, "to_i", nil_to_i
, 0);
2455 rb_define_method(rb_cNilClass
, "to_f", nil_to_f
, 0);
2456 rb_define_method(rb_cNilClass
, "to_s", nil_to_s
, 0);
2457 rb_define_method(rb_cNilClass
, "to_a", nil_to_a
, 0);
2458 rb_define_method(rb_cNilClass
, "inspect", nil_inspect
, 0);
2459 rb_define_method(rb_cNilClass
, "&", false_and
, 1);
2460 rb_define_method(rb_cNilClass
, "|", false_or
, 1);
2461 rb_define_method(rb_cNilClass
, "^", false_xor
, 1);
2463 rb_define_method(rb_cNilClass
, "nil?", rb_true
, 0);
2464 rb_undef_alloc_func(rb_cNilClass
);
2465 rb_undef_method(CLASS_OF(rb_cNilClass
), "new");
2466 rb_define_global_const("NIL", Qnil
);
2468 rb_define_method(rb_cModule
, "freeze", rb_mod_freeze
, 0);
2469 rb_define_method(rb_cModule
, "===", rb_mod_eqq
, 1);
2470 rb_define_method(rb_cModule
, "==", rb_obj_equal
, 1);
2471 rb_define_method(rb_cModule
, "<=>", rb_mod_cmp
, 1);
2472 rb_define_method(rb_cModule
, "<", rb_mod_lt
, 1);
2473 rb_define_method(rb_cModule
, "<=", rb_class_inherited_p
, 1);
2474 rb_define_method(rb_cModule
, ">", rb_mod_gt
, 1);
2475 rb_define_method(rb_cModule
, ">=", rb_mod_ge
, 1);
2476 rb_define_method(rb_cModule
, "initialize_copy", rb_mod_init_copy
, 1); /* in class.c */
2477 rb_define_method(rb_cModule
, "to_s", rb_mod_to_s
, 0);
2478 rb_define_method(rb_cModule
, "included_modules", rb_mod_included_modules
, 0); /* in class.c */
2479 rb_define_method(rb_cModule
, "include?", rb_mod_include_p
, 1); /* in class.c */
2480 rb_define_method(rb_cModule
, "name", rb_mod_name
, 0); /* in variable.c */
2481 rb_define_method(rb_cModule
, "ancestors", rb_mod_ancestors
, 0); /* in class.c */
2483 rb_define_private_method(rb_cModule
, "attr", rb_mod_attr
, -1);
2484 rb_define_private_method(rb_cModule
, "attr_reader", rb_mod_attr_reader
, -1);
2485 rb_define_private_method(rb_cModule
, "attr_writer", rb_mod_attr_writer
, -1);
2486 rb_define_private_method(rb_cModule
, "attr_accessor", rb_mod_attr_accessor
, -1);
2488 rb_define_alloc_func(rb_cModule
, rb_module_s_alloc
);
2489 rb_define_method(rb_cModule
, "initialize", rb_mod_initialize
, 0);
2490 rb_define_method(rb_cModule
, "instance_methods", rb_class_instance_methods
, -1); /* in class.c */
2491 rb_define_method(rb_cModule
, "public_instance_methods",
2492 rb_class_public_instance_methods
, -1); /* in class.c */
2493 rb_define_method(rb_cModule
, "protected_instance_methods",
2494 rb_class_protected_instance_methods
, -1); /* in class.c */
2495 rb_define_method(rb_cModule
, "private_instance_methods",
2496 rb_class_private_instance_methods
, -1); /* in class.c */
2498 rb_define_method(rb_cModule
, "constants", rb_mod_constants
, -1); /* in variable.c */
2499 rb_define_method(rb_cModule
, "const_get", rb_mod_const_get
, -1);
2500 rb_define_method(rb_cModule
, "const_set", rb_mod_const_set
, 2);
2501 rb_define_method(rb_cModule
, "const_defined?", rb_mod_const_defined
, -1);
2502 rb_define_private_method(rb_cModule
, "remove_const",
2503 rb_mod_remove_const
, 1); /* in variable.c */
2504 rb_define_method(rb_cModule
, "const_missing",
2505 rb_mod_const_missing
, 1); /* in variable.c */
2506 rb_define_method(rb_cModule
, "class_variables",
2507 rb_mod_class_variables
, 0); /* in variable.c */
2508 rb_define_method(rb_cModule
, "remove_class_variable",
2509 rb_mod_remove_cvar
, 1); /* in variable.c */
2510 rb_define_method(rb_cModule
, "class_variable_get", rb_mod_cvar_get
, 1);
2511 rb_define_method(rb_cModule
, "class_variable_set", rb_mod_cvar_set
, 2);
2512 rb_define_method(rb_cModule
, "class_variable_defined?", rb_mod_cvar_defined
, 1);
2514 rb_define_method(rb_cClass
, "allocate", rb_obj_alloc
, 0);
2515 rb_define_method(rb_cClass
, "new", rb_class_new_instance
, -1);
2516 rb_define_method(rb_cClass
, "initialize", rb_class_initialize
, -1);
2517 rb_define_method(rb_cClass
, "initialize_copy", rb_class_init_copy
, 1); /* in class.c */
2518 rb_define_method(rb_cClass
, "superclass", rb_class_superclass
, 0);
2519 rb_define_alloc_func(rb_cClass
, rb_class_s_alloc
);
2520 rb_undef_method(rb_cClass
, "extend_object");
2521 rb_undef_method(rb_cClass
, "append_features");
2523 rb_cData
= rb_define_class("Data", rb_cObject
);
2524 rb_undef_alloc_func(rb_cData
);
2526 rb_cTrueClass
= rb_define_class("TrueClass", rb_cObject
);
2527 rb_define_method(rb_cTrueClass
, "to_s", true_to_s
, 0);
2528 rb_define_method(rb_cTrueClass
, "&", true_and
, 1);
2529 rb_define_method(rb_cTrueClass
, "|", true_or
, 1);
2530 rb_define_method(rb_cTrueClass
, "^", true_xor
, 1);
2531 rb_undef_alloc_func(rb_cTrueClass
);
2532 rb_undef_method(CLASS_OF(rb_cTrueClass
), "new");
2533 rb_define_global_const("TRUE", Qtrue
);
2535 rb_cFalseClass
= rb_define_class("FalseClass", rb_cObject
);
2536 rb_define_method(rb_cFalseClass
, "to_s", false_to_s
, 0);
2537 rb_define_method(rb_cFalseClass
, "&", false_and
, 1);
2538 rb_define_method(rb_cFalseClass
, "|", false_or
, 1);
2539 rb_define_method(rb_cFalseClass
, "^", false_xor
, 1);
2540 rb_undef_alloc_func(rb_cFalseClass
);
2541 rb_undef_method(CLASS_OF(rb_cFalseClass
), "new");
2542 rb_define_global_const("FALSE", Qfalse
);
2544 id_eq
= rb_intern("==");
2545 id_eql
= rb_intern("eql?");
2546 id_match
= rb_intern("=~");
2547 id_inspect
= rb_intern("inspect");
2548 id_init_copy
= rb_intern("initialize_copy");