1 /**********************************************************************
6 created at: Fri Aug 13 18:33:09 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
10 **********************************************************************/
12 #include "ruby/ruby.h"
13 #include "ruby/encoding.h"
18 #if defined(__FreeBSD__) && __FreeBSD__ < 4
19 #include <floatingpoint.h>
30 /* use IEEE 64bit values if not defined */
38 #define DBL_MIN 2.2250738585072014e-308
41 #define DBL_MAX 1.7976931348623157e+308
44 #define DBL_MIN_EXP (-1021)
47 #define DBL_MAX_EXP 1024
49 #ifndef DBL_MIN_10_EXP
50 #define DBL_MIN_10_EXP (-307)
52 #ifndef DBL_MAX_10_EXP
53 #define DBL_MAX_10_EXP 308
59 #define DBL_MANT_DIG 53
62 #define DBL_EPSILON 2.2204460492503131e-16
73 x
= f
+ (x
- f
>= 0.5);
77 x
= f
- (f
- x
>= 0.5);
83 static ID id_coerce
, id_to_i
, id_eq
;
90 VALUE rb_eZeroDivError
;
91 VALUE rb_eFloatDomainError
;
96 rb_raise(rb_eZeroDivError
, "divided by 0");
102 * num.coerce(numeric) => array
104 * If <i>aNumeric</i> is the same type as <i>num</i>, returns an array
105 * containing <i>aNumeric</i> and <i>num</i>. Otherwise, returns an
106 * array with both <i>aNumeric</i> and <i>num</i> represented as
107 * <code>Float</code> objects. This coercion mechanism is used by
108 * Ruby to handle mixed-type numeric operations: it is intended to
109 * find a compatible common type between the two operands of the operator.
111 * 1.coerce(2.5) #=> [2.5, 1.0]
112 * 1.2.coerce(3) #=> [3.0, 1.2]
113 * 1.coerce(2) #=> [2, 1]
117 num_coerce(VALUE x
, VALUE y
)
119 if (CLASS_OF(x
) == CLASS_OF(y
))
120 return rb_assoc_new(y
, x
);
123 return rb_assoc_new(y
, x
);
127 coerce_body(VALUE
*x
)
129 return rb_funcall(x
[1], id_coerce
, 1, x
[0]);
133 coerce_rescue(VALUE
*x
)
135 volatile VALUE v
= rb_inspect(x
[1]);
137 rb_raise(rb_eTypeError
, "%s can't be coerced into %s",
138 rb_special_const_p(x
[1])?
140 rb_obj_classname(x
[1]),
141 rb_obj_classname(x
[0]));
142 return Qnil
; /* dummy */
146 do_coerce(VALUE
*x
, VALUE
*y
, int err
)
151 a
[0] = *x
; a
[1] = *y
;
153 ary
= rb_rescue(coerce_body
, (VALUE
)a
, err
?coerce_rescue
:0, (VALUE
)a
);
154 if (TYPE(ary
) != T_ARRAY
|| RARRAY_LEN(ary
) != 2) {
156 rb_raise(rb_eTypeError
, "coerce must return [x, y]");
161 *x
= RARRAY_PTR(ary
)[0];
162 *y
= RARRAY_PTR(ary
)[1];
167 rb_num_coerce_bin(VALUE x
, VALUE y
, ID func
)
169 do_coerce(&x
, &y
, Qtrue
);
170 return rb_funcall(x
, func
, 1, y
);
174 rb_num_coerce_cmp(VALUE x
, VALUE y
, ID func
)
176 if (do_coerce(&x
, &y
, Qfalse
))
177 return rb_funcall(x
, func
, 1, y
);
182 rb_num_coerce_relop(VALUE x
, VALUE y
, ID func
)
184 VALUE c
, x0
= x
, y0
= y
;
186 if (!do_coerce(&x
, &y
, Qfalse
) ||
187 NIL_P(c
= rb_funcall(x
, func
, 1, y
))) {
189 return Qnil
; /* not reached */
195 * Trap attempts to add methods to <code>Numeric</code> objects. Always
196 * raises a <code>TypeError</code>
200 num_sadded(VALUE x
, VALUE name
)
202 /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
203 /* Numerics should be values; singleton_methods should not be added to them */
204 rb_raise(rb_eTypeError
,
205 "can't define singleton method \"%s\" for %s",
206 rb_id2name(rb_to_id(name
)),
207 rb_obj_classname(x
));
208 return Qnil
; /* not reached */
213 num_init_copy(VALUE x
, VALUE y
)
215 /* Numerics are immutable values, which should not be copied */
216 rb_raise(rb_eTypeError
, "can't copy %s", rb_obj_classname(x
));
217 return Qnil
; /* not reached */
224 * Unary Plus---Returns the receiver's value.
237 * Unary Minus---Returns the receiver's value, negated.
241 num_uminus(VALUE num
)
246 do_coerce(&zero
, &num
, Qtrue
);
248 return rb_funcall(zero
, '-', 1, num
);
253 * num.quo(numeric) => result
255 * Returns most exact division (rational for integers, float for floats).
259 num_quo(VALUE x
, VALUE y
)
261 return rb_funcall(rb_rational_raw1(x
), '/', 1, y
);
267 * num.fdiv(numeric) => float
269 * Returns float division.
273 num_fdiv(VALUE x
, VALUE y
)
275 return rb_funcall(rb_Float(x
), '/', 1, y
);
279 static VALUE
num_floor(VALUE num
);
283 * num.div(numeric) => integer
285 * Uses <code>/</code> to perform division, then converts the result to
286 * an integer. <code>Numeric</code> does not define the <code>/</code>
287 * operator; this is left to subclasses.
291 num_div(VALUE x
, VALUE y
)
293 if (rb_equal(INT2FIX(0), y
)) rb_num_zerodiv();
294 return num_floor(rb_funcall(x
, '/', 1, y
));
300 * num.divmod( aNumeric ) -> anArray
302 * Returns an array containing the quotient and modulus obtained by
303 * dividing <i>num</i> by <i>aNumeric</i>. If <code>q, r =
304 * x.divmod(y)</code>, then
306 * q = floor(float(x)/float(y))
309 * The quotient is rounded toward -infinity, as shown in the following table:
311 * a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
312 * ------+-----+---------------+---------+-------------+---------------
313 * 13 | 4 | 3, 1 | 3 | 1 | 1
314 * ------+-----+---------------+---------+-------------+---------------
315 * 13 | -4 | -4, -3 | -3 | -3 | 1
316 * ------+-----+---------------+---------+-------------+---------------
317 * -13 | 4 | -4, 3 | -4 | 3 | -1
318 * ------+-----+---------------+---------+-------------+---------------
319 * -13 | -4 | 3, -1 | 3 | -1 | -1
320 * ------+-----+---------------+---------+-------------+---------------
321 * 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
322 * ------+-----+---------------+---------+-------------+---------------
323 * 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
324 * ------+-----+---------------+---------+-------------+---------------
325 * -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
326 * ------+-----+---------------+---------+-------------+---------------
327 * -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
332 * 11.divmod(3) #=> [3, 2]
333 * 11.divmod(-3) #=> [-4, -1]
334 * 11.divmod(3.5) #=> [3, 0.5]
335 * (-11).divmod(3.5) #=> [-4, 3.0]
336 * (11.5).divmod(3.5) #=> [3, 1.0]
340 num_divmod(VALUE x
, VALUE y
)
342 return rb_assoc_new(num_div(x
, y
), rb_funcall(x
, '%', 1, y
));
347 * num.modulo(numeric) => result
350 * <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
354 num_modulo(VALUE x
, VALUE y
)
356 return rb_funcall(x
, '%', 1, y
);
361 * num.remainder(numeric) => result
363 * If <i>num</i> and <i>numeric</i> have different signs, returns
364 * <em>mod</em>-<i>numeric</i>; otherwise, returns <em>mod</em>. In
365 * both cases <em>mod</em> is the value
366 * <i>num</i>.<code>modulo(</code><i>numeric</i><code>)</code>. The
367 * differences between <code>remainder</code> and modulo
368 * (<code>%</code>) are shown in the table under <code>Numeric#divmod</code>.
372 num_remainder(VALUE x
, VALUE y
)
374 VALUE z
= rb_funcall(x
, '%', 1, y
);
376 if ((!rb_equal(z
, INT2FIX(0))) &&
377 ((RTEST(rb_funcall(x
, '<', 1, INT2FIX(0))) &&
378 RTEST(rb_funcall(y
, '>', 1, INT2FIX(0)))) ||
379 (RTEST(rb_funcall(x
, '>', 1, INT2FIX(0))) &&
380 RTEST(rb_funcall(y
, '<', 1, INT2FIX(0)))))) {
381 return rb_funcall(z
, '-', 1, y
);
388 * num.scalar? -> true or false
390 * Returns <code>true</code> if <i>num</i> is an <code>Scalar</code>
391 * (i.e. non <code>Complex</code>).
395 num_scalar_p(VALUE num
)
402 * num.integer? -> true or false
404 * Returns <code>true</code> if <i>num</i> is an <code>Integer</code>
405 * (including <code>Fixnum</code> and <code>Bignum</code>).
416 * num.abs => num or numeric
418 * Returns the absolute value of <i>num</i>.
421 * (-34.56).abs #=> 34.56
422 * -34.56.abs #=> 34.56
428 if (RTEST(rb_funcall(num
, '<', 1, INT2FIX(0)))) {
429 return rb_funcall(num
, rb_intern("-@"), 0);
437 * num.zero? => true or false
439 * Returns <code>true</code> if <i>num</i> has a zero value.
443 num_zero_p(VALUE num
)
445 if (rb_equal(num
, INT2FIX(0))) {
454 * num.nonzero? => num or nil
456 * Returns <i>num</i> if <i>num</i> is not zero, <code>nil</code>
457 * otherwise. This behavior is useful when chaining comparisons:
459 * a = %w( z Bb bB bb BB a aA Aa AA A )
460 * b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
461 * b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
465 num_nonzero_p(VALUE num
)
467 if (RTEST(rb_funcall(num
, rb_intern("zero?"), 0, 0))) {
475 * num.to_int => integer
477 * Invokes the child class's <code>to_i</code> method to convert
478 * <i>num</i> to an integer.
482 num_to_int(VALUE num
)
484 return rb_funcall(num
, id_to_i
, 0, 0);
488 /********************************************************************
490 * Document-class: Float
492 * <code>Float</code> objects represent real numbers using the native
493 * architecture's double-precision floating point representation.
497 rb_float_new(double d
)
499 NEWOBJ(flt
, struct RFloat
);
500 OBJSETUP(flt
, rb_cFloat
, T_FLOAT
);
502 flt
->float_value
= d
;
510 * Returns a string containing a representation of self. As well as a
511 * fixed or exponential form of the number, the call may return
512 * ``<code>NaN</code>'', ``<code>Infinity</code>'', and
513 * ``<code>-Infinity</code>''.
520 double value
= RFLOAT_VALUE(flt
);
524 return rb_usascii_str_new2(value
< 0 ? "-Infinity" : "Infinity");
525 else if(isnan(value
))
526 return rb_usascii_str_new2("NaN");
528 sprintf(buf
, "%#.15g", value
); /* ensure to print decimal point */
529 if (!(e
= strchr(buf
, 'e'))) {
530 e
= buf
+ strlen(buf
);
532 if (!ISDIGIT(e
[-1])) { /* reformat if ended with decimal point (ex 111111111111111.) */
533 sprintf(buf
, "%#.14e", value
);
534 if (!(e
= strchr(buf
, 'e'))) {
535 e
= buf
+ strlen(buf
);
539 while (p
[-1]=='0' && ISDIGIT(p
[-2]))
541 memmove(p
, e
, strlen(e
)+1);
542 return rb_usascii_str_new2(buf
);
546 * MISSING: documentation
550 flo_coerce(VALUE x
, VALUE y
)
552 return rb_assoc_new(rb_Float(y
), x
);
559 * Returns float, negated.
563 flo_uminus(VALUE flt
)
565 return DOUBLE2NUM(-RFLOAT_VALUE(flt
));
570 * float + other => float
572 * Returns a new float which is the sum of <code>float</code>
573 * and <code>other</code>.
577 flo_plus(VALUE x
, VALUE y
)
581 return DOUBLE2NUM(RFLOAT_VALUE(x
) + (double)FIX2LONG(y
));
583 return DOUBLE2NUM(RFLOAT_VALUE(x
) + rb_big2dbl(y
));
585 return DOUBLE2NUM(RFLOAT_VALUE(x
) + RFLOAT_VALUE(y
));
587 return rb_num_coerce_bin(x
, y
, '+');
593 * float + other => float
595 * Returns a new float which is the difference of <code>float</code>
596 * and <code>other</code>.
600 flo_minus(VALUE x
, VALUE y
)
604 return DOUBLE2NUM(RFLOAT_VALUE(x
) - (double)FIX2LONG(y
));
606 return DOUBLE2NUM(RFLOAT_VALUE(x
) - rb_big2dbl(y
));
608 return DOUBLE2NUM(RFLOAT_VALUE(x
) - RFLOAT_VALUE(y
));
610 return rb_num_coerce_bin(x
, y
, '-');
616 * float * other => float
618 * Returns a new float which is the product of <code>float</code>
619 * and <code>other</code>.
623 flo_mul(VALUE x
, VALUE y
)
627 return DOUBLE2NUM(RFLOAT_VALUE(x
) * (double)FIX2LONG(y
));
629 return DOUBLE2NUM(RFLOAT_VALUE(x
) * rb_big2dbl(y
));
631 return DOUBLE2NUM(RFLOAT_VALUE(x
) * RFLOAT_VALUE(y
));
633 return rb_num_coerce_bin(x
, y
, '*');
639 * float / other => float
641 * Returns a new float which is the result of dividing
642 * <code>float</code> by <code>other</code>.
646 flo_div(VALUE x
, VALUE y
)
654 return DOUBLE2NUM(RFLOAT_VALUE(x
) / (double)f_y
);
657 return DOUBLE2NUM(RFLOAT_VALUE(x
) / d
);
659 return DOUBLE2NUM(RFLOAT_VALUE(x
) / RFLOAT_VALUE(y
));
661 return rb_num_coerce_bin(x
, y
, '/');
666 flo_quo(VALUE x
, VALUE y
)
668 return rb_funcall(x
, '/', 1, y
);
672 flodivmod(double x
, double y
, double *divp
, double *modp
)
686 if (isinf(x
) && !isinf(y
) && !isnan(y
))
694 if (modp
) *modp
= mod
;
695 if (divp
) *divp
= div
;
701 * flt % other => float
702 * flt.modulo(other) => float
704 * Return the modulo after division of <code>flt</code> by <code>other</code>.
706 * 6543.21.modulo(137) #=> 104.21
707 * 6543.21.modulo(137.24) #=> 92.9299999999996
711 flo_mod(VALUE x
, VALUE y
)
717 fy
= (double)FIX2LONG(y
);
723 fy
= RFLOAT_VALUE(y
);
726 return rb_num_coerce_bin(x
, y
, '%');
728 flodivmod(RFLOAT_VALUE(x
), fy
, 0, &mod
);
729 return DOUBLE2NUM(mod
);
737 return LONG2FIX((long)d
);
739 else if (isnan(d
) || isinf(d
)) {
740 /* special case: cannot return integer value */
741 return rb_float_new(d
);
744 return rb_dbl2big(d
);
750 * flt.divmod(numeric) => array
752 * See <code>Numeric#divmod</code>.
756 flo_divmod(VALUE x
, VALUE y
)
763 fy
= (double)FIX2LONG(y
);
769 fy
= RFLOAT_VALUE(y
);
772 return rb_num_coerce_bin(x
, y
, rb_intern("divmod"));
774 flodivmod(RFLOAT_VALUE(x
), fy
, &div
, &mod
);
777 return rb_assoc_new(a
, b
);
783 * flt ** other => float
785 * Raises <code>float</code> the <code>other</code> power.
789 flo_pow(VALUE x
, VALUE y
)
793 return DOUBLE2NUM(pow(RFLOAT_VALUE(x
), (double)FIX2LONG(y
)));
795 return DOUBLE2NUM(pow(RFLOAT_VALUE(x
), rb_big2dbl(y
)));
797 return DOUBLE2NUM(pow(RFLOAT_VALUE(x
), RFLOAT_VALUE(y
)));
799 return rb_num_coerce_bin(x
, y
, rb_intern("**"));
805 * num.eql?(numeric) => true or false
807 * Returns <code>true</code> if <i>num</i> and <i>numeric</i> are the
808 * same type and have equal values.
811 * 1.eql?(1.0) #=> false
812 * (1.0).eql?(1.0) #=> true
816 num_eql(VALUE x
, VALUE y
)
818 if (TYPE(x
) != TYPE(y
)) return Qfalse
;
820 return rb_equal(x
, y
);
825 * num <=> other -> 0 or nil
827 * Returns zero if <i>num</i> equals <i>other</i>, <code>nil</code>
832 num_cmp(VALUE x
, VALUE y
)
834 if (x
== y
) return INT2FIX(0);
839 num_equal(VALUE x
, VALUE y
)
841 if (x
== y
) return Qtrue
;
842 return rb_funcall(y
, id_eq
, 1, x
);
847 * flt == obj => true or false
849 * Returns <code>true</code> only if <i>obj</i> has the same value
850 * as <i>flt</i>. Contrast this with <code>Float#eql?</code>, which
851 * requires <i>obj</i> to be a <code>Float</code>.
858 flo_eq(VALUE x
, VALUE y
)
860 volatile double a
, b
;
871 if (isnan(b
)) return Qfalse
;
874 return num_equal(x
, y
);
877 if (isnan(a
)) return Qfalse
;
878 return (a
== b
)?Qtrue
:Qfalse
;
883 * flt.hash => integer
885 * Returns a hash code for this float.
894 d
= RFLOAT_VALUE(num
);
895 hash
= rb_memhash(&d
, sizeof(d
));
896 return INT2FIX(hash
);
900 rb_dbl_cmp(double a
, double b
)
902 if (isnan(a
) || isnan(b
)) return Qnil
;
903 if (a
== b
) return INT2FIX(0);
904 if (a
> b
) return INT2FIX(1);
905 if (a
< b
) return INT2FIX(-1);
911 * flt <=> numeric => -1, 0, +1
913 * Returns -1, 0, or +1 depending on whether <i>flt</i> is less than,
914 * equal to, or greater than <i>numeric</i>. This is the basis for the
915 * tests in <code>Comparable</code>.
919 flo_cmp(VALUE x
, VALUE y
)
926 b
= (double)FIX2LONG(y
);
938 return rb_num_coerce_cmp(x
, y
, rb_intern("<=>"));
940 return rb_dbl_cmp(a
, b
);
945 * flt > other => true or false
947 * <code>true</code> if <code>flt</code> is greater than <code>other</code>.
951 flo_gt(VALUE x
, VALUE y
)
958 b
= (double)FIX2LONG(y
);
967 if (isnan(b
)) return Qfalse
;
971 return rb_num_coerce_relop(x
, y
, '>');
973 if (isnan(a
)) return Qfalse
;
974 return (a
> b
)?Qtrue
:Qfalse
;
979 * flt >= other => true or false
981 * <code>true</code> if <code>flt</code> is greater than
982 * or equal to <code>other</code>.
986 flo_ge(VALUE x
, VALUE y
)
993 b
= (double)FIX2LONG(y
);
1001 b
= RFLOAT_VALUE(y
);
1002 if (isnan(b
)) return Qfalse
;
1006 return rb_num_coerce_relop(x
, y
, rb_intern(">="));
1008 if (isnan(a
)) return Qfalse
;
1009 return (a
>= b
)?Qtrue
:Qfalse
;
1014 * flt < other => true or false
1016 * <code>true</code> if <code>flt</code> is less than <code>other</code>.
1020 flo_lt(VALUE x
, VALUE y
)
1024 a
= RFLOAT_VALUE(x
);
1027 b
= (double)FIX2LONG(y
);
1035 b
= RFLOAT_VALUE(y
);
1036 if (isnan(b
)) return Qfalse
;
1040 return rb_num_coerce_relop(x
, y
, '<');
1042 if (isnan(a
)) return Qfalse
;
1043 return (a
< b
)?Qtrue
:Qfalse
;
1048 * flt <= other => true or false
1050 * <code>true</code> if <code>flt</code> is less than
1051 * or equal to <code>other</code>.
1055 flo_le(VALUE x
, VALUE y
)
1059 a
= RFLOAT_VALUE(x
);
1062 b
= (double)FIX2LONG(y
);
1070 b
= RFLOAT_VALUE(y
);
1071 if (isnan(b
)) return Qfalse
;
1075 return rb_num_coerce_relop(x
, y
, rb_intern("<="));
1077 if (isnan(a
)) return Qfalse
;
1078 return (a
<= b
)?Qtrue
:Qfalse
;
1083 * flt.eql?(obj) => true or false
1085 * Returns <code>true</code> only if <i>obj</i> is a
1086 * <code>Float</code> with the same value as <i>flt</i>. Contrast this
1087 * with <code>Float#==</code>, which performs type conversions.
1089 * 1.0.eql?(1) #=> false
1093 flo_eql(VALUE x
, VALUE y
)
1095 if (TYPE(y
) == T_FLOAT
) {
1096 double a
= RFLOAT_VALUE(x
);
1097 double b
= RFLOAT_VALUE(y
);
1099 if (isnan(a
) || isnan(b
)) return Qfalse
;
1100 if (a
== b
) return Qtrue
;
1109 * As <code>flt</code> is already a float, returns <i>self</i>.
1122 * Returns the absolute value of <i>flt</i>.
1124 * (-34.56).abs #=> 34.56
1125 * -34.56.abs #=> 34.56
1132 double val
= fabs(RFLOAT_VALUE(flt
));
1133 return DOUBLE2NUM(val
);
1138 * flt.zero? -> true or false
1140 * Returns <code>true</code> if <i>flt</i> is 0.0.
1145 flo_zero_p(VALUE num
)
1147 if (RFLOAT_VALUE(num
) == 0.0) {
1155 * flt.nan? -> true or false
1157 * Returns <code>true</code> if <i>flt</i> is an invalid IEEE floating
1162 * a = 0.0/0.0 #=> NaN
1167 flo_is_nan_p(VALUE num
)
1169 double value
= RFLOAT_VALUE(num
);
1171 return isnan(value
) ? Qtrue
: Qfalse
;
1176 * flt.infinite? -> nil, -1, +1
1178 * Returns <code>nil</code>, -1, or +1 depending on whether <i>flt</i>
1179 * is finite, -infinity, or +infinity.
1181 * (0.0).infinite? #=> nil
1182 * (-1.0/0.0).infinite? #=> -1
1183 * (+1.0/0.0).infinite? #=> 1
1187 flo_is_infinite_p(VALUE num
)
1189 double value
= RFLOAT_VALUE(num
);
1192 return INT2FIX( value
< 0 ? -1 : 1 );
1200 * flt.finite? -> true or false
1202 * Returns <code>true</code> if <i>flt</i> is a valid IEEE floating
1203 * point number (it is not infinite, and <code>nan?</code> is
1204 * <code>false</code>).
1209 flo_is_finite_p(VALUE num
)
1211 double value
= RFLOAT_VALUE(num
);
1217 if (isinf(value
) || isnan(value
))
1226 * flt.floor => integer
1228 * Returns the largest integer less than or equal to <i>flt</i>.
1232 * (-1.2).floor #=> -2
1233 * (-2.0).floor #=> -2
1237 flo_floor(VALUE num
)
1239 double f
= floor(RFLOAT_VALUE(num
));
1243 return rb_dbl2big(f
);
1246 return LONG2FIX(val
);
1251 * flt.ceil => integer
1253 * Returns the smallest <code>Integer</code> greater than or equal to
1258 * (-1.2).ceil #=> -1
1259 * (-2.0).ceil #=> -2
1265 double f
= ceil(RFLOAT_VALUE(num
));
1269 return rb_dbl2big(f
);
1272 return LONG2FIX(val
);
1277 * flt.round([ndigits]) => integer or float
1279 * Rounds <i>flt</i> to a given precision in decimal digits (default 0 digits).
1280 * Precision may be negative. Returns a a floating point number when ndigits
1284 * (-1.5).round #=> -2
1288 flo_round(int argc
, VALUE
*argv
, VALUE num
)
1295 if (argc
> 0 && rb_scan_args(argc
, argv
, "01", &nd
) == 1) {
1296 ndigits
= NUM2INT(nd
);
1298 number
= RFLOAT_VALUE(num
);
1305 if (ndigits
< 0) number
= 0;
1308 if (ndigits
< 0) number
/= f
;
1310 number
= round(number
);
1311 if (ndigits
< 0) number
*= f
;
1315 if (ndigits
> 0) return DOUBLE2NUM(number
);
1317 if (!FIXABLE(number
)) {
1318 return rb_dbl2big(number
);
1321 return LONG2FIX(val
);
1326 * flt.to_i => integer
1327 * flt.to_int => integer
1328 * flt.truncate => integer
1330 * Returns <i>flt</i> truncated to an <code>Integer</code>.
1334 flo_truncate(VALUE num
)
1336 double f
= RFLOAT_VALUE(num
);
1339 if (f
> 0.0) f
= floor(f
);
1340 if (f
< 0.0) f
= ceil(f
);
1343 return rb_dbl2big(f
);
1346 return LONG2FIX(val
);
1352 * num.floor => integer
1354 * Returns the largest integer less than or equal to <i>num</i>.
1355 * <code>Numeric</code> implements this by converting <i>anInteger</i>
1356 * to a <code>Float</code> and invoking <code>Float#floor</code>.
1363 num_floor(VALUE num
)
1365 return flo_floor(rb_Float(num
));
1371 * num.ceil => integer
1373 * Returns the smallest <code>Integer</code> greater than or equal to
1374 * <i>num</i>. Class <code>Numeric</code> achieves this by converting
1375 * itself to a <code>Float</code> then invoking
1376 * <code>Float#ceil</code>.
1380 * (-1.2).ceil #=> -1
1381 * (-1.0).ceil #=> -1
1387 return flo_ceil(rb_Float(num
));
1392 * num.round([ndigits]) => integer or float
1394 * Rounds <i>num</i> to a given precision in decimal digits (default 0 digits).
1395 * Precision may be negative. Returns a a floating point number when ndigits
1396 * is more than one. <code>Numeric</code> implements this by converting itself
1397 * to a <code>Float</code> and invoking <code>Float#round</code>.
1401 num_round(int argc
, VALUE
* argv
, VALUE num
)
1403 return flo_round(argc
, argv
, rb_Float(num
));
1408 * num.truncate => integer
1410 * Returns <i>num</i> truncated to an integer. <code>Numeric</code>
1411 * implements this by converting its value to a float and invoking
1412 * <code>Float#truncate</code>.
1416 num_truncate(VALUE num
)
1418 return flo_truncate(rb_Float(num
));
1424 * num.step(limit, step ) {|i| block } => num
1426 * Invokes <em>block</em> with the sequence of numbers starting at
1427 * <i>num</i>, incremented by <i>step</i> on each call. The loop
1428 * finishes when the value to be passed to the block is greater than
1429 * <i>limit</i> (if <i>step</i> is positive) or less than
1430 * <i>limit</i> (if <i>step</i> is negative). If all the arguments are
1431 * integers, the loop operates using an integer counter. If any of the
1432 * arguments are floating point numbers, all are converted to floats,
1433 * and the loop is executed <i>floor(n + n*epsilon)+ 1</i> times,
1434 * where <i>n = (limit - num)/step</i>. Otherwise, the loop
1435 * starts at <i>num</i>, uses either the <code><</code> or
1436 * <code>></code> operator to compare the counter against
1437 * <i>limit</i>, and increments itself using the <code>+</code>
1440 * 1.step(10, 2) { |i| print i, " " }
1441 * Math::E.step(Math::PI, 0.2) { |f| print f, " " }
1443 * <em>produces:</em>
1446 * 2.71828182845905 2.91828182845905 3.11828182845905
1450 num_step(int argc
, VALUE
*argv
, VALUE from
)
1454 RETURN_ENUMERATOR(from
, argc
, argv
);
1465 rb_raise(rb_eArgError
, "wrong number of arguments");
1467 if (rb_equal(step
, INT2FIX(0))) {
1468 rb_raise(rb_eArgError
, "step can't be 0");
1472 if (FIXNUM_P(from
) && FIXNUM_P(to
) && FIXNUM_P(step
)) {
1477 diff
= FIX2LONG(step
);
1481 rb_yield(LONG2FIX(i
));
1487 rb_yield(LONG2FIX(i
));
1492 else if (TYPE(from
) == T_FLOAT
|| TYPE(to
) == T_FLOAT
|| TYPE(step
) == T_FLOAT
) {
1493 const double epsilon
= DBL_EPSILON
;
1494 double beg
= NUM2DBL(from
);
1495 double end
= NUM2DBL(to
);
1496 double unit
= NUM2DBL(step
);
1497 double n
= (end
- beg
)/unit
;
1498 double err
= (fabs(beg
) + fabs(end
) + fabs(end
-beg
)) / fabs(unit
) * epsilon
;
1501 if (err
>0.5) err
=0.5;
1502 n
= floor(n
+ err
) + 1;
1503 for (i
=0; i
<n
; i
++) {
1504 rb_yield(DOUBLE2NUM(i
*unit
+beg
));
1511 if (RTEST(rb_funcall(step
, '>', 1, INT2FIX(0)))) {
1518 if (RTEST(rb_funcall(i
, cmp
, 1, to
))) break;
1520 i
= rb_funcall(i
, '+', 1, step
);
1527 rb_num2long(VALUE val
)
1531 rb_raise(rb_eTypeError
, "no implicit conversion from nil to integer");
1534 if (FIXNUM_P(val
)) return FIX2LONG(val
);
1536 switch (TYPE(val
)) {
1538 if (RFLOAT_VALUE(val
) <= (double)LONG_MAX
1539 && RFLOAT_VALUE(val
) >= (double)LONG_MIN
) {
1540 return (SIGNED_VALUE
)(RFLOAT_VALUE(val
));
1546 sprintf(buf
, "%-.10g", RFLOAT_VALUE(val
));
1547 if ((s
= strchr(buf
, ' ')) != 0) *s
= '\0';
1548 rb_raise(rb_eRangeError
, "float %s out of range of integer", buf
);
1552 return rb_big2long(val
);
1555 val
= rb_to_int(val
);
1561 rb_num2ulong(VALUE val
)
1563 if (TYPE(val
) == T_BIGNUM
) {
1564 return rb_big2ulong(val
);
1566 return (VALUE
)rb_num2long(val
);
1569 #if SIZEOF_INT < SIZEOF_VALUE
1571 check_int(SIGNED_VALUE num
)
1575 if (num
< INT_MIN
) {
1578 else if (num
> INT_MAX
) {
1584 rb_raise(rb_eRangeError
, "integer %"PRIdVALUE
" too %s to convert to `int'", num
, s
);
1588 check_uint(VALUE num
, VALUE sign
)
1590 static const VALUE mask
= ~(VALUE
)UINT_MAX
;
1594 if ((num
& mask
) != mask
|| (num
& ~mask
) <= INT_MAX
+ 1UL)
1595 rb_raise(rb_eRangeError
, "integer %"PRIdVALUE
" too small to convert to `unsigned int'", num
);
1599 if ((num
& mask
) != 0)
1600 rb_raise(rb_eRangeError
, "integer %"PRIuVALUE
" too big to convert to `unsigned int'", num
);
1605 rb_num2int(VALUE val
)
1607 long num
= rb_num2long(val
);
1614 rb_fix2int(VALUE val
)
1616 long num
= FIXNUM_P(val
)?FIX2LONG(val
):rb_num2long(val
);
1623 rb_num2uint(VALUE val
)
1625 unsigned long num
= rb_num2ulong(val
);
1627 check_uint(num
, rb_funcall(val
, '<', 1, INT2FIX(0)));
1632 rb_fix2uint(VALUE val
)
1636 if (!FIXNUM_P(val
)) {
1637 return rb_num2uint(val
);
1639 num
= FIX2ULONG(val
);
1641 check_uint(num
, rb_funcall(val
, '<', 1, INT2FIX(0)));
1646 rb_num2int(VALUE val
)
1648 return rb_num2long(val
);
1652 rb_fix2int(VALUE val
)
1654 return FIX2INT(val
);
1659 rb_num2fix(VALUE val
)
1663 if (FIXNUM_P(val
)) return val
;
1665 v
= rb_num2long(val
);
1667 rb_raise(rb_eRangeError
, "integer %"PRIdVALUE
" out of range of fixnum", v
);
1674 rb_num2ll(VALUE val
)
1677 rb_raise(rb_eTypeError
, "no implicit conversion from nil");
1680 if (FIXNUM_P(val
)) return (LONG_LONG
)FIX2LONG(val
);
1682 switch (TYPE(val
)) {
1684 if (RFLOAT_VALUE(val
) <= (double)LLONG_MAX
1685 && RFLOAT_VALUE(val
) >= (double)LLONG_MIN
) {
1686 return (LONG_LONG
)(RFLOAT_VALUE(val
));
1692 sprintf(buf
, "%-.10g", RFLOAT_VALUE(val
));
1693 if ((s
= strchr(buf
, ' ')) != 0) *s
= '\0';
1694 rb_raise(rb_eRangeError
, "float %s out of range of long long", buf
);
1698 return rb_big2ll(val
);
1701 rb_raise(rb_eTypeError
, "no implicit conversion from string");
1702 return Qnil
; /* not reached */
1706 rb_raise(rb_eTypeError
, "no implicit conversion from boolean");
1707 return Qnil
; /* not reached */
1710 val
= rb_to_int(val
);
1716 rb_num2ull(VALUE val
)
1718 if (TYPE(val
) == T_BIGNUM
) {
1719 return rb_big2ull(val
);
1721 return (unsigned LONG_LONG
)rb_num2ll(val
);
1724 #endif /* HAVE_LONG_LONG */
1727 num_numerator(VALUE num
)
1729 return rb_funcall(rb_Rational1(num
), rb_intern("numerator"), 0);
1733 num_denominator(VALUE num
)
1735 return rb_funcall(rb_Rational1(num
), rb_intern("denominator"), 0);
1739 * Document-class: Integer
1741 * <code>Integer</code> is the basis for the two concrete classes that
1742 * hold whole numbers, <code>Bignum</code> and <code>Fixnum</code>.
1754 * int.truncate => int
1756 * As <i>int</i> is already an <code>Integer</code>, all these
1757 * methods simply return the receiver.
1768 * int.integer? -> true
1770 * Always returns <code>true</code>.
1774 int_int_p(VALUE num
)
1781 * int.odd? -> true or false
1783 * Returns <code>true</code> if <i>int</i> is an odd number.
1787 int_odd_p(VALUE num
)
1789 if (rb_funcall(num
, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
1797 * int.even? -> true or false
1799 * Returns <code>true</code> if <i>int</i> is an even number.
1803 int_even_p(VALUE num
)
1805 if (rb_funcall(num
, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
1813 * fixnum.next => integer
1814 * fixnum.succ => integer
1816 * Returns the <code>Integer</code> equal to <i>int</i> + 1.
1825 long i
= FIX2LONG(num
) + 1;
1831 * int.next => integer
1832 * int.succ => integer
1834 * Returns the <code>Integer</code> equal to <i>int</i> + 1.
1843 if (FIXNUM_P(num
)) {
1844 long i
= FIX2LONG(num
) + 1;
1847 return rb_funcall(num
, '+', 1, INT2FIX(1));
1852 * int.pred => integer
1854 * Returns the <code>Integer</code> equal to <i>int</i> - 1.
1863 if (FIXNUM_P(num
)) {
1864 long i
= FIX2LONG(num
) - 1;
1867 return rb_funcall(num
, '-', 1, INT2FIX(1));
1872 * int.chr([encoding]) => string
1874 * Returns a string containing the character represented by the
1875 * receiver's value according to +encoding+.
1878 * 230.chr #=> "\346"
1879 * 255.chr(Encoding::UTF_8) #=> "\303\277"
1883 int_chr(int argc
, VALUE
*argv
, VALUE num
)
1887 long i
= NUM2LONG(num
);
1893 if (i
< 0 || 0xff < i
) {
1895 rb_raise(rb_eRangeError
, "%"PRIdVALUE
" out of char range", i
);
1899 return rb_usascii_str_new(&c
, 1);
1902 return rb_str_new(&c
, 1);
1907 rb_raise(rb_eArgError
, "wrong number of arguments (%d for 0 or 1)", argc
);
1910 enc
= rb_to_encoding(argv
[0]);
1911 if (!enc
) enc
= rb_ascii8bit_encoding();
1912 if (i
< 0 || (n
= rb_enc_codelen(i
, enc
)) <= 0) goto out_of_range
;
1913 str
= rb_enc_str_new(0, n
, enc
);
1914 rb_enc_mbcput(i
, RSTRING_PTR(str
), enc
);
1919 int_numerator(VALUE num
)
1925 int_denominator(VALUE num
)
1930 /********************************************************************
1932 * Document-class: Fixnum
1934 * A <code>Fixnum</code> holds <code>Integer</code> values that can be
1935 * represented in a native machine word (minus 1 bit). If any operation
1936 * on a <code>Fixnum</code> exceeds this range, the value is
1937 * automatically converted to a <code>Bignum</code>.
1939 * <code>Fixnum</code> objects have immediate value. This means that
1940 * when they are assigned or passed as parameters, the actual object is
1941 * passed, rather than a reference to that object. Assignment does not
1942 * alias <code>Fixnum</code> objects. There is effectively only one
1943 * <code>Fixnum</code> object instance for any given integer value, so,
1944 * for example, you cannot add a singleton method to a
1945 * <code>Fixnum</code>.
1951 * Fixnum.induced_from(obj) => fixnum
1953 * Convert <code>obj</code> to a Fixnum. Works with numeric parameters.
1954 * Also works with Symbols, but this is deprecated.
1958 rb_fix_induced_from(VALUE klass
, VALUE x
)
1960 return rb_num2fix(x
);
1965 * Integer.induced_from(obj) => fixnum, bignum
1967 * Convert <code>obj</code> to an Integer.
1971 rb_int_induced_from(VALUE klass
, VALUE x
)
1979 return rb_funcall(x
, id_to_i
, 0);
1981 rb_raise(rb_eTypeError
, "failed to convert %s into Integer",
1982 rb_obj_classname(x
));
1988 * Float.induced_from(obj) => float
1990 * Convert <code>obj</code> to a float.
1994 rb_flo_induced_from(VALUE klass
, VALUE x
)
2000 return rb_funcall(x
, rb_intern("to_f"), 0);
2004 rb_raise(rb_eTypeError
, "failed to convert %s into Float",
2005 rb_obj_classname(x
));
2013 * Negates <code>fix</code> (which might return a Bignum).
2017 fix_uminus(VALUE num
)
2019 return LONG2NUM(-FIX2LONG(num
));
2023 rb_fix2str(VALUE x
, int base
)
2025 extern const char ruby_digitmap
[];
2026 char buf
[SIZEOF_VALUE
*CHAR_BIT
+ 2], *b
= buf
+ sizeof buf
;
2027 long val
= FIX2LONG(x
);
2030 if (base
< 2 || 36 < base
) {
2031 rb_raise(rb_eArgError
, "invalid radix %d", base
);
2034 return rb_usascii_str_new2("0");
2042 *--b
= ruby_digitmap
[(int)(val
% base
)];
2043 } while (val
/= base
);
2048 return rb_usascii_str_new2(b
);
2053 * fix.to_s( base=10 ) -> aString
2055 * Returns a string containing the representation of <i>fix</i> radix
2056 * <i>base</i> (between 2 and 36).
2058 * 12345.to_s #=> "12345"
2059 * 12345.to_s(2) #=> "11000000111001"
2060 * 12345.to_s(8) #=> "30071"
2061 * 12345.to_s(10) #=> "12345"
2062 * 12345.to_s(16) #=> "3039"
2063 * 12345.to_s(36) #=> "9ix"
2067 fix_to_s(int argc
, VALUE
*argv
, VALUE x
)
2071 if (argc
== 0) base
= 10;
2075 rb_scan_args(argc
, argv
, "01", &b
);
2079 return rb_fix2str(x
, base
);
2084 * fix + numeric => numeric_result
2086 * Performs addition: the class of the resulting object depends on
2087 * the class of <code>numeric</code> and on the magnitude of the
2092 fix_plus(VALUE x
, VALUE y
)
2107 return rb_big_plus(y
, x
);
2109 return DOUBLE2NUM((double)FIX2LONG(x
) + RFLOAT_VALUE(y
));
2111 return rb_num_coerce_bin(x
, y
, '+');
2117 * fix - numeric => numeric_result
2119 * Performs subtraction: the class of the resulting object depends on
2120 * the class of <code>numeric</code> and on the magnitude of the
2125 fix_minus(VALUE x
, VALUE y
)
2140 x
= rb_int2big(FIX2LONG(x
));
2141 return rb_big_minus(x
, y
);
2143 return DOUBLE2NUM((double)FIX2LONG(x
) - RFLOAT_VALUE(y
));
2145 return rb_num_coerce_bin(x
, y
, '-');
2149 #define SQRT_LONG_MAX ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2))
2150 /*tests if N*N would overflow*/
2151 #define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
2155 * fix * numeric => numeric_result
2157 * Performs multiplication: the class of the resulting object depends on
2158 * the class of <code>numeric</code> and on the magnitude of the
2163 fix_mul(VALUE x
, VALUE y
)
2167 /* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */
2171 #if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG
2181 #if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG
2182 d
= (LONG_LONG
)a
* b
;
2183 if (FIXABLE(d
)) return LONG2FIX(d
);
2184 return rb_ll2inum(d
);
2186 if (FIT_SQRT_LONG(a
) && FIT_SQRT_LONG(b
))
2187 return LONG2FIX(a
*b
);
2191 if (a
== 0) return x
;
2192 if (FIX2LONG(r
) != c
|| c
/a
!= b
) {
2193 r
= rb_big_mul(rb_int2big(a
), rb_int2big(b
));
2200 return rb_big_mul(y
, x
);
2202 return DOUBLE2NUM((double)FIX2LONG(x
) * RFLOAT_VALUE(y
));
2204 return rb_num_coerce_bin(x
, y
, '*');
2209 fixdivmod(long x
, long y
, long *divp
, long *modp
)
2213 if (y
== 0) rb_num_zerodiv();
2227 if ((mod
< 0 && y
> 0) || (mod
> 0 && y
< 0)) {
2231 if (divp
) *divp
= div
;
2232 if (modp
) *modp
= mod
;
2237 * fix.fdiv(numeric) => float
2239 * Returns the floating point result of dividing <i>fix</i> by
2242 * 654321.fdiv(13731) #=> 47.6528293642124
2243 * 654321.fdiv(13731.24) #=> 47.6519964693647
2248 fix_fdiv(VALUE x
, VALUE y
)
2251 return DOUBLE2NUM((double)FIX2LONG(x
) / (double)FIX2LONG(y
));
2255 return DOUBLE2NUM((double)FIX2LONG(x
) / rb_big2dbl(y
));
2257 return DOUBLE2NUM((double)FIX2LONG(x
) / RFLOAT_VALUE(y
));
2259 return rb_num_coerce_bin(x
, y
, rb_intern("fdiv"));
2264 fix_divide(VALUE x
, VALUE y
, ID op
)
2269 fixdivmod(FIX2LONG(x
), FIX2LONG(y
), &div
, 0);
2270 return LONG2NUM(div
);
2274 x
= rb_int2big(FIX2LONG(x
));
2275 return rb_big_div(x
, y
);
2281 div
= (double)FIX2LONG(x
) / RFLOAT_VALUE(y
);
2282 return DOUBLE2NUM(div
);
2285 if (RFLOAT_VALUE(y
) == 0) rb_num_zerodiv();
2286 div
= (double)FIX2LONG(x
) / RFLOAT_VALUE(y
);
2287 return rb_dbl2big(floor(div
));
2291 return rb_num_coerce_bin(x
, y
, op
);
2297 * fix / numeric => numeric_result
2299 * Performs division: the class of the resulting object depends on
2300 * the class of <code>numeric</code> and on the magnitude of the
2305 fix_div(VALUE x
, VALUE y
)
2307 return fix_divide(x
, y
, '/');
2312 * fix.div(numeric) => numeric_result
2314 * Performs integer division: returns integer value.
2318 fix_idiv(VALUE x
, VALUE y
)
2320 return fix_divide(x
, y
, rb_intern("div"));
2325 * fix % other => Numeric
2326 * fix.modulo(other) => Numeric
2328 * Returns <code>fix</code> modulo <code>other</code>.
2329 * See <code>Numeric.divmod</code> for more information.
2333 fix_mod(VALUE x
, VALUE y
)
2338 fixdivmod(FIX2LONG(x
), FIX2LONG(y
), 0, &mod
);
2339 return LONG2NUM(mod
);
2343 x
= rb_int2big(FIX2LONG(x
));
2344 return rb_big_modulo(x
, y
);
2349 flodivmod((double)FIX2LONG(x
), RFLOAT_VALUE(y
), 0, &mod
);
2350 return DOUBLE2NUM(mod
);
2353 return rb_num_coerce_bin(x
, y
, '%');
2359 * fix.divmod(numeric) => array
2361 * See <code>Numeric#divmod</code>.
2364 fix_divmod(VALUE x
, VALUE y
)
2369 fixdivmod(FIX2LONG(x
), FIX2LONG(y
), &div
, &mod
);
2371 return rb_assoc_new(LONG2NUM(div
), LONG2NUM(mod
));
2375 x
= rb_int2big(FIX2LONG(x
));
2376 return rb_big_divmod(x
, y
);
2380 volatile VALUE a
, b
;
2382 flodivmod((double)FIX2LONG(x
), RFLOAT_VALUE(y
), &div
, &mod
);
2384 b
= DOUBLE2NUM(mod
);
2385 return rb_assoc_new(a
, b
);
2388 return rb_num_coerce_bin(x
, y
, rb_intern("divmod"));
2393 int_pow(long x
, unsigned long y
)
2405 while (y
% 2 == 0) {
2406 if (!FIT_SQRT_LONG(x
)) {
2409 v
= rb_big_pow(rb_int2big(x
), LONG2NUM(y
));
2410 if (z
!= 1) v
= rb_big_mul(rb_int2big(neg
? -z
: z
), v
);
2418 if (!POSFIXABLE(xz
) || xz
/ x
!= z
) {
2430 * fix ** other => Numeric
2432 * Raises <code>fix</code> to the <code>other</code> power, which may
2433 * be negative or fractional.
2437 * 2 ** 0.5 #=> 1.4142135623731
2441 fix_pow(VALUE x
, VALUE y
)
2443 static const double zero
= 0.0;
2444 long a
= FIX2LONG(x
);
2447 long b
= FIX2LONG(y
);
2450 return rb_funcall(rb_rational_raw1(x
), rb_intern("**"), 1, y
);
2452 if (b
== 0) return INT2FIX(1);
2453 if (b
== 1) return x
;
2455 if (b
> 0) return INT2FIX(0);
2456 return DOUBLE2NUM(1.0 / zero
);
2458 if (a
== 1) return INT2FIX(1);
2465 return int_pow(a
, b
);
2470 if (rb_funcall(y
, '<', 1, INT2FIX(0)))
2471 return rb_funcall(rb_rational_raw1(x
), rb_intern("**"), 1, y
);
2473 if (a
== 0) return INT2FIX(0);
2474 if (a
== 1) return INT2FIX(1);
2476 if (int_even_p(y
)) return INT2FIX(1);
2477 else return INT2FIX(-1);
2479 x
= rb_int2big(FIX2LONG(x
));
2480 return rb_big_pow(x
, y
);
2482 if (RFLOAT_VALUE(y
) == 0.0) return DOUBLE2NUM(1.0);
2484 return DOUBLE2NUM(RFLOAT_VALUE(y
) < 0 ? (1.0 / zero
) : 0.0);
2486 if (a
== 1) return DOUBLE2NUM(1.0);
2487 return DOUBLE2NUM(pow((double)a
, RFLOAT_VALUE(y
)));
2489 return rb_num_coerce_bin(x
, y
, rb_intern("**"));
2497 * Return <code>true</code> if <code>fix</code> equals <code>other</code>
2505 fix_equal(VALUE x
, VALUE y
)
2507 if (x
== y
) return Qtrue
;
2508 if (FIXNUM_P(y
)) return Qfalse
;
2511 return rb_big_eq(y
, x
);
2513 return (double)FIX2LONG(x
) == RFLOAT_VALUE(y
) ? Qtrue
: Qfalse
;
2515 return num_equal(x
, y
);
2521 * fix <=> numeric => -1, 0, +1
2523 * Comparison---Returns -1, 0, or +1 depending on whether <i>fix</i> is
2524 * less than, equal to, or greater than <i>numeric</i>. This is the
2525 * basis for the tests in <code>Comparable</code>.
2529 fix_cmp(VALUE x
, VALUE y
)
2531 if (x
== y
) return INT2FIX(0);
2533 if (FIX2LONG(x
) > FIX2LONG(y
)) return INT2FIX(1);
2538 return rb_big_cmp(rb_int2big(FIX2LONG(x
)), y
);
2540 return rb_dbl_cmp((double)FIX2LONG(x
), RFLOAT_VALUE(y
));
2542 return rb_num_coerce_cmp(x
, y
, rb_intern("<=>"));
2548 * fix > other => true or false
2550 * Returns <code>true</code> if the value of <code>fix</code> is
2551 * greater than that of <code>other</code>.
2555 fix_gt(VALUE x
, VALUE y
)
2558 if (FIX2LONG(x
) > FIX2LONG(y
)) return Qtrue
;
2563 return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x
)), y
)) > 0 ? Qtrue
: Qfalse
;
2565 return (double)FIX2LONG(x
) > RFLOAT_VALUE(y
) ? Qtrue
: Qfalse
;
2567 return rb_num_coerce_relop(x
, y
, '>');
2573 * fix >= other => true or false
2575 * Returns <code>true</code> if the value of <code>fix</code> is
2576 * greater than or equal to that of <code>other</code>.
2580 fix_ge(VALUE x
, VALUE y
)
2583 if (FIX2LONG(x
) >= FIX2LONG(y
)) return Qtrue
;
2588 return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x
)), y
)) >= 0 ? Qtrue
: Qfalse
;
2590 return (double)FIX2LONG(x
) >= RFLOAT_VALUE(y
) ? Qtrue
: Qfalse
;
2592 return rb_num_coerce_relop(x
, y
, rb_intern(">="));
2598 * fix < other => true or false
2600 * Returns <code>true</code> if the value of <code>fix</code> is
2601 * less than that of <code>other</code>.
2605 fix_lt(VALUE x
, VALUE y
)
2608 if (FIX2LONG(x
) < FIX2LONG(y
)) return Qtrue
;
2613 return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x
)), y
)) < 0 ? Qtrue
: Qfalse
;
2615 return (double)FIX2LONG(x
) < RFLOAT_VALUE(y
) ? Qtrue
: Qfalse
;
2617 return rb_num_coerce_relop(x
, y
, '<');
2623 * fix <= other => true or false
2625 * Returns <code>true</code> if the value of <code>fix</code> is
2626 * less than or equal to that of <code>other</code>.
2630 fix_le(VALUE x
, VALUE y
)
2633 if (FIX2LONG(x
) <= FIX2LONG(y
)) return Qtrue
;
2638 return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x
)), y
)) <= 0 ? Qtrue
: Qfalse
;
2640 return (double)FIX2LONG(x
) <= RFLOAT_VALUE(y
) ? Qtrue
: Qfalse
;
2642 return rb_num_coerce_relop(x
, y
, rb_intern("<="));
2650 * One's complement: returns a number where each bit is flipped.
2656 long val
= FIX2LONG(num
);
2659 return LONG2NUM(val
);
2665 while (!FIXNUM_P(x
) && TYPE(x
) != T_BIGNUM
) {
2666 if (TYPE(x
) == T_FLOAT
) {
2667 rb_raise(rb_eTypeError
, "can't convert Float into Integer");
2676 * fix & other => integer
2682 fix_and(VALUE x
, VALUE y
)
2686 if (!FIXNUM_P(y
= bit_coerce(y
))) {
2687 return rb_big_and(y
, x
);
2689 val
= FIX2LONG(x
) & FIX2LONG(y
);
2690 return LONG2NUM(val
);
2695 * fix | other => integer
2701 fix_or(VALUE x
, VALUE y
)
2705 if (!FIXNUM_P(y
= bit_coerce(y
))) {
2706 return rb_big_or(y
, x
);
2708 val
= FIX2LONG(x
) | FIX2LONG(y
);
2709 return LONG2NUM(val
);
2714 * fix ^ other => integer
2716 * Bitwise EXCLUSIVE OR.
2720 fix_xor(VALUE x
, VALUE y
)
2724 if (!FIXNUM_P(y
= bit_coerce(y
))) {
2725 return rb_big_xor(y
, x
);
2727 val
= FIX2LONG(x
) ^ FIX2LONG(y
);
2728 return LONG2NUM(val
);
2731 static VALUE
fix_lshift(long, unsigned long);
2732 static VALUE
fix_rshift(long, unsigned long);
2736 * fix << count => integer
2738 * Shifts _fix_ left _count_ positions (right if _count_ is negative).
2742 rb_fix_lshift(VALUE x
, VALUE y
)
2748 return rb_big_lshift(rb_int2big(val
), y
);
2749 width
= FIX2LONG(y
);
2751 return fix_rshift(val
, (unsigned long)-width
);
2752 return fix_lshift(val
, width
);
2756 fix_lshift(long val
, unsigned long width
)
2758 if (width
> (SIZEOF_LONG
*CHAR_BIT
-1)
2759 || ((unsigned long)val
)>>(SIZEOF_LONG
*CHAR_BIT
-1-width
) > 0) {
2760 return rb_big_lshift(rb_int2big(val
), ULONG2NUM(width
));
2763 return LONG2NUM(val
);
2768 * fix >> count => integer
2770 * Shifts _fix_ right _count_ positions (left if _count_ is negative).
2774 rb_fix_rshift(VALUE x
, VALUE y
)
2780 return rb_big_rshift(rb_int2big(val
), y
);
2782 if (i
== 0) return x
;
2784 return fix_lshift(val
, (unsigned long)-i
);
2785 return fix_rshift(val
, i
);
2789 fix_rshift(long val
, unsigned long i
)
2791 if (i
>= sizeof(long)*CHAR_BIT
-1) {
2792 if (val
< 0) return INT2FIX(-1);
2795 val
= RSHIFT(val
, i
);
2796 return LONG2FIX(val
);
2803 * Bit Reference---Returns the <em>n</em>th bit in the binary
2804 * representation of <i>fix</i>, where <i>fix</i>[0] is the least
2807 * a = 0b11001100101010
2808 * 30.downto(0) do |n| print a[n] end
2810 * <em>produces:</em>
2812 * 0000000000000000011001100101010
2816 fix_aref(VALUE fix
, VALUE idx
)
2818 long val
= FIX2LONG(fix
);
2821 idx
= rb_to_int(idx
);
2822 if (!FIXNUM_P(idx
)) {
2823 idx
= rb_big_norm(idx
);
2824 if (!FIXNUM_P(idx
)) {
2825 if (!RBIGNUM_SIGN(idx
) || val
>= 0)
2832 if (i
< 0) return INT2FIX(0);
2833 if (SIZEOF_LONG
*CHAR_BIT
-1 < i
) {
2834 if (val
< 0) return INT2FIX(1);
2846 * Converts <i>fix</i> to a <code>Float</code>.
2855 val
= (double)FIX2LONG(num
);
2857 return DOUBLE2NUM(val
);
2862 * fix.abs -> aFixnum
2864 * Returns the absolute value of <i>fix</i>.
2866 * -12345.abs #=> 12345
2867 * 12345.abs #=> 12345
2874 long i
= FIX2LONG(fix
);
2885 * fix.size -> fixnum
2887 * Returns the number of <em>bytes</em> in the machine representation
2888 * of a <code>Fixnum</code>.
2892 * 2147483647.size #=> 4
2898 return INT2FIX(sizeof(long));
2903 * int.upto(limit) {|i| block } => int
2905 * Iterates <em>block</em>, passing in integer values from <i>int</i>
2906 * up to and including <i>limit</i>.
2908 * 5.upto(10) { |i| print i, " " }
2910 * <em>produces:</em>
2916 int_upto(VALUE from
, VALUE to
)
2918 RETURN_ENUMERATOR(from
, 1, &to
);
2919 if (FIXNUM_P(from
) && FIXNUM_P(to
)) {
2923 for (i
= FIX2LONG(from
); i
<= end
; i
++) {
2924 rb_yield(LONG2FIX(i
));
2930 while (!(c
= rb_funcall(i
, '>', 1, to
))) {
2932 i
= rb_funcall(i
, '+', 1, INT2FIX(1));
2934 if (NIL_P(c
)) rb_cmperr(i
, to
);
2941 * int.downto(limit) {|i| block } => int
2943 * Iterates <em>block</em>, passing decreasing values from <i>int</i>
2944 * down to and including <i>limit</i>.
2946 * 5.downto(1) { |n| print n, ".. " }
2947 * print " Liftoff!\n"
2949 * <em>produces:</em>
2951 * 5.. 4.. 3.. 2.. 1.. Liftoff!
2955 int_downto(VALUE from
, VALUE to
)
2957 RETURN_ENUMERATOR(from
, 1, &to
);
2958 if (FIXNUM_P(from
) && FIXNUM_P(to
)) {
2962 for (i
=FIX2LONG(from
); i
>= end
; i
--) {
2963 rb_yield(LONG2FIX(i
));
2969 while (!(c
= rb_funcall(i
, '<', 1, to
))) {
2971 i
= rb_funcall(i
, '-', 1, INT2FIX(1));
2973 if (NIL_P(c
)) rb_cmperr(i
, to
);
2980 * int.times {|i| block } => int
2982 * Iterates block <i>int</i> times, passing in values from zero to
2989 * <em>produces:</em>
2995 int_dotimes(VALUE num
)
2997 RETURN_ENUMERATOR(num
, 0, 0);
2999 if (FIXNUM_P(num
)) {
3002 end
= FIX2LONG(num
);
3003 for (i
=0; i
<end
; i
++) {
3004 rb_yield(LONG2FIX(i
));
3008 VALUE i
= INT2FIX(0);
3011 if (!RTEST(rb_funcall(i
, '<', 1, num
))) break;
3013 i
= rb_funcall(i
, '+', 1, INT2FIX(1));
3020 int_round(int argc
, VALUE
* argv
, VALUE num
)
3025 if (argc
== 0) return num
;
3026 rb_scan_args(argc
, argv
, "1", &n
);
3027 ndigits
= NUM2INT(n
);
3029 return rb_Float(num
);
3036 rb_raise(rb_eArgError
, "ndigits out of range");
3038 f
= int_pow(10, ndigits
);
3039 if (FIXNUM_P(num
) && FIXNUM_P(f
)) {
3040 SIGNED_VALUE x
= FIX2LONG(num
), y
= FIX2LONG(f
);
3043 x
= (x
+ y
/ 2) / y
* y
;
3047 h
= rb_funcall(f
, '/', 1, INT2FIX(2));
3048 r
= rb_funcall(num
, '%', 1, f
);
3049 n
= rb_funcall(num
, '-', 1, r
);
3050 if (!RTEST(rb_funcall(r
, '<', 1, h
))) {
3051 n
= rb_funcall(n
, '+', 1, f
);
3058 * fix.zero? => true or false
3060 * Returns <code>true</code> if <i>fix</i> is zero.
3065 fix_zero_p(VALUE num
)
3067 if (FIX2LONG(num
) == 0) {
3075 * fix.odd? -> true or false
3077 * Returns <code>true</code> if <i>fix</i> is an odd number.
3081 fix_odd_p(VALUE num
)
3091 * fix.even? -> true or false
3093 * Returns <code>true</code> if <i>fix</i> is an even number.
3097 fix_even_p(VALUE num
)
3110 #if defined(__FreeBSD__) && __FreeBSD__ < 4
3111 /* allow divide by zero -- Inf */
3112 fpsetmask(fpgetmask() & ~(FP_X_DZ
|FP_X_INV
|FP_X_OFL
));
3113 #elif defined(_UNICOSMP)
3114 /* Turn off floating point exceptions for divide by zero, etc. */
3116 #elif defined(__BORLANDC__)
3117 /* Turn off floating point exceptions for overflow, etc. */
3118 _control87(MCW_EM
, MCW_EM
);
3120 id_coerce
= rb_intern("coerce");
3121 id_to_i
= rb_intern("to_i");
3122 id_eq
= rb_intern("==");
3124 rb_eZeroDivError
= rb_define_class("ZeroDivisionError", rb_eStandardError
);
3125 rb_eFloatDomainError
= rb_define_class("FloatDomainError", rb_eRangeError
);
3126 rb_cNumeric
= rb_define_class("Numeric", rb_cObject
);
3128 rb_define_method(rb_cNumeric
, "singleton_method_added", num_sadded
, 1);
3129 rb_include_module(rb_cNumeric
, rb_mComparable
);
3130 rb_define_method(rb_cNumeric
, "initialize_copy", num_init_copy
, 1);
3131 rb_define_method(rb_cNumeric
, "coerce", num_coerce
, 1);
3133 rb_define_method(rb_cNumeric
, "+@", num_uplus
, 0);
3134 rb_define_method(rb_cNumeric
, "-@", num_uminus
, 0);
3135 rb_define_method(rb_cNumeric
, "<=>", num_cmp
, 1);
3136 rb_define_method(rb_cNumeric
, "eql?", num_eql
, 1);
3137 rb_define_method(rb_cNumeric
, "quo", num_quo
, 1);
3138 rb_define_method(rb_cNumeric
, "fdiv", num_fdiv
, 1);
3139 rb_define_method(rb_cNumeric
, "div", num_div
, 1);
3140 rb_define_method(rb_cNumeric
, "divmod", num_divmod
, 1);
3141 rb_define_method(rb_cNumeric
, "modulo", num_modulo
, 1);
3142 rb_define_method(rb_cNumeric
, "remainder", num_remainder
, 1);
3143 rb_define_method(rb_cNumeric
, "abs", num_abs
, 0);
3144 rb_define_method(rb_cNumeric
, "to_int", num_to_int
, 0);
3146 rb_define_method(rb_cNumeric
, "scalar?", num_scalar_p
, 0);
3147 rb_define_method(rb_cNumeric
, "integer?", num_int_p
, 0);
3148 rb_define_method(rb_cNumeric
, "zero?", num_zero_p
, 0);
3149 rb_define_method(rb_cNumeric
, "nonzero?", num_nonzero_p
, 0);
3151 rb_define_method(rb_cNumeric
, "floor", num_floor
, 0);
3152 rb_define_method(rb_cNumeric
, "ceil", num_ceil
, 0);
3153 rb_define_method(rb_cNumeric
, "round", num_round
, -1);
3154 rb_define_method(rb_cNumeric
, "truncate", num_truncate
, 0);
3155 rb_define_method(rb_cNumeric
, "step", num_step
, -1);
3157 rb_define_method(rb_cNumeric
, "numerator", num_numerator
, 0);
3158 rb_define_method(rb_cNumeric
, "denominator", num_denominator
, 0);
3160 rb_cInteger
= rb_define_class("Integer", rb_cNumeric
);
3161 rb_undef_alloc_func(rb_cInteger
);
3162 rb_undef_method(CLASS_OF(rb_cInteger
), "new");
3164 rb_define_method(rb_cInteger
, "integer?", int_int_p
, 0);
3165 rb_define_method(rb_cInteger
, "odd?", int_odd_p
, 0);
3166 rb_define_method(rb_cInteger
, "even?", int_even_p
, 0);
3167 rb_define_method(rb_cInteger
, "upto", int_upto
, 1);
3168 rb_define_method(rb_cInteger
, "downto", int_downto
, 1);
3169 rb_define_method(rb_cInteger
, "times", int_dotimes
, 0);
3170 rb_include_module(rb_cInteger
, rb_mPrecision
);
3171 rb_define_method(rb_cInteger
, "succ", int_succ
, 0);
3172 rb_define_method(rb_cInteger
, "next", int_succ
, 0);
3173 rb_define_method(rb_cInteger
, "pred", int_pred
, 0);
3174 rb_define_method(rb_cInteger
, "chr", int_chr
, -1);
3175 rb_define_method(rb_cInteger
, "to_i", int_to_i
, 0);
3176 rb_define_method(rb_cInteger
, "to_int", int_to_i
, 0);
3177 rb_define_method(rb_cInteger
, "floor", int_to_i
, 0);
3178 rb_define_method(rb_cInteger
, "ceil", int_to_i
, 0);
3179 rb_define_method(rb_cInteger
, "truncate", int_to_i
, 0);
3180 rb_define_method(rb_cInteger
, "round", int_round
, -1);
3182 rb_cFixnum
= rb_define_class("Fixnum", rb_cInteger
);
3183 rb_include_module(rb_cFixnum
, rb_mPrecision
);
3184 rb_define_singleton_method(rb_cFixnum
, "induced_from", rb_fix_induced_from
, 1);
3185 rb_define_singleton_method(rb_cInteger
, "induced_from", rb_int_induced_from
, 1);
3187 rb_define_method(rb_cInteger
, "numerator", int_numerator
, 0);
3188 rb_define_method(rb_cInteger
, "denominator", int_denominator
, 0);
3190 rb_define_method(rb_cFixnum
, "to_s", fix_to_s
, -1);
3192 rb_define_method(rb_cFixnum
, "-@", fix_uminus
, 0);
3193 rb_define_method(rb_cFixnum
, "+", fix_plus
, 1);
3194 rb_define_method(rb_cFixnum
, "-", fix_minus
, 1);
3195 rb_define_method(rb_cFixnum
, "*", fix_mul
, 1);
3196 rb_define_method(rb_cFixnum
, "/", fix_div
, 1);
3197 rb_define_method(rb_cFixnum
, "div", fix_idiv
, 1);
3198 rb_define_method(rb_cFixnum
, "%", fix_mod
, 1);
3199 rb_define_method(rb_cFixnum
, "modulo", fix_mod
, 1);
3200 rb_define_method(rb_cFixnum
, "divmod", fix_divmod
, 1);
3201 rb_define_method(rb_cFixnum
, "fdiv", fix_fdiv
, 1);
3202 rb_define_method(rb_cFixnum
, "**", fix_pow
, 1);
3204 rb_define_method(rb_cFixnum
, "abs", fix_abs
, 0);
3206 rb_define_method(rb_cFixnum
, "==", fix_equal
, 1);
3207 rb_define_method(rb_cFixnum
, "<=>", fix_cmp
, 1);
3208 rb_define_method(rb_cFixnum
, ">", fix_gt
, 1);
3209 rb_define_method(rb_cFixnum
, ">=", fix_ge
, 1);
3210 rb_define_method(rb_cFixnum
, "<", fix_lt
, 1);
3211 rb_define_method(rb_cFixnum
, "<=", fix_le
, 1);
3213 rb_define_method(rb_cFixnum
, "~", fix_rev
, 0);
3214 rb_define_method(rb_cFixnum
, "&", fix_and
, 1);
3215 rb_define_method(rb_cFixnum
, "|", fix_or
, 1);
3216 rb_define_method(rb_cFixnum
, "^", fix_xor
, 1);
3217 rb_define_method(rb_cFixnum
, "[]", fix_aref
, 1);
3219 rb_define_method(rb_cFixnum
, "<<", rb_fix_lshift
, 1);
3220 rb_define_method(rb_cFixnum
, ">>", rb_fix_rshift
, 1);
3222 rb_define_method(rb_cFixnum
, "to_f", fix_to_f
, 0);
3223 rb_define_method(rb_cFixnum
, "size", fix_size
, 0);
3224 rb_define_method(rb_cFixnum
, "zero?", fix_zero_p
, 0);
3225 rb_define_method(rb_cFixnum
, "odd?", fix_odd_p
, 0);
3226 rb_define_method(rb_cFixnum
, "even?", fix_even_p
, 0);
3227 rb_define_method(rb_cFixnum
, "succ", fix_succ
, 0);
3229 rb_cFloat
= rb_define_class("Float", rb_cNumeric
);
3231 rb_undef_alloc_func(rb_cFloat
);
3232 rb_undef_method(CLASS_OF(rb_cFloat
), "new");
3234 rb_define_singleton_method(rb_cFloat
, "induced_from", rb_flo_induced_from
, 1);
3235 rb_include_module(rb_cFloat
, rb_mPrecision
);
3237 rb_define_const(rb_cFloat
, "ROUNDS", INT2FIX(FLT_ROUNDS
));
3238 rb_define_const(rb_cFloat
, "RADIX", INT2FIX(FLT_RADIX
));
3239 rb_define_const(rb_cFloat
, "MANT_DIG", INT2FIX(DBL_MANT_DIG
));
3240 rb_define_const(rb_cFloat
, "DIG", INT2FIX(DBL_DIG
));
3241 rb_define_const(rb_cFloat
, "MIN_EXP", INT2FIX(DBL_MIN_EXP
));
3242 rb_define_const(rb_cFloat
, "MAX_EXP", INT2FIX(DBL_MAX_EXP
));
3243 rb_define_const(rb_cFloat
, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP
));
3244 rb_define_const(rb_cFloat
, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP
));
3245 rb_define_const(rb_cFloat
, "MIN", DOUBLE2NUM(DBL_MIN
));
3246 rb_define_const(rb_cFloat
, "MAX", DOUBLE2NUM(DBL_MAX
));
3247 rb_define_const(rb_cFloat
, "EPSILON", DOUBLE2NUM(DBL_EPSILON
));
3249 rb_define_method(rb_cFloat
, "to_s", flo_to_s
, 0);
3250 rb_define_method(rb_cFloat
, "coerce", flo_coerce
, 1);
3251 rb_define_method(rb_cFloat
, "-@", flo_uminus
, 0);
3252 rb_define_method(rb_cFloat
, "+", flo_plus
, 1);
3253 rb_define_method(rb_cFloat
, "-", flo_minus
, 1);
3254 rb_define_method(rb_cFloat
, "*", flo_mul
, 1);
3255 rb_define_method(rb_cFloat
, "/", flo_div
, 1);
3256 rb_define_method(rb_cFloat
, "quo", flo_quo
, 1);
3257 rb_define_method(rb_cFloat
, "fdiv", flo_quo
, 1);
3258 rb_define_method(rb_cFloat
, "%", flo_mod
, 1);
3259 rb_define_method(rb_cFloat
, "modulo", flo_mod
, 1);
3260 rb_define_method(rb_cFloat
, "divmod", flo_divmod
, 1);
3261 rb_define_method(rb_cFloat
, "**", flo_pow
, 1);
3262 rb_define_method(rb_cFloat
, "==", flo_eq
, 1);
3263 rb_define_method(rb_cFloat
, "<=>", flo_cmp
, 1);
3264 rb_define_method(rb_cFloat
, ">", flo_gt
, 1);
3265 rb_define_method(rb_cFloat
, ">=", flo_ge
, 1);
3266 rb_define_method(rb_cFloat
, "<", flo_lt
, 1);
3267 rb_define_method(rb_cFloat
, "<=", flo_le
, 1);
3268 rb_define_method(rb_cFloat
, "eql?", flo_eql
, 1);
3269 rb_define_method(rb_cFloat
, "hash", flo_hash
, 0);
3270 rb_define_method(rb_cFloat
, "to_f", flo_to_f
, 0);
3271 rb_define_method(rb_cFloat
, "abs", flo_abs
, 0);
3272 rb_define_method(rb_cFloat
, "zero?", flo_zero_p
, 0);
3274 rb_define_method(rb_cFloat
, "to_i", flo_truncate
, 0);
3275 rb_define_method(rb_cFloat
, "to_int", flo_truncate
, 0);
3276 rb_define_method(rb_cFloat
, "floor", flo_floor
, 0);
3277 rb_define_method(rb_cFloat
, "ceil", flo_ceil
, 0);
3278 rb_define_method(rb_cFloat
, "round", flo_round
, -1);
3279 rb_define_method(rb_cFloat
, "truncate", flo_truncate
, 0);
3281 rb_define_method(rb_cFloat
, "nan?", flo_is_nan_p
, 0);
3282 rb_define_method(rb_cFloat
, "infinite?", flo_is_infinite_p
, 0);
3283 rb_define_method(rb_cFloat
, "finite?", flo_is_finite_p
, 0);