1 /**********************************************************************
6 created at: Tue Oct 5 09:44:46 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
12 **********************************************************************/
14 #include "ruby/ruby.h"
15 #include "ruby/signal.h"
17 #include "ruby/node.h"
20 #include "ruby/util.h"
21 #include "eval_intern.h"
26 #include <sys/types.h>
28 #ifdef HAVE_SYS_TIME_H
32 #ifdef HAVE_SYS_RESOURCE_H
33 #include <sys/resource.h>
36 #if defined _WIN32 || defined __CYGWIN__
40 #ifdef HAVE_VALGRIND_MEMCHECK_H
41 # include <valgrind/memcheck.h>
42 # ifndef VALGRIND_MAKE_MEM_DEFINED
43 # define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE(p, n)
45 # ifndef VALGRIND_MAKE_MEM_UNDEFINED
46 # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE(p, n)
49 # define VALGRIND_MAKE_MEM_DEFINED(p, n) /* empty */
50 # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) /* empty */
53 int rb_io_fptr_finalize(struct rb_io_t
*);
55 #define rb_setjmp(env) RUBY_SETJMP(env)
56 #define rb_jmp_buf rb_jmpbuf_t
58 /* Make alloca work the best possible way. */
62 # define alloca __builtin_alloca
72 # ifndef alloca /* predefined by HP cc +Olibcalls */
76 # endif /* HAVE_ALLOCA_H */
79 #ifndef GC_MALLOC_LIMIT
80 #if defined(MSDOS) || defined(__human68k__)
81 #define GC_MALLOC_LIMIT 200000
83 #define GC_MALLOC_LIMIT 8000000
87 #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
89 #define MARK_STACK_MAX 1024
91 int ruby_gc_debug_indent
= 0;
96 #define GC_PROFILE_MORE_DETAIL 0
97 typedef struct gc_profile_record
{
100 double gc_sweep_time
;
101 double gc_invoke_time
;
102 size_t heap_use_slots
;
103 size_t heap_live_objects
;
104 size_t heap_free_objects
;
105 size_t heap_total_objects
;
106 size_t heap_use_size
;
107 size_t heap_total_size
;
109 size_t allocate_increase
;
110 size_t allocate_limit
;
119 getrusage(RUSAGE_SELF
, &usage
);
120 time
= usage
.ru_utime
;
121 return time
.tv_sec
+ time
.tv_usec
* 1e-6;
123 FILETIME creation_time
, exit_time
, kernel_time
, user_time
;
128 if (GetProcessTimes(GetCurrentProcess(),
129 &creation_time
, &exit_time
, &kernel_time
, &user_time
) == 0)
133 memcpy(&ui
, &user_time
, sizeof(FILETIME
));
134 q
= ui
.QuadPart
/ 10L;
135 t
= (DWORD
)(q
% 1000000L) * 1e-6;
140 t
+= (double)(DWORD
)(q
>> 16) * (1 << 16);
141 t
+= (DWORD
)q
& ~(~0 << 16);
149 #define GC_PROF_TIMER_START do {\
150 if (objspace->profile.run) {\
151 if (!objspace->profile.record) {\
152 objspace->profile.size = 1000;\
153 objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);\
155 if (count >= objspace->profile.size) {\
156 objspace->profile.size += 1000;\
157 objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);\
159 if (!objspace->profile.record) {\
160 rb_bug("gc_profile malloc or realloc miss");\
162 MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);\
163 gc_time = getrusage_time();\
164 objspace->profile.record[count].gc_invoke_time = gc_time - objspace->profile.invoke_time;\
168 #define GC_PROF_TIMER_STOP do {\
169 if (objspace->profile.run) {\
170 gc_time = getrusage_time() - gc_time;\
171 if (gc_time < 0) gc_time = 0;\
172 objspace->profile.record[count].gc_time = gc_time;\
173 objspace->profile.count++;\
177 #if GC_PROFILE_MORE_DETAIL
178 #define INIT_GC_PROF_PARAMS double gc_time = 0, mark_time = 0, sweep_time = 0;\
179 size_t count = objspace->profile.count
181 #define GC_PROF_MARK_TIMER_START do {\
182 if (objspace->profile.run) {\
183 mark_time = getrusage_time();\
187 #define GC_PROF_MARK_TIMER_STOP do {\
188 if (objspace->profile.run) {\
189 mark_time = getrusage_time() - mark_time;\
190 if (mark_time < 0) mark_time = 0;\
191 objspace->profile.record[count].gc_mark_time = mark_time;\
195 #define GC_PROF_SWEEP_TIMER_START do {\
196 if (objspace->profile.run) {\
197 sweep_time = getrusage_time();\
201 #define GC_PROF_SWEEP_TIMER_STOP do {\
202 if (objspace->profile.run) {\
203 sweep_time = getrusage_time() - sweep_time;\
204 if (sweep_time < 0) sweep_time = 0;\
205 objspace->profile.record[count].gc_sweep_time = sweep_time;\
208 #define GC_PROF_SET_MALLOC_INFO do {\
209 if (objspace->profile.run) {\
210 size_t count = objspace->profile.count;\
211 objspace->profile.record[count].allocate_increase = malloc_increase;\
212 objspace->profile.record[count].allocate_limit = malloc_limit; \
215 #define GC_PROF_SET_HEAP_INFO do {\
216 if (objspace->profile.run) {\
217 size_t count = objspace->profile.count;\
218 objspace->profile.record[count].heap_use_slots = heaps_used;\
219 objspace->profile.record[count].heap_live_objects = live;\
220 objspace->profile.record[count].heap_free_objects = freed;\
221 objspace->profile.record[count].heap_total_objects = heaps_used * HEAP_OBJ_LIMIT;\
222 objspace->profile.record[count].have_finalize = final_list ? Qtrue : Qfalse;\
223 objspace->profile.record[count].heap_use_size = live * sizeof(RVALUE);\
224 objspace->profile.record[count].heap_total_size = heaps_used * (HEAP_OBJ_LIMIT * sizeof(RVALUE));\
229 #define INIT_GC_PROF_PARAMS double gc_time = 0;\
230 size_t count = objspace->profile.count
231 #define GC_PROF_MARK_TIMER_START
232 #define GC_PROF_MARK_TIMER_STOP
233 #define GC_PROF_SWEEP_TIMER_START
234 #define GC_PROF_SWEEP_TIMER_STOP
235 #define GC_PROF_SET_MALLOC_INFO
236 #define GC_PROF_SET_HEAP_INFO do {\
237 if (objspace->profile.run) {\
238 size_t count = objspace->profile.count;\
239 objspace->profile.record[count].heap_total_objects = heaps_used * HEAP_OBJ_LIMIT;\
240 objspace->profile.record[count].heap_use_size = live * sizeof(RVALUE);\
241 objspace->profile.record[count].heap_total_size = heaps_used * HEAP_SIZE;\
247 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
248 #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
251 typedef struct RVALUE
{
254 VALUE flags
; /* always 0 for freed obj */
258 struct RObject object
;
260 struct RFloat flonum
;
261 struct RString string
;
263 struct RRegexp regexp
;
266 struct RStruct rstruct
;
267 struct RBignum bignum
;
271 struct RRational rational
;
272 struct RComplex
complex;
280 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
290 #define HEAP_MIN_SLOTS 10000
291 #define FREE_MIN 4096
295 struct gc_list
*next
;
298 #define CALC_EXACT_MALLOC_SIZE 0
300 typedef struct rb_objspace
{
304 #if CALC_EXACT_MALLOC_SIZE
305 size_t allocated_size
;
311 struct heaps_slot
*ptr
;
327 VALUE buffer
[MARK_STACK_MAX
];
333 gc_profile_record
*record
;
338 struct gc_list
*global_list
;
343 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
344 #define rb_objspace (*GET_VM()->objspace)
345 static int ruby_initial_gc_stress
= 0;
346 int *ruby_initial_gc_stress_ptr
= &ruby_initial_gc_stress
;
348 static rb_objspace_t rb_objspace
= {{GC_MALLOC_LIMIT
}, {HEAP_MIN_SLOTS
}};
349 int *ruby_initial_gc_stress_ptr
= &rb_objspace
.gc_stress
;
351 #define malloc_limit objspace->malloc_params.limit
352 #define malloc_increase objspace->malloc_params.increase
353 #define heap_slots objspace->heap.slots
354 #define heaps objspace->heap.ptr
355 #define heaps_length objspace->heap.length
356 #define heaps_used objspace->heap.used
357 #define freelist objspace->heap.freelist
358 #define lomem objspace->heap.range[0]
359 #define himem objspace->heap.range[1]
360 #define heaps_inc objspace->heap.increment
361 #define heaps_freed objspace->heap.freed
362 #define dont_gc objspace->flags.dont_gc
363 #define during_gc objspace->flags.during_gc
364 #define finalizer_table objspace->final.table
365 #define deferred_final_list objspace->final.deferred
366 #define mark_stack objspace->markstack.buffer
367 #define mark_stack_ptr objspace->markstack.ptr
368 #define mark_stack_overflow objspace->markstack.overflow
369 #define global_List objspace->global_list
370 #define ruby_gc_stress objspace->gc_stress
372 #define need_call_final (finalizer_table && finalizer_table->num_entries)
374 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
376 rb_objspace_alloc(void)
378 rb_objspace_t
*objspace
= malloc(sizeof(rb_objspace_t
));
379 memset(objspace
, 0, sizeof(*objspace
));
380 malloc_limit
= GC_MALLOC_LIMIT
;
381 ruby_gc_stress
= ruby_initial_gc_stress
;
389 /*#define HEAP_SIZE 0x8000 */
391 /*#define HEAP_SIZE 0x20000 */
393 /*#define HEAP_SIZE 0x10000 */
395 #define HEAP_SIZE 0x4000
397 /*#define HEAP_SIZE 0x2000 */
399 /*#define HEAP_SIZE 0x1000 */
401 /*#define HEAP_SIZE 0x800 */
403 #define HEAP_OBJ_LIMIT (HEAP_SIZE / sizeof(struct RVALUE))
405 extern st_table
*rb_class_tbl
;
407 int ruby_disable_gc_stress
= 0;
409 static void run_final(rb_objspace_t
*objspace
, VALUE obj
);
410 static int garbage_collect(rb_objspace_t
*objspace
);
413 rb_global_variable(VALUE
*var
)
415 rb_gc_register_address(var
);
421 rb_thread_t
*th
= GET_THREAD();
423 (rb_thread_raised_p(th
, RAISED_NOMEMORY
) && rb_safe_level() < 4)) {
424 fprintf(stderr
, "[FATAL] failed to allocate memory\n");
427 if (rb_thread_raised_p(th
, RAISED_NOMEMORY
)) {
428 rb_thread_raised_clear(th
);
429 GET_THREAD()->errinfo
= nomem_error
;
432 rb_thread_raised_set(th
, RAISED_NOMEMORY
);
433 rb_exc_raise(nomem_error
);
438 * GC.stress => true or false
440 * returns current status of GC stress mode.
444 gc_stress_get(VALUE self
)
446 rb_objspace_t
*objspace
= &rb_objspace
;
447 return ruby_gc_stress
? Qtrue
: Qfalse
;
452 * GC.stress = bool => bool
454 * updates GC stress mode.
456 * When GC.stress = true, GC is invoked for all GC opportunity:
457 * all memory and object allocation.
459 * Since it makes Ruby very slow, it is only for debugging.
463 gc_stress_set(VALUE self
, VALUE
bool)
465 rb_objspace_t
*objspace
= &rb_objspace
;
467 ruby_gc_stress
= RTEST(bool);
473 * GC::Profiler.enable? => true or false
475 * returns current status of GC profile mode.
479 gc_profile_enable_get(VALUE self
)
481 rb_objspace_t
*objspace
= &rb_objspace
;
482 return objspace
->profile
.run
;
487 * GC::Profiler.enable => nil
489 * updates GC profile mode.
490 * start profiler for GC.
495 gc_profile_enable(void)
497 rb_objspace_t
*objspace
= &rb_objspace
;
499 objspace
->profile
.run
= Qtrue
;
505 * GC::Profiler.disable => nil
507 * updates GC profile mode.
508 * stop profiler for GC.
513 gc_profile_disable(void)
515 rb_objspace_t
*objspace
= &rb_objspace
;
517 objspace
->profile
.run
= Qfalse
;
523 * GC::Profiler.clear => nil
525 * clear before profile data.
530 gc_profile_clear(void)
532 rb_objspace_t
*objspace
= &rb_objspace
;
533 MEMZERO(objspace
->profile
.record
, gc_profile_record
, objspace
->profile
.size
);
534 objspace
->profile
.count
= 0;
539 vm_xmalloc(rb_objspace_t
*objspace
, size_t size
)
544 rb_raise(rb_eNoMemError
, "negative allocation size (or too big)");
546 if (size
== 0) size
= 1;
548 #if CALC_EXACT_MALLOC_SIZE
549 size
+= sizeof(size_t);
552 if ((ruby_gc_stress
&& !ruby_disable_gc_stress
) ||
553 (malloc_increase
+size
) > malloc_limit
) {
554 garbage_collect(objspace
);
556 RUBY_CRITICAL(mem
= malloc(size
));
558 if (garbage_collect(objspace
)) {
559 RUBY_CRITICAL(mem
= malloc(size
));
565 malloc_increase
+= size
;
567 #if CALC_EXACT_MALLOC_SIZE
568 objspace
->malloc_params
.allocated_size
+= size
;
569 objspace
->malloc_params
.allocations
++;
570 ((size_t *)mem
)[0] = size
;
571 mem
= (size_t *)mem
+ 1;
578 vm_xrealloc(rb_objspace_t
*objspace
, void *ptr
, size_t size
)
583 rb_raise(rb_eArgError
, "negative re-allocation size");
585 if (!ptr
) return ruby_xmalloc(size
);
586 if (size
== 0) size
= 1;
587 if (ruby_gc_stress
&& !ruby_disable_gc_stress
) garbage_collect(objspace
);
589 #if CALC_EXACT_MALLOC_SIZE
590 size
+= sizeof(size_t);
591 objspace
->malloc_params
.allocated_size
-= size
;
592 ptr
= (size_t *)ptr
- 1;
595 RUBY_CRITICAL(mem
= realloc(ptr
, size
));
597 if (garbage_collect(objspace
)) {
598 RUBY_CRITICAL(mem
= realloc(ptr
, size
));
604 malloc_increase
+= size
;
606 #if CALC_EXACT_MALLOC_SIZE
607 objspace
->malloc_params
.allocated_size
+= size
;
608 ((size_t *)mem
)[0] = size
;
609 mem
= (size_t *)mem
+ 1;
616 vm_xfree(rb_objspace_t
*objspace
, void *ptr
)
618 #if CALC_EXACT_MALLOC_SIZE
620 ptr
= ((size_t *)ptr
) - 1;
621 size
= ((size_t*)ptr
)[0];
622 objspace
->malloc_params
.allocated_size
-= size
;
623 objspace
->malloc_params
.allocations
--;
626 RUBY_CRITICAL(free(ptr
));
630 ruby_xmalloc(size_t size
)
632 return vm_xmalloc(&rb_objspace
, size
);
636 ruby_xmalloc2(size_t n
, size_t size
)
638 size_t len
= size
* n
;
639 if (n
!= 0 && size
!= len
/ n
) {
640 rb_raise(rb_eArgError
, "malloc: possible integer overflow");
642 return vm_xmalloc(&rb_objspace
, len
);
646 ruby_xcalloc(size_t n
, size_t size
)
648 void *mem
= ruby_xmalloc2(n
, size
);
649 memset(mem
, 0, n
* size
);
655 ruby_xrealloc(void *ptr
, size_t size
)
657 return vm_xrealloc(&rb_objspace
, ptr
, size
);
661 ruby_xrealloc2(void *ptr
, size_t n
, size_t size
)
663 size_t len
= size
* n
;
664 if (n
!= 0 && size
!= len
/ n
) {
665 rb_raise(rb_eArgError
, "realloc: possible integer overflow");
667 return ruby_xrealloc(ptr
, len
);
674 vm_xfree(&rb_objspace
, x
);
680 * GC.enable => true or false
682 * Enables garbage collection, returning <code>true</code> if garbage
683 * collection was previously disabled.
685 * GC.disable #=> false
687 * GC.enable #=> false
694 rb_objspace_t
*objspace
= &rb_objspace
;
703 * GC.disable => true or false
705 * Disables garbage collection, returning <code>true</code> if garbage
706 * collection was already disabled.
708 * GC.disable #=> false
709 * GC.disable #=> true
716 rb_objspace_t
*objspace
= &rb_objspace
;
726 rb_register_mark_object(VALUE obj
)
728 VALUE ary
= GET_THREAD()->vm
->mark_object_ary
;
729 rb_ary_push(ary
, obj
);
733 rb_gc_register_address(VALUE
*addr
)
735 rb_objspace_t
*objspace
= &rb_objspace
;
738 tmp
= ALLOC(struct gc_list
);
739 tmp
->next
= global_List
;
745 rb_gc_unregister_address(VALUE
*addr
)
747 rb_objspace_t
*objspace
= &rb_objspace
;
748 struct gc_list
*tmp
= global_List
;
750 if (tmp
->varptr
== addr
) {
751 global_List
= tmp
->next
;
756 if (tmp
->next
->varptr
== addr
) {
757 struct gc_list
*t
= tmp
->next
;
759 tmp
->next
= tmp
->next
->next
;
769 allocate_heaps(rb_objspace_t
*objspace
, size_t next_heaps_length
)
771 struct heaps_slot
*p
;
774 size
= next_heaps_length
*sizeof(struct heaps_slot
);
776 if (heaps_used
> 0) {
777 p
= (struct heaps_slot
*)realloc(heaps
, size
);
781 p
= heaps
= (struct heaps_slot
*)malloc(size
);
788 heaps_length
= next_heaps_length
;
792 assign_heap_slot(rb_objspace_t
*objspace
)
794 RVALUE
*p
, *pend
, *membase
;
798 objs
= HEAP_OBJ_LIMIT
;
799 RUBY_CRITICAL(p
= (RVALUE
*)malloc(HEAP_SIZE
));
806 if ((VALUE
)p
% sizeof(RVALUE
) != 0) {
807 p
= (RVALUE
*)((VALUE
)p
+ sizeof(RVALUE
) - ((VALUE
)p
% sizeof(RVALUE
)));
808 if ((HEAP_SIZE
- HEAP_OBJ_LIMIT
* sizeof(RVALUE
)) < ((char*)p
- (char*)membase
)) {
816 register RVALUE
*mid_membase
;
818 mid_membase
= heaps
[mid
].membase
;
819 if (mid_membase
< membase
) {
822 else if (mid_membase
> membase
) {
826 rb_bug("same heap slot is allocated: %p at %"PRIuVALUE
, membase
, (VALUE
)mid
);
829 if (hi
< heaps_used
) {
830 MEMMOVE(&heaps
[hi
+1], &heaps
[hi
], struct heaps_slot
, heaps_used
- hi
);
832 heaps
[hi
].membase
= membase
;
834 heaps
[hi
].limit
= objs
;
836 if (lomem
== 0 || lomem
> p
) lomem
= p
;
837 if (himem
< pend
) himem
= pend
;
841 p
->as
.free
.flags
= 0;
842 p
->as
.free
.next
= freelist
;
849 init_heap(rb_objspace_t
*objspace
)
853 add
= HEAP_MIN_SLOTS
/ HEAP_OBJ_LIMIT
;
855 if ((heaps_used
+ add
) > heaps_length
) {
856 allocate_heaps(objspace
, heaps_used
+ add
);
859 for (i
= 0; i
< add
; i
++) {
860 assign_heap_slot(objspace
);
863 objspace
->profile
.invoke_time
= getrusage_time();
868 set_heaps_increment(rb_objspace_t
*objspace
)
870 size_t next_heaps_length
= heaps_used
* 1.8;
871 heaps_inc
= next_heaps_length
- heaps_used
;
873 if (next_heaps_length
> heaps_length
) {
874 allocate_heaps(objspace
, next_heaps_length
);
879 heaps_increment(rb_objspace_t
*objspace
)
882 assign_heap_slot(objspace
);
889 #define RANY(o) ((RVALUE*)(o))
892 rb_newobj_from_heap(rb_objspace_t
*objspace
)
896 if ((ruby_gc_stress
&& !ruby_disable_gc_stress
) || !freelist
) {
897 if (!heaps_increment(objspace
) && !garbage_collect(objspace
)) {
903 obj
= (VALUE
)freelist
;
904 freelist
= freelist
->as
.free
.next
;
906 MEMZERO((void*)obj
, RVALUE
, 1);
908 RANY(obj
)->file
= rb_sourcefile();
909 RANY(obj
)->line
= rb_sourceline();
917 rb_fill_value_cache(rb_thread_t
*th
)
919 rb_objspace_t
*objspace
= &rb_objspace
;
924 for (i
=0; i
<RUBY_VM_VALUE_CACHE_SIZE
; i
++) {
925 VALUE v
= rb_newobj_from_heap(objspace
);
927 th
->value_cache
[i
] = v
;
928 RBASIC(v
)->flags
= FL_MARK
;
930 th
->value_cache_ptr
= &th
->value_cache
[0];
931 rv
= rb_newobj_from_heap(objspace
);
940 rb_objspace_t
*objspace
= &rb_objspace
;
947 #if USE_VALUE_CACHE || (defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE)
948 rb_thread_t
*th
= GET_THREAD();
951 VALUE v
= *th
->value_cache_ptr
;
953 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
954 rb_objspace_t
*objspace
= th
->vm
->objspace
;
956 rb_objspace_t
*objspace
= &rb_objspace
;
962 rb_bug("object allocation during garbage collection phase");
967 RBASIC(v
)->flags
= 0;
968 th
->value_cache_ptr
++;
971 v
= rb_fill_value_cache(th
);
974 #if defined(GC_DEBUG)
975 printf("cache index: %d, v: %p, th: %p\n",
976 th
->value_cache_ptr
- th
->value_cache
, v
, th
);
980 return rb_newobj_from_heap(objspace
);
985 rb_node_newnode(enum node_type type
, VALUE a0
, VALUE a1
, VALUE a2
)
987 NODE
*n
= (NODE
*)rb_newobj();
990 nd_set_type(n
, type
);
1000 rb_data_object_alloc(VALUE klass
, void *datap
, RUBY_DATA_FUNC dmark
, RUBY_DATA_FUNC dfree
)
1002 NEWOBJ(data
, struct RData
);
1003 if (klass
) Check_Type(klass
, T_CLASS
);
1004 OBJSETUP(data
, klass
, T_DATA
);
1006 data
->dfree
= dfree
;
1007 data
->dmark
= dmark
;
1013 #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
1015 #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
1018 #define STACK_START (th->machine_stack_start)
1019 #define STACK_END (th->machine_stack_end)
1020 #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
1022 #if STACK_GROW_DIRECTION < 0
1023 # define STACK_LENGTH (STACK_START - STACK_END)
1024 #elif STACK_GROW_DIRECTION > 0
1025 # define STACK_LENGTH (STACK_END - STACK_START + 1)
1027 # define STACK_LENGTH ((STACK_END < STACK_START) ? STACK_START - STACK_END\
1028 : STACK_END - STACK_START + 1)
1030 #if !STACK_GROW_DIRECTION
1031 int ruby_stack_grow_direction
;
1033 ruby_get_stack_grow_direction(VALUE
*addr
)
1035 rb_thread_t
*th
= GET_THREAD();
1038 if (STACK_END
> addr
) return ruby_stack_grow_direction
= 1;
1039 return ruby_stack_grow_direction
= -1;
1043 #define GC_WATER_MARK 512
1046 ruby_stack_length(VALUE
**p
)
1048 rb_thread_t
*th
= GET_THREAD();
1050 if (p
) *p
= STACK_UPPER(STACK_END
, STACK_START
, STACK_END
);
1051 return STACK_LENGTH
;
1055 ruby_stack_check(void)
1058 rb_thread_t
*th
= GET_THREAD();
1060 ret
= STACK_LENGTH
> STACK_LEVEL_MAX
- GC_WATER_MARK
;
1063 ret
= (VALUE
*)rb_ia64_bsp() - th
->machine_register_stack_start
>
1064 th
->machine_register_stack_maxsize
/sizeof(VALUE
) - GC_WATER_MARK
;
1071 init_mark_stack(rb_objspace_t
*objspace
)
1073 mark_stack_overflow
= 0;
1074 mark_stack_ptr
= mark_stack
;
1077 #define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack)
1079 static void gc_mark(rb_objspace_t
*objspace
, VALUE ptr
, int lev
);
1080 static void gc_mark_children(rb_objspace_t
*objspace
, VALUE ptr
, int lev
);
1083 gc_mark_all(rb_objspace_t
*objspace
)
1088 init_mark_stack(objspace
);
1089 for (i
= 0; i
< heaps_used
; i
++) {
1090 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
1092 if ((p
->as
.basic
.flags
& FL_MARK
) &&
1093 (p
->as
.basic
.flags
!= FL_MARK
)) {
1094 gc_mark_children(objspace
, (VALUE
)p
, 0);
1102 gc_mark_rest(rb_objspace_t
*objspace
)
1104 VALUE tmp_arry
[MARK_STACK_MAX
];
1107 p
= (mark_stack_ptr
- mark_stack
) + tmp_arry
;
1108 MEMCPY(tmp_arry
, mark_stack
, VALUE
, p
- tmp_arry
);
1110 init_mark_stack(objspace
);
1111 while (p
!= tmp_arry
) {
1113 gc_mark_children(objspace
, *p
, 0);
1118 is_pointer_to_heap(rb_objspace_t
*objspace
, void *ptr
)
1120 register RVALUE
*p
= RANY(ptr
);
1121 register struct heaps_slot
*heap
;
1122 register size_t hi
, lo
, mid
;
1124 if (p
< lomem
|| p
> himem
) return Qfalse
;
1125 if ((VALUE
)p
% sizeof(RVALUE
) != 0) return Qfalse
;
1127 /* check if p looks like a pointer using bsearch*/
1131 mid
= (lo
+ hi
) / 2;
1133 if (heap
->slot
<= p
) {
1134 if (p
< heap
->slot
+ heap
->limit
)
1146 mark_locations_array(rb_objspace_t
*objspace
, register VALUE
*x
, register long n
)
1151 VALGRIND_MAKE_MEM_DEFINED(&v
, sizeof(v
));
1152 if (is_pointer_to_heap(objspace
, (void *)v
)) {
1153 gc_mark(objspace
, v
, 0);
1160 gc_mark_locations(rb_objspace_t
*objspace
, VALUE
*start
, VALUE
*end
)
1164 if (end
<= start
) return;
1166 mark_locations_array(objspace
, start
, n
);
1170 rb_gc_mark_locations(VALUE
*start
, VALUE
*end
)
1172 gc_mark_locations(&rb_objspace
, start
, end
);
1175 #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, start, end)
1177 struct mark_tbl_arg
{
1178 rb_objspace_t
*objspace
;
1183 mark_entry(ID key
, VALUE value
, st_data_t data
)
1185 struct mark_tbl_arg
*arg
= (void*)data
;
1186 gc_mark(arg
->objspace
, value
, arg
->lev
);
1191 mark_tbl(rb_objspace_t
*objspace
, st_table
*tbl
, int lev
)
1193 struct mark_tbl_arg arg
;
1195 arg
.objspace
= objspace
;
1197 st_foreach(tbl
, mark_entry
, (st_data_t
)&arg
);
1201 rb_mark_tbl(st_table
*tbl
)
1203 mark_tbl(&rb_objspace
, tbl
, 0);
1207 mark_key(VALUE key
, VALUE value
, st_data_t data
)
1209 struct mark_tbl_arg
*arg
= (void*)data
;
1210 gc_mark(arg
->objspace
, key
, arg
->lev
);
1215 mark_set(rb_objspace_t
*objspace
, st_table
*tbl
, int lev
)
1217 struct mark_tbl_arg arg
;
1219 arg
.objspace
= objspace
;
1221 st_foreach(tbl
, mark_key
, (st_data_t
)&arg
);
1225 rb_mark_set(st_table
*tbl
)
1227 mark_set(&rb_objspace
, tbl
, 0);
1231 mark_keyvalue(VALUE key
, VALUE value
, st_data_t data
)
1233 struct mark_tbl_arg
*arg
= (void*)data
;
1234 gc_mark(arg
->objspace
, key
, arg
->lev
);
1235 gc_mark(arg
->objspace
, value
, arg
->lev
);
1240 mark_hash(rb_objspace_t
*objspace
, st_table
*tbl
, int lev
)
1242 struct mark_tbl_arg arg
;
1244 arg
.objspace
= objspace
;
1246 st_foreach(tbl
, mark_keyvalue
, (st_data_t
)&arg
);
1250 rb_mark_hash(st_table
*tbl
)
1252 mark_hash(&rb_objspace
, tbl
, 0);
1256 rb_gc_mark_maybe(VALUE obj
)
1258 if (is_pointer_to_heap(&rb_objspace
, (void *)obj
)) {
1259 gc_mark(&rb_objspace
, obj
, 0);
1263 #define GC_LEVEL_MAX 250
1266 gc_mark(rb_objspace_t
*objspace
, VALUE ptr
, int lev
)
1268 register RVALUE
*obj
;
1271 if (rb_special_const_p(ptr
)) return; /* special const not marked */
1272 if (obj
->as
.basic
.flags
== 0) return; /* free cell */
1273 if (obj
->as
.basic
.flags
& FL_MARK
) return; /* already marked */
1274 obj
->as
.basic
.flags
|= FL_MARK
;
1276 if (lev
> GC_LEVEL_MAX
|| (lev
== 0 && ruby_stack_check())) {
1277 if (!mark_stack_overflow
) {
1278 if (mark_stack_ptr
- mark_stack
< MARK_STACK_MAX
) {
1279 *mark_stack_ptr
= ptr
;
1283 mark_stack_overflow
= 1;
1288 gc_mark_children(objspace
, ptr
, lev
+1);
1292 rb_gc_mark(VALUE ptr
)
1294 gc_mark(&rb_objspace
, ptr
, 0);
1298 gc_mark_children(rb_objspace_t
*objspace
, VALUE ptr
, int lev
)
1300 register RVALUE
*obj
= RANY(ptr
);
1302 goto marking
; /* skip */
1306 if (rb_special_const_p(ptr
)) return; /* special const not marked */
1307 if (obj
->as
.basic
.flags
== 0) return; /* free cell */
1308 if (obj
->as
.basic
.flags
& FL_MARK
) return; /* already marked */
1309 obj
->as
.basic
.flags
|= FL_MARK
;
1312 if (FL_TEST(obj
, FL_EXIVAR
)) {
1313 rb_mark_generic_ivar(ptr
);
1316 switch (BUILTIN_TYPE(obj
)) {
1319 rb_bug("rb_gc_mark() called for broken object");
1323 switch (nd_type(obj
)) {
1324 case NODE_IF
: /* 1,2,3 */
1332 case NODE_BLOCK_PASS
:
1333 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u2
.node
, lev
);
1335 case NODE_BLOCK
: /* 1,3 */
1341 case NODE_DREGX_ONCE
:
1347 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u1
.node
, lev
);
1349 case NODE_SUPER
: /* 3 */
1353 ptr
= (VALUE
)obj
->as
.node
.u3
.node
;
1356 case NODE_METHOD
: /* 1,2 */
1369 case NODE_OP_ASGN_OR
:
1370 case NODE_OP_ASGN_AND
:
1375 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u1
.node
, lev
);
1377 case NODE_FBODY
: /* 2 */
1381 case NODE_DASGN_CURR
:
1390 ptr
= (VALUE
)obj
->as
.node
.u2
.node
;
1393 case NODE_HASH
: /* 1 */
1406 ptr
= (VALUE
)obj
->as
.node
.u1
.node
;
1409 case NODE_SCOPE
: /* 2,3 */
1412 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u3
.node
, lev
);
1413 ptr
= (VALUE
)obj
->as
.node
.u2
.node
;
1416 case NODE_ZARRAY
: /* - */
1435 case NODE_BLOCK_ARG
:
1438 mark_locations_array(objspace
,
1439 (VALUE
*)obj
->as
.node
.u1
.value
,
1440 obj
->as
.node
.u3
.cnt
);
1441 ptr
= (VALUE
)obj
->as
.node
.u2
.node
;
1444 default: /* unlisted NODE */
1445 if (is_pointer_to_heap(objspace
, obj
->as
.node
.u1
.node
)) {
1446 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u1
.node
, lev
);
1448 if (is_pointer_to_heap(objspace
, obj
->as
.node
.u2
.node
)) {
1449 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u2
.node
, lev
);
1451 if (is_pointer_to_heap(objspace
, obj
->as
.node
.u3
.node
)) {
1452 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u3
.node
, lev
);
1455 return; /* no need to mark class. */
1458 gc_mark(objspace
, obj
->as
.basic
.klass
, lev
);
1459 switch (BUILTIN_TYPE(obj
)) {
1463 mark_tbl(objspace
, RCLASS_M_TBL(obj
), lev
);
1464 mark_tbl(objspace
, RCLASS_IV_TBL(obj
), lev
);
1465 ptr
= RCLASS_SUPER(obj
);
1469 if (FL_TEST(obj
, ELTS_SHARED
)) {
1470 ptr
= obj
->as
.array
.aux
.shared
;
1474 long i
, len
= RARRAY_LEN(obj
);
1475 VALUE
*ptr
= RARRAY_PTR(obj
);
1476 for (i
=0; i
< len
; i
++) {
1477 gc_mark(objspace
, *ptr
++, lev
);
1483 mark_hash(objspace
, obj
->as
.hash
.ntbl
, lev
);
1484 ptr
= obj
->as
.hash
.ifnone
;
1488 #define STR_ASSOC FL_USER3 /* copied from string.c */
1489 if (FL_TEST(obj
, RSTRING_NOEMBED
) && FL_ANY(obj
, ELTS_SHARED
|STR_ASSOC
)) {
1490 ptr
= obj
->as
.string
.as
.heap
.aux
.shared
;
1496 if (obj
->as
.data
.dmark
) (*obj
->as
.data
.dmark
)(DATA_PTR(obj
));
1501 long i
, len
= ROBJECT_NUMIV(obj
);
1502 VALUE
*ptr
= ROBJECT_IVPTR(obj
);
1503 for (i
= 0; i
< len
; i
++) {
1504 gc_mark(objspace
, *ptr
++, lev
);
1510 if (obj
->as
.file
.fptr
) {
1511 gc_mark(objspace
, obj
->as
.file
.fptr
->tied_io_for_writing
, lev
);
1512 gc_mark(objspace
, obj
->as
.file
.fptr
->writeconv_stateless
, lev
);
1517 gc_mark(objspace
, obj
->as
.regexp
.src
, lev
);
1525 gc_mark(objspace
, obj
->as
.match
.regexp
, lev
);
1526 if (obj
->as
.match
.str
) {
1527 ptr
= obj
->as
.match
.str
;
1533 gc_mark(objspace
, obj
->as
.rational
.num
, lev
);
1534 gc_mark(objspace
, obj
->as
.rational
.den
, lev
);
1538 gc_mark(objspace
, obj
->as
.complex.real
, lev
);
1539 gc_mark(objspace
, obj
->as
.complex.image
, lev
);
1544 long len
= RSTRUCT_LEN(obj
);
1545 VALUE
*ptr
= RSTRUCT_PTR(obj
);
1548 gc_mark(objspace
, *ptr
++, lev
);
1554 rb_bug("rb_gc_mark(): unknown data type 0x%lx(%p) %s",
1555 BUILTIN_TYPE(obj
), obj
,
1556 is_pointer_to_heap(objspace
, obj
) ? "corrupted object" : "non object");
1560 static int obj_free(rb_objspace_t
*, VALUE
);
1563 add_freelist(rb_objspace_t
*objspace
, RVALUE
*p
)
1565 VALGRIND_MAKE_MEM_UNDEFINED((void*)p
, sizeof(RVALUE
));
1566 p
->as
.free
.flags
= 0;
1567 p
->as
.free
.next
= freelist
;
1572 finalize_list(rb_objspace_t
*objspace
, RVALUE
*p
)
1575 RVALUE
*tmp
= p
->as
.free
.next
;
1576 run_final(objspace
, (VALUE
)p
);
1577 if (!FL_TEST(p
, FL_SINGLETON
)) { /* not freeing page */
1578 add_freelist(objspace
, p
);
1581 struct heaps_slot
*slot
= (struct heaps_slot
*)RDATA(p
)->dmark
;
1589 free_unused_heaps(rb_objspace_t
*objspace
)
1594 for (i
= j
= 1; j
< heaps_used
; i
++) {
1595 if (heaps
[i
].limit
== 0) {
1597 last
= heaps
[i
].membase
;
1600 free(heaps
[i
].membase
);
1606 heaps
[j
] = heaps
[i
];
1612 if (last
< heaps_freed
) {
1623 gc_sweep(rb_objspace_t
*objspace
)
1625 RVALUE
*p
, *pend
, *final_list
;
1628 size_t live
= 0, free_min
= 0, do_heap_free
= 0;
1630 do_heap_free
= (heaps_used
* HEAP_OBJ_LIMIT
) * 0.65;
1631 free_min
= (heaps_used
* HEAP_OBJ_LIMIT
) * 0.2;
1633 if (free_min
< FREE_MIN
) {
1634 do_heap_free
= heaps_used
* HEAP_OBJ_LIMIT
;
1635 free_min
= FREE_MIN
;
1639 final_list
= deferred_final_list
;
1640 deferred_final_list
= 0;
1641 for (i
= 0; i
< heaps_used
; i
++) {
1642 int free_num
= 0, final_num
= 0;
1643 RVALUE
*free
= freelist
;
1644 RVALUE
*final
= final_list
;
1647 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
1649 if (!(p
->as
.basic
.flags
& FL_MARK
)) {
1650 if (p
->as
.basic
.flags
&&
1651 ((deferred
= obj_free(objspace
, (VALUE
)p
)) ||
1652 ((FL_TEST(p
, FL_FINALIZE
)) && need_call_final
))) {
1654 p
->as
.free
.flags
= T_DEFERRED
;
1655 RDATA(p
)->dfree
= 0;
1657 p
->as
.free
.flags
|= FL_MARK
;
1658 p
->as
.free
.next
= final_list
;
1663 add_freelist(objspace
, p
);
1667 else if (BUILTIN_TYPE(p
) == T_DEFERRED
) {
1668 /* objects to be finalized */
1669 /* do nothing remain marked */
1672 RBASIC(p
)->flags
&= ~FL_MARK
;
1677 if (final_num
+ free_num
== heaps
[i
].limit
&& freed
> do_heap_free
) {
1680 for (pp
= final_list
; pp
!= final
; pp
= pp
->as
.free
.next
) {
1681 RDATA(pp
)->dmark
= (void *)&heaps
[i
];
1682 pp
->as
.free
.flags
|= FL_SINGLETON
; /* freeing page mark */
1684 heaps
[i
].limit
= final_num
;
1686 freelist
= free
; /* cancel this page from freelist */
1692 GC_PROF_SET_MALLOC_INFO
;
1693 if (malloc_increase
> malloc_limit
) {
1694 malloc_limit
+= (malloc_increase
- malloc_limit
) * (double)live
/ (live
+ freed
);
1695 if (malloc_limit
< GC_MALLOC_LIMIT
) malloc_limit
= GC_MALLOC_LIMIT
;
1697 malloc_increase
= 0;
1698 if (freed
< free_min
) {
1699 set_heaps_increment(objspace
);
1700 heaps_increment(objspace
);
1704 /* clear finalization list */
1706 GC_PROF_SET_HEAP_INFO
;
1707 deferred_final_list
= final_list
;
1708 RUBY_VM_SET_FINALIZER_INTERRUPT(GET_THREAD());
1711 free_unused_heaps(objspace
);
1712 GC_PROF_SET_HEAP_INFO
;
1717 rb_gc_force_recycle(VALUE p
)
1719 rb_objspace_t
*objspace
= &rb_objspace
;
1720 add_freelist(objspace
, (RVALUE
*)p
);
1724 make_deferred(RVALUE
*p
)
1726 p
->as
.basic
.flags
= (p
->as
.basic
.flags
& ~T_MASK
) | T_DEFERRED
;
1730 obj_free(rb_objspace_t
*objspace
, VALUE obj
)
1732 switch (BUILTIN_TYPE(obj
)) {
1737 rb_bug("obj_free() called for broken object");
1741 if (FL_TEST(obj
, FL_EXIVAR
)) {
1742 rb_free_generic_ivar((VALUE
)obj
);
1743 FL_UNSET(obj
, FL_EXIVAR
);
1746 switch (BUILTIN_TYPE(obj
)) {
1748 if (!(RANY(obj
)->as
.basic
.flags
& ROBJECT_EMBED
) &&
1749 RANY(obj
)->as
.object
.as
.heap
.ivptr
) {
1750 xfree(RANY(obj
)->as
.object
.as
.heap
.ivptr
);
1755 rb_clear_cache_by_class((VALUE
)obj
);
1756 st_free_table(RCLASS_M_TBL(obj
));
1757 if (RCLASS_IV_TBL(obj
)) {
1758 st_free_table(RCLASS_IV_TBL(obj
));
1760 if (RCLASS_IV_INDEX_TBL(obj
)) {
1761 st_free_table(RCLASS_IV_INDEX_TBL(obj
));
1763 xfree(RANY(obj
)->as
.klass
.ptr
);
1772 if (RANY(obj
)->as
.hash
.ntbl
) {
1773 st_free_table(RANY(obj
)->as
.hash
.ntbl
);
1777 if (RANY(obj
)->as
.regexp
.ptr
) {
1778 onig_free(RANY(obj
)->as
.regexp
.ptr
);
1782 if (DATA_PTR(obj
)) {
1783 if ((long)RANY(obj
)->as
.data
.dfree
== -1) {
1784 xfree(DATA_PTR(obj
));
1786 else if (RANY(obj
)->as
.data
.dfree
) {
1787 make_deferred(RANY(obj
));
1793 if (RANY(obj
)->as
.match
.rmatch
) {
1794 struct rmatch
*rm
= RANY(obj
)->as
.match
.rmatch
;
1795 onig_region_free(&rm
->regs
, 0);
1796 if (rm
->char_offset
)
1797 xfree(rm
->char_offset
);
1802 if (RANY(obj
)->as
.file
.fptr
) {
1803 rb_io_t
*fptr
= RANY(obj
)->as
.file
.fptr
;
1804 make_deferred(RANY(obj
));
1805 RDATA(obj
)->dfree
= (void (*)(void*))rb_io_fptr_finalize
;
1806 RDATA(obj
)->data
= fptr
;
1814 /* iClass shares table with the module */
1821 if (!(RBASIC(obj
)->flags
& RBIGNUM_EMBED_FLAG
) && RBIGNUM_DIGITS(obj
)) {
1822 xfree(RBIGNUM_DIGITS(obj
));
1826 switch (nd_type(obj
)) {
1828 if (RANY(obj
)->as
.node
.u1
.tbl
) {
1829 xfree(RANY(obj
)->as
.node
.u1
.tbl
);
1833 xfree(RANY(obj
)->as
.node
.u1
.node
);
1836 break; /* no need to free iv_tbl */
1839 if ((RBASIC(obj
)->flags
& RSTRUCT_EMBED_LEN_MASK
) == 0 &&
1840 RANY(obj
)->as
.rstruct
.as
.heap
.ptr
) {
1841 xfree(RANY(obj
)->as
.rstruct
.as
.heap
.ptr
);
1846 rb_bug("gc_sweep(): unknown data type 0x%lx(%p)",
1847 BUILTIN_TYPE(obj
), (void*)obj
);
1854 #if defined(__human68k__) || defined(DJGPP)
1857 #if defined(__human68k__)
1858 typedef unsigned long rb_jmp_buf
[8];
1862 movem.l d3-d7/a3-a5,(a0)\n\
1867 typedef unsigned long rb_jmp_buf
[6];
1868 __asm__ (".align 4\n\
1872 movl 8(%ebp),%ebp\n\
1874 movl %ebx,4(%ebp)\n\
1875 movl %ecx,8(%ebp)\n\
1876 movl %edx,12(%ebp)\n\
1877 movl %esi,16(%ebp)\n\
1878 movl %edi,20(%ebp)\n\
1884 int rb_setjmp (rb_jmp_buf
);
1885 #endif /* __human68k__ or DJGPP */
1886 #endif /* __GNUC__ */
1890 void rb_vm_mark(void *ptr
);
1893 mark_current_machine_context(rb_objspace_t
*objspace
, rb_thread_t
*th
)
1895 rb_jmp_buf save_regs_gc_mark
;
1896 VALUE
*stack_start
, *stack_end
;
1899 #if STACK_GROW_DIRECTION < 0
1900 stack_start
= th
->machine_stack_end
;
1901 stack_end
= th
->machine_stack_start
;
1902 #elif STACK_GROW_DIRECTION > 0
1903 stack_start
= th
->machine_stack_start
;
1904 stack_end
= th
->machine_stack_end
+ 1;
1906 if (th
->machine_stack_end
< th
->machine_stack_start
) {
1907 stack_start
= th
->machine_stack_end
;
1908 stack_end
= th
->machine_stack_start
;
1911 stack_start
= th
->machine_stack_start
;
1912 stack_end
= th
->machine_stack_end
+ 1;
1916 FLUSH_REGISTER_WINDOWS
;
1917 /* This assumes that all registers are saved into the jmp_buf (and stack) */
1918 rb_setjmp(save_regs_gc_mark
);
1919 mark_locations_array(objspace
,
1920 (VALUE
*)save_regs_gc_mark
,
1921 sizeof(save_regs_gc_mark
) / sizeof(VALUE
));
1923 rb_gc_mark_locations(stack_start
, stack_end
);
1925 rb_gc_mark_locations(th
->machine_register_stack_start
, th
->machine_register_stack_end
);
1927 #if defined(__human68k__) || defined(__mc68000__)
1928 mark_locations_array((VALUE
*)((char*)STACK_END
+ 2),
1929 (STACK_START
- STACK_END
));
1933 void rb_gc_mark_encodings(void);
1936 garbage_collect(rb_objspace_t
*objspace
)
1938 struct gc_list
*list
;
1939 rb_thread_t
*th
= GET_THREAD();
1940 INIT_GC_PROF_PARAMS
;
1942 if (GC_NOTIFY
) printf("start garbage_collect()\n");
1948 if (dont_gc
|| during_gc
) {
1950 if (!heaps_increment(objspace
)) {
1951 set_heaps_increment(objspace
);
1952 heaps_increment(objspace
);
1960 GC_PROF_TIMER_START
;
1961 GC_PROF_MARK_TIMER_START
;
1964 init_mark_stack(objspace
);
1966 th
->vm
->self
? rb_gc_mark(th
->vm
->self
) : rb_vm_mark(th
->vm
);
1968 if (finalizer_table
) {
1969 mark_tbl(objspace
, finalizer_table
, 0);
1972 mark_current_machine_context(objspace
, th
);
1974 rb_gc_mark_threads();
1975 rb_gc_mark_symbols();
1976 rb_gc_mark_encodings();
1978 /* mark protected global variables */
1979 for (list
= global_List
; list
; list
= list
->next
) {
1980 rb_gc_mark_maybe(*list
->varptr
);
1983 rb_gc_mark_global_tbl();
1985 mark_tbl(objspace
, rb_class_tbl
, 0);
1986 rb_gc_mark_trap_list();
1988 /* mark generic instance variables for special constants */
1989 rb_mark_generic_ivar_tbl();
1991 rb_gc_mark_parser();
1993 /* gc_mark objects whose marking are not completed*/
1994 while (!MARK_STACK_EMPTY
) {
1995 if (mark_stack_overflow
) {
1996 gc_mark_all(objspace
);
1999 gc_mark_rest(objspace
);
2002 GC_PROF_MARK_TIMER_STOP
;
2004 GC_PROF_SWEEP_TIMER_START
;
2006 GC_PROF_SWEEP_TIMER_STOP
;
2009 if (GC_NOTIFY
) printf("end garbage_collect()\n");
2014 rb_garbage_collect(void)
2016 return garbage_collect(&rb_objspace
);
2020 rb_gc_mark_machine_stack(rb_thread_t
*th
)
2022 rb_objspace_t
*objspace
= &rb_objspace
;
2023 #if STACK_GROW_DIRECTION < 0
2024 rb_gc_mark_locations(th
->machine_stack_end
, th
->machine_stack_start
);
2025 #elif STACK_GROW_DIRECTION > 0
2026 rb_gc_mark_locations(th
->machine_stack_start
, th
->machine_stack_end
);
2028 if (th
->machine_stack_start
< th
->machine_stack_end
) {
2029 rb_gc_mark_locations(th
->machine_stack_start
, th
->machine_stack_end
);
2032 rb_gc_mark_locations(th
->machine_stack_end
, th
->machine_stack_start
);
2036 rb_gc_mark_locations(th
->machine_register_stack_start
, th
->machine_register_stack_end
);
2044 * gc.garbage_collect => nil
2045 * ObjectSpace.garbage_collect => nil
2047 * Initiates garbage collection, unless manually disabled.
2061 Init_stack(VALUE
*addr
)
2063 ruby_init_stack(addr
);
2067 * Document-class: ObjectSpace
2069 * The <code>ObjectSpace</code> module contains a number of routines
2070 * that interact with the garbage collection facility and allow you to
2071 * traverse all living objects with an iterator.
2073 * <code>ObjectSpace</code> also provides support for object
2074 * finalizers, procs that will be called when a specific object is
2075 * about to be destroyed by garbage collection.
2077 * include ObjectSpace
2085 * define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
2086 * define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
2087 * define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
2089 * <em>produces:</em>
2091 * Finalizer three on 537763470
2092 * Finalizer one on 537763480
2093 * Finalizer two on 537763480
2100 init_heap(&rb_objspace
);
2104 os_obj_of(rb_objspace_t
*objspace
, VALUE of
)
2108 RVALUE
*membase
= 0;
2113 while (i
< heaps_used
) {
2114 while (0 < i
&& (uintptr_t)membase
< (uintptr_t)heaps
[i
-1].membase
)
2116 while (i
< heaps_used
&& (uintptr_t)heaps
[i
].membase
<= (uintptr_t)membase
)
2118 if (heaps_used
<= i
)
2120 membase
= heaps
[i
].membase
;
2122 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
2123 for (;p
< pend
; p
++) {
2124 if (p
->as
.basic
.flags
) {
2125 switch (BUILTIN_TYPE(p
)) {
2132 if (FL_TEST(p
, FL_SINGLETON
)) continue;
2134 if (!p
->as
.basic
.klass
) continue;
2136 if (!of
|| rb_obj_is_kind_of(v
, of
)) {
2145 return SIZET2NUM(n
);
2150 * ObjectSpace.each_object([module]) {|obj| ... } => fixnum
2152 * Calls the block once for each living, nonimmediate object in this
2153 * Ruby process. If <i>module</i> is specified, calls the block
2154 * for only those classes or modules that match (or are a subclass of)
2155 * <i>module</i>. Returns the number of objects found. Immediate
2156 * objects (<code>Fixnum</code>s, <code>Symbol</code>s
2157 * <code>true</code>, <code>false</code>, and <code>nil</code>) are
2158 * never returned. In the example below, <code>each_object</code>
2159 * returns both the numbers we defined and several constants defined in
2160 * the <code>Math</code> module.
2163 * b = 95 # Won't be returned
2164 * c = 12345678987654321
2165 * count = ObjectSpace.each_object(Numeric) {|x| p x }
2166 * puts "Total count: #{count}"
2168 * <em>produces:</em>
2174 * 2.22044604925031e-16
2175 * 1.7976931348623157e+308
2176 * 2.2250738585072e-308
2182 os_each_obj(int argc
, VALUE
*argv
, VALUE os
)
2191 rb_scan_args(argc
, argv
, "01", &of
);
2193 RETURN_ENUMERATOR(os
, 1, &of
);
2194 return os_obj_of(&rb_objspace
, of
);
2199 * ObjectSpace.undefine_finalizer(obj)
2201 * Removes all finalizers for <i>obj</i>.
2206 undefine_final(VALUE os
, VALUE obj
)
2208 rb_objspace_t
*objspace
= &rb_objspace
;
2209 if (finalizer_table
) {
2210 st_delete(finalizer_table
, (st_data_t
*)&obj
, 0);
2217 * ObjectSpace.define_finalizer(obj, aProc=proc())
2219 * Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
2225 define_final(int argc
, VALUE
*argv
, VALUE os
)
2227 rb_objspace_t
*objspace
= &rb_objspace
;
2228 VALUE obj
, block
, table
;
2230 rb_scan_args(argc
, argv
, "11", &obj
, &block
);
2232 block
= rb_block_proc();
2234 else if (!rb_respond_to(block
, rb_intern("call"))) {
2235 rb_raise(rb_eArgError
, "wrong type argument %s (should be callable)",
2236 rb_obj_classname(block
));
2238 FL_SET(obj
, FL_FINALIZE
);
2240 block
= rb_ary_new3(2, INT2FIX(rb_safe_level()), block
);
2242 if (!finalizer_table
) {
2243 finalizer_table
= st_init_numtable();
2245 if (st_lookup(finalizer_table
, obj
, &table
)) {
2246 rb_ary_push(table
, block
);
2249 st_add_direct(finalizer_table
, obj
, rb_ary_new3(1, block
));
2255 rb_gc_copy_finalizer(VALUE dest
, VALUE obj
)
2257 rb_objspace_t
*objspace
= &rb_objspace
;
2260 if (!finalizer_table
) return;
2261 if (!FL_TEST(obj
, FL_FINALIZE
)) return;
2262 if (st_lookup(finalizer_table
, obj
, &table
)) {
2263 st_insert(finalizer_table
, dest
, table
);
2265 FL_SET(dest
, FL_FINALIZE
);
2269 run_single_final(VALUE arg
)
2271 VALUE
*args
= (VALUE
*)arg
;
2272 rb_eval_cmd(args
[0], args
[1], (int)args
[2]);
2277 run_final(rb_objspace_t
*objspace
, VALUE obj
)
2281 VALUE args
[3], table
, objid
;
2283 objid
= rb_obj_id(obj
); /* make obj into id */
2284 RBASIC(obj
)->klass
= 0;
2286 if (RDATA(obj
)->dfree
) {
2287 (*RDATA(obj
)->dfree
)(DATA_PTR(obj
));
2290 if (finalizer_table
&&
2291 st_delete(finalizer_table
, (st_data_t
*)&obj
, &table
)) {
2293 args
[2] = (VALUE
)rb_safe_level();
2294 if (!args
[1] && RARRAY_LEN(table
) > 0) {
2295 args
[1] = rb_obj_freeze(rb_ary_new3(1, objid
));
2297 for (i
=0; i
<RARRAY_LEN(table
); i
++) {
2298 VALUE final
= RARRAY_PTR(table
)[i
];
2299 args
[0] = RARRAY_PTR(final
)[1];
2300 args
[2] = FIX2INT(RARRAY_PTR(final
)[0]);
2301 rb_protect(run_single_final
, (VALUE
)args
, &status
);
2307 gc_finalize_deferred(rb_objspace_t
*objspace
)
2309 RVALUE
*p
= deferred_final_list
;
2310 deferred_final_list
= 0;
2313 finalize_list(objspace
, p
);
2315 free_unused_heaps(objspace
);
2319 rb_gc_finalize_deferred(void)
2321 gc_finalize_deferred(&rb_objspace
);
2325 chain_finalized_object(st_data_t key
, st_data_t val
, st_data_t arg
)
2327 RVALUE
*p
= (RVALUE
*)key
, **final_list
= (RVALUE
**)arg
;
2328 if (p
->as
.basic
.flags
& FL_FINALIZE
) {
2329 if (BUILTIN_TYPE(p
) != T_DEFERRED
) {
2330 p
->as
.free
.flags
= FL_MARK
| T_DEFERRED
; /* remain marked */
2331 RDATA(p
)->dfree
= 0;
2333 p
->as
.free
.next
= *final_list
;
2343 rb_gc_call_finalizer_at_exit(void)
2345 rb_objspace_t
*objspace
= &rb_objspace
;
2349 /* run finalizers */
2350 if (finalizer_table
) {
2351 p
= deferred_final_list
;
2352 deferred_final_list
= 0;
2353 finalize_list(objspace
, p
);
2354 while (finalizer_table
->num_entries
> 0) {
2355 RVALUE
*final_list
= 0;
2356 st_foreach(finalizer_table
, chain_finalized_object
,
2357 (st_data_t
)&final_list
);
2358 if (!(p
= final_list
)) break;
2360 final_list
= p
->as
.free
.next
;
2361 run_final(objspace
, (VALUE
)p
);
2362 } while ((p
= final_list
) != 0);
2364 st_free_table(finalizer_table
);
2365 finalizer_table
= 0;
2367 /* finalizers are part of garbage collection */
2369 /* run data object's finalizers */
2370 for (i
= 0; i
< heaps_used
; i
++) {
2371 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
2373 if (BUILTIN_TYPE(p
) == T_DATA
&&
2374 DATA_PTR(p
) && RANY(p
)->as
.data
.dfree
&&
2375 RANY(p
)->as
.basic
.klass
!= rb_cThread
) {
2376 p
->as
.free
.flags
= 0;
2377 if ((long)RANY(p
)->as
.data
.dfree
== -1) {
2380 else if (RANY(p
)->as
.data
.dfree
) {
2381 (*RANY(p
)->as
.data
.dfree
)(DATA_PTR(p
));
2383 VALGRIND_MAKE_MEM_UNDEFINED((void*)p
, sizeof(RVALUE
));
2385 else if (BUILTIN_TYPE(p
) == T_FILE
) {
2386 if (rb_io_fptr_finalize(RANY(p
)->as
.file
.fptr
)) {
2387 p
->as
.free
.flags
= 0;
2388 VALGRIND_MAKE_MEM_UNDEFINED((void*)p
, sizeof(RVALUE
));
2400 rb_objspace_t
*objspace
= &rb_objspace
;
2401 garbage_collect(objspace
);
2402 gc_finalize_deferred(objspace
);
2407 * ObjectSpace._id2ref(object_id) -> an_object
2409 * Converts an object id to a reference to the object. May not be
2410 * called on an object id passed as a parameter to a finalizer.
2412 * s = "I am a string" #=> "I am a string"
2413 * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
2419 id2ref(VALUE obj
, VALUE objid
)
2421 #if SIZEOF_LONG == SIZEOF_VOIDP
2422 #define NUM2PTR(x) NUM2ULONG(x)
2423 #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
2424 #define NUM2PTR(x) NUM2ULL(x)
2426 rb_objspace_t
*objspace
= &rb_objspace
;
2431 ptr
= NUM2PTR(objid
);
2434 if (ptr
== Qtrue
) return Qtrue
;
2435 if (ptr
== Qfalse
) return Qfalse
;
2436 if (ptr
== Qnil
) return Qnil
;
2437 if (FIXNUM_P(ptr
)) return (VALUE
)ptr
;
2438 ptr
= objid
^ FIXNUM_FLAG
; /* unset FIXNUM_FLAG */
2440 if ((ptr
% sizeof(RVALUE
)) == (4 << 2)) {
2441 ID symid
= ptr
/ sizeof(RVALUE
);
2442 if (rb_id2name(symid
) == 0)
2443 rb_raise(rb_eRangeError
, "%p is not symbol id value", p0
);
2444 return ID2SYM(symid
);
2447 if (!is_pointer_to_heap(objspace
, (void *)ptr
) ||
2448 BUILTIN_TYPE(ptr
) > T_FIXNUM
|| BUILTIN_TYPE(ptr
) == T_ICLASS
) {
2449 rb_raise(rb_eRangeError
, "%p is not id value", p0
);
2451 if (BUILTIN_TYPE(ptr
) == 0 || RBASIC(ptr
)->klass
== 0) {
2452 rb_raise(rb_eRangeError
, "%p is recycled object", p0
);
2458 * Document-method: __id__
2459 * Document-method: object_id
2462 * obj.__id__ => fixnum
2463 * obj.object_id => fixnum
2465 * Returns an integer identifier for <i>obj</i>. The same number will
2466 * be returned on all calls to <code>id</code> for a given object, and
2467 * no two active objects will share an id.
2468 * <code>Object#object_id</code> is a different concept from the
2469 * <code>:name</code> notation, which returns the symbol id of
2470 * <code>name</code>. Replaces the deprecated <code>Object#id</code>.
2475 * obj.hash => fixnum
2477 * Generates a <code>Fixnum</code> hash value for this object. This
2478 * function must have the property that <code>a.eql?(b)</code> implies
2479 * <code>a.hash == b.hash</code>. The hash value is used by class
2480 * <code>Hash</code>. Any hash value that exceeds the capacity of a
2481 * <code>Fixnum</code> will be truncated before being used.
2485 rb_obj_id(VALUE obj
)
2488 * 32-bit VALUE space
2489 * MSB ------------------------ LSB
2490 * false 00000000000000000000000000000000
2491 * true 00000000000000000000000000000010
2492 * nil 00000000000000000000000000000100
2493 * undef 00000000000000000000000000000110
2494 * symbol ssssssssssssssssssssssss00001110
2495 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
2496 * fixnum fffffffffffffffffffffffffffffff1
2500 * false 00000000000000000000000000000000
2501 * true 00000000000000000000000000000010
2502 * nil 00000000000000000000000000000100
2503 * undef 00000000000000000000000000000110
2504 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
2505 * object oooooooooooooooooooooooooooooo0 o...o % A = 0
2506 * fixnum fffffffffffffffffffffffffffffff1 bignum if required
2508 * where A = sizeof(RVALUE)/4
2511 * 20 if 32-bit, double is 4-byte aligned
2512 * 24 if 32-bit, double is 8-byte aligned
2515 if (TYPE(obj
) == T_SYMBOL
) {
2516 return (SYM2ID(obj
) * sizeof(RVALUE
) + (4 << 2)) | FIXNUM_FLAG
;
2518 if (SPECIAL_CONST_P(obj
)) {
2519 return LONG2NUM((SIGNED_VALUE
)obj
);
2521 return (VALUE
)((SIGNED_VALUE
)obj
|FIXNUM_FLAG
);
2525 set_zero(st_data_t key
, st_data_t val
, st_data_t arg
)
2527 VALUE k
= (VALUE
)key
;
2528 VALUE hash
= (VALUE
)arg
;
2529 rb_hash_aset(hash
, k
, INT2FIX(0));
2535 * ObjectSpace.count_objects([result_hash]) -> hash
2537 * Counts objects for each type.
2539 * It returns a hash as:
2540 * {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, ...}
2542 * If the optional argument, result_hash, is given,
2543 * it is overwritten and returned.
2544 * This is intended to avoid probe effect.
2546 * The contents of the returned hash is implementation defined.
2547 * It may be changed in future.
2549 * This method is not expected to work except C Ruby.
2554 count_objects(int argc
, VALUE
*argv
, VALUE os
)
2556 rb_objspace_t
*objspace
= &rb_objspace
;
2557 size_t counts
[T_MASK
+1];
2563 if (rb_scan_args(argc
, argv
, "01", &hash
) == 1) {
2564 if (TYPE(hash
) != T_HASH
)
2565 rb_raise(rb_eTypeError
, "non-hash given");
2568 for (i
= 0; i
<= T_MASK
; i
++) {
2572 for (i
= 0; i
< heaps_used
; i
++) {
2575 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
2576 for (;p
< pend
; p
++) {
2577 if (p
->as
.basic
.flags
) {
2578 counts
[BUILTIN_TYPE(p
)]++;
2584 total
+= heaps
[i
].limit
;
2588 hash
= rb_hash_new();
2590 else if (!RHASH_EMPTY_P(hash
)) {
2591 st_foreach(RHASH_TBL(hash
), set_zero
, hash
);
2593 rb_hash_aset(hash
, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total
));
2594 rb_hash_aset(hash
, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed
));
2596 for (i
= 0; i
<= T_MASK
; i
++) {
2599 #define COUNT_TYPE(t) case t: type = ID2SYM(rb_intern(#t)); break;
2601 COUNT_TYPE(T_OBJECT
);
2602 COUNT_TYPE(T_CLASS
);
2603 COUNT_TYPE(T_MODULE
);
2604 COUNT_TYPE(T_FLOAT
);
2605 COUNT_TYPE(T_STRING
);
2606 COUNT_TYPE(T_REGEXP
);
2607 COUNT_TYPE(T_ARRAY
);
2609 COUNT_TYPE(T_STRUCT
);
2610 COUNT_TYPE(T_BIGNUM
);
2613 COUNT_TYPE(T_MATCH
);
2614 COUNT_TYPE(T_COMPLEX
);
2615 COUNT_TYPE(T_RATIONAL
);
2618 COUNT_TYPE(T_FALSE
);
2619 COUNT_TYPE(T_SYMBOL
);
2620 COUNT_TYPE(T_FIXNUM
);
2621 COUNT_TYPE(T_UNDEF
);
2623 COUNT_TYPE(T_ICLASS
);
2624 COUNT_TYPE(T_DEFERRED
);
2626 default: type
= INT2NUM(i
); break;
2629 rb_hash_aset(hash
, type
, SIZET2NUM(counts
[i
]));
2637 * GC.count -> Integer
2639 * The number of times GC occured.
2641 * It returns the number of times GC occured since the process started.
2646 gc_count(VALUE self
)
2648 return UINT2NUM((&rb_objspace
)->count
);
2651 #if CALC_EXACT_MALLOC_SIZE
2654 * GC.malloc_allocated_size -> Integer
2656 * The allocated size by malloc().
2658 * It returns the allocated size by malloc().
2662 gc_malloc_allocated_size(VALUE self
)
2664 return UINT2NUM((&rb_objspace
)->malloc_params
.allocated_size
);
2669 * GC.malloc_allocations -> Integer
2671 * The number of allocated memory object by malloc().
2673 * It returns the number of allocated memory object by malloc().
2677 gc_malloc_allocations(VALUE self
)
2679 return UINT2NUM((&rb_objspace
)->malloc_params
.allocations
);
2684 gc_profile_record_get(void)
2687 VALUE gc_profile
= rb_ary_new();
2689 rb_objspace_t
*objspace
= (&rb_objspace
);
2691 if (!objspace
->profile
.run
) {
2695 for (i
=0; i
< objspace
->profile
.count
; i
++) {
2696 prof
= rb_hash_new();
2697 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_time
));
2698 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_INVOKE_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_invoke_time
));
2699 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_USE_SIZE")), rb_uint2inum(objspace
->profile
.record
[i
].heap_use_size
));
2700 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), rb_uint2inum(objspace
->profile
.record
[i
].heap_total_size
));
2701 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_total_objects
));
2702 #if GC_PROFILE_MORE_DETAIL
2703 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_MARK_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_mark_time
));
2704 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_SWEEP_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_sweep_time
));
2705 rb_hash_aset(prof
, ID2SYM(rb_intern("ALLOCATE_INCREASE")), rb_uint2inum(objspace
->profile
.record
[i
].allocate_increase
));
2706 rb_hash_aset(prof
, ID2SYM(rb_intern("ALLOCATE_LIMIT")), rb_uint2inum(objspace
->profile
.record
[i
].allocate_limit
));
2707 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_USE_SLOTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_use_slots
));
2708 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_live_objects
));
2709 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_free_objects
));
2710 rb_hash_aset(prof
, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace
->profile
.record
[i
].have_finalize
);
2712 rb_ary_push(gc_profile
, prof
);
2720 * GC::Profiler.result -> string
2722 * Report profile data to string.
2724 * It returns a string as:
2726 * Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
2727 * 1 0.012 159240 212940 10647 0.00000000000001530000
2731 gc_profile_result(void)
2733 rb_objspace_t
*objspace
= &rb_objspace
;
2734 VALUE record
= gc_profile_record_get();
2738 if (objspace
->profile
.run
&& objspace
->profile
.count
) {
2739 result
= rb_sprintf("GC %d invokes.\n", NUM2INT(gc_count(0)));
2740 rb_str_cat2(result
, "Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n");
2741 for (i
= 0; i
< (int)RARRAY_LEN(record
); i
++) {
2742 VALUE r
= RARRAY_PTR(record
)[i
];
2743 rb_str_catf(result
, "%5d %19.3f %20d %20d %20d %30.20f\n",
2744 i
+1, NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_INVOKE_TIME")))),
2745 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_USE_SIZE")))),
2746 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")))),
2747 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")))),
2748 NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_TIME"))))*100);
2750 #if GC_PROFILE_MORE_DETAIL
2751 rb_str_cat2(result
, "\n\n");
2752 rb_str_cat2(result
, "More detail.\n");
2753 rb_str_cat2(result
, "Index Allocate Increase Allocate Limit Use Slot Have Finalize Mark Time(ms) Sweep Time(ms)\n");
2754 for (i
= 0; i
< (int)RARRAY_LEN(record
); i
++) {
2755 VALUE r
= RARRAY_PTR(record
)[i
];
2756 rb_str_catf(result
, "%5d %17d %17d %9d %14s %25.20f %25.20f\n",
2757 i
+1, NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("ALLOCATE_INCREASE")))),
2758 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("ALLOCATE_LIMIT")))),
2759 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_USE_SLOTS")))),
2760 rb_hash_aref(r
, ID2SYM(rb_intern("HAVE_FINALIZE")))? "true" : "false",
2761 NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_MARK_TIME"))))*100,
2762 NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_SWEEP_TIME"))))*100);
2767 result
= rb_str_new2("");
2775 * GC::Profiler.report
2777 * GC::Profiler.result display
2782 gc_profile_report(int argc
, VALUE
*argv
, VALUE self
)
2790 rb_scan_args(argc
, argv
, "01", &out
);
2792 rb_io_write(out
, gc_profile_result());
2799 * The <code>GC</code> module provides an interface to Ruby's mark and
2800 * sweep garbage collection mechanism. Some of the underlying methods
2801 * are also available via the <code>ObjectSpace</code> module.
2810 rb_mGC
= rb_define_module("GC");
2811 rb_define_singleton_method(rb_mGC
, "start", rb_gc_start
, 0);
2812 rb_define_singleton_method(rb_mGC
, "enable", rb_gc_enable
, 0);
2813 rb_define_singleton_method(rb_mGC
, "disable", rb_gc_disable
, 0);
2814 rb_define_singleton_method(rb_mGC
, "stress", gc_stress_get
, 0);
2815 rb_define_singleton_method(rb_mGC
, "stress=", gc_stress_set
, 1);
2816 rb_define_singleton_method(rb_mGC
, "count", gc_count
, 0);
2817 rb_define_method(rb_mGC
, "garbage_collect", rb_gc_start
, 0);
2819 rb_mProfiler
= rb_define_module_under(rb_mGC
, "Profiler");
2820 rb_define_singleton_method(rb_mProfiler
, "enabled?", gc_profile_enable_get
, 0);
2821 rb_define_singleton_method(rb_mProfiler
, "enable", gc_profile_enable
, 0);
2822 rb_define_singleton_method(rb_mProfiler
, "disable", gc_profile_disable
, 0);
2823 rb_define_singleton_method(rb_mProfiler
, "clear", gc_profile_clear
, 0);
2824 rb_define_singleton_method(rb_mProfiler
, "result", gc_profile_result
, 0);
2825 rb_define_singleton_method(rb_mProfiler
, "report", gc_profile_report
, -1);
2827 rb_mObSpace
= rb_define_module("ObjectSpace");
2828 rb_define_module_function(rb_mObSpace
, "each_object", os_each_obj
, -1);
2829 rb_define_module_function(rb_mObSpace
, "garbage_collect", rb_gc_start
, 0);
2831 rb_define_module_function(rb_mObSpace
, "define_finalizer", define_final
, -1);
2832 rb_define_module_function(rb_mObSpace
, "undefine_finalizer", undefine_final
, 1);
2834 rb_define_module_function(rb_mObSpace
, "_id2ref", id2ref
, 1);
2836 nomem_error
= rb_exc_new3(rb_eNoMemError
,
2837 rb_obj_freeze(rb_str_new2("failed to allocate memory")));
2838 OBJ_TAINT(nomem_error
);
2839 OBJ_FREEZE(nomem_error
);
2841 rb_define_method(rb_mKernel
, "hash", rb_obj_id
, 0);
2842 rb_define_method(rb_mKernel
, "__id__", rb_obj_id
, 0);
2843 rb_define_method(rb_mKernel
, "object_id", rb_obj_id
, 0);
2845 rb_define_module_function(rb_mObSpace
, "count_objects", count_objects
, -1);
2847 #if CALC_EXACT_MALLOC_SIZE
2848 rb_define_singleton_method(rb_mGC
, "malloc_allocated_size", gc_malloc_allocated_size
, 0);
2849 rb_define_singleton_method(rb_mGC
, "malloc_allocations", gc_malloc_allocations
, 0);