1 /* lgamma_r.c - public domain implementation of function lgamma_r(3m)
3 lgamma_r() is based on gamma(). modified by Tanaka Akira.
5 reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
6 (New Algorithm handbook in C language) (Gijyutsu hyouron
7 sha, Tokyo, 1991) [in Japanese]
8 http://oku.edu.mie-u.ac.jp/~okumura/algo/
11 /***********************************************************
12 gamma.c -- Gamma function
13 ***********************************************************/
16 #define PI 3.14159265358979324 /* $\pi$ */
17 #define LOG_2PI 1.83787706640934548 /* $\log 2\pi$ */
18 #define LOG_PI 1.14472988584940017 /* $\log_e \pi$ */
21 #define B0 1 /* Bernoulli numbers */
22 #define B1 (-1.0 / 2.0)
23 #define B2 ( 1.0 / 6.0)
24 #define B4 (-1.0 / 30.0)
25 #define B6 ( 1.0 / 42.0)
26 #define B8 (-1.0 / 30.0)
27 #define B10 ( 5.0 / 66.0)
28 #define B12 (-691.0 / 2730.0)
29 #define B14 ( 7.0 / 6.0)
30 #define B16 (-3617.0 / 510.0)
33 loggamma(double x
) /* the natural logarithm of the Gamma function. */
37 if (x
== 1.0 || x
== 2.0) return 0.0;
40 while (x
< N
) { v
*= x
; x
++; }
42 return ((((((((B16
/ (16 * 15)) * w
+ (B14
/ (14 * 13))) * w
43 + (B12
/ (12 * 11))) * w
+ (B10
/ (10 * 9))) * w
44 + (B8
/ ( 8 * 7))) * w
+ (B6
/ ( 6 * 5))) * w
45 + (B4
/ ( 4 * 3))) * w
+ (B2
/ ( 2 * 1))) / x
46 + 0.5 * LOG_2PI
- log(v
) - x
+ (x
- 0.5) * log(x
);
49 /* the natural logarithm of the absolute value of the Gamma function */
51 lgamma_r(double x
, int *signp
)
56 if (f
== 0.0) { /* pole error */
61 *signp
= (fmod(i
, 2.0) != 0.0) ? 1 : -1;
64 return LOG_PI
- log(s
) - loggamma(1 - x
);