1 /**********************************************************************
6 created at: Thu Jul 15 12:01:24 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
12 **********************************************************************/
14 #include "ruby/ruby.h"
16 #include "ruby/util.h"
24 VALUE rb_cBasicObject
;
35 static ID id_eq
, id_eql
, id_match
, id_inspect
, id_init_copy
;
39 * obj === other => true or false
41 * Case Equality---For class <code>Object</code>, effectively the same
42 * as calling <code>#==</code>, but typically overridden by descendents
43 * to provide meaningful semantics in <code>case</code> statements.
47 rb_equal(VALUE obj1
, VALUE obj2
)
51 if (obj1
== obj2
) return Qtrue
;
52 result
= rb_funcall(obj1
, id_eq
, 1, obj2
);
53 if (RTEST(result
)) return Qtrue
;
58 rb_eql(VALUE obj1
, VALUE obj2
)
60 return RTEST(rb_funcall(obj1
, id_eql
, 1, obj2
));
65 * obj == other => true or false
66 * obj.equal?(other) => true or false
67 * obj.eql?(other) => true or false
69 * Equality---At the <code>Object</code> level, <code>==</code> returns
70 * <code>true</code> only if <i>obj</i> and <i>other</i> are the
71 * same object. Typically, this method is overridden in descendent
72 * classes to provide class-specific meaning.
74 * Unlike <code>==</code>, the <code>equal?</code> method should never be
75 * overridden by subclasses: it is used to determine object identity
76 * (that is, <code>a.equal?(b)</code> iff <code>a</code> is the same
77 * object as <code>b</code>).
79 * The <code>eql?</code> method returns <code>true</code> if
80 * <i>obj</i> and <i>anObject</i> have the same value. Used by
81 * <code>Hash</code> to test members for equality. For objects of
82 * class <code>Object</code>, <code>eql?</code> is synonymous with
83 * <code>==</code>. Subclasses normally continue this tradition, but
84 * there are exceptions. <code>Numeric</code> types, for example,
85 * perform type conversion across <code>==</code>, but not across
86 * <code>eql?</code>, so:
89 * 1.eql? 1.0 #=> false
93 rb_obj_equal(VALUE obj1
, VALUE obj2
)
95 if (obj1
== obj2
) return Qtrue
;
101 * !obj => true or false
107 rb_obj_not(VALUE obj
)
109 return RTEST(obj
) ? Qfalse
: Qtrue
;
114 * obj != other => true or false
116 * Returns true if two objects are not-equal, otherwise false.
120 rb_obj_not_equal(VALUE obj1
, VALUE obj2
)
122 VALUE result
= rb_funcall(obj1
, id_eq
, 1, obj2
);
123 return RTEST(result
) ? Qfalse
: Qtrue
;
127 rb_class_real(VALUE cl
)
131 while ((RBASIC(cl
)->flags
& FL_SINGLETON
) || BUILTIN_TYPE(cl
) == T_ICLASS
) {
132 cl
= RCLASS_SUPER(cl
);
141 * Returns the class of <i>obj</i>, now preferred over
142 * <code>Object#type</code>, as an object's type in Ruby is only
143 * loosely tied to that object's class. This method must always be
144 * called with an explicit receiver, as <code>class</code> is also a
145 * reserved word in Ruby.
148 * self.class #=> Object
152 rb_obj_class(VALUE obj
)
154 return rb_class_real(CLASS_OF(obj
));
158 init_copy(VALUE dest
, VALUE obj
)
160 if (OBJ_FROZEN(dest
)) {
161 rb_raise(rb_eTypeError
, "[bug] frozen object (%s) allocated", rb_obj_classname(dest
));
163 RBASIC(dest
)->flags
&= ~(T_MASK
|FL_EXIVAR
);
164 RBASIC(dest
)->flags
|= RBASIC(obj
)->flags
& (T_MASK
|FL_EXIVAR
|FL_TAINT
);
165 rb_copy_generic_ivar(dest
, obj
);
166 rb_gc_copy_finalizer(dest
, obj
);
169 if (!(RBASIC(dest
)->flags
& ROBJECT_EMBED
) && ROBJECT_IVPTR(dest
)) {
170 xfree(ROBJECT_IVPTR(dest
));
171 ROBJECT(dest
)->as
.heap
.ivptr
= 0;
172 ROBJECT(dest
)->as
.heap
.numiv
= 0;
173 ROBJECT(dest
)->as
.heap
.iv_index_tbl
= 0;
175 if (RBASIC(obj
)->flags
& ROBJECT_EMBED
) {
176 MEMCPY(ROBJECT(dest
)->as
.ary
, ROBJECT(obj
)->as
.ary
, VALUE
, ROBJECT_EMBED_LEN_MAX
);
177 RBASIC(dest
)->flags
|= ROBJECT_EMBED
;
180 long len
= ROBJECT(obj
)->as
.heap
.numiv
;
181 VALUE
*ptr
= ALLOC_N(VALUE
, len
);
182 MEMCPY(ptr
, ROBJECT(obj
)->as
.heap
.ivptr
, VALUE
, len
);
183 ROBJECT(dest
)->as
.heap
.ivptr
= ptr
;
184 ROBJECT(dest
)->as
.heap
.numiv
= len
;
185 ROBJECT(dest
)->as
.heap
.iv_index_tbl
= ROBJECT(obj
)->as
.heap
.iv_index_tbl
;
186 RBASIC(dest
)->flags
&= ~ROBJECT_EMBED
;
191 if (RCLASS_IV_TBL(dest
)) {
192 st_free_table(RCLASS_IV_TBL(dest
));
193 RCLASS_IV_TBL(dest
) = 0;
195 if (RCLASS_IV_TBL(obj
)) {
196 RCLASS_IV_TBL(dest
) = st_copy(RCLASS_IV_TBL(obj
));
200 rb_funcall(dest
, id_init_copy
, 1, obj
);
205 * obj.clone -> an_object
207 * Produces a shallow copy of <i>obj</i>---the instance variables of
208 * <i>obj</i> are copied, but not the objects they reference. Copies
209 * the frozen and tainted state of <i>obj</i>. See also the discussion
210 * under <code>Object#dup</code>.
215 * s1 = Klass.new #=> #<Klass:0x401b3a38>
216 * s1.str = "Hello" #=> "Hello"
217 * s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello">
218 * s2.str[1,4] = "i" #=> "i"
219 * s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
220 * s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
222 * This method may have class-specific behavior. If so, that
223 * behavior will be documented under the #+initialize_copy+ method of
228 rb_obj_clone(VALUE obj
)
232 if (rb_special_const_p(obj
)) {
233 rb_raise(rb_eTypeError
, "can't clone %s", rb_obj_classname(obj
));
235 clone
= rb_obj_alloc(rb_obj_class(obj
));
236 RBASIC(clone
)->klass
= rb_singleton_class_clone(obj
);
237 RBASIC(clone
)->flags
= (RBASIC(obj
)->flags
| FL_TEST(clone
, FL_TAINT
)) & ~(FL_FREEZE
|FL_FINALIZE
);
238 init_copy(clone
, obj
);
239 RBASIC(clone
)->flags
|= RBASIC(obj
)->flags
& FL_FREEZE
;
246 * obj.dup -> an_object
248 * Produces a shallow copy of <i>obj</i>---the instance variables of
249 * <i>obj</i> are copied, but not the objects they reference.
250 * <code>dup</code> copies the tainted state of <i>obj</i>. See also
251 * the discussion under <code>Object#clone</code>. In general,
252 * <code>clone</code> and <code>dup</code> may have different semantics
253 * in descendent classes. While <code>clone</code> is used to duplicate
254 * an object, including its internal state, <code>dup</code> typically
255 * uses the class of the descendent object to create the new instance.
257 * This method may have class-specific behavior. If so, that
258 * behavior will be documented under the #+initialize_copy+ method of
263 rb_obj_dup(VALUE obj
)
267 if (rb_special_const_p(obj
)) {
268 rb_raise(rb_eTypeError
, "can't dup %s", rb_obj_classname(obj
));
270 dup
= rb_obj_alloc(rb_obj_class(obj
));
278 rb_obj_init_copy(VALUE obj
, VALUE orig
)
280 if (obj
== orig
) return obj
;
281 rb_check_frozen(obj
);
282 if (TYPE(obj
) != TYPE(orig
) || rb_obj_class(obj
) != rb_obj_class(orig
)) {
283 rb_raise(rb_eTypeError
, "initialize_copy should take same class object");
292 * Returns a string representing <i>obj</i>. The default
293 * <code>to_s</code> prints the object's class and an encoding of the
294 * object id. As a special case, the top-level object that is the
295 * initial execution context of Ruby programs returns ``main.''
299 rb_any_to_s(VALUE obj
)
301 char *cname
= rb_obj_classname(obj
);
304 str
= rb_sprintf("#<%s:%p>", cname
, (void*)obj
);
305 if (OBJ_TAINTED(obj
)) OBJ_TAINT(str
);
311 rb_inspect(VALUE obj
)
313 return rb_obj_as_string(rb_funcall(obj
, id_inspect
, 0, 0));
317 inspect_i(ID id
, VALUE value
, VALUE str
)
322 /* need not to show internal data */
323 if (CLASS_OF(value
) == 0) return ST_CONTINUE
;
324 if (!rb_is_instance_id(id
)) return ST_CONTINUE
;
325 if (RSTRING_PTR(str
)[0] == '-') { /* first element */
326 RSTRING_PTR(str
)[0] = '#';
327 rb_str_cat2(str
, " ");
330 rb_str_cat2(str
, ", ");
332 ivname
= rb_id2name(id
);
333 rb_str_cat2(str
, ivname
);
334 rb_str_cat2(str
, "=");
335 str2
= rb_inspect(value
);
336 rb_str_append(str
, str2
);
337 OBJ_INFECT(str
, str2
);
343 inspect_obj(VALUE obj
, VALUE str
, int recur
)
346 rb_str_cat2(str
, " ...");
349 rb_ivar_foreach(obj
, inspect_i
, str
);
351 rb_str_cat2(str
, ">");
352 RSTRING_PTR(str
)[0] = '#';
353 OBJ_INFECT(str
, obj
);
360 * obj.inspect => string
362 * Returns a string containing a human-readable representation of
363 * <i>obj</i>. If not overridden, uses the <code>to_s</code> method to
364 * generate the string.
366 * [ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]"
367 * Time.new.inspect #=> "2008-03-08 19:43:39 +0900"
372 rb_obj_inspect(VALUE obj
)
375 if (TYPE(obj
) == T_OBJECT
) {
377 VALUE
*ptr
= ROBJECT_IVPTR(obj
);
378 long len
= ROBJECT_NUMIV(obj
);
381 for (i
= 0; i
< len
; i
++) {
382 if (ptr
[i
] != Qundef
) {
392 c
= rb_obj_classname(obj
);
393 str
= rb_sprintf("-<%s:%p", c
, (void*)obj
);
394 return rb_exec_recursive(inspect_obj
, obj
, str
);
397 return rb_funcall(obj
, rb_intern("to_s"), 0, 0);
403 * obj.instance_of?(class) => true or false
405 * Returns <code>true</code> if <i>obj</i> is an instance of the given
406 * class. See also <code>Object#kind_of?</code>.
410 rb_obj_is_instance_of(VALUE obj
, VALUE c
)
418 rb_raise(rb_eTypeError
, "class or module required");
421 if (rb_obj_class(obj
) == c
) return Qtrue
;
428 * obj.is_a?(class) => true or false
429 * obj.kind_of?(class) => true or false
431 * Returns <code>true</code> if <i>class</i> is the class of
432 * <i>obj</i>, or if <i>class</i> is one of the superclasses of
433 * <i>obj</i> or modules included in <i>obj</i>.
442 * b.instance_of? A #=> false
443 * b.instance_of? B #=> true
444 * b.instance_of? C #=> false
445 * b.instance_of? M #=> false
446 * b.kind_of? A #=> true
447 * b.kind_of? B #=> true
448 * b.kind_of? C #=> false
449 * b.kind_of? M #=> true
453 rb_obj_is_kind_of(VALUE obj
, VALUE c
)
455 VALUE cl
= CLASS_OF(obj
);
464 rb_raise(rb_eTypeError
, "class or module required");
468 if (cl
== c
|| RCLASS_M_TBL(cl
) == RCLASS_M_TBL(c
))
470 cl
= RCLASS_SUPER(cl
);
478 * obj.tap{|x|...} => obj
480 * Yields <code>x</code> to the block, and then returns <code>x</code>.
481 * The primary purpose of this method is to "tap into" a method chain,
482 * in order to perform operations on intermediate results within the chain.
484 * (1..10) .tap {|x| puts "original: #{x.inspect}"}
485 * .to_a .tap {|x| puts "array: #{x.inspect}"}
486 * .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"}
487 * .map { |x| x*x } .tap {|x| puts "squares: #{x.inspect}"}
492 rb_obj_tap(VALUE obj
)
500 * Document-method: inherited
503 * inherited(subclass)
505 * Callback invoked whenever a subclass of the current class is created.
510 * def self.inherited(subclass)
511 * puts "New subclass: #{subclass}"
528 * Document-method: singleton_method_added
531 * singleton_method_added(symbol)
533 * Invoked as a callback whenever a singleton method is added to the
537 * def Chatty.singleton_method_added(id)
538 * puts "Adding #{id.id2name}"
542 * def Chatty.three() end
547 * Adding singleton_method_added
554 * Document-method: singleton_method_removed
557 * singleton_method_removed(symbol)
559 * Invoked as a callback whenever a singleton method is removed from
563 * def Chatty.singleton_method_removed(id)
564 * puts "Removing #{id.id2name}"
568 * def Chatty.three() end
570 * remove_method :three
582 * Document-method: singleton_method_undefined
585 * singleton_method_undefined(symbol)
587 * Invoked as a callback whenever a singleton method is undefined in
591 * def Chatty.singleton_method_undefined(id)
592 * puts "Undefining #{id.id2name}"
594 * def Chatty.one() end
607 * Document-method: included
610 * included( othermod )
612 * Callback invoked whenever the receiver is included in another
613 * module or class. This should be used in preference to
614 * <tt>Module.append_features</tt> if your code wants to perform some
615 * action when a module is included in another.
618 * def A.included(mod)
619 * puts "#{self} included in #{mod}"
640 * obj.tainted? => true or false
642 * Returns <code>true</code> if the object is tainted.
646 rb_obj_tainted(VALUE obj
)
648 if (OBJ_TAINTED(obj
))
657 * Marks <i>obj</i> as tainted---if the <code>$SAFE</code> level is
658 * set appropriately, many method calls which might alter the running
659 * programs environment will refuse to accept tainted strings.
663 rb_obj_taint(VALUE obj
)
666 if (!OBJ_TAINTED(obj
)) {
667 if (OBJ_FROZEN(obj
)) {
668 rb_error_frozen("object");
680 * Removes the taint from <i>obj</i>.
684 rb_obj_untaint(VALUE obj
)
687 if (OBJ_TAINTED(obj
)) {
688 if (OBJ_FROZEN(obj
)) {
689 rb_error_frozen("object");
691 FL_UNSET(obj
, FL_TAINT
);
697 rb_obj_infect(VALUE obj1
, VALUE obj2
)
699 OBJ_INFECT(obj1
, obj2
);
702 static st_table
*immediate_frozen_tbl
= 0;
708 * Prevents further modifications to <i>obj</i>. A
709 * <code>TypeError</code> will be raised if modification is attempted.
710 * There is no way to unfreeze a frozen object. See also
711 * <code>Object#frozen?</code>.
713 * a = [ "a", "b", "c" ]
719 * prog.rb:3:in `<<': can't modify frozen array (TypeError)
724 rb_obj_freeze(VALUE obj
)
726 if (!OBJ_FROZEN(obj
)) {
727 if (rb_safe_level() >= 4 && !OBJ_TAINTED(obj
)) {
728 rb_raise(rb_eSecurityError
, "Insecure: can't freeze object");
731 if (SPECIAL_CONST_P(obj
)) {
732 if (!immediate_frozen_tbl
) {
733 immediate_frozen_tbl
= st_init_numtable();
735 st_insert(immediate_frozen_tbl
, obj
, (st_data_t
)Qtrue
);
743 * obj.frozen? => true or false
745 * Returns the freeze status of <i>obj</i>.
747 * a = [ "a", "b", "c" ]
748 * a.freeze #=> ["a", "b", "c"]
753 rb_obj_frozen_p(VALUE obj
)
755 if (OBJ_FROZEN(obj
)) return Qtrue
;
756 if (SPECIAL_CONST_P(obj
)) {
757 if (!immediate_frozen_tbl
) return Qfalse
;
758 if (st_lookup(immediate_frozen_tbl
, obj
, 0)) return Qtrue
;
765 * Document-class: NilClass
767 * The class of the singleton object <code>nil</code>.
774 * Always returns zero.
790 * Always returns zero.
798 return DOUBLE2NUM(0.0);
805 * Always returns the empty string.
811 return rb_usascii_str_new(0, 0);
815 * Document-method: to_a
820 * Always returns an empty array.
828 return rb_ary_new2(0);
833 * nil.inspect => "nil"
835 * Always returns the string "nil".
839 nil_inspect(VALUE obj
)
841 return rb_usascii_str_new2("nil");
844 /***********************************************************************
845 * Document-class: TrueClass
847 * The global value <code>true</code> is the only instance of class
848 * <code>TrueClass</code> and represents a logically true value in
849 * boolean expressions. The class provides operators allowing
850 * <code>true</code> to be used in logical expressions.
856 * true.to_s => "true"
858 * The string representation of <code>true</code> is "true".
864 return rb_usascii_str_new2("true");
870 * true & obj => true or false
872 * And---Returns <code>false</code> if <i>obj</i> is
873 * <code>nil</code> or <code>false</code>, <code>true</code> otherwise.
877 true_and(VALUE obj
, VALUE obj2
)
879 return RTEST(obj2
)?Qtrue
:Qfalse
;
886 * Or---Returns <code>true</code>. As <i>anObject</i> is an argument to
887 * a method call, it is always evaluated; there is no short-circuit
888 * evaluation in this case.
891 * true || puts("logical or")
899 true_or(VALUE obj
, VALUE obj2
)
909 * Exclusive Or---Returns <code>true</code> if <i>obj</i> is
910 * <code>nil</code> or <code>false</code>, <code>false</code>
915 true_xor(VALUE obj
, VALUE obj2
)
917 return RTEST(obj2
)?Qfalse
:Qtrue
;
922 * Document-class: FalseClass
924 * The global value <code>false</code> is the only instance of class
925 * <code>FalseClass</code> and represents a logically false value in
926 * boolean expressions. The class provides operators allowing
927 * <code>false</code> to participate correctly in logical expressions.
933 * false.to_s => "false"
939 false_to_s(VALUE obj
)
941 return rb_usascii_str_new2("false");
946 * false & obj => false
949 * And---Returns <code>false</code>. <i>obj</i> is always
950 * evaluated as it is the argument to a method call---there is no
951 * short-circuit evaluation in this case.
955 false_and(VALUE obj
, VALUE obj2
)
963 * false | obj => true or false
964 * nil | obj => true or false
966 * Or---Returns <code>false</code> if <i>obj</i> is
967 * <code>nil</code> or <code>false</code>; <code>true</code> otherwise.
971 false_or(VALUE obj
, VALUE obj2
)
973 return RTEST(obj2
)?Qtrue
:Qfalse
;
980 * false ^ obj => true or false
981 * nil ^ obj => true or false
983 * Exclusive Or---If <i>obj</i> is <code>nil</code> or
984 * <code>false</code>, returns <code>false</code>; otherwise, returns
990 false_xor(VALUE obj
, VALUE obj2
)
992 return RTEST(obj2
)?Qtrue
:Qfalse
;
999 * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
1011 * <anything_else>.nil? => false
1013 * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
1026 * obj =~ other => nil
1028 * Pattern Match---Overridden by descendents (notably
1029 * <code>Regexp</code> and <code>String</code>) to provide meaningful
1030 * pattern-match semantics.
1034 rb_obj_match(VALUE obj1
, VALUE obj2
)
1041 * obj !~ other => nil
1043 * Returns true if two objects does not match, using <i>=~</i> method.
1047 rb_obj_not_match(VALUE obj1
, VALUE obj2
)
1049 VALUE result
= rb_funcall(obj1
, id_match
, 1, obj2
);
1050 return RTEST(result
) ? Qfalse
: Qtrue
;
1054 /***********************************************************************
1056 * Document-class: Module
1058 * A <code>Module</code> is a collection of methods and constants. The
1059 * methods in a module may be instance methods or module methods.
1060 * Instance methods appear as methods in a class when the module is
1061 * included, module methods do not. Conversely, module methods may be
1062 * called without creating an encapsulating object, while instance
1063 * methods may not. (See <code>Module#module_function</code>)
1065 * In the descriptions that follow, the parameter <i>syml</i> refers
1066 * to a symbol, which is either a quoted string or a
1067 * <code>Symbol</code> (such as <code>:name</code>).
1076 * Mod.class #=> Module
1077 * Mod.constants #=> [:CONST, :PI, :E]
1078 * Mod.instance_methods #=> [:meth]
1084 * mod.to_s => string
1086 * Return a string representing this module or class. For basic
1087 * classes and modules, this is the name. For singletons, we
1088 * show information on the thing we're attached to as well.
1092 rb_mod_to_s(VALUE klass
)
1094 if (FL_TEST(klass
, FL_SINGLETON
)) {
1095 VALUE s
= rb_usascii_str_new2("#<");
1096 VALUE v
= rb_iv_get(klass
, "__attached__");
1098 rb_str_cat2(s
, "Class:");
1100 case T_CLASS
: case T_MODULE
:
1101 rb_str_append(s
, rb_inspect(v
));
1104 rb_str_append(s
, rb_any_to_s(v
));
1107 rb_str_cat2(s
, ">");
1111 return rb_str_dup(rb_class_name(klass
));
1118 * Prevents further modifications to <i>mod</i>.
1122 rb_mod_freeze(VALUE mod
)
1125 return rb_obj_freeze(mod
);
1130 * mod === obj => true or false
1132 * Case Equality---Returns <code>true</code> if <i>anObject</i> is an
1133 * instance of <i>mod</i> or one of <i>mod</i>'s descendents. Of
1134 * limited use for modules, but can be used in <code>case</code>
1135 * statements to classify objects by class.
1139 rb_mod_eqq(VALUE mod
, VALUE arg
)
1141 return rb_obj_is_kind_of(arg
, mod
);
1146 * mod <= other => true, false, or nil
1148 * Returns true if <i>mod</i> is a subclass of <i>other</i> or
1149 * is the same as <i>other</i>. Returns
1150 * <code>nil</code> if there's no relationship between the two.
1151 * (Think of the relationship in terms of the class definition:
1152 * "class A<B" implies "A<B").
1157 rb_class_inherited_p(VALUE mod
, VALUE arg
)
1161 if (mod
== arg
) return Qtrue
;
1162 switch (TYPE(arg
)) {
1167 rb_raise(rb_eTypeError
, "compared with non class/module");
1170 if (RCLASS_M_TBL(mod
) == RCLASS_M_TBL(arg
))
1172 mod
= RCLASS_SUPER(mod
);
1174 /* not mod < arg; check if mod > arg */
1176 if (RCLASS_M_TBL(arg
) == RCLASS_M_TBL(start
))
1178 arg
= RCLASS_SUPER(arg
);
1185 * mod < other => true, false, or nil
1187 * Returns true if <i>mod</i> is a subclass of <i>other</i>. Returns
1188 * <code>nil</code> if there's no relationship between the two.
1189 * (Think of the relationship in terms of the class definition:
1190 * "class A<B" implies "A<B").
1195 rb_mod_lt(VALUE mod
, VALUE arg
)
1197 if (mod
== arg
) return Qfalse
;
1198 return rb_class_inherited_p(mod
, arg
);
1204 * mod >= other => true, false, or nil
1206 * Returns true if <i>mod</i> is an ancestor of <i>other</i>, or the
1207 * two modules are the same. Returns
1208 * <code>nil</code> if there's no relationship between the two.
1209 * (Think of the relationship in terms of the class definition:
1210 * "class A<B" implies "B>A").
1215 rb_mod_ge(VALUE mod
, VALUE arg
)
1217 switch (TYPE(arg
)) {
1222 rb_raise(rb_eTypeError
, "compared with non class/module");
1225 return rb_class_inherited_p(arg
, mod
);
1230 * mod > other => true, false, or nil
1232 * Returns true if <i>mod</i> is an ancestor of <i>other</i>. Returns
1233 * <code>nil</code> if there's no relationship between the two.
1234 * (Think of the relationship in terms of the class definition:
1235 * "class A<B" implies "B>A").
1240 rb_mod_gt(VALUE mod
, VALUE arg
)
1242 if (mod
== arg
) return Qfalse
;
1243 return rb_mod_ge(mod
, arg
);
1248 * mod <=> other_mod => -1, 0, +1, or nil
1250 * Comparison---Returns -1 if <i>mod</i> includes <i>other_mod</i>, 0 if
1251 * <i>mod</i> is the same as <i>other_mod</i>, and +1 if <i>mod</i> is
1252 * included by <i>other_mod</i> or if <i>mod</i> has no relationship with
1253 * <i>other_mod</i>. Returns <code>nil</code> if <i>other_mod</i> is
1258 rb_mod_cmp(VALUE mod
, VALUE arg
)
1262 if (mod
== arg
) return INT2FIX(0);
1263 switch (TYPE(arg
)) {
1271 cmp
= rb_class_inherited_p(mod
, arg
);
1272 if (NIL_P(cmp
)) return Qnil
;
1280 rb_module_s_alloc(VALUE klass
)
1282 VALUE mod
= rb_module_new();
1284 RBASIC(mod
)->klass
= klass
;
1289 rb_class_s_alloc(VALUE klass
)
1291 return rb_class_boot(0);
1297 * Module.new {|mod| block } => mod
1299 * Creates a new anonymous module. If a block is given, it is passed
1300 * the module object, and the block is evaluated in the context of this
1301 * module using <code>module_eval</code>.
1303 * Fred = Module.new do
1312 * a.extend(Fred) #=> "my string"
1313 * a.meth1 #=> "hello"
1318 rb_mod_initialize(VALUE module
)
1320 extern VALUE
rb_mod_module_exec(int argc
, VALUE
*argv
, VALUE mod
);
1322 if (rb_block_given_p()) {
1323 rb_mod_module_exec(1, &module
, module
);
1330 * Class.new(super_class=Object) => a_class
1332 * Creates a new anonymous (unnamed) class with the given superclass
1333 * (or <code>Object</code> if no parameter is given). You can give a
1334 * class a name by assigning the class object to a constant.
1339 rb_class_initialize(int argc
, VALUE
*argv
, VALUE klass
)
1343 if (RCLASS_SUPER(klass
) != 0) {
1344 rb_raise(rb_eTypeError
, "already initialized class");
1350 rb_scan_args(argc
, argv
, "01", &super
);
1351 rb_check_inheritable(super
);
1353 RCLASS_SUPER(klass
) = super
;
1354 rb_make_metaclass(klass
, RBASIC(super
)->klass
);
1355 rb_class_inherited(super
, klass
);
1356 rb_mod_initialize(klass
);
1363 * class.allocate() => obj
1365 * Allocates space for a new object of <i>class</i>'s class. The
1366 * returned object must be an instance of <i>class</i>.
1371 rb_obj_alloc(VALUE klass
)
1375 if (RCLASS_SUPER(klass
) == 0 && klass
!= rb_cBasicObject
) {
1376 rb_raise(rb_eTypeError
, "can't instantiate uninitialized class");
1378 if (FL_TEST(klass
, FL_SINGLETON
)) {
1379 rb_raise(rb_eTypeError
, "can't create instance of singleton class");
1381 obj
= rb_funcall(klass
, ID_ALLOCATOR
, 0, 0);
1382 if (rb_obj_class(obj
) != rb_class_real(klass
)) {
1383 rb_raise(rb_eTypeError
, "wrong instance allocation");
1389 rb_class_allocate_instance(VALUE klass
)
1391 NEWOBJ(obj
, struct RObject
);
1392 OBJSETUP(obj
, klass
, T_OBJECT
);
1398 * class.new(args, ...) => obj
1400 * Calls <code>allocate</code> to create a new object of
1401 * <i>class</i>'s class, then invokes that object's
1402 * <code>initialize</code> method, passing it <i>args</i>.
1403 * This is the method that ends up getting called whenever
1404 * an object is constructed using .new.
1409 rb_class_new_instance(int argc
, VALUE
*argv
, VALUE klass
)
1413 obj
= rb_obj_alloc(klass
);
1414 rb_obj_call_init(obj
, argc
, argv
);
1421 * class.superclass -> a_super_class or nil
1423 * Returns the superclass of <i>class</i>, or <code>nil</code>.
1425 * File.superclass #=> IO
1426 * IO.superclass #=> Object
1427 * Object.superclass #=> BasicObject
1428 * BasicObject.superclass #=> nil
1433 rb_class_superclass(VALUE klass
)
1435 VALUE super
= RCLASS_SUPER(klass
);
1438 if (klass
== rb_cBasicObject
) return Qnil
;
1439 rb_raise(rb_eTypeError
, "uninitialized class");
1441 while (TYPE(super
) == T_ICLASS
) {
1442 super
= RCLASS_SUPER(super
);
1452 * attr_reader(symbol, ...) => nil
1453 * attr(symbol, ...) => nil
1455 * Creates instance variables and corresponding methods that return the
1456 * value of each instance variable. Equivalent to calling
1457 * ``<code>attr</code><i>:name</i>'' on each name in turn.
1461 rb_mod_attr_reader(int argc
, VALUE
*argv
, VALUE klass
)
1465 for (i
=0; i
<argc
; i
++) {
1466 rb_attr(klass
, rb_to_id(argv
[i
]), Qtrue
, Qfalse
, Qtrue
);
1472 rb_mod_attr(int argc
, VALUE
*argv
, VALUE klass
)
1474 if (argc
== 2 && (argv
[1] == Qtrue
|| argv
[1] == Qfalse
)) {
1475 rb_warning("optional boolean argument is obsoleted");
1476 rb_attr(klass
, rb_to_id(argv
[0]), 1, RTEST(argv
[1]), Qtrue
);
1479 return rb_mod_attr_reader(argc
, argv
, klass
);
1484 * attr_writer(symbol, ...) => nil
1486 * Creates an accessor method to allow assignment to the attribute
1487 * <i>aSymbol</i><code>.id2name</code>.
1491 rb_mod_attr_writer(int argc
, VALUE
*argv
, VALUE klass
)
1495 for (i
=0; i
<argc
; i
++) {
1496 rb_attr(klass
, rb_to_id(argv
[i
]), Qfalse
, Qtrue
, Qtrue
);
1503 * attr_accessor(symbol, ...) => nil
1505 * Defines a named attribute for this module, where the name is
1506 * <i>symbol.</i><code>id2name</code>, creating an instance variable
1507 * (<code>@name</code>) and a corresponding access method to read it.
1508 * Also creates a method called <code>name=</code> to set the attribute.
1511 * attr_accessor(:one, :two)
1513 * Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
1517 rb_mod_attr_accessor(int argc
, VALUE
*argv
, VALUE klass
)
1521 for (i
=0; i
<argc
; i
++) {
1522 rb_attr(klass
, rb_to_id(argv
[i
]), Qtrue
, Qtrue
, Qtrue
);
1529 * mod.const_get(sym, inherit=true) => obj
1531 * Returns the value of the named constant in <i>mod</i>.
1533 * Math.const_get(:PI) #=> 3.14159265358979
1535 * If the constant is not defined or is defined by the ancestors and
1536 * +inherit+ is false, +NameError+ will be raised.
1540 rb_mod_const_get(int argc
, VALUE
*argv
, VALUE mod
)
1550 rb_scan_args(argc
, argv
, "11", &name
, &recur
);
1552 id
= rb_to_id(name
);
1553 if (!rb_is_const_id(id
)) {
1554 rb_name_error(id
, "wrong constant name %s", rb_id2name(id
));
1556 return RTEST(recur
) ? rb_const_get(mod
, id
) : rb_const_get_at(mod
, id
);
1561 * mod.const_set(sym, obj) => obj
1563 * Sets the named constant to the given object, returning that object.
1564 * Creates a new constant if no constant with the given name previously
1567 * Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
1568 * Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
1572 rb_mod_const_set(VALUE mod
, VALUE name
, VALUE value
)
1574 ID id
= rb_to_id(name
);
1576 if (!rb_is_const_id(id
)) {
1577 rb_name_error(id
, "wrong constant name %s", rb_id2name(id
));
1579 rb_const_set(mod
, id
, value
);
1585 * mod.const_defined?(sym, inherit=true) => true or false
1587 * Returns <code>true</code> if a constant with the given name is
1588 * defined by <i>mod</i>, or its ancestors if +inherit+ is not false.
1590 * Math.const_defined? "PI" #=> true
1591 * IO.const_defined? "SYNC" #=> true
1592 * IO.const_defined? "SYNC", false #=> false
1596 rb_mod_const_defined(int argc
, VALUE
*argv
, VALUE mod
)
1606 rb_scan_args(argc
, argv
, "11", &name
, &recur
);
1608 id
= rb_to_id(name
);
1609 if (!rb_is_const_id(id
)) {
1610 rb_name_error(id
, "wrong constant name %s", rb_id2name(id
));
1612 return RTEST(recur
) ? rb_const_defined(mod
, id
) : rb_const_defined_at(mod
, id
);
1617 * obj.methods => array
1619 * Returns a list of the names of methods publicly accessible in
1620 * <i>obj</i>. This will include all the methods accessible in
1621 * <i>obj</i>'s ancestors.
1628 * k.methods[0..9] #=> ["kMethod", "freeze", "nil?", "is_a?",
1629 * # "class", "instance_variable_set",
1630 * # "methods", "extend", "__send__", "instance_eval"]
1631 * k.methods.length #=> 42
1635 rb_obj_methods(int argc
, VALUE
*argv
, VALUE obj
)
1642 return rb_class_instance_methods(1, args
, CLASS_OF(obj
));
1647 rb_scan_args(argc
, argv
, "1", &recur
);
1652 return rb_obj_singleton_methods(argc
, argv
, obj
);
1658 * obj.protected_methods(all=true) => array
1660 * Returns the list of protected methods accessible to <i>obj</i>. If
1661 * the <i>all</i> parameter is set to <code>false</code>, only those methods
1662 * in the receiver will be listed.
1666 rb_obj_protected_methods(int argc
, VALUE
*argv
, VALUE obj
)
1668 if (argc
== 0) { /* hack to stop warning */
1672 return rb_class_protected_instance_methods(1, args
, CLASS_OF(obj
));
1674 return rb_class_protected_instance_methods(argc
, argv
, CLASS_OF(obj
));
1679 * obj.private_methods(all=true) => array
1681 * Returns the list of private methods accessible to <i>obj</i>. If
1682 * the <i>all</i> parameter is set to <code>false</code>, only those methods
1683 * in the receiver will be listed.
1687 rb_obj_private_methods(int argc
, VALUE
*argv
, VALUE obj
)
1689 if (argc
== 0) { /* hack to stop warning */
1693 return rb_class_private_instance_methods(1, args
, CLASS_OF(obj
));
1695 return rb_class_private_instance_methods(argc
, argv
, CLASS_OF(obj
));
1700 * obj.public_methods(all=true) => array
1702 * Returns the list of public methods accessible to <i>obj</i>. If
1703 * the <i>all</i> parameter is set to <code>false</code>, only those methods
1704 * in the receiver will be listed.
1708 rb_obj_public_methods(int argc
, VALUE
*argv
, VALUE obj
)
1710 if (argc
== 0) { /* hack to stop warning */
1714 return rb_class_public_instance_methods(1, args
, CLASS_OF(obj
));
1716 return rb_class_public_instance_methods(argc
, argv
, CLASS_OF(obj
));
1721 * obj.instance_variable_get(symbol) => obj
1723 * Returns the value of the given instance variable, or nil if the
1724 * instance variable is not set. The <code>@</code> part of the
1725 * variable name should be included for regular instance
1726 * variables. Throws a <code>NameError</code> exception if the
1727 * supplied symbol is not valid as an instance variable name.
1730 * def initialize(p1, p2)
1734 * fred = Fred.new('cat', 99)
1735 * fred.instance_variable_get(:@a) #=> "cat"
1736 * fred.instance_variable_get("@b") #=> 99
1740 rb_obj_ivar_get(VALUE obj
, VALUE iv
)
1742 ID id
= rb_to_id(iv
);
1744 if (!rb_is_instance_id(id
)) {
1745 rb_name_error(id
, "`%s' is not allowed as an instance variable name", rb_id2name(id
));
1747 return rb_ivar_get(obj
, id
);
1752 * obj.instance_variable_set(symbol, obj) => obj
1754 * Sets the instance variable names by <i>symbol</i> to
1755 * <i>object</i>, thereby frustrating the efforts of the class's
1756 * author to attempt to provide proper encapsulation. The variable
1757 * did not have to exist prior to this call.
1760 * def initialize(p1, p2)
1764 * fred = Fred.new('cat', 99)
1765 * fred.instance_variable_set(:@a, 'dog') #=> "dog"
1766 * fred.instance_variable_set(:@c, 'cat') #=> "cat"
1767 * fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
1771 rb_obj_ivar_set(VALUE obj
, VALUE iv
, VALUE val
)
1773 ID id
= rb_to_id(iv
);
1775 if (!rb_is_instance_id(id
)) {
1776 rb_name_error(id
, "`%s' is not allowed as an instance variable name", rb_id2name(id
));
1778 return rb_ivar_set(obj
, id
, val
);
1783 * obj.instance_variable_defined?(symbol) => true or false
1785 * Returns <code>true</code> if the given instance variable is
1786 * defined in <i>obj</i>.
1789 * def initialize(p1, p2)
1793 * fred = Fred.new('cat', 99)
1794 * fred.instance_variable_defined?(:@a) #=> true
1795 * fred.instance_variable_defined?("@b") #=> true
1796 * fred.instance_variable_defined?("@c") #=> false
1800 rb_obj_ivar_defined(VALUE obj
, VALUE iv
)
1802 ID id
= rb_to_id(iv
);
1804 if (!rb_is_instance_id(id
)) {
1805 rb_name_error(id
, "`%s' is not allowed as an instance variable name", rb_id2name(id
));
1807 return rb_ivar_defined(obj
, id
);
1812 * mod.class_variable_get(symbol) => obj
1814 * Returns the value of the given class variable (or throws a
1815 * <code>NameError</code> exception). The <code>@@</code> part of the
1816 * variable name should be included for regular class variables
1821 * Fred.class_variable_get(:@@foo) #=> 99
1825 rb_mod_cvar_get(VALUE obj
, VALUE iv
)
1827 ID id
= rb_to_id(iv
);
1829 if (!rb_is_class_id(id
)) {
1830 rb_name_error(id
, "`%s' is not allowed as a class variable name", rb_id2name(id
));
1832 return rb_cvar_get(obj
, id
);
1837 * obj.class_variable_set(symbol, obj) => obj
1839 * Sets the class variable names by <i>symbol</i> to
1848 * Fred.class_variable_set(:@@foo, 101) #=> 101
1849 * Fred.new.foo #=> 101
1853 rb_mod_cvar_set(VALUE obj
, VALUE iv
, VALUE val
)
1855 ID id
= rb_to_id(iv
);
1857 if (!rb_is_class_id(id
)) {
1858 rb_name_error(id
, "`%s' is not allowed as a class variable name", rb_id2name(id
));
1860 rb_cvar_set(obj
, id
, val
);
1866 * obj.class_variable_defined?(symbol) => true or false
1868 * Returns <code>true</code> if the given class variable is defined
1874 * Fred.class_variable_defined?(:@@foo) #=> true
1875 * Fred.class_variable_defined?(:@@bar) #=> false
1879 rb_mod_cvar_defined(VALUE obj
, VALUE iv
)
1881 ID id
= rb_to_id(iv
);
1883 if (!rb_is_class_id(id
)) {
1884 rb_name_error(id
, "`%s' is not allowed as a class variable name", rb_id2name(id
));
1886 return rb_cvar_defined(obj
, id
);
1890 convert_type(VALUE val
, const char *tname
, const char *method
, int raise
)
1894 m
= rb_intern(method
);
1895 if (!rb_respond_to(val
, m
)) {
1897 rb_raise(rb_eTypeError
, "can't convert %s into %s",
1898 NIL_P(val
) ? "nil" :
1899 val
== Qtrue
? "true" :
1900 val
== Qfalse
? "false" :
1901 rb_obj_classname(val
),
1908 return rb_funcall(val
, m
, 0);
1912 rb_convert_type(VALUE val
, int type
, const char *tname
, const char *method
)
1916 if (TYPE(val
) == type
) return val
;
1917 v
= convert_type(val
, tname
, method
, Qtrue
);
1918 if (TYPE(v
) != type
) {
1919 char *cname
= rb_obj_classname(val
);
1920 rb_raise(rb_eTypeError
, "can't convert %s to %s (%s#%s gives %s)",
1921 cname
, tname
, cname
, method
, rb_obj_classname(v
));
1927 rb_check_convert_type(VALUE val
, int type
, const char *tname
, const char *method
)
1931 /* always convert T_DATA */
1932 if (TYPE(val
) == type
&& type
!= T_DATA
) return val
;
1933 v
= convert_type(val
, tname
, method
, Qfalse
);
1934 if (NIL_P(v
)) return Qnil
;
1935 if (TYPE(v
) != type
) {
1936 char *cname
= rb_obj_classname(val
);
1937 rb_raise(rb_eTypeError
, "can't convert %s to %s (%s#%s gives %s)",
1938 cname
, tname
, cname
, method
, rb_obj_classname(v
));
1945 rb_to_integer(VALUE val
, const char *method
)
1949 if (FIXNUM_P(val
)) return val
;
1950 v
= convert_type(val
, "Integer", method
, Qtrue
);
1951 if (!rb_obj_is_kind_of(v
, rb_cInteger
)) {
1952 char *cname
= rb_obj_classname(val
);
1953 rb_raise(rb_eTypeError
, "can't convert %s to Integer (%s#%s gives %s)",
1954 cname
, cname
, method
, rb_obj_classname(v
));
1960 rb_check_to_integer(VALUE val
, const char *method
)
1964 if (FIXNUM_P(val
)) return val
;
1965 v
= convert_type(val
, "Integer", method
, Qfalse
);
1966 if (!rb_obj_is_kind_of(v
, rb_cInteger
)) {
1973 rb_to_int(VALUE val
)
1975 return rb_to_integer(val
, "to_int");
1979 rb_Integer(VALUE val
)
1983 switch (TYPE(val
)) {
1985 if (RFLOAT_VALUE(val
) <= (double)FIXNUM_MAX
1986 && RFLOAT_VALUE(val
) >= (double)FIXNUM_MIN
) {
1989 return rb_dbl2big(RFLOAT_VALUE(val
));
1996 return rb_str_to_inum(val
, 0, Qtrue
);
1999 rb_raise(rb_eTypeError
, "can't convert nil into Integer");
2005 tmp
= convert_type(val
, "Integer", "to_int", Qfalse
);
2007 return rb_to_integer(val
, "to_i");
2014 * Integer(arg) => integer
2016 * Converts <i>arg</i> to a <code>Fixnum</code> or <code>Bignum</code>.
2017 * Numeric types are converted directly (with floating point numbers
2018 * being truncated). If <i>arg</i> is a <code>String</code>, leading
2019 * radix indicators (<code>0</code>, <code>0b</code>, and
2020 * <code>0x</code>) are honored. Others are converted using
2021 * <code>to_int</code> and <code>to_i</code>. This behavior is
2022 * different from that of <code>String#to_i</code>.
2024 * Integer(123.999) #=> 123
2025 * Integer("0x1a") #=> 26
2026 * Integer(Time.new) #=> 1204973019
2030 rb_f_integer(VALUE obj
, VALUE arg
)
2032 return rb_Integer(arg
);
2036 rb_cstr_to_dbl(const char *p
, int badcheck
)
2041 const char *ellipsis
= "";
2043 #define OutOfRange() (((w = end - p) > 20) ? (w = 20, ellipsis = "...") : (ellipsis = ""))
2047 while (ISSPACE(*p
)) p
++;
2048 d
= strtod(p
, &end
);
2049 if (errno
== ERANGE
) {
2051 rb_warn("Float %.*s%s out of range", w
, p
, ellipsis
);
2057 rb_invalid_str(q
, "Float()");
2062 char buf
[DBL_DIG
* 4 + 10];
2064 char *e
= buf
+ sizeof(buf
) - 1;
2067 while (p
< end
&& n
< e
) prev
= *n
++ = *p
++;
2070 /* remove underscores between digits */
2072 if (n
== buf
|| !ISDIGIT(prev
)) goto bad
;
2074 if (!ISDIGIT(*p
)) goto bad
;
2077 while (*++p
== '_');
2082 if (n
< e
) *n
++ = prev
;
2086 d
= strtod(p
, &end
);
2087 if (errno
== ERANGE
) {
2089 rb_warn("Float %.*s%s out of range", w
, p
, ellipsis
);
2093 if (!end
|| p
== end
) goto bad
;
2094 while (*end
&& ISSPACE(*end
)) end
++;
2098 if (errno
== ERANGE
) {
2101 rb_raise(rb_eArgError
, "Float %.*s%s out of range", w
, q
, ellipsis
);
2107 rb_str_to_dbl(VALUE str
, int badcheck
)
2113 s
= RSTRING_PTR(str
);
2114 len
= RSTRING_LEN(str
);
2116 if (s
[len
]) { /* no sentinel somehow */
2117 char *p
= ALLOCA_N(char, len
+1);
2119 MEMCPY(p
, s
, char, len
);
2123 if (badcheck
&& len
!= strlen(s
)) {
2124 rb_raise(rb_eArgError
, "string for Float contains null byte");
2127 return rb_cstr_to_dbl(s
, badcheck
);
2133 switch (TYPE(val
)) {
2135 return DOUBLE2NUM((double)FIX2LONG(val
));
2141 return DOUBLE2NUM(rb_big2dbl(val
));
2144 return DOUBLE2NUM(rb_str_to_dbl(val
, Qtrue
));
2147 rb_raise(rb_eTypeError
, "can't convert nil into Float");
2152 VALUE f
= rb_convert_type(val
, T_FLOAT
, "Float", "to_f");
2153 if (isnan(RFLOAT_VALUE(f
))) {
2154 rb_raise(rb_eArgError
, "invalid value for Float()");
2163 * Float(arg) => float
2165 * Returns <i>arg</i> converted to a float. Numeric types are converted
2166 * directly, the rest are converted using <i>arg</i>.to_f. As of Ruby
2167 * 1.8, converting <code>nil</code> generates a <code>TypeError</code>.
2170 * Float("123.456") #=> 123.456
2174 rb_f_float(VALUE obj
, VALUE arg
)
2176 return rb_Float(arg
);
2180 rb_num2dbl(VALUE val
)
2182 switch (TYPE(val
)) {
2184 return RFLOAT_VALUE(val
);
2187 rb_raise(rb_eTypeError
, "no implicit conversion to float from string");
2191 rb_raise(rb_eTypeError
, "no implicit conversion to float from nil");
2198 return RFLOAT_VALUE(rb_Float(val
));
2202 rb_str2cstr(VALUE str
, long *len
)
2205 if (len
) *len
= RSTRING_LEN(str
);
2206 else if (RTEST(ruby_verbose
) && RSTRING_LEN(str
) != strlen(RSTRING_PTR(str
))) {
2207 rb_warn("string contains \\0 character");
2209 return RSTRING_PTR(str
);
2213 rb_String(VALUE val
)
2215 return rb_convert_type(val
, T_STRING
, "String", "to_s");
2221 * String(arg) => string
2223 * Converts <i>arg</i> to a <code>String</code> by calling its
2224 * <code>to_s</code> method.
2226 * String(self) #=> "main"
2227 * String(self.class) #=> "Object"
2228 * String(123456) #=> "123456"
2232 rb_f_string(VALUE obj
, VALUE arg
)
2234 return rb_String(arg
);
2240 VALUE tmp
= rb_check_array_type(val
);
2243 tmp
= rb_check_convert_type(val
, T_ARRAY
, "Array", "to_a");
2245 return rb_ary_new3(1, val
);
2253 * Array(arg) => array
2255 * Returns <i>arg</i> as an <code>Array</code>. First tries to call
2256 * <i>arg</i><code>.to_ary</code>, then <i>arg</i><code>.to_a</code>.
2258 * Array(1..5) #=> [1, 2, 3, 4, 5]
2262 rb_f_array(VALUE obj
, VALUE arg
)
2264 return rb_Array(arg
);
2268 boot_defclass(const char *name
, VALUE super
)
2270 extern st_table
*rb_class_tbl
;
2271 VALUE obj
= rb_class_boot(super
);
2272 ID id
= rb_intern(name
);
2274 rb_name_class(obj
, id
);
2275 st_add_direct(rb_class_tbl
, id
, obj
);
2276 rb_const_set((rb_cObject
? rb_cObject
: obj
), id
, obj
);
2281 * Document-class: Class
2283 * Classes in Ruby are first-class objects---each is an instance of
2284 * class <code>Class</code>.
2286 * When a new class is created (typically using <code>class Name ...
2287 * end</code>), an object of type <code>Class</code> is created and
2288 * assigned to a global constant (<code>Name</code> in this case). When
2289 * <code>Name.new</code> is called to create a new object, the
2290 * <code>new</code> method in <code>Class</code> is run by default.
2291 * This can be demonstrated by overriding <code>new</code> in
2292 * <code>Class</code>:
2297 * print "Creating a new ", self.name, "\n"
2309 * <em>produces:</em>
2311 * Creating a new Name
2313 * Classes, modules, and objects are interrelated. In the diagram
2314 * that follows, the vertical arrows represent inheritance, and the
2315 * parentheses meta-classes. All metaclasses are instances
2316 * of the class `Class'.
2318 * +-----------------+
2320 * BasicObject-->(BasicObject) |
2323 * Object---->(Object) |
2326 * | | +-----+ +---------+ |
2328 * | +-----------+ | |
2330 * +------+ | Module--->(Module) |
2332 * OtherClass-->(OtherClass) | | |
2334 * Class---->(Class) |
2337 * +----------------+
2342 * <code>BasicObject</code> is the parent class of all classes in Ruby.
2343 * It's an explicit blank class. <code>Object</code>, the root of Ruby's
2344 * class hierarchy is a direct subclass of <code>BasicObject</code>. Its
2345 * methods are therefore available to all objects unless explicitly
2348 * <code>Object</code> mixes in the <code>Kernel</code> module, making
2349 * the built-in kernel functions globally accessible. Although the
2350 * instance methods of <code>Object</code> are defined by the
2351 * <code>Kernel</code> module, we have chosen to document them here for
2354 * In the descriptions of Object's methods, the parameter <i>symbol</i> refers
2355 * to a symbol, which is either a quoted string or a
2356 * <code>Symbol</code> (such as <code>:name</code>).
2364 rb_cBasicObject
= boot_defclass("BasicObject", 0);
2365 rb_cObject
= boot_defclass("Object", rb_cBasicObject
);
2366 rb_cModule
= boot_defclass("Module", rb_cObject
);
2367 rb_cClass
= boot_defclass("Class", rb_cModule
);
2369 metaclass
= rb_make_metaclass(rb_cBasicObject
, rb_cClass
);
2370 metaclass
= rb_make_metaclass(rb_cObject
, metaclass
);
2371 metaclass
= rb_make_metaclass(rb_cModule
, metaclass
);
2372 metaclass
= rb_make_metaclass(rb_cClass
, metaclass
);
2374 rb_define_private_method(rb_cBasicObject
, "initialize", rb_obj_dummy
, 0);
2375 rb_define_alloc_func(rb_cBasicObject
, rb_class_allocate_instance
);
2376 rb_define_method(rb_cBasicObject
, "==", rb_obj_equal
, 1);
2377 rb_define_method(rb_cBasicObject
, "equal?", rb_obj_equal
, 1);
2378 rb_define_method(rb_cBasicObject
, "!", rb_obj_not
, 0);
2379 rb_define_method(rb_cBasicObject
, "!=", rb_obj_not_equal
, 1);
2381 rb_define_private_method(rb_cBasicObject
, "singleton_method_added", rb_obj_dummy
, 1);
2382 rb_define_private_method(rb_cBasicObject
, "singleton_method_removed", rb_obj_dummy
, 1);
2383 rb_define_private_method(rb_cBasicObject
, "singleton_method_undefined", rb_obj_dummy
, 1);
2385 rb_mKernel
= rb_define_module("Kernel");
2386 rb_include_module(rb_cObject
, rb_mKernel
);
2387 rb_define_private_method(rb_cClass
, "inherited", rb_obj_dummy
, 1);
2388 rb_define_private_method(rb_cModule
, "included", rb_obj_dummy
, 1);
2389 rb_define_private_method(rb_cModule
, "extended", rb_obj_dummy
, 1);
2390 rb_define_private_method(rb_cModule
, "method_added", rb_obj_dummy
, 1);
2391 rb_define_private_method(rb_cModule
, "method_removed", rb_obj_dummy
, 1);
2392 rb_define_private_method(rb_cModule
, "method_undefined", rb_obj_dummy
, 1);
2394 rb_define_method(rb_mKernel
, "nil?", rb_false
, 0);
2395 rb_define_method(rb_mKernel
, "===", rb_equal
, 1);
2396 rb_define_method(rb_mKernel
, "=~", rb_obj_match
, 1);
2397 rb_define_method(rb_mKernel
, "!~", rb_obj_not_match
, 1);
2398 rb_define_method(rb_mKernel
, "eql?", rb_obj_equal
, 1);
2400 rb_define_method(rb_mKernel
, "class", rb_obj_class
, 0);
2401 rb_define_method(rb_mKernel
, "clone", rb_obj_clone
, 0);
2402 rb_define_method(rb_mKernel
, "dup", rb_obj_dup
, 0);
2403 rb_define_method(rb_mKernel
, "initialize_copy", rb_obj_init_copy
, 1);
2405 rb_define_method(rb_mKernel
, "taint", rb_obj_taint
, 0);
2406 rb_define_method(rb_mKernel
, "tainted?", rb_obj_tainted
, 0);
2407 rb_define_method(rb_mKernel
, "untaint", rb_obj_untaint
, 0);
2408 rb_define_method(rb_mKernel
, "freeze", rb_obj_freeze
, 0);
2409 rb_define_method(rb_mKernel
, "frozen?", rb_obj_frozen_p
, 0);
2411 rb_define_method(rb_mKernel
, "to_s", rb_any_to_s
, 0);
2412 rb_define_method(rb_mKernel
, "inspect", rb_obj_inspect
, 0);
2413 rb_define_method(rb_mKernel
, "methods", rb_obj_methods
, -1);
2414 rb_define_method(rb_mKernel
, "singleton_methods", rb_obj_singleton_methods
, -1); /* in class.c */
2415 rb_define_method(rb_mKernel
, "protected_methods", rb_obj_protected_methods
, -1);
2416 rb_define_method(rb_mKernel
, "private_methods", rb_obj_private_methods
, -1);
2417 rb_define_method(rb_mKernel
, "public_methods", rb_obj_public_methods
, -1);
2418 rb_define_method(rb_mKernel
, "instance_variables", rb_obj_instance_variables
, 0); /* in variable.c */
2419 rb_define_method(rb_mKernel
, "instance_variable_get", rb_obj_ivar_get
, 1);
2420 rb_define_method(rb_mKernel
, "instance_variable_set", rb_obj_ivar_set
, 2);
2421 rb_define_method(rb_mKernel
, "instance_variable_defined?", rb_obj_ivar_defined
, 1);
2422 rb_define_private_method(rb_mKernel
, "remove_instance_variable",
2423 rb_obj_remove_instance_variable
, 1); /* in variable.c */
2425 rb_define_method(rb_mKernel
, "instance_of?", rb_obj_is_instance_of
, 1);
2426 rb_define_method(rb_mKernel
, "kind_of?", rb_obj_is_kind_of
, 1);
2427 rb_define_method(rb_mKernel
, "is_a?", rb_obj_is_kind_of
, 1);
2428 rb_define_method(rb_mKernel
, "tap", rb_obj_tap
, 0);
2430 rb_define_global_function("sprintf", rb_f_sprintf
, -1); /* in sprintf.c */
2431 rb_define_global_function("format", rb_f_sprintf
, -1); /* in sprintf.c */
2433 rb_define_global_function("Integer", rb_f_integer
, 1);
2434 rb_define_global_function("Float", rb_f_float
, 1);
2436 rb_define_global_function("String", rb_f_string
, 1);
2437 rb_define_global_function("Array", rb_f_array
, 1);
2439 rb_cNilClass
= rb_define_class("NilClass", rb_cObject
);
2440 rb_define_method(rb_cNilClass
, "to_i", nil_to_i
, 0);
2441 rb_define_method(rb_cNilClass
, "to_f", nil_to_f
, 0);
2442 rb_define_method(rb_cNilClass
, "to_s", nil_to_s
, 0);
2443 rb_define_method(rb_cNilClass
, "to_a", nil_to_a
, 0);
2444 rb_define_method(rb_cNilClass
, "inspect", nil_inspect
, 0);
2445 rb_define_method(rb_cNilClass
, "&", false_and
, 1);
2446 rb_define_method(rb_cNilClass
, "|", false_or
, 1);
2447 rb_define_method(rb_cNilClass
, "^", false_xor
, 1);
2449 rb_define_method(rb_cNilClass
, "nil?", rb_true
, 0);
2450 rb_undef_alloc_func(rb_cNilClass
);
2451 rb_undef_method(CLASS_OF(rb_cNilClass
), "new");
2452 rb_define_global_const("NIL", Qnil
);
2454 rb_define_method(rb_cModule
, "freeze", rb_mod_freeze
, 0);
2455 rb_define_method(rb_cModule
, "===", rb_mod_eqq
, 1);
2456 rb_define_method(rb_cModule
, "==", rb_obj_equal
, 1);
2457 rb_define_method(rb_cModule
, "<=>", rb_mod_cmp
, 1);
2458 rb_define_method(rb_cModule
, "<", rb_mod_lt
, 1);
2459 rb_define_method(rb_cModule
, "<=", rb_class_inherited_p
, 1);
2460 rb_define_method(rb_cModule
, ">", rb_mod_gt
, 1);
2461 rb_define_method(rb_cModule
, ">=", rb_mod_ge
, 1);
2462 rb_define_method(rb_cModule
, "initialize_copy", rb_mod_init_copy
, 1); /* in class.c */
2463 rb_define_method(rb_cModule
, "to_s", rb_mod_to_s
, 0);
2464 rb_define_method(rb_cModule
, "included_modules", rb_mod_included_modules
, 0); /* in class.c */
2465 rb_define_method(rb_cModule
, "include?", rb_mod_include_p
, 1); /* in class.c */
2466 rb_define_method(rb_cModule
, "name", rb_mod_name
, 0); /* in variable.c */
2467 rb_define_method(rb_cModule
, "ancestors", rb_mod_ancestors
, 0); /* in class.c */
2469 rb_define_private_method(rb_cModule
, "attr", rb_mod_attr
, -1);
2470 rb_define_private_method(rb_cModule
, "attr_reader", rb_mod_attr_reader
, -1);
2471 rb_define_private_method(rb_cModule
, "attr_writer", rb_mod_attr_writer
, -1);
2472 rb_define_private_method(rb_cModule
, "attr_accessor", rb_mod_attr_accessor
, -1);
2474 rb_define_alloc_func(rb_cModule
, rb_module_s_alloc
);
2475 rb_define_method(rb_cModule
, "initialize", rb_mod_initialize
, 0);
2476 rb_define_method(rb_cModule
, "instance_methods", rb_class_instance_methods
, -1); /* in class.c */
2477 rb_define_method(rb_cModule
, "public_instance_methods",
2478 rb_class_public_instance_methods
, -1); /* in class.c */
2479 rb_define_method(rb_cModule
, "protected_instance_methods",
2480 rb_class_protected_instance_methods
, -1); /* in class.c */
2481 rb_define_method(rb_cModule
, "private_instance_methods",
2482 rb_class_private_instance_methods
, -1); /* in class.c */
2484 rb_define_method(rb_cModule
, "constants", rb_mod_constants
, -1); /* in variable.c */
2485 rb_define_method(rb_cModule
, "const_get", rb_mod_const_get
, -1);
2486 rb_define_method(rb_cModule
, "const_set", rb_mod_const_set
, 2);
2487 rb_define_method(rb_cModule
, "const_defined?", rb_mod_const_defined
, -1);
2488 rb_define_private_method(rb_cModule
, "remove_const",
2489 rb_mod_remove_const
, 1); /* in variable.c */
2490 rb_define_method(rb_cModule
, "const_missing",
2491 rb_mod_const_missing
, 1); /* in variable.c */
2492 rb_define_method(rb_cModule
, "class_variables",
2493 rb_mod_class_variables
, 0); /* in variable.c */
2494 rb_define_method(rb_cModule
, "remove_class_variable",
2495 rb_mod_remove_cvar
, 1); /* in variable.c */
2496 rb_define_method(rb_cModule
, "class_variable_get", rb_mod_cvar_get
, 1);
2497 rb_define_method(rb_cModule
, "class_variable_set", rb_mod_cvar_set
, 2);
2498 rb_define_method(rb_cModule
, "class_variable_defined?", rb_mod_cvar_defined
, 1);
2500 rb_define_method(rb_cClass
, "allocate", rb_obj_alloc
, 0);
2501 rb_define_method(rb_cClass
, "new", rb_class_new_instance
, -1);
2502 rb_define_method(rb_cClass
, "initialize", rb_class_initialize
, -1);
2503 rb_define_method(rb_cClass
, "initialize_copy", rb_class_init_copy
, 1); /* in class.c */
2504 rb_define_method(rb_cClass
, "superclass", rb_class_superclass
, 0);
2505 rb_define_alloc_func(rb_cClass
, rb_class_s_alloc
);
2506 rb_undef_method(rb_cClass
, "extend_object");
2507 rb_undef_method(rb_cClass
, "append_features");
2509 rb_cData
= rb_define_class("Data", rb_cObject
);
2510 rb_undef_alloc_func(rb_cData
);
2512 rb_cTrueClass
= rb_define_class("TrueClass", rb_cObject
);
2513 rb_define_method(rb_cTrueClass
, "to_s", true_to_s
, 0);
2514 rb_define_method(rb_cTrueClass
, "&", true_and
, 1);
2515 rb_define_method(rb_cTrueClass
, "|", true_or
, 1);
2516 rb_define_method(rb_cTrueClass
, "^", true_xor
, 1);
2517 rb_undef_alloc_func(rb_cTrueClass
);
2518 rb_undef_method(CLASS_OF(rb_cTrueClass
), "new");
2519 rb_define_global_const("TRUE", Qtrue
);
2521 rb_cFalseClass
= rb_define_class("FalseClass", rb_cObject
);
2522 rb_define_method(rb_cFalseClass
, "to_s", false_to_s
, 0);
2523 rb_define_method(rb_cFalseClass
, "&", false_and
, 1);
2524 rb_define_method(rb_cFalseClass
, "|", false_or
, 1);
2525 rb_define_method(rb_cFalseClass
, "^", false_xor
, 1);
2526 rb_undef_alloc_func(rb_cFalseClass
);
2527 rb_undef_method(CLASS_OF(rb_cFalseClass
), "new");
2528 rb_define_global_const("FALSE", Qfalse
);
2530 id_eq
= rb_intern("==");
2531 id_eql
= rb_intern("eql?");
2532 id_match
= rb_intern("=~");
2533 id_inspect
= rb_intern("inspect");
2534 id_init_copy
= rb_intern("initialize_copy");