1 /**********************************************************************
6 created at: Tue Dec 28 14:31:59 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
10 **********************************************************************/
12 #include "ruby/ruby.h"
13 #include <sys/types.h>
16 #include "ruby/encoding.h"
25 static VALUE time_utc_offset
_((VALUE
));
27 static ID id_divmod
, id_mul
, id_submicro
;
36 #define GetTimeval(obj, tobj) \
37 Data_Get_Struct(obj, struct time_object, tobj)
42 if (tobj
) xfree(tobj
);
46 time_s_alloc(VALUE klass
)
49 struct time_object
*tobj
;
51 obj
= Data_Make_Struct(klass
, struct time_object
, 0, time_free
, tobj
);
60 time_modify(VALUE time
)
62 rb_check_frozen(time
);
63 if (!OBJ_UNTRUSTED(time
) && rb_safe_level() >= 4)
64 rb_raise(rb_eSecurityError
, "Insecure: can't modify Time");
68 * Document-method: now
70 * Synonym for <code>Time.new</code>. Returns a +Time+ object
71 * initialized to the current system time.
78 * Returns a <code>Time</code> object initialized to the current system
79 * time. <b>Note:</b> The object created will be created using the
80 * resolution available on your system clock, and so may include
83 * a = Time.new #=> 2007-11-19 07:50:02 -0600
84 * b = Time.new #=> 2007-11-19 07:50:02 -0600
86 * "%.6f" % a.to_f #=> "1195480202.282373"
87 * "%.6f" % b.to_f #=> "1195480202.283415"
94 struct time_object
*tobj
;
97 GetTimeval(time
, tobj
);
100 tobj
->ts
.tv_nsec
= 0;
101 #ifdef HAVE_CLOCK_GETTIME
102 if (clock_gettime(CLOCK_REALTIME
, &tobj
->ts
) == -1) {
103 rb_sys_fail("clock_gettime");
108 if (gettimeofday(&tv
, 0) < 0) {
109 rb_sys_fail("gettimeofday");
111 tobj
->ts
.tv_sec
= tv
.tv_sec
;
112 tobj
->ts
.tv_nsec
= tv
.tv_usec
* 1000;
119 #define NDIV(x,y) (-(-((x)+1)/(y))-1)
120 #define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
123 time_overflow_p(time_t *secp
, long *nsecp
)
125 time_t tmp
, sec
= *secp
;
128 if (nsec
>= 1000000000) { /* nsec positive overflow */
129 tmp
= sec
+ nsec
/ 1000000000;
131 if (sec
> 0 && tmp
< 0) {
132 rb_raise(rb_eRangeError
, "out of Time range");
136 if (nsec
< 0) { /* nsec negative overflow */
137 tmp
= sec
+ NDIV(nsec
,1000000000); /* negative div */
138 nsec
= NMOD(nsec
,1000000000); /* negative mod */
139 if (sec
< 0 && tmp
> 0) {
140 rb_raise(rb_eRangeError
, "out of Time range");
144 #ifndef NEGATIVE_TIME_T
146 rb_raise(rb_eArgError
, "time must be positive");
153 time_new_internal(VALUE klass
, time_t sec
, long nsec
)
155 VALUE time
= time_s_alloc(klass
);
156 struct time_object
*tobj
;
158 GetTimeval(time
, tobj
);
159 time_overflow_p(&sec
, &nsec
);
160 tobj
->ts
.tv_sec
= sec
;
161 tobj
->ts
.tv_nsec
= nsec
;
167 rb_time_new(time_t sec
, long usec
)
169 return time_new_internal(rb_cTime
, sec
, usec
* 1000);
173 rb_time_nano_new(time_t sec
, long nsec
)
175 return time_new_internal(rb_cTime
, sec
, nsec
);
178 static struct timespec
179 time_timespec(VALUE num
, int interval
)
182 const char *tstr
= interval
? "time interval" : "time";
185 #ifndef NEGATIVE_TIME_T
191 t
.tv_sec
= FIX2LONG(num
);
192 if (interval
&& t
.tv_sec
< 0)
193 rb_raise(rb_eArgError
, "%s must be positive", tstr
);
198 if (interval
&& RFLOAT_VALUE(num
) < 0.0)
199 rb_raise(rb_eArgError
, "%s must be positive", tstr
);
203 d
= modf(RFLOAT_VALUE(num
), &f
);
208 t
.tv_sec
= (time_t)f
;
210 rb_raise(rb_eRangeError
, "%f out of Time range", RFLOAT_VALUE(num
));
212 t
.tv_nsec
= (long)(d
*1e9
+0.5);
217 t
.tv_sec
= NUM2LONG(num
);
218 if (interval
&& t
.tv_sec
< 0)
219 rb_raise(rb_eArgError
, "%s must be positive", tstr
);
224 if (rb_respond_to(num
, id_divmod
)) {
225 ary
= rb_check_array_type(rb_funcall(num
, id_divmod
, 1, INT2FIX(1)));
229 i
= rb_ary_entry(ary
, 0);
230 f
= rb_ary_entry(ary
, 1);
231 t
.tv_sec
= NUM2LONG(i
);
232 if (interval
&& t
.tv_sec
< 0)
233 rb_raise(rb_eArgError
, "%s must be positive", tstr
);
234 f
= rb_funcall(f
, id_mul
, 1, INT2FIX(1000000000));
235 t
.tv_nsec
= NUM2LONG(f
);
239 rb_raise(rb_eTypeError
, "can't convert %s into %s",
240 rb_obj_classname(num
), tstr
);
247 static struct timeval
248 time_timeval(VALUE num
, int interval
)
253 ts
= time_timespec(num
, interval
);
254 tv
.tv_sec
= ts
.tv_sec
;
255 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
261 rb_time_interval(VALUE num
)
263 return time_timeval(num
, Qtrue
);
267 rb_time_timeval(VALUE time
)
269 struct time_object
*tobj
;
272 if (TYPE(time
) == T_DATA
&& RDATA(time
)->dfree
== time_free
) {
273 GetTimeval(time
, tobj
);
274 t
.tv_sec
= tobj
->ts
.tv_sec
;
275 t
.tv_usec
= tobj
->ts
.tv_nsec
/ 1000;
278 return time_timeval(time
, Qfalse
);
282 rb_time_timespec(VALUE time
)
284 struct time_object
*tobj
;
287 if (TYPE(time
) == T_DATA
&& RDATA(time
)->dfree
== time_free
) {
288 GetTimeval(time
, tobj
);
292 return time_timespec(time
, Qfalse
);
297 * Time.at(time) => time
298 * Time.at(seconds_with_frac) => time
299 * Time.at(seconds, microseconds_with_frac) => time
301 * Creates a new time object with the value given by <i>time</i>,
302 * the given number of <i>seconds_with_frac</i>, or
303 * <i>seconds</i> and <i>microseconds_with_frac</i> from the Epoch.
304 * <i>seconds_with_frac</i> and <i>microseconds_with_frac</i>
305 * can be Integer, Float, Rational, or other Numeric.
306 * non-portable feature allows the offset to be negative on some systems.
308 * Time.at(0) #=> 1969-12-31 18:00:00 -0600
309 * Time.at(Time.at(0)) #=> 1969-12-31 18:00:00 -0600
310 * Time.at(946702800) #=> 1999-12-31 23:00:00 -0600
311 * Time.at(-284061600) #=> 1960-12-31 00:00:00 -0600
312 * Time.at(946684800.2).usec #=> 200000
313 * Time.at(946684800, 123456.789).nsec #=> 123456789
317 time_s_at(int argc
, VALUE
*argv
, VALUE klass
)
322 if (rb_scan_args(argc
, argv
, "11", &time
, &t
) == 2) {
323 ts
.tv_sec
= NUM2LONG(time
);
324 ts
.tv_nsec
= NUM2LONG(rb_funcall(t
, id_mul
, 1, INT2FIX(1000)));
327 ts
= rb_time_timespec(time
);
329 t
= time_new_internal(klass
, ts
.tv_sec
, ts
.tv_nsec
);
330 if (TYPE(time
) == T_DATA
&& RDATA(time
)->dfree
== time_free
) {
331 struct time_object
*tobj
, *tobj2
;
333 GetTimeval(time
, tobj
);
334 GetTimeval(t
, tobj2
);
335 tobj2
->gmt
= tobj
->gmt
;
340 static const char months
[][4] = {
341 "jan", "feb", "mar", "apr", "may", "jun",
342 "jul", "aug", "sep", "oct", "nov", "dec",
348 if (TYPE(obj
) == T_STRING
) {
349 obj
= rb_str_to_inum(obj
, 10, Qfalse
);
352 return NUM2LONG(obj
);
356 obj2nsec(VALUE obj
, long *nsec
)
360 if (TYPE(obj
) == T_STRING
) {
361 obj
= rb_str_to_inum(obj
, 10, Qfalse
);
363 return NUM2LONG(obj
);
366 ts
= time_timespec(obj
, 1);
372 obj2long1000(VALUE obj
)
374 if (TYPE(obj
) == T_STRING
) {
375 obj
= rb_str_to_inum(obj
, 10, Qfalse
);
376 return NUM2LONG(obj
) * 1000;
379 return NUM2LONG(rb_funcall(obj
, id_mul
, 1, INT2FIX(1000)));
383 time_arg(int argc
, VALUE
*argv
, struct tm
*tm
, long *nsec
)
389 MEMZERO(tm
, struct tm
, 1);
399 tm
->tm_isdst
= RTEST(argv
[8]) ? 1 : 0;
402 rb_scan_args(argc
, argv
, "17", &v
[0],&v
[1],&v
[2],&v
[3],&v
[4],&v
[5],&v
[6],&v
[7]);
403 /* v[6] may be usec or zone (parsedate) */
404 /* v[7] is wday (parsedate; ignored) */
409 year
= obj2long(v
[0]);
411 if (0 <= year
&& year
< 39) {
412 rb_warning("2 digits year is used: %ld", year
);
415 else if (69 <= year
&& year
< 139) {
416 rb_warning("2 or 3 digits year is used: %ld", year
);
428 VALUE s
= rb_check_string_type(v
[1]);
431 for (i
=0; i
<12; i
++) {
432 if (RSTRING_LEN(s
) == 3 &&
433 STRCASECMP(months
[i
], RSTRING_PTR(s
)) == 0) {
438 if (tm
->tm_mon
== -1) {
439 char c
= RSTRING_PTR(s
)[0];
441 if ('0' <= c
&& c
<= '9') {
442 tm
->tm_mon
= obj2long(s
)-1;
447 tm
->tm_mon
= obj2long(v
[1])-1;
454 tm
->tm_mday
= obj2long(v
[2]);
456 tm
->tm_hour
= NIL_P(v
[3])?0:obj2long(v
[3]);
457 tm
->tm_min
= NIL_P(v
[4])?0:obj2long(v
[4]);
458 if (!NIL_P(v
[6]) && argc
== 7) {
459 tm
->tm_sec
= NIL_P(v
[5])?0:obj2long(v
[5]);
460 *nsec
= obj2long1000(v
[6]);
463 /* when argc == 8, v[6] is timezone, but ignored */
464 tm
->tm_sec
= NIL_P(v
[5])?0:obj2nsec(v
[5], nsec
);
467 /* value validation */
469 tm
->tm_year
!= year
||
470 #ifndef NEGATIVE_TIME_T
473 tm
->tm_mon
< 0 || tm
->tm_mon
> 11
474 || tm
->tm_mday
< 1 || tm
->tm_mday
> 31
475 || tm
->tm_hour
< 0 || tm
->tm_hour
> 24
476 || (tm
->tm_hour
== 24 && (tm
->tm_min
> 0 || tm
->tm_sec
> 0))
477 || tm
->tm_min
< 0 || tm
->tm_min
> 59
478 || tm
->tm_sec
< 0 || tm
->tm_sec
> 60)
479 rb_raise(rb_eArgError
, "argument out of range");
482 static VALUE
time_gmtime(VALUE
);
483 static VALUE
time_localtime(VALUE
);
484 static VALUE
time_get_tm(VALUE
, int);
489 return ((y
% 4 == 0) && (y
% 100 != 0)) || (y
% 400 == 0);
492 #define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
495 timegm_noleapsecond(struct tm
*tm
)
497 static const int common_year_yday_offset
[] = {
502 -1 + 31 + 28 + 31 + 30,
503 -1 + 31 + 28 + 31 + 30 + 31,
504 -1 + 31 + 28 + 31 + 30 + 31 + 30,
505 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
506 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
507 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
508 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
509 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
510 /* 1 2 3 4 5 6 7 8 9 10 11 */
512 static const int leap_year_yday_offset
[] = {
517 -1 + 31 + 29 + 31 + 30,
518 -1 + 31 + 29 + 31 + 30 + 31,
519 -1 + 31 + 29 + 31 + 30 + 31 + 30,
520 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
521 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
522 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
523 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
524 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
525 /* 1 2 3 4 5 6 7 8 9 10 11 */
528 long tm_year
= tm
->tm_year
;
529 int tm_yday
= tm
->tm_mday
;
530 if (leap_year_p(tm_year
+ 1900))
531 tm_yday
+= leap_year_yday_offset
[tm
->tm_mon
];
533 tm_yday
+= common_year_yday_offset
[tm
->tm_mon
];
536 * `Seconds Since the Epoch' in SUSv3:
537 * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
538 * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
539 * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
541 return tm
->tm_sec
+ tm
->tm_min
*60 + tm
->tm_hour
*3600 +
546 DIV(tm_year
+299,400))*86400;
550 tmcmp(struct tm
*a
, struct tm
*b
)
552 if (a
->tm_year
!= b
->tm_year
)
553 return a
->tm_year
< b
->tm_year
? -1 : 1;
554 else if (a
->tm_mon
!= b
->tm_mon
)
555 return a
->tm_mon
< b
->tm_mon
? -1 : 1;
556 else if (a
->tm_mday
!= b
->tm_mday
)
557 return a
->tm_mday
< b
->tm_mday
? -1 : 1;
558 else if (a
->tm_hour
!= b
->tm_hour
)
559 return a
->tm_hour
< b
->tm_hour
? -1 : 1;
560 else if (a
->tm_min
!= b
->tm_min
)
561 return a
->tm_min
< b
->tm_min
? -1 : 1;
562 else if (a
->tm_sec
!= b
->tm_sec
)
563 return a
->tm_sec
< b
->tm_sec
? -1 : 1;
568 #if SIZEOF_TIME_T == SIZEOF_LONG
569 typedef unsigned long unsigned_time_t
;
570 #elif SIZEOF_TIME_T == SIZEOF_INT
571 typedef unsigned int unsigned_time_t
;
572 #elif SIZEOF_TIME_T == SIZEOF_LONG_LONG
573 typedef unsigned LONG_LONG unsigned_time_t
;
575 # error cannot find integer type which size is same as time_t.
579 search_time_t(struct tm
*tptr
, int utc_p
)
581 time_t guess
, guess_lo
, guess_hi
;
582 struct tm
*tm
, tm_lo
, tm_hi
;
586 find_dst
= 0 < tptr
->tm_isdst
;
588 #ifdef NEGATIVE_TIME_T
589 guess_lo
= (time_t)~((unsigned_time_t
)~(time_t)0 >> 1);
593 guess_hi
= ((time_t)-1) < ((time_t)0) ?
594 (time_t)((unsigned_time_t
)~(time_t)0 >> 1) :
597 guess
= timegm_noleapsecond(tptr
);
598 tm
= (utc_p
? gmtime
: localtime
)(&guess
);
601 if (d
== 0) return guess
;
604 guess
-= 24 * 60 * 60;
608 guess
+= 24 * 60 * 60;
610 if (guess_lo
< guess
&& guess
< guess_hi
&&
611 (tm
= (utc_p
? gmtime
: localtime
)(&guess
)) != NULL
) {
613 if (d
== 0) return guess
;
621 tm
= (utc_p
? gmtime
: localtime
)(&guess_lo
);
624 if (d
< 0) goto out_of_range
;
625 if (d
== 0) return guess_lo
;
628 tm
= (utc_p
? gmtime
: localtime
)(&guess_hi
);
631 if (d
> 0) goto out_of_range
;
632 if (d
== 0) return guess_hi
;
637 while (guess_lo
+ 1 < guess_hi
) {
638 /* there is a gap between guess_lo and guess_hi. */
639 unsigned long range
= 0;
643 Try precious guess by a linear interpolation at first.
644 `a' and `b' is a coefficient of guess_lo and guess_hi as:
646 guess = (guess_lo * a + guess_hi * b) / (a + b)
648 However this causes overflow in most cases, following assignment
651 guess = guess_lo / d * a + (guess_lo % d) * a / d
652 + guess_hi / d * b + (guess_hi % d) * b / d
655 To avoid overflow in this assignment, `d' is restricted to less than
656 sqrt(2**31). By this restriction and other reasons, the guess is
657 not accurate and some error is expected. `range' approximates
660 When these parameters are not suitable, i.e. guess is not within
661 guess_lo and guess_hi, simple guess by binary search is used.
663 range
= 366 * 24 * 60 * 60;
664 a
= (tm_hi
.tm_year
- tptr
->tm_year
);
665 b
= (tptr
->tm_year
- tm_lo
.tm_year
);
666 /* 46000 is selected as `some big number less than sqrt(2**31)'. */
667 if (a
+ b
<= 46000 / 12) {
668 range
= 31 * 24 * 60 * 60;
671 a
+= tm_hi
.tm_mon
- tptr
->tm_mon
;
672 b
+= tptr
->tm_mon
- tm_lo
.tm_mon
;
673 if (a
+ b
<= 46000 / 31) {
674 range
= 24 * 60 * 60;
677 a
+= tm_hi
.tm_mday
- tptr
->tm_mday
;
678 b
+= tptr
->tm_mday
- tm_lo
.tm_mday
;
679 if (a
+ b
<= 46000 / 24) {
683 a
+= tm_hi
.tm_hour
- tptr
->tm_hour
;
684 b
+= tptr
->tm_hour
- tm_lo
.tm_hour
;
685 if (a
+ b
<= 46000 / 60) {
689 a
+= tm_hi
.tm_min
- tptr
->tm_min
;
690 b
+= tptr
->tm_min
- tm_lo
.tm_min
;
691 if (a
+ b
<= 46000 / 60) {
695 a
+= tm_hi
.tm_sec
- tptr
->tm_sec
;
696 b
+= tptr
->tm_sec
- tm_lo
.tm_sec
;
706 Although `/' and `%' may produce unexpected result with negative
707 argument, it doesn't cause serious problem because there is a
710 guess
= guess_lo
/ d
* a
+ (guess_lo
% d
) * a
/ d
711 + guess_hi
/ d
* b
+ (guess_hi
% d
) * b
/ d
;
715 if (guess
<= guess_lo
|| guess_hi
<= guess
) {
716 /* Precious guess is invalid. try binary search. */
717 guess
= guess_lo
/ 2 + guess_hi
/ 2;
718 if (guess
<= guess_lo
)
719 guess
= guess_lo
+ 1;
720 else if (guess
>= guess_hi
)
721 guess
= guess_hi
- 1;
725 tm
= (utc_p
? gmtime
: localtime
)(&guess
);
734 guess
= guess
- range
;
736 if (guess_lo
< guess
&& guess
< guess_hi
)
744 guess
= guess
+ range
;
746 if (guess_lo
< guess
&& guess
< guess_hi
)
752 /* If localtime is nonmonotonic, another result may exist. */
755 guess2
= guess
- 2 * 60 * 60;
756 tm
= localtime(&guess2
);
758 if (tptr
->tm_hour
!= (tm
->tm_hour
+ 2) % 24 ||
759 tptr
->tm_min
!= tm
->tm_min
||
760 tptr
->tm_sec
!= tm
->tm_sec
762 guess2
-= (tm
->tm_hour
- tptr
->tm_hour
) * 60 * 60 +
763 (tm
->tm_min
- tptr
->tm_min
) * 60 +
764 (tm
->tm_sec
- tptr
->tm_sec
);
765 if (tptr
->tm_mday
!= tm
->tm_mday
)
766 guess2
+= 24 * 60 * 60;
767 if (guess
!= guess2
) {
768 tm
= localtime(&guess2
);
769 if (tmcmp(tptr
, tm
) == 0) {
780 guess2
= guess
+ 2 * 60 * 60;
781 tm
= localtime(&guess2
);
783 if ((tptr
->tm_hour
+ 2) % 24 != tm
->tm_hour
||
784 tptr
->tm_min
!= tm
->tm_min
||
785 tptr
->tm_sec
!= tm
->tm_sec
787 guess2
-= (tm
->tm_hour
- tptr
->tm_hour
) * 60 * 60 +
788 (tm
->tm_min
- tptr
->tm_min
) * 60 +
789 (tm
->tm_sec
- tptr
->tm_sec
);
790 if (tptr
->tm_mday
!= tm
->tm_mday
)
791 guess2
-= 24 * 60 * 60;
792 if (guess
!= guess2
) {
793 tm
= localtime(&guess2
);
794 if (tmcmp(tptr
, tm
) == 0) {
808 /* Given argument has no corresponding time_t. Let's outerpolation. */
809 if (tm_lo
.tm_year
== tptr
->tm_year
&& tm_lo
.tm_mon
== tptr
->tm_mon
) {
811 (tptr
->tm_mday
- tm_lo
.tm_mday
) * 24 * 60 * 60 +
812 (tptr
->tm_hour
- tm_lo
.tm_hour
) * 60 * 60 +
813 (tptr
->tm_min
- tm_lo
.tm_min
) * 60 +
814 (tptr
->tm_sec
- tm_lo
.tm_sec
);
816 else if (tm_hi
.tm_year
== tptr
->tm_year
&& tm_hi
.tm_mon
== tptr
->tm_mon
) {
818 (tptr
->tm_mday
- tm_hi
.tm_mday
) * 24 * 60 * 60 +
819 (tptr
->tm_hour
- tm_hi
.tm_hour
) * 60 * 60 +
820 (tptr
->tm_min
- tm_hi
.tm_min
) * 60 +
821 (tptr
->tm_sec
- tm_hi
.tm_sec
);
825 rb_raise(rb_eArgError
, "time out of range");
828 rb_raise(rb_eArgError
, "gmtime/localtime error");
829 return 0; /* not reached */
833 make_time_t(struct tm
*tptr
, int utc_p
)
836 #ifdef NEGATIVE_TIME_T
842 #if defined(HAVE_TIMEGM)
843 if ((t
= timegm(&buf
)) != -1)
845 #ifdef NEGATIVE_TIME_T
846 if ((tmp
= gmtime(&t
)) &&
847 tptr
->tm_year
== tmp
->tm_year
&&
848 tptr
->tm_mon
== tmp
->tm_mon
&&
849 tptr
->tm_mday
== tmp
->tm_mday
&&
850 tptr
->tm_hour
== tmp
->tm_hour
&&
851 tptr
->tm_min
== tmp
->tm_min
&&
852 tptr
->tm_sec
== tmp
->tm_sec
857 return search_time_t(&buf
, utc_p
);
860 #if defined(HAVE_MKTIME)
861 if ((t
= mktime(&buf
)) != -1)
863 #ifdef NEGATIVE_TIME_T
864 if ((tmp
= localtime(&t
)) &&
865 tptr
->tm_year
== tmp
->tm_year
&&
866 tptr
->tm_mon
== tmp
->tm_mon
&&
867 tptr
->tm_mday
== tmp
->tm_mday
&&
868 tptr
->tm_hour
== tmp
->tm_hour
&&
869 tptr
->tm_min
== tmp
->tm_min
&&
870 tptr
->tm_sec
== tmp
->tm_sec
875 return search_time_t(&buf
, utc_p
);
880 time_utc_or_local(int argc
, VALUE
*argv
, int utc_p
, VALUE klass
)
886 time_arg(argc
, argv
, &tm
, &nsec
);
887 time
= time_new_internal(klass
, make_time_t(&tm
, utc_p
), nsec
);
888 if (utc_p
) return time_gmtime(time
);
889 return time_localtime(time
);
894 * Time.utc(year) => time
895 * Time.utc(year, month) => time
896 * Time.utc(year, month, day) => time
897 * Time.utc(year, month, day, hour) => time
898 * Time.utc(year, month, day, hour, min) => time
899 * Time.utc(year, month, day, hour, min, sec_with_frac) => time
900 * Time.utc(year, month, day, hour, min, sec, usec_with_frac) => time
901 * Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz) => time
902 * Time.gm(year) => time
903 * Time.gm(year, month) => time
904 * Time.gm(year, month, day) => time
905 * Time.gm(year, month, day, hour) => time
906 * Time.gm(year, month, day, hour, min) => time
907 * Time.gm(year, month, day, hour, min, sec_with_frac) => time
908 * Time.gm(year, month, day, hour, min, sec, usec_with_frac) => time
909 * Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz) => time
911 * Creates a time based on given values, interpreted as UTC (GMT). The
912 * year must be specified. Other values default to the minimum value
913 * for that field (and may be <code>nil</code> or omitted). Months may
914 * be specified by numbers from 1 to 12, or by the three-letter English
915 * month names. Hours are specified on a 24-hour clock (0..23). Raises
916 * an <code>ArgumentError</code> if any values are out of range. Will
917 * also accept ten arguments in the order output by
918 * <code>Time#to_a</code>.
919 * <i>sec_with_frac</i> and <i>usec_with_frac</i> can have a fractional part.
921 * Time.utc(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
922 * Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
925 time_s_mkutc(int argc
, VALUE
*argv
, VALUE klass
)
927 return time_utc_or_local(argc
, argv
, Qtrue
, klass
);
932 * Time.local(year) => time
933 * Time.local(year, month) => time
934 * Time.local(year, month, day) => time
935 * Time.local(year, month, day, hour) => time
936 * Time.local(year, month, day, hour, min) => time
937 * Time.local(year, month, day, hour, min, sec_with_frac) => time
938 * Time.local(year, month, day, hour, min, sec, usec_with_frac) => time
939 * Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz) => time
940 * Time.mktime(year) => time
941 * Time.mktime(year, month) => time
942 * Time.mktime(year, month, day) => time
943 * Time.mktime(year, month, day, hour) => time
944 * Time.mktime(year, month, day, hour, min) => time
945 * Time.mktime(year, month, day, hour, min, sec_with_frac) => time
946 * Time.mktime(year, month, day, hour, min, sec, usec_with_frac) => time
947 * Time.mktime(sec, min, hour, day, month, year, wday, yday, isdst, tz) => time
949 * Same as <code>Time::gm</code>, but interprets the values in the
952 * Time.local(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 -0600
956 time_s_mktime(int argc
, VALUE
*argv
, VALUE klass
)
958 return time_utc_or_local(argc
, argv
, Qfalse
, klass
);
966 * Returns the value of <i>time</i> as an integer number of seconds
970 * "%10.5f" % t.to_f #=> "1049896564.17839"
971 * t.to_i #=> 1049896564
975 time_to_i(VALUE time
)
977 struct time_object
*tobj
;
979 GetTimeval(time
, tobj
);
980 return LONG2NUM(tobj
->ts
.tv_sec
);
987 * Returns the value of <i>time</i> as a floating point number of
988 * seconds since the Epoch.
991 * "%10.5f" % t.to_f #=> "1049896564.13654"
992 * t.to_i #=> 1049896564
994 * Note that IEEE 754 double is not accurate enough to represent
995 * nanoseconds from the Epoch.
999 time_to_f(VALUE time
)
1001 struct time_object
*tobj
;
1003 GetTimeval(time
, tobj
);
1004 return DOUBLE2NUM((double)tobj
->ts
.tv_sec
+(double)tobj
->ts
.tv_nsec
/1e9
);
1010 * time.tv_usec => int
1012 * Returns just the number of microseconds for <i>time</i>.
1014 * t = Time.now #=> 2007-11-19 08:03:26 -0600
1015 * "%10.6f" % t.to_f #=> "1195481006.775195"
1020 time_usec(VALUE time
)
1022 struct time_object
*tobj
;
1024 GetTimeval(time
, tobj
);
1025 return LONG2NUM(tobj
->ts
.tv_nsec
/1000);
1031 * time.tv_nsec => int
1033 * Returns just the number of nanoseconds for <i>time</i>.
1035 * t = Time.now #=> 2007-11-17 15:18:03 +0900
1036 * "%10.9f" % t.to_f #=> "1195280283.536151409"
1037 * t.nsec #=> 536151406
1039 * The lowest digit of to_f and nsec is different because
1040 * IEEE 754 double is not accurate enough to represent
1041 * nanoseconds from the Epoch.
1042 * The accurate value is returned by nsec.
1046 time_nsec(VALUE time
)
1048 struct time_object
*tobj
;
1050 GetTimeval(time
, tobj
);
1051 return LONG2NUM(tobj
->ts
.tv_nsec
);
1056 * time <=> other_time => -1, 0, +1
1058 * Comparison---Compares <i>time</i> with <i>other_time</i>.
1060 * t = Time.now #=> 2007-11-19 08:12:12 -0600
1061 * t2 = t + 2592000 #=> 2007-12-19 08:12:12 -0600
1065 * t = Time.now #=> 2007-11-19 08:13:38 -0600
1066 * t2 = t + 0.1 #=> 2007-11-19 08:13:38 -0600
1067 * t.nsec #=> 98222999
1068 * t2.nsec #=> 198222999
1075 time_cmp(VALUE time1
, VALUE time2
)
1077 struct time_object
*tobj1
, *tobj2
;
1079 GetTimeval(time1
, tobj1
);
1080 if (TYPE(time2
) == T_DATA
&& RDATA(time2
)->dfree
== time_free
) {
1081 GetTimeval(time2
, tobj2
);
1082 if (tobj1
->ts
.tv_sec
== tobj2
->ts
.tv_sec
) {
1083 if (tobj1
->ts
.tv_nsec
== tobj2
->ts
.tv_nsec
) return INT2FIX(0);
1084 if (tobj1
->ts
.tv_nsec
> tobj2
->ts
.tv_nsec
) return INT2FIX(1);
1087 if (tobj1
->ts
.tv_sec
> tobj2
->ts
.tv_sec
) return INT2FIX(1);
1094 cmp
= rb_funcall(time2
, rb_intern("<=>"), 1, time1
);
1095 if (NIL_P(cmp
)) return Qnil
;
1097 n
= rb_cmpint(cmp
, time1
, time2
);
1098 if (n
== 0) return INT2FIX(0);
1099 if (n
> 0) return INT2FIX(1);
1106 * time.eql?(other_time)
1108 * Return <code>true</code> if <i>time</i> and <i>other_time</i> are
1109 * both <code>Time</code> objects with the same seconds and fractional
1114 time_eql(VALUE time1
, VALUE time2
)
1116 struct time_object
*tobj1
, *tobj2
;
1118 GetTimeval(time1
, tobj1
);
1119 if (TYPE(time2
) == T_DATA
&& RDATA(time2
)->dfree
== time_free
) {
1120 GetTimeval(time2
, tobj2
);
1121 if (tobj1
->ts
.tv_sec
== tobj2
->ts
.tv_sec
) {
1122 if (tobj1
->ts
.tv_nsec
== tobj2
->ts
.tv_nsec
) return Qtrue
;
1130 * time.utc? => true or false
1131 * time.gmt? => true or false
1133 * Returns <code>true</code> if <i>time</i> represents a time in UTC
1136 * t = Time.now #=> 2007-11-19 08:15:23 -0600
1138 * t = Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
1141 * t = Time.now #=> 2007-11-19 08:16:03 -0600
1143 * t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
1148 time_utc_p(VALUE time
)
1150 struct time_object
*tobj
;
1152 GetTimeval(time
, tobj
);
1153 if (tobj
->gmt
) return Qtrue
;
1159 * time.hash => fixnum
1161 * Return a hash code for this time object.
1165 time_hash(VALUE time
)
1167 struct time_object
*tobj
;
1170 GetTimeval(time
, tobj
);
1171 hash
= tobj
->ts
.tv_sec
^ tobj
->ts
.tv_nsec
;
1172 return LONG2FIX(hash
);
1177 time_init_copy(VALUE copy
, VALUE time
)
1179 struct time_object
*tobj
, *tcopy
;
1181 if (copy
== time
) return copy
;
1183 if (TYPE(time
) != T_DATA
|| RDATA(time
)->dfree
!= time_free
) {
1184 rb_raise(rb_eTypeError
, "wrong argument type");
1186 GetTimeval(time
, tobj
);
1187 GetTimeval(copy
, tcopy
);
1188 MEMCPY(tcopy
, tobj
, struct time_object
, 1);
1194 time_dup(VALUE time
)
1196 VALUE dup
= time_s_alloc(CLASS_OF(time
));
1197 time_init_copy(dup
, time
);
1203 * time.localtime => time
1205 * Converts <i>time</i> to local time (using the local time zone in
1206 * effect for this process) modifying the receiver.
1208 * t = Time.gm(2000, "jan", 1, 20, 15, 1) #=> 2000-01-01 20:15:01 UTC
1210 * t.localtime #=> 2000-01-01 14:15:01 -0600
1215 time_localtime(VALUE time
)
1217 struct time_object
*tobj
;
1221 GetTimeval(time
, tobj
);
1229 t
= tobj
->ts
.tv_sec
;
1230 tm_tmp
= localtime(&t
);
1232 rb_raise(rb_eArgError
, "localtime error");
1241 * time.gmtime => time
1244 * Converts <i>time</i> to UTC (GMT), modifying the receiver.
1246 * t = Time.now #=> 2007-11-19 08:18:31 -0600
1248 * t.gmtime #=> 2007-11-19 14:18:31 UTC
1251 * t = Time.now #=> 2007-11-19 08:18:51 -0600
1253 * t.utc #=> 2007-11-19 14:18:51 UTC
1258 time_gmtime(VALUE time
)
1260 struct time_object
*tobj
;
1264 GetTimeval(time
, tobj
);
1272 t
= tobj
->ts
.tv_sec
;
1273 tm_tmp
= gmtime(&t
);
1275 rb_raise(rb_eArgError
, "gmtime error");
1284 * time.getlocal => new_time
1286 * Returns a new <code>new_time</code> object representing <i>time</i> in
1287 * local time (using the local time zone in effect for this process).
1289 * t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
1291 * l = t.getlocal #=> 2000-01-01 14:15:01 -0600
1297 time_getlocaltime(VALUE time
)
1299 return time_localtime(time_dup(time
));
1304 * time.getgm => new_time
1305 * time.getutc => new_time
1307 * Returns a new <code>new_time</code> object representing <i>time</i> in
1310 * t = Time.local(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 -0600
1312 * y = t.getgm #=> 2000-01-02 02:15:01 UTC
1318 time_getgmtime(VALUE time
)
1320 return time_gmtime(time_dup(time
));
1324 time_get_tm(VALUE time
, int gmt
)
1326 if (gmt
) return time_gmtime(time
);
1327 return time_localtime(time
);
1332 * time.asctime => string
1333 * time.ctime => string
1335 * Returns a canonical string representation of <i>time</i>.
1337 * Time.now.asctime #=> "Wed Apr 9 08:56:03 2003"
1341 time_asctime(VALUE time
)
1343 struct time_object
*tobj
;
1346 GetTimeval(time
, tobj
);
1347 if (tobj
->tm_got
== 0) {
1348 time_get_tm(time
, tobj
->gmt
);
1350 s
= asctime(&tobj
->tm
);
1351 if (s
[24] == '\n') s
[24] = '\0';
1353 return rb_str_new2(s
);
1358 * time.inspect => string
1359 * time.to_s => string
1361 * Returns a string representing <i>time</i>. Equivalent to calling
1362 * <code>Time#strftime</code> with a format string of
1363 * ``<code>%Y-%m-%d</code> <code>%H:%M:%S</code> <code>%z</code>''
1364 * for a local time and
1365 * ``<code>%Y-%m-%d</code> <code>%H:%M:%S</code> <code>UTC</code>''
1368 * Time.now.to_s #=> "2007-10-05 16:09:51 +0900"
1369 * Time.now.utc.to_s #=> "2007-10-05 07:09:51 UTC"
1373 time_to_s(VALUE time
)
1375 struct time_object
*tobj
;
1379 GetTimeval(time
, tobj
);
1380 if (tobj
->tm_got
== 0) {
1381 time_get_tm(time
, tobj
->gmt
);
1383 if (tobj
->gmt
== 1) {
1384 len
= strftime(buf
, 128, "%Y-%m-%d %H:%M:%S UTC", &tobj
->tm
);
1389 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1390 off
= tobj
->tm
.tm_gmtoff
;
1392 VALUE tmp
= time_utc_offset(time
);
1399 len
= strftime(buf
, sizeof(buf
), "%Y-%m-%d %H:%M:%S ", &tobj
->tm
);
1400 len
+= snprintf(buf
+len
, sizeof(buf
)-len
, "%c%02d%02d", sign
,
1401 (int)(off
/3600), (int)(off
%3600/60));
1403 return rb_str_new(buf
, len
);
1407 time_add(struct time_object
*tobj
, VALUE offset
, int sign
)
1409 double v
= NUM2DBL(offset
);
1411 unsigned_time_t sec_off
;
1413 long nsec_off
, nsec
;
1421 sec_off
= (unsigned_time_t
)f
;
1422 if (f
!= (double)sec_off
)
1423 rb_raise(rb_eRangeError
, "time %s %f out of Time range",
1424 sign
< 0 ? "-" : "+", v
);
1425 nsec_off
= (long)(d
*1e9
+0.5);
1428 sec
= tobj
->ts
.tv_sec
- sec_off
;
1429 nsec
= tobj
->ts
.tv_nsec
- nsec_off
;
1430 if (sec
> tobj
->ts
.tv_sec
)
1431 rb_raise(rb_eRangeError
, "time - %f out of Time range", v
);
1434 sec
= tobj
->ts
.tv_sec
+ sec_off
;
1435 nsec
= tobj
->ts
.tv_nsec
+ nsec_off
;
1436 if (sec
< tobj
->ts
.tv_sec
)
1437 rb_raise(rb_eRangeError
, "time + %f out of Time range", v
);
1439 result
= rb_time_nano_new(sec
, nsec
);
1441 GetTimeval(result
, tobj
);
1449 * time + numeric => time
1451 * Addition---Adds some number of seconds (possibly fractional) to
1452 * <i>time</i> and returns that value as a new time.
1454 * t = Time.now #=> 2007-11-19 08:22:21 -0600
1455 * t + (60 * 60 * 24) #=> 2007-11-20 08:22:21 -0600
1459 time_plus(VALUE time1
, VALUE time2
)
1461 struct time_object
*tobj
;
1462 GetTimeval(time1
, tobj
);
1464 if (TYPE(time2
) == T_DATA
&& RDATA(time2
)->dfree
== time_free
) {
1465 rb_raise(rb_eTypeError
, "time + time?");
1467 return time_add(tobj
, time2
, 1);
1472 * time - other_time => float
1473 * time - numeric => time
1475 * Difference---Returns a new time that represents the difference
1476 * between two times, or subtracts the given number of seconds in
1477 * <i>numeric</i> from <i>time</i>.
1479 * t = Time.now #=> 2007-11-19 08:23:10 -0600
1480 * t2 = t + 2592000 #=> 2007-12-19 08:23:10 -0600
1481 * t2 - t #=> 2592000.0
1482 * t2 - 2592000 #=> 2007-11-19 08:23:10 -0600
1486 time_minus(VALUE time1
, VALUE time2
)
1488 struct time_object
*tobj
;
1490 GetTimeval(time1
, tobj
);
1491 if (TYPE(time2
) == T_DATA
&& RDATA(time2
)->dfree
== time_free
) {
1492 struct time_object
*tobj2
;
1495 GetTimeval(time2
, tobj2
);
1496 if (tobj
->ts
.tv_sec
< tobj2
->ts
.tv_sec
)
1497 f
= -(double)(unsigned_time_t
)(tobj2
->ts
.tv_sec
- tobj
->ts
.tv_sec
);
1499 f
= (double)(unsigned_time_t
)(tobj
->ts
.tv_sec
- tobj2
->ts
.tv_sec
);
1500 f
+= ((double)tobj
->ts
.tv_nsec
- (double)tobj2
->ts
.tv_nsec
)*1e-9;
1502 return DOUBLE2NUM(f
);
1504 return time_add(tobj
, time2
, -1);
1509 * time.succ => new_time
1511 * Return a new time object, one second later than <code>time</code>.
1513 * t = Time.now #=> 2007-11-19 08:23:57 -0600
1514 * t.succ #=> 2007-11-19 08:23:58 -0600
1518 time_succ(VALUE time
)
1520 struct time_object
*tobj
;
1523 GetTimeval(time
, tobj
);
1525 time
= rb_time_nano_new(tobj
->ts
.tv_sec
+ 1, tobj
->ts
.tv_nsec
);
1526 GetTimeval(time
, tobj
);
1532 rb_time_succ(VALUE time
)
1534 return time_succ(time
);
1539 * time.sec => fixnum
1541 * Returns the second of the minute (0..60)<em>[Yes, seconds really can
1542 * range from zero to 60. This allows the system to inject leap seconds
1543 * every now and then to correct for the fact that years are not really
1544 * a convenient number of hours long.]</em> for <i>time</i>.
1546 * t = Time.now #=> 2007-11-19 08:25:02 -0600
1551 time_sec(VALUE time
)
1553 struct time_object
*tobj
;
1555 GetTimeval(time
, tobj
);
1556 if (tobj
->tm_got
== 0) {
1557 time_get_tm(time
, tobj
->gmt
);
1559 return INT2FIX(tobj
->tm
.tm_sec
);
1564 * time.min => fixnum
1566 * Returns the minute of the hour (0..59) for <i>time</i>.
1568 * t = Time.now #=> 2007-11-19 08:25:51 -0600
1573 time_min(VALUE time
)
1575 struct time_object
*tobj
;
1577 GetTimeval(time
, tobj
);
1578 if (tobj
->tm_got
== 0) {
1579 time_get_tm(time
, tobj
->gmt
);
1581 return INT2FIX(tobj
->tm
.tm_min
);
1586 * time.hour => fixnum
1588 * Returns the hour of the day (0..23) for <i>time</i>.
1590 * t = Time.now #=> 2007-11-19 08:26:20 -0600
1595 time_hour(VALUE time
)
1597 struct time_object
*tobj
;
1599 GetTimeval(time
, tobj
);
1600 if (tobj
->tm_got
== 0) {
1601 time_get_tm(time
, tobj
->gmt
);
1603 return INT2FIX(tobj
->tm
.tm_hour
);
1608 * time.day => fixnum
1609 * time.mday => fixnum
1611 * Returns the day of the month (1..n) for <i>time</i>.
1613 * t = Time.now #=> 2007-11-19 08:27:03 -0600
1619 time_mday(VALUE time
)
1621 struct time_object
*tobj
;
1623 GetTimeval(time
, tobj
);
1624 if (tobj
->tm_got
== 0) {
1625 time_get_tm(time
, tobj
->gmt
);
1627 return INT2FIX(tobj
->tm
.tm_mday
);
1632 * time.mon => fixnum
1633 * time.month => fixnum
1635 * Returns the month of the year (1..12) for <i>time</i>.
1637 * t = Time.now #=> 2007-11-19 08:27:30 -0600
1643 time_mon(VALUE time
)
1645 struct time_object
*tobj
;
1647 GetTimeval(time
, tobj
);
1648 if (tobj
->tm_got
== 0) {
1649 time_get_tm(time
, tobj
->gmt
);
1651 return INT2FIX(tobj
->tm
.tm_mon
+1);
1656 * time.year => fixnum
1658 * Returns the year for <i>time</i> (including the century).
1660 * t = Time.now #=> 2007-11-19 08:27:51 -0600
1665 time_year(VALUE time
)
1667 struct time_object
*tobj
;
1669 GetTimeval(time
, tobj
);
1670 if (tobj
->tm_got
== 0) {
1671 time_get_tm(time
, tobj
->gmt
);
1673 return LONG2NUM((long)tobj
->tm
.tm_year
+1900);
1678 * time.wday => fixnum
1680 * Returns an integer representing the day of the week, 0..6, with
1683 * t = Time.now #=> 2007-11-20 02:35:35 -0600
1685 * t.sunday? #=> false
1686 * t.monday? #=> false
1687 * t.tuesday? #=> true
1688 * t.wednesday? #=> false
1689 * t.thursday? #=> false
1690 * t.friday? #=> false
1691 * t.saturday? #=> false
1695 time_wday(VALUE time
)
1697 struct time_object
*tobj
;
1699 GetTimeval(time
, tobj
);
1700 if (tobj
->tm_got
== 0) {
1701 time_get_tm(time
, tobj
->gmt
);
1703 return INT2FIX(tobj
->tm
.tm_wday
);
1706 #define wday_p(n) {\
1707 struct time_object *tobj;\
1708 GetTimeval(time, tobj);\
1709 if (tobj->tm_got == 0) {\
1710 time_get_tm(time, tobj->gmt);\
1712 return (tobj->tm.tm_wday == (n)) ? Qtrue : Qfalse;\
1717 * time.sunday? => true or false
1719 * Returns <code>true</code> if <i>time</i> represents Sunday.
1721 * t = Time.local(1990, 4, 1) #=> 1990-04-01 00:00:00 -0600
1722 * t.sunday? #=> true
1726 time_sunday(VALUE time
)
1733 * time.monday? => true or false
1735 * Returns <code>true</code> if <i>time</i> represents Monday.
1737 * t = Time.local(2003, 8, 4) #=> 2003-08-04 00:00:00 -0500
1738 * p t.monday? #=> true
1742 time_monday(VALUE time
)
1749 * time.tuesday? => true or false
1751 * Returns <code>true</code> if <i>time</i> represents Tuesday.
1753 * t = Time.local(1991, 2, 19) #=> 1991-02-19 00:00:00 -0600
1754 * p t.tuesday? #=> true
1758 time_tuesday(VALUE time
)
1765 * time.wednesday? => true or false
1767 * Returns <code>true</code> if <i>time</i> represents Wednesday.
1769 * t = Time.local(1993, 2, 24) #=> 1993-02-24 00:00:00 -0600
1770 * p t.wednesday? #=> true
1774 time_wednesday(VALUE time
)
1781 * time.thursday? => true or false
1783 * Returns <code>true</code> if <i>time</i> represents Thursday.
1785 * t = Time.local(1995, 12, 21) #=> 1995-12-21 00:00:00 -0600
1786 * p t.thursday? #=> true
1790 time_thursday(VALUE time
)
1797 * time.friday? => true or false
1799 * Returns <code>true</code> if <i>time</i> represents Friday.
1801 * t = Time.local(1987, 12, 18) #=> 1987-12-18 00:00:00 -0600
1802 * t.friday? #=> true
1806 time_friday(VALUE time
)
1813 * time.saturday? => true or false
1815 * Returns <code>true</code> if <i>time</i> represents Saturday.
1817 * t = Time.local(2006, 6, 10) #=> 2006-06-10 00:00:00 -0500
1818 * t.saturday? #=> true
1822 time_saturday(VALUE time
)
1829 * time.yday => fixnum
1831 * Returns an integer representing the day of the year, 1..366.
1833 * t = Time.now #=> 2007-11-19 08:32:31 -0600
1838 time_yday(VALUE time
)
1840 struct time_object
*tobj
;
1842 GetTimeval(time
, tobj
);
1843 if (tobj
->tm_got
== 0) {
1844 time_get_tm(time
, tobj
->gmt
);
1846 return INT2FIX(tobj
->tm
.tm_yday
+1);
1851 * time.isdst => true or false
1852 * time.dst? => true or false
1854 * Returns <code>true</code> if <i>time</i> occurs during Daylight
1855 * Saving Time in its time zone.
1858 * Time.local(2000, 1, 1).zone #=> "CST"
1859 * Time.local(2000, 1, 1).isdst #=> false
1860 * Time.local(2000, 1, 1).dst? #=> false
1861 * Time.local(2000, 7, 1).zone #=> "CDT"
1862 * Time.local(2000, 7, 1).isdst #=> true
1863 * Time.local(2000, 7, 1).dst? #=> true
1866 * Time.local(2000, 1, 1).zone #=> "JST"
1867 * Time.local(2000, 1, 1).isdst #=> false
1868 * Time.local(2000, 1, 1).dst? #=> false
1869 * Time.local(2000, 7, 1).zone #=> "JST"
1870 * Time.local(2000, 7, 1).isdst #=> false
1871 * Time.local(2000, 7, 1).dst? #=> false
1875 time_isdst(VALUE time
)
1877 struct time_object
*tobj
;
1879 GetTimeval(time
, tobj
);
1880 if (tobj
->tm_got
== 0) {
1881 time_get_tm(time
, tobj
->gmt
);
1883 return tobj
->tm
.tm_isdst
?Qtrue
:Qfalse
;
1888 * time.zone => string
1890 * Returns the name of the time zone used for <i>time</i>. As of Ruby
1891 * 1.8, returns ``UTC'' rather than ``GMT'' for UTC times.
1893 * t = Time.gm(2000, "jan", 1, 20, 15, 1)
1895 * t = Time.local(2000, "jan", 1, 20, 15, 1)
1900 time_zone(VALUE time
)
1902 struct time_object
*tobj
;
1903 #if !defined(HAVE_TM_ZONE) && (!defined(HAVE_TZNAME) || !defined(HAVE_DAYLIGHT))
1908 GetTimeval(time
, tobj
);
1909 if (tobj
->tm_got
== 0) {
1910 time_get_tm(time
, tobj
->gmt
);
1913 if (tobj
->gmt
== 1) {
1914 return rb_str_new2("UTC");
1916 #if defined(HAVE_TM_ZONE)
1917 return rb_str_new2(tobj
->tm
.tm_zone
);
1918 #elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
1919 return rb_str_new2(tzname
[daylight
&& tobj
->tm
.tm_isdst
]);
1921 len
= strftime(buf
, 64, "%Z", &tobj
->tm
);
1922 return rb_str_new(buf
, len
);
1928 * time.gmt_offset => fixnum
1929 * time.gmtoff => fixnum
1930 * time.utc_offset => fixnum
1932 * Returns the offset in seconds between the timezone of <i>time</i>
1935 * t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
1936 * t.gmt_offset #=> 0
1937 * l = t.getlocal #=> 2000-01-01 14:15:01 -0600
1938 * l.gmt_offset #=> -21600
1942 time_utc_offset(VALUE time
)
1944 struct time_object
*tobj
;
1946 GetTimeval(time
, tobj
);
1947 if (tobj
->tm_got
== 0) {
1948 time_get_tm(time
, tobj
->gmt
);
1951 if (tobj
->gmt
== 1) {
1955 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1956 return INT2NUM(tobj
->tm
.tm_gmtoff
);
1962 t
= tobj
->ts
.tv_sec
;
1965 rb_raise(rb_eArgError
, "gmtime error");
1966 if (l
->tm_year
!= u
->tm_year
)
1967 off
= l
->tm_year
< u
->tm_year
? -1 : 1;
1968 else if (l
->tm_mon
!= u
->tm_mon
)
1969 off
= l
->tm_mon
< u
->tm_mon
? -1 : 1;
1970 else if (l
->tm_mday
!= u
->tm_mday
)
1971 off
= l
->tm_mday
< u
->tm_mday
? -1 : 1;
1974 off
= off
* 24 + l
->tm_hour
- u
->tm_hour
;
1975 off
= off
* 60 + l
->tm_min
- u
->tm_min
;
1976 off
= off
* 60 + l
->tm_sec
- u
->tm_sec
;
1977 return LONG2FIX(off
);
1984 * time.to_a => array
1986 * Returns a ten-element <i>array</i> of values for <i>time</i>:
1987 * {<code>[ sec, min, hour, day, month, year, wday, yday, isdst, zone
1988 * ]</code>}. See the individual methods for an explanation of the
1989 * valid ranges of each value. The ten elements can be passed directly
1990 * to <code>Time::utc</code> or <code>Time::local</code> to create a
1991 * new <code>Time</code>.
1993 * t = Time.now #=> 2007-11-19 08:36:01 -0600
1994 * now = t.to_a #=> [1, 36, 8, 19, 11, 2007, 1, 323, false, "CST"]
1998 time_to_a(VALUE time
)
2000 struct time_object
*tobj
;
2002 GetTimeval(time
, tobj
);
2003 if (tobj
->tm_got
== 0) {
2004 time_get_tm(time
, tobj
->gmt
);
2006 return rb_ary_new3(10,
2007 INT2FIX(tobj
->tm
.tm_sec
),
2008 INT2FIX(tobj
->tm
.tm_min
),
2009 INT2FIX(tobj
->tm
.tm_hour
),
2010 INT2FIX(tobj
->tm
.tm_mday
),
2011 INT2FIX(tobj
->tm
.tm_mon
+1),
2012 LONG2NUM((long)tobj
->tm
.tm_year
+1900),
2013 INT2FIX(tobj
->tm
.tm_wday
),
2014 INT2FIX(tobj
->tm
.tm_yday
+1),
2015 tobj
->tm
.tm_isdst
?Qtrue
:Qfalse
,
2019 #define SMALLBUF 100
2021 rb_strftime(char **buf
, const char *format
, struct tm
*time
)
2023 int size
, len
, flen
;
2026 flen
= strlen(format
);
2031 len
= strftime(*buf
, SMALLBUF
, format
, time
);
2032 if (len
!= 0 || (**buf
== '\0' && errno
!= ERANGE
)) return len
;
2033 for (size
=1024; ; size
*=2) {
2034 *buf
= xmalloc(size
);
2036 len
= strftime(*buf
, size
, format
, time
);
2038 * buflen can be zero EITHER because there's not enough
2039 * room in the string, or because the control command
2040 * goes to the empty string. Make a reasonable guess that
2041 * if the buffer is 1024 times bigger than the length of the
2042 * format string, it's not failing for lack of room.
2044 if (len
> 0 || size
>= 1024 * flen
) return len
;
2052 * time.strftime( string ) => string
2054 * Formats <i>time</i> according to the directives in the given format
2055 * string. Any text not listed as a directive will be passed through
2056 * to the output string.
2059 * %a - The abbreviated weekday name (``Sun'')
2060 * %A - The full weekday name (``Sunday'')
2061 * %b - The abbreviated month name (``Jan'')
2062 * %B - The full month name (``January'')
2063 * %c - The preferred local date and time representation
2064 * %d - Day of the month (01..31)
2065 * %H - Hour of the day, 24-hour clock (00..23)
2066 * %I - Hour of the day, 12-hour clock (01..12)
2067 * %j - Day of the year (001..366)
2068 * %m - Month of the year (01..12)
2069 * %M - Minute of the hour (00..59)
2070 * %p - Meridian indicator (``AM'' or ``PM'')
2071 * %S - Second of the minute (00..60)
2072 * %U - Week number of the current year,
2073 * starting with the first Sunday as the first
2074 * day of the first week (00..53)
2075 * %W - Week number of the current year,
2076 * starting with the first Monday as the first
2077 * day of the first week (00..53)
2078 * %w - Day of the week (Sunday is 0, 0..6)
2079 * %x - Preferred representation for the date alone, no time
2080 * %X - Preferred representation for the time alone, no date
2081 * %y - Year without a century (00..99)
2082 * %Y - Year with century
2083 * %Z - Time zone name
2084 * %% - Literal ``%'' character
2086 * t = Time.now #=> 2007-11-19 08:37:48 -0600
2087 * t.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007"
2088 * t.strftime("at %I:%M%p") #=> "at 08:37AM"
2092 time_strftime(VALUE time
, VALUE format
)
2094 void rb_enc_copy(VALUE
, VALUE
);
2095 struct time_object
*tobj
;
2096 char buffer
[SMALLBUF
], *buf
= buffer
;
2101 GetTimeval(time
, tobj
);
2102 if (tobj
->tm_got
== 0) {
2103 time_get_tm(time
, tobj
->gmt
);
2105 StringValue(format
);
2106 if (!rb_enc_str_asciicompat_p(format
)) {
2107 rb_raise(rb_eArgError
, "format should have ASCII compatible encoding");
2109 format
= rb_str_new4(format
);
2110 fmt
= RSTRING_PTR(format
);
2111 len
= RSTRING_LEN(format
);
2113 rb_warning("strftime called with empty format string");
2115 else if (strlen(fmt
) < len
) {
2116 /* Ruby string may contain \0's. */
2117 const char *p
= fmt
, *pe
= fmt
+ len
;
2119 str
= rb_str_new(0, 0);
2121 len
= rb_strftime(&buf
, p
, &tobj
->tm
);
2122 rb_str_cat(str
, buf
, len
);
2124 if (buf
!= buffer
) {
2128 for (fmt
= p
; p
< pe
&& !*p
; ++p
);
2129 if (p
> fmt
) rb_str_cat(str
, fmt
, p
- fmt
);
2134 len
= rb_strftime(&buf
, RSTRING_PTR(format
), &tobj
->tm
);
2136 str
= rb_str_new(buf
, len
);
2137 if (buf
!= buffer
) xfree(buf
);
2138 rb_enc_copy(str
, format
);
2147 time_mdump(VALUE time
)
2149 struct time_object
*tobj
;
2158 GetTimeval(time
, tobj
);
2160 t
= tobj
->ts
.tv_sec
;
2163 if ((tm
->tm_year
& 0xffff) != tm
->tm_year
)
2164 rb_raise(rb_eArgError
, "year too big to marshal: %ld", (long)tm
->tm_year
);
2166 p
= 0x1UL
<< 31 | /* 1 */
2167 tobj
->gmt
<< 30 | /* 1 */
2168 tm
->tm_year
<< 14 | /* 16 */
2169 tm
->tm_mon
<< 10 | /* 4 */
2170 tm
->tm_mday
<< 5 | /* 5 */
2171 tm
->tm_hour
; /* 5 */
2172 s
= tm
->tm_min
<< 26 | /* 6 */
2173 tm
->tm_sec
<< 20 | /* 6 */
2174 tobj
->ts
.tv_nsec
/ 1000; /* 20 */
2175 nsec
= tobj
->ts
.tv_nsec
% 1000;
2177 for (i
=0; i
<4; i
++) {
2181 for (i
=4; i
<8; i
++) {
2186 str
= rb_str_new(buf
, 8);
2187 rb_copy_generic_ivar(str
, time
);
2190 * submicro is formatted in fixed-point packed BCD (without sign).
2191 * It represent digits under microsecond.
2192 * For nanosecond resolution, 3 digits (2 bytes) are used.
2193 * However it can be longer.
2194 * Extra digits are ignored for loading.
2196 unsigned char buf
[2];
2197 int len
= sizeof(buf
);
2198 buf
[1] = (nsec
% 10) << 4;
2202 buf
[0] |= (nsec
% 10) << 4;
2205 rb_ivar_set(str
, id_submicro
, rb_str_new((char *)buf
, len
));
2212 * time._dump => string
2214 * Dump _time_ for marshaling.
2218 time_dump(int argc
, VALUE
*argv
, VALUE time
)
2222 rb_scan_args(argc
, argv
, "01", 0);
2223 str
= time_mdump(time
);
2233 time_mload(VALUE time
, VALUE str
)
2235 struct time_object
*tobj
;
2247 submicro
= rb_attr_get(str
, id_submicro
);
2248 if (submicro
!= Qnil
) {
2249 st_delete(rb_generic_ivar_table(str
), (st_data_t
*)&id_submicro
, 0);
2251 rb_copy_generic_ivar(time
, str
);
2254 buf
= (unsigned char *)RSTRING_PTR(str
);
2255 if (RSTRING_LEN(str
) != 8) {
2256 rb_raise(rb_eTypeError
, "marshaled time format differ");
2260 for (i
=0; i
<4; i
++) {
2263 for (i
=4; i
<8; i
++) {
2264 s
|= buf
[i
]<<(8*(i
-4));
2267 if ((p
& (1UL<<31)) == 0) {
2275 gmt
= (p
>> 30) & 0x1;
2276 tm
.tm_year
= (p
>> 14) & 0xffff;
2277 tm
.tm_mon
= (p
>> 10) & 0xf;
2278 tm
.tm_mday
= (p
>> 5) & 0x1f;
2279 tm
.tm_hour
= p
& 0x1f;
2280 tm
.tm_min
= (s
>> 26) & 0x3f;
2281 tm
.tm_sec
= (s
>> 20) & 0x3f;
2284 sec
= make_time_t(&tm
, Qtrue
);
2285 usec
= (long)(s
& 0xfffff);
2288 if (submicro
!= Qnil
) {
2292 ptr
= (unsigned char*)StringValuePtr(submicro
);
2293 len
= RSTRING_LEN(submicro
);
2295 if (10 <= (digit
= ptr
[0] >> 4)) goto end_submicro
;
2296 nsec
+= digit
* 100;
2297 if (10 <= (digit
= ptr
[0] & 0xf)) goto end_submicro
;
2301 if (10 <= (digit
= ptr
[1] >> 4)) goto end_submicro
;
2307 time_overflow_p(&sec
, &nsec
);
2309 GetTimeval(time
, tobj
);
2312 tobj
->ts
.tv_sec
= sec
;
2313 tobj
->ts
.tv_nsec
= nsec
;
2320 * Time._load(string) => time
2322 * Unmarshal a dumped +Time+ object.
2326 time_load(VALUE klass
, VALUE str
)
2328 VALUE time
= time_s_alloc(klass
);
2330 time_mload(time
, str
);
2335 * <code>Time</code> is an abstraction of dates and times. Time is
2336 * stored internally as the number of seconds and nanoseconds since
2337 * the <em>Epoch</em>, January 1, 1970 00:00 UTC. On some operating
2338 * systems, this offset is allowed to be negative. Also see the
2339 * library modules <code>Date</code>. The
2340 * <code>Time</code> class treats GMT (Greenwich Mean Time) and UTC
2341 * (Coordinated Universal Time)<em>[Yes, UTC really does stand for
2342 * Coordinated Universal Time. There was a committee involved.]</em>
2343 * as equivalent. GMT is the older way of referring to these
2344 * baseline times but persists in the names of calls on POSIX
2347 * All times are stored with some number of nanoseconds. Be aware of
2348 * this fact when comparing times with each other---times that are
2349 * apparently equal when displayed may be different when compared.
2357 id_divmod
= rb_intern("divmod");
2358 id_mul
= rb_intern("*");
2359 id_submicro
= rb_intern("submicro");
2361 rb_cTime
= rb_define_class("Time", rb_cObject
);
2362 rb_include_module(rb_cTime
, rb_mComparable
);
2364 rb_define_alloc_func(rb_cTime
, time_s_alloc
);
2365 rb_define_singleton_method(rb_cTime
, "now", rb_class_new_instance
, -1);
2366 rb_define_singleton_method(rb_cTime
, "at", time_s_at
, -1);
2367 rb_define_singleton_method(rb_cTime
, "utc", time_s_mkutc
, -1);
2368 rb_define_singleton_method(rb_cTime
, "gm", time_s_mkutc
, -1);
2369 rb_define_singleton_method(rb_cTime
, "local", time_s_mktime
, -1);
2370 rb_define_singleton_method(rb_cTime
, "mktime", time_s_mktime
, -1);
2372 rb_define_method(rb_cTime
, "to_i", time_to_i
, 0);
2373 rb_define_method(rb_cTime
, "to_f", time_to_f
, 0);
2374 rb_define_method(rb_cTime
, "<=>", time_cmp
, 1);
2375 rb_define_method(rb_cTime
, "eql?", time_eql
, 1);
2376 rb_define_method(rb_cTime
, "hash", time_hash
, 0);
2377 rb_define_method(rb_cTime
, "initialize", time_init
, 0);
2378 rb_define_method(rb_cTime
, "initialize_copy", time_init_copy
, 1);
2380 rb_define_method(rb_cTime
, "localtime", time_localtime
, 0);
2381 rb_define_method(rb_cTime
, "gmtime", time_gmtime
, 0);
2382 rb_define_method(rb_cTime
, "utc", time_gmtime
, 0);
2383 rb_define_method(rb_cTime
, "getlocal", time_getlocaltime
, 0);
2384 rb_define_method(rb_cTime
, "getgm", time_getgmtime
, 0);
2385 rb_define_method(rb_cTime
, "getutc", time_getgmtime
, 0);
2387 rb_define_method(rb_cTime
, "ctime", time_asctime
, 0);
2388 rb_define_method(rb_cTime
, "asctime", time_asctime
, 0);
2389 rb_define_method(rb_cTime
, "to_s", time_to_s
, 0);
2390 rb_define_method(rb_cTime
, "inspect", time_to_s
, 0);
2391 rb_define_method(rb_cTime
, "to_a", time_to_a
, 0);
2393 rb_define_method(rb_cTime
, "+", time_plus
, 1);
2394 rb_define_method(rb_cTime
, "-", time_minus
, 1);
2396 rb_define_method(rb_cTime
, "succ", time_succ
, 0);
2397 rb_define_method(rb_cTime
, "sec", time_sec
, 0);
2398 rb_define_method(rb_cTime
, "min", time_min
, 0);
2399 rb_define_method(rb_cTime
, "hour", time_hour
, 0);
2400 rb_define_method(rb_cTime
, "mday", time_mday
, 0);
2401 rb_define_method(rb_cTime
, "day", time_mday
, 0);
2402 rb_define_method(rb_cTime
, "mon", time_mon
, 0);
2403 rb_define_method(rb_cTime
, "month", time_mon
, 0);
2404 rb_define_method(rb_cTime
, "year", time_year
, 0);
2405 rb_define_method(rb_cTime
, "wday", time_wday
, 0);
2406 rb_define_method(rb_cTime
, "yday", time_yday
, 0);
2407 rb_define_method(rb_cTime
, "isdst", time_isdst
, 0);
2408 rb_define_method(rb_cTime
, "dst?", time_isdst
, 0);
2409 rb_define_method(rb_cTime
, "zone", time_zone
, 0);
2410 rb_define_method(rb_cTime
, "gmtoff", time_utc_offset
, 0);
2411 rb_define_method(rb_cTime
, "gmt_offset", time_utc_offset
, 0);
2412 rb_define_method(rb_cTime
, "utc_offset", time_utc_offset
, 0);
2414 rb_define_method(rb_cTime
, "utc?", time_utc_p
, 0);
2415 rb_define_method(rb_cTime
, "gmt?", time_utc_p
, 0);
2417 rb_define_method(rb_cTime
, "sunday?", time_sunday
, 0);
2418 rb_define_method(rb_cTime
, "monday?", time_monday
, 0);
2419 rb_define_method(rb_cTime
, "tuesday?", time_tuesday
, 0);
2420 rb_define_method(rb_cTime
, "wednesday?", time_wednesday
, 0);
2421 rb_define_method(rb_cTime
, "thursday?", time_thursday
, 0);
2422 rb_define_method(rb_cTime
, "friday?", time_friday
, 0);
2423 rb_define_method(rb_cTime
, "saturday?", time_saturday
, 0);
2425 rb_define_method(rb_cTime
, "tv_sec", time_to_i
, 0);
2426 rb_define_method(rb_cTime
, "tv_usec", time_usec
, 0);
2427 rb_define_method(rb_cTime
, "usec", time_usec
, 0);
2428 rb_define_method(rb_cTime
, "tv_nsec", time_nsec
, 0);
2429 rb_define_method(rb_cTime
, "nsec", time_nsec
, 0);
2431 rb_define_method(rb_cTime
, "strftime", time_strftime
, 1);
2433 /* methods for marshaling */
2434 rb_define_method(rb_cTime
, "_dump", time_dump
, -1);
2435 rb_define_singleton_method(rb_cTime
, "_load", time_load
, 1);
2437 /* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */
2438 rb_define_method(rb_cTime
, "marshal_dump", time_mdump
, 0);
2439 rb_define_method(rb_cTime
, "marshal_load", time_mload
, 1);