drsuapi.idl: fix source_dsa spelling
[samba4-gss.git] / libcli / security / security_descriptor.c
blob60e206bf7da7aa68a5ade84b7b87413bb76ffb20
1 /*
2 Unix SMB/CIFS implementation.
4 security descriptor utility functions
6 Copyright (C) Andrew Tridgell 2004
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include "replace.h"
23 #include "libcli/security/security.h"
24 #include "librpc/ndr/libndr.h"
27 return a blank security descriptor (no owners, dacl or sacl)
29 struct security_descriptor *security_descriptor_initialise(TALLOC_CTX *mem_ctx)
31 struct security_descriptor *sd;
33 sd = talloc(mem_ctx, struct security_descriptor);
34 if (!sd) {
35 return NULL;
37 *sd = (struct security_descriptor){
38 .revision = SD_REVISION,
41 * we mark as self relative, even though it isn't
42 * while it remains a pointer in memory because this
43 * simplifies the ndr code later. All SDs that we
44 * store/emit are in fact SELF_RELATIVE
46 .type = SEC_DESC_SELF_RELATIVE,
49 return sd;
52 struct security_acl *security_acl_dup(TALLOC_CTX *mem_ctx,
53 const struct security_acl *oacl)
55 struct security_acl *nacl;
57 if (oacl == NULL) {
58 return NULL;
61 if (oacl->aces == NULL && oacl->num_aces > 0) {
62 return NULL;
65 nacl = talloc (mem_ctx, struct security_acl);
66 if (nacl == NULL) {
67 return NULL;
70 *nacl = (struct security_acl) {
71 .revision = oacl->revision,
72 .size = oacl->size,
73 .num_aces = oacl->num_aces,
75 if (nacl->num_aces == 0) {
76 return nacl;
79 nacl->aces = (struct security_ace *)talloc_memdup (nacl, oacl->aces, sizeof(struct security_ace) * oacl->num_aces);
80 if (nacl->aces == NULL) {
81 goto failed;
84 return nacl;
86 failed:
87 talloc_free (nacl);
88 return NULL;
92 struct security_acl *security_acl_concatenate(TALLOC_CTX *mem_ctx,
93 const struct security_acl *acl1,
94 const struct security_acl *acl2)
96 struct security_acl *nacl;
97 uint32_t i;
99 if (!acl1 && !acl2)
100 return NULL;
102 if (!acl1){
103 nacl = security_acl_dup(mem_ctx, acl2);
104 return nacl;
107 if (!acl2){
108 nacl = security_acl_dup(mem_ctx, acl1);
109 return nacl;
112 nacl = talloc (mem_ctx, struct security_acl);
113 if (nacl == NULL) {
114 return NULL;
117 nacl->revision = acl1->revision;
118 nacl->size = acl1->size + acl2->size;
119 nacl->num_aces = acl1->num_aces + acl2->num_aces;
121 if (nacl->num_aces == 0)
122 return nacl;
124 nacl->aces = (struct security_ace *)talloc_array (mem_ctx, struct security_ace, acl1->num_aces+acl2->num_aces);
125 if ((nacl->aces == NULL) && (nacl->num_aces > 0)) {
126 goto failed;
129 for (i = 0; i < acl1->num_aces; i++)
130 nacl->aces[i] = acl1->aces[i];
131 for (i = 0; i < acl2->num_aces; i++)
132 nacl->aces[i + acl1->num_aces] = acl2->aces[i];
134 return nacl;
136 failed:
137 talloc_free (nacl);
138 return NULL;
143 talloc and copy a security descriptor
145 struct security_descriptor *security_descriptor_copy(TALLOC_CTX *mem_ctx,
146 const struct security_descriptor *osd)
148 struct security_descriptor *nsd;
150 nsd = talloc_zero(mem_ctx, struct security_descriptor);
151 if (!nsd) {
152 return NULL;
155 if (osd->owner_sid) {
156 nsd->owner_sid = dom_sid_dup(nsd, osd->owner_sid);
157 if (nsd->owner_sid == NULL) {
158 goto failed;
162 if (osd->group_sid) {
163 nsd->group_sid = dom_sid_dup(nsd, osd->group_sid);
164 if (nsd->group_sid == NULL) {
165 goto failed;
169 if (osd->sacl) {
170 nsd->sacl = security_acl_dup(nsd, osd->sacl);
171 if (nsd->sacl == NULL) {
172 goto failed;
176 if (osd->dacl) {
177 nsd->dacl = security_acl_dup(nsd, osd->dacl);
178 if (nsd->dacl == NULL) {
179 goto failed;
183 nsd->revision = osd->revision;
184 nsd->type = osd->type;
186 return nsd;
188 failed:
189 talloc_free(nsd);
191 return NULL;
194 NTSTATUS security_descriptor_for_client(TALLOC_CTX *mem_ctx,
195 const struct security_descriptor *ssd,
196 uint32_t sec_info,
197 uint32_t access_granted,
198 struct security_descriptor **_csd)
200 struct security_descriptor *csd = NULL;
201 uint32_t access_required = 0;
203 *_csd = NULL;
205 if (sec_info & (SECINFO_OWNER|SECINFO_GROUP)) {
206 access_required |= SEC_STD_READ_CONTROL;
208 if (sec_info & SECINFO_DACL) {
209 access_required |= SEC_STD_READ_CONTROL;
211 if (sec_info & SECINFO_SACL) {
212 access_required |= SEC_FLAG_SYSTEM_SECURITY;
215 if (access_required & (~access_granted)) {
216 return NT_STATUS_ACCESS_DENIED;
220 * make a copy...
222 csd = security_descriptor_copy(mem_ctx, ssd);
223 if (csd == NULL) {
224 return NT_STATUS_NO_MEMORY;
228 * ... and remove everything not wanted
231 if (!(sec_info & SECINFO_OWNER)) {
232 TALLOC_FREE(csd->owner_sid);
233 csd->type &= ~SEC_DESC_OWNER_DEFAULTED;
235 if (!(sec_info & SECINFO_GROUP)) {
236 TALLOC_FREE(csd->group_sid);
237 csd->type &= ~SEC_DESC_GROUP_DEFAULTED;
239 if (!(sec_info & SECINFO_DACL)) {
240 TALLOC_FREE(csd->dacl);
241 csd->type &= ~(
242 SEC_DESC_DACL_PRESENT |
243 SEC_DESC_DACL_DEFAULTED|
244 SEC_DESC_DACL_AUTO_INHERIT_REQ |
245 SEC_DESC_DACL_AUTO_INHERITED |
246 SEC_DESC_DACL_PROTECTED |
247 SEC_DESC_DACL_TRUSTED);
249 if (!(sec_info & SECINFO_SACL)) {
250 TALLOC_FREE(csd->sacl);
251 csd->type &= ~(
252 SEC_DESC_SACL_PRESENT |
253 SEC_DESC_SACL_DEFAULTED |
254 SEC_DESC_SACL_AUTO_INHERIT_REQ |
255 SEC_DESC_SACL_AUTO_INHERITED |
256 SEC_DESC_SACL_PROTECTED |
257 SEC_DESC_SERVER_SECURITY);
260 *_csd = csd;
261 return NT_STATUS_OK;
265 add an ACE to an ACL of a security_descriptor
268 static NTSTATUS security_descriptor_acl_add(struct security_descriptor *sd,
269 bool add_to_sacl,
270 const struct security_ace *ace,
271 ssize_t _idx)
273 struct security_acl *acl = NULL;
274 ssize_t idx;
276 if (add_to_sacl) {
277 acl = sd->sacl;
278 } else {
279 acl = sd->dacl;
282 if (acl == NULL) {
283 acl = talloc(sd, struct security_acl);
284 if (acl == NULL) {
285 return NT_STATUS_NO_MEMORY;
287 acl->revision = SECURITY_ACL_REVISION_NT4;
288 acl->size = 0;
289 acl->num_aces = 0;
290 acl->aces = NULL;
293 if (_idx < 0) {
294 idx = (acl->num_aces + 1) + _idx;
295 } else {
296 idx = _idx;
299 if (idx < 0) {
300 return NT_STATUS_ARRAY_BOUNDS_EXCEEDED;
302 if (idx > acl->num_aces) {
303 return NT_STATUS_ARRAY_BOUNDS_EXCEEDED;
306 acl->aces = talloc_realloc(acl, acl->aces,
307 struct security_ace, acl->num_aces+1);
308 if (acl->aces == NULL) {
309 return NT_STATUS_NO_MEMORY;
312 ARRAY_INSERT_ELEMENT(acl->aces, acl->num_aces, *ace, idx);
313 acl->num_aces++;
315 if (sec_ace_object(acl->aces[idx].type)) {
316 acl->revision = SECURITY_ACL_REVISION_ADS;
319 if (add_to_sacl) {
320 sd->sacl = acl;
321 sd->type |= SEC_DESC_SACL_PRESENT;
322 } else {
323 sd->dacl = acl;
324 sd->type |= SEC_DESC_DACL_PRESENT;
327 return NT_STATUS_OK;
331 add an ACE to the SACL of a security_descriptor
334 NTSTATUS security_descriptor_sacl_add(struct security_descriptor *sd,
335 const struct security_ace *ace)
337 return security_descriptor_acl_add(sd, true, ace, -1);
341 insert an ACE at a given index to the SACL of a security_descriptor
343 idx can be negative, which means it's related to the new size from the
344 end, so -1 means the ace is appended at the end.
347 NTSTATUS security_descriptor_sacl_insert(struct security_descriptor *sd,
348 const struct security_ace *ace,
349 ssize_t idx)
351 return security_descriptor_acl_add(sd, true, ace, idx);
355 add an ACE to the DACL of a security_descriptor
358 NTSTATUS security_descriptor_dacl_add(struct security_descriptor *sd,
359 const struct security_ace *ace)
361 return security_descriptor_acl_add(sd, false, ace, -1);
365 insert an ACE at a given index to the DACL of a security_descriptor
367 idx can be negative, which means it's related to the new size from the
368 end, so -1 means the ace is appended at the end.
371 NTSTATUS security_descriptor_dacl_insert(struct security_descriptor *sd,
372 const struct security_ace *ace,
373 ssize_t idx)
375 return security_descriptor_acl_add(sd, false, ace, idx);
379 delete the ACE corresponding to the given trustee in an ACL of a
380 security_descriptor
383 static NTSTATUS security_descriptor_acl_del(struct security_descriptor *sd,
384 bool sacl_del,
385 const struct dom_sid *trustee)
387 uint32_t i;
388 bool found = false;
389 struct security_acl *acl = NULL;
391 if (sacl_del) {
392 acl = sd->sacl;
393 } else {
394 acl = sd->dacl;
397 if (acl == NULL) {
398 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
401 /* there can be multiple ace's for one trustee */
403 i = 0;
405 while (i<acl->num_aces) {
406 if (dom_sid_equal(trustee, &acl->aces[i].trustee)) {
407 ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces);
408 acl->num_aces--;
409 if (acl->num_aces == 0) {
410 acl->aces = NULL;
412 found = true;
413 } else {
414 i += 1;
418 if (!found) {
419 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
422 acl->revision = SECURITY_ACL_REVISION_NT4;
424 for (i=0;i<acl->num_aces;i++) {
425 if (sec_ace_object(acl->aces[i].type)) {
426 acl->revision = SECURITY_ACL_REVISION_ADS;
427 break;
431 return NT_STATUS_OK;
435 delete the ACE corresponding to the given trustee in the DACL of a
436 security_descriptor
439 NTSTATUS security_descriptor_dacl_del(struct security_descriptor *sd,
440 const struct dom_sid *trustee)
442 return security_descriptor_acl_del(sd, false, trustee);
446 delete the ACE corresponding to the given trustee in the SACL of a
447 security_descriptor
450 NTSTATUS security_descriptor_sacl_del(struct security_descriptor *sd,
451 const struct dom_sid *trustee)
453 return security_descriptor_acl_del(sd, true, trustee);
457 delete the given ACE in the SACL or DACL of a security_descriptor
459 static NTSTATUS security_descriptor_acl_del_ace(struct security_descriptor *sd,
460 bool sacl_del,
461 const struct security_ace *ace)
463 uint32_t i;
464 bool found = false;
465 struct security_acl *acl = NULL;
467 if (sacl_del) {
468 acl = sd->sacl;
469 } else {
470 acl = sd->dacl;
473 if (acl == NULL) {
474 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
477 for (i=0;i<acl->num_aces;i++) {
478 if (security_ace_equal(ace, &acl->aces[i])) {
479 ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces);
480 acl->num_aces--;
481 if (acl->num_aces == 0) {
482 acl->aces = NULL;
484 found = true;
485 i--;
489 if (!found) {
490 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
493 acl->revision = SECURITY_ACL_REVISION_NT4;
495 for (i=0;i<acl->num_aces;i++) {
496 if (sec_ace_object(acl->aces[i].type)) {
497 acl->revision = SECURITY_ACL_REVISION_ADS;
498 break;
502 return NT_STATUS_OK;
505 NTSTATUS security_descriptor_dacl_del_ace(struct security_descriptor *sd,
506 const struct security_ace *ace)
508 return security_descriptor_acl_del_ace(sd, false, ace);
511 NTSTATUS security_descriptor_sacl_del_ace(struct security_descriptor *sd,
512 const struct security_ace *ace)
514 return security_descriptor_acl_del_ace(sd, true, ace);
517 static bool security_ace_object_equal(const struct security_ace_object *object1,
518 const struct security_ace_object *object2)
520 if (object1 == object2) {
521 return true;
523 if ((object1 == NULL) || (object2 == NULL)) {
524 return false;
526 if (object1->flags != object2->flags) {
527 return false;
529 if (object1->flags & SEC_ACE_OBJECT_TYPE_PRESENT
530 && !GUID_equal(&object1->type.type, &object2->type.type)) {
531 return false;
533 if (object1->flags & SEC_ACE_INHERITED_OBJECT_TYPE_PRESENT
534 && !GUID_equal(&object1->inherited_type.inherited_type,
535 &object2->inherited_type.inherited_type)) {
536 return false;
539 return true;
543 static bool security_ace_claim_equal(const struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim1,
544 const struct CLAIM_SECURITY_ATTRIBUTE_RELATIVE_V1 *claim2)
546 uint32_t i;
548 if (claim1 == claim2) {
549 return true;
551 if (claim1 == NULL || claim2 == NULL) {
552 return false;
554 if (claim1->name != NULL && claim2->name != NULL) {
555 if (strcasecmp_m(claim1->name, claim2->name) != 0) {
556 return false;
558 } else if (claim1->name != NULL || claim2->name != NULL) {
559 return false;
561 if (claim1->value_type != claim2->value_type) {
562 return false;
564 if (claim1->flags != claim2->flags) {
565 return false;
567 if (claim1->value_count != claim2->value_count) {
568 return false;
570 for (i = 0; i < claim1->value_count; ++i) {
571 const union claim_values *values1 = claim1->values;
572 const union claim_values *values2 = claim2->values;
574 switch (claim1->value_type) {
575 case CLAIM_SECURITY_ATTRIBUTE_TYPE_INT64:
576 if (values1[i].int_value != NULL && values2[i].int_value != NULL) {
577 if (*values1[i].int_value != *values2[i].int_value) {
578 return false;
580 } else if (values1[i].int_value != NULL || values2[i].int_value != NULL) {
581 return false;
583 break;
584 case CLAIM_SECURITY_ATTRIBUTE_TYPE_UINT64:
585 case CLAIM_SECURITY_ATTRIBUTE_TYPE_BOOLEAN:
586 if (values1[i].uint_value != NULL && values2[i].uint_value != NULL) {
587 if (*values1[i].uint_value != *values2[i].uint_value) {
588 return false;
590 } else if (values1[i].uint_value != NULL || values2[i].uint_value != NULL) {
591 return false;
593 break;
594 case CLAIM_SECURITY_ATTRIBUTE_TYPE_STRING:
595 if (values1[i].string_value != NULL && values2[i].string_value != NULL) {
596 if (strcasecmp_m(values1[i].string_value, values2[i].string_value) != 0) {
597 return false;
599 } else if (values1[i].string_value != NULL || values2[i].string_value != NULL) {
600 return false;
602 break;
603 case CLAIM_SECURITY_ATTRIBUTE_TYPE_SID:
604 if (values1[i].sid_value != NULL && values2[i].sid_value != NULL) {
605 if (data_blob_cmp(values1[i].sid_value, values2[i].sid_value) != 0) {
606 return false;
608 } else if (values1[i].sid_value != NULL || values2[i].sid_value != NULL) {
609 return false;
611 break;
612 case CLAIM_SECURITY_ATTRIBUTE_TYPE_OCTET_STRING:
613 if (values1[i].octet_value != NULL && values2[i].octet_value != NULL) {
614 if (data_blob_cmp(values1[i].octet_value, values2[i].octet_value) != 0) {
615 return false;
617 } else if (values1[i].octet_value != NULL || values2[i].octet_value != NULL) {
618 return false;
620 break;
621 default:
622 break;
626 return true;
630 compare two security ace structures
632 bool security_ace_equal(const struct security_ace *ace1,
633 const struct security_ace *ace2)
635 if (ace1 == ace2) {
636 return true;
638 if ((ace1 == NULL) || (ace2 == NULL)) {
639 return false;
641 if (ace1->type != ace2->type) {
642 return false;
644 if (ace1->flags != ace2->flags) {
645 return false;
647 if (ace1->access_mask != ace2->access_mask) {
648 return false;
650 if (sec_ace_object(ace1->type) &&
651 !security_ace_object_equal(&ace1->object.object,
652 &ace2->object.object))
654 return false;
656 if (!dom_sid_equal(&ace1->trustee, &ace2->trustee)) {
657 return false;
660 if (sec_ace_callback(ace1->type)) {
661 if (data_blob_cmp(&ace1->coda.conditions, &ace2->coda.conditions) != 0) {
662 return false;
664 } else if (sec_ace_resource(ace1->type)) {
665 if (!security_ace_claim_equal(&ace1->coda.claim, &ace2->coda.claim)) {
666 return false;
668 } else {
670 * Don’t require ace1->coda.ignored to match ace2->coda.ignored.
674 return true;
679 compare two security acl structures
681 bool security_acl_equal(const struct security_acl *acl1,
682 const struct security_acl *acl2)
684 uint32_t i;
686 if (acl1 == acl2) return true;
687 if (!acl1 || !acl2) return false;
688 if (acl1->revision != acl2->revision) return false;
689 if (acl1->num_aces != acl2->num_aces) return false;
691 for (i=0;i<acl1->num_aces;i++) {
692 if (!security_ace_equal(&acl1->aces[i], &acl2->aces[i])) return false;
694 return true;
698 compare two security descriptors.
700 bool security_descriptor_equal(const struct security_descriptor *sd1,
701 const struct security_descriptor *sd2)
703 if (sd1 == sd2) return true;
704 if (!sd1 || !sd2) return false;
705 if (sd1->revision != sd2->revision) return false;
706 if (sd1->type != sd2->type) return false;
708 if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
709 if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
710 if (!security_acl_equal(sd1->sacl, sd2->sacl)) return false;
711 if (!security_acl_equal(sd1->dacl, sd2->dacl)) return false;
713 return true;
717 compare two security descriptors, but allow certain (missing) parts
718 to be masked out of the comparison
720 bool security_descriptor_mask_equal(const struct security_descriptor *sd1,
721 const struct security_descriptor *sd2,
722 uint32_t mask)
724 if (sd1 == sd2) return true;
725 if (!sd1 || !sd2) return false;
726 if (sd1->revision != sd2->revision) return false;
727 if ((sd1->type & mask) != (sd2->type & mask)) return false;
729 if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
730 if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
731 if ((mask & SEC_DESC_DACL_PRESENT) && !security_acl_equal(sd1->dacl, sd2->dacl)) return false;
732 if ((mask & SEC_DESC_SACL_PRESENT) && !security_acl_equal(sd1->sacl, sd2->sacl)) return false;
734 return true;
738 static struct security_descriptor *security_descriptor_appendv(struct security_descriptor *sd,
739 bool add_ace_to_sacl,
740 va_list ap)
742 const char *sidstr;
744 while ((sidstr = va_arg(ap, const char *))) {
745 struct dom_sid *sid;
746 struct security_ace *ace = talloc_zero(sd, struct security_ace);
747 NTSTATUS status;
749 if (ace == NULL) {
750 talloc_free(sd);
751 return NULL;
753 ace->type = va_arg(ap, unsigned int);
754 ace->access_mask = va_arg(ap, unsigned int);
755 ace->flags = va_arg(ap, unsigned int);
756 sid = dom_sid_parse_talloc(ace, sidstr);
757 if (sid == NULL) {
758 talloc_free(sd);
759 return NULL;
761 ace->trustee = *sid;
762 if (add_ace_to_sacl) {
763 status = security_descriptor_sacl_add(sd, ace);
764 } else {
765 status = security_descriptor_dacl_add(sd, ace);
767 /* TODO: check: would talloc_free(ace) here be correct? */
768 if (!NT_STATUS_IS_OK(status)) {
769 talloc_free(sd);
770 return NULL;
774 return sd;
777 static struct security_descriptor *security_descriptor_createv(TALLOC_CTX *mem_ctx,
778 uint16_t sd_type,
779 const char *owner_sid,
780 const char *group_sid,
781 bool add_ace_to_sacl,
782 va_list ap)
784 struct security_descriptor *sd;
786 sd = security_descriptor_initialise(mem_ctx);
787 if (sd == NULL) {
788 return NULL;
791 sd->type |= sd_type;
793 if (owner_sid) {
794 sd->owner_sid = dom_sid_parse_talloc(sd, owner_sid);
795 if (sd->owner_sid == NULL) {
796 talloc_free(sd);
797 return NULL;
800 if (group_sid) {
801 sd->group_sid = dom_sid_parse_talloc(sd, group_sid);
802 if (sd->group_sid == NULL) {
803 talloc_free(sd);
804 return NULL;
808 return security_descriptor_appendv(sd, add_ace_to_sacl, ap);
812 create a security descriptor using string SIDs. This is used by the
813 torture code to allow the easy creation of complex ACLs
814 This is a varargs function. The list of DACL ACEs ends with a NULL sid.
816 Each ACE contains a set of 4 parameters:
817 SID, ACCESS_TYPE, MASK, FLAGS
819 a typical call would be:
821 sd = security_descriptor_dacl_create(mem_ctx,
822 sd_type_flags,
823 mysid,
824 mygroup,
825 SID_NT_AUTHENTICATED_USERS,
826 SEC_ACE_TYPE_ACCESS_ALLOWED,
827 SEC_FILE_ALL,
828 SEC_ACE_FLAG_OBJECT_INHERIT,
829 NULL);
830 that would create a sd with one DACL ACE
833 struct security_descriptor *security_descriptor_dacl_create(TALLOC_CTX *mem_ctx,
834 uint16_t sd_type,
835 const char *owner_sid,
836 const char *group_sid,
837 ...)
839 struct security_descriptor *sd = NULL;
840 va_list ap;
841 va_start(ap, group_sid);
842 sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
843 group_sid, false, ap);
844 va_end(ap);
846 return sd;
849 struct security_descriptor *security_descriptor_sacl_create(TALLOC_CTX *mem_ctx,
850 uint16_t sd_type,
851 const char *owner_sid,
852 const char *group_sid,
853 ...)
855 struct security_descriptor *sd = NULL;
856 va_list ap;
857 va_start(ap, group_sid);
858 sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
859 group_sid, true, ap);
860 va_end(ap);
862 return sd;
865 struct security_ace *security_ace_create(TALLOC_CTX *mem_ctx,
866 const char *sid_str,
867 enum security_ace_type type,
868 uint32_t access_mask,
869 uint8_t flags)
872 struct security_ace *ace;
873 bool ok;
875 ace = talloc_zero(mem_ctx, struct security_ace);
876 if (ace == NULL) {
877 return NULL;
880 ok = dom_sid_parse(sid_str, &ace->trustee);
881 if (!ok) {
882 talloc_free(ace);
883 return NULL;
885 ace->type = type;
886 ace->access_mask = access_mask;
887 ace->flags = flags;
889 return ace;
892 /*******************************************************************
893 Check for MS NFS ACEs in a sd
894 *******************************************************************/
895 bool security_descriptor_with_ms_nfs(const struct security_descriptor *psd)
897 uint32_t i;
899 if (psd->dacl == NULL) {
900 return false;
903 for (i = 0; i < psd->dacl->num_aces; i++) {
904 if (dom_sid_compare_domain(
905 &global_sid_Unix_NFS,
906 &psd->dacl->aces[i].trustee) == 0) {
907 return true;
911 return false;