2 * Samba compression library - LGPLv3
4 * Copyright © Catalyst IT 2022
6 * Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
8 * ** NOTE! The following LGPL license applies to this file.
9 * ** It does NOT imply that all of Samba is released under the LGPL
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 3 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #include "lzxpress_huffman.h"
34 #include "lib/util/stable_sort.h"
35 #include "lib/util/data_blob.h"
37 /* set LZXHUFF_DEBUG_FILES to true to save round-trip files in /tmp. */
38 #define LZXHUFF_DEBUG_FILES false
40 /* set LZXHUFF_DEBUG_VERBOSE to true to print more. */
41 #define LZXHUFF_DEBUG_VERBOSE false
44 #if LZXHUFF_DEBUG_VERBOSE
45 #define debug_message(...) print_message(__VA_ARGS__)
49 struct timespec start
= {0};
50 struct timespec end
= {0};
51 static void debug_start_timer(void)
53 clock_gettime(CLOCK_MONOTONIC
, &start
);
56 static void debug_end_timer(const char *name
, size_t len
)
61 clock_gettime(CLOCK_MONOTONIC
, &end
);
63 ns
+= end
.tv_sec
* 1000 * 1000 * 1000;
65 ns
-= start
.tv_sec
* 1000 * 1000 * 1000;
67 rate
= len
/ (secs
* 1024 * 1024);
68 debug_message("%s %zu bytes in %.2g: \033[1;35m%.2f\033[0m MB per second\n",
69 name
, len
, secs
, rate
);
73 #define debug_message(...) /* debug_message */
74 #define debug_start_timer(...) /* debug_start_timer */
75 #define debug_end_timer(...) /* debug_end_timer */
82 DATA_BLOB decompressed
;
85 struct lzx_file_pair
{
87 const char *compressed_file
;
88 const char *decompressed_file
;
92 #define DECOMP_DIR "testdata/compression/decompressed"
93 #define COMP_DIR "testdata/compression/compressed-huffman"
94 #define MORE_COMP_DIR "testdata/compression/compressed-more-huffman"
97 #define VARRGH(...) __VA_ARGS__
99 #define BLOB_FROM_ARRAY(...) \
101 .data = (uint8_t[]){__VA_ARGS__}, \
102 .length = sizeof((uint8_t[]){__VA_ARGS__}) \
105 #define BLOB_FROM_STRING(s) \
107 .data = discard_const_p(uint8_t, s), \
108 .length = (sizeof(s) - 1) \
112 const char * file_names
[] = {
114 "5d049b4cb1bd933f5e8ex19",
115 "638e61e96d54279981c3x5",
116 "64k-minus-one-zeros",
117 "64k-plus-one-zeros",
119 "96f696a4e5ce56c61a3dx10",
120 "9e0b6a12febf38e98f13",
126 "b63289ccc7f218c0d56b",
127 "beta-variate1-128k+",
128 "beta-variate2-128k+",
129 "beta-variate3-128k+",
130 "decayed_alphabet_128k+",
131 "decayed_alphabet_64k",
134 "f00842317dc6d5695b02",
137 "fuzzing-0fc2d461b56cd8103c91",
138 "fuzzing-17c961778538cc10ab7c",
139 "fuzzing-3591f9dc02bb00a54b60",
140 "fuzzing-3ec3bca27bb9eb40c128",
141 "fuzzing-80b4fa18ff5f8dd04862",
142 "fuzzing-a3115a81d1ac500318f9",
143 "generate-windows-test-vectors.c",
144 "midsummer-nights-dream.txt",
145 "notes-on-the-underground.txt",
148 "repeating-exactly-64k",
151 "skewed_choices-128k+",
152 /* These ones were deathly slow in fuzzing at one point */
153 "slow-015ddc36a71412ccc50d",
154 "slow-100e9f966a7feb9ca40a",
155 "slow-2a671c3cff4f1574cbab",
156 "slow-33d90a24e70515b14cd0",
157 "slow-49d8c05261e3f412fc72",
158 "slow-50a249d2fe56873e56a0",
159 "slow-63e9f0b52235fb0129fa",
160 "slow-73b7f971d65908ac0095",
161 "slow-8b61e3dd267908544531",
162 "slow-9d1c5a079b0462986f1f",
163 "slow-aa7262a821dabdcf04a6",
164 "slow-b8a91d142b0d2af7f5ca",
165 "slow-c79142457734bbc8d575",
166 "slow-d736544545b90d83fe75",
167 "slow-e3b9bdfaed7d1a606fdb",
168 "slow-f3f1c02a9d006e5e1703",
170 "square_series-128k+",
178 struct lzx_pair bidirectional_pairs
[] = {
180 {.name
= "abc__100_repeats", /* [MS-XCA] 3.2 example 2. */
181 .decompressed
= BLOB_FROM_STRING(
182 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
183 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
184 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
185 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
186 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
188 .compressed
= BLOB_FROM_ARRAY(
190 * The 'a', 'b', and 'c' bytes are 0x61, 0x62, 0x63. No other
191 * symbols occur. That means we need 48 0x00 bytes for the
192 * first 96 symbol-nybbles, then some short codes, then zeros
193 * again for the rest of the literals.
195 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
196 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
198 0x30, 0x23, /* a_ cb */
199 0,0,0,0,0, 0,0,0,0,0,
200 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
201 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 100 bytes */
202 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
203 0,0,0,0,0, 0,0,0, /* here end the 0-255 literals (128 bytes) */
204 0x02, /* 'EOF' symbol 256 (byte 128 low) */
205 0,0,0,0,0, 0,0,0,0,0, 0, /* 140 bytes */
207 0x20, /* codepoint 287 (byte 143 high) */
208 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0, /* 160 bytes */
209 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
210 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
211 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
212 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 240 bytes */
213 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,
215 * So that's the tree.
217 * length 2 codes for 'c', EOF, 287
218 * length 3 for 'a', 'b'.
226 * thus the literal string "abc" is 110-111-00.
228 * Now for the lz77 match definitions for EOF and 287.
230 * Why 287? It encodes the match distance and offset.
234 * _length = 31 % 16 = 15
235 * _distance = 31 / 16 = 1
237 * (it's easier to look at the hex, 0x11f:
238 * 1xx means a match; x1x is _distance; xxf is _length)
240 * _distance 1 means a two bit distance (10 or 11; 2 or 3).
241 * That means the next bit will be the least significant bit
242 * of distance (1 in this case, meaning distance 3).
244 * if _length is 15, real length is included inline.
246 * 'EOF' == 256 means _length = 0, _distance = 0.
248 * _distance 0 means 1, so no further bits needed.
249 * _length 0 means length 3.
251 * but when used as EOF, this doesn't matter.
253 0xa8, 0xdc, 0x00, 0x00, 0xff, 0x26, 0x01
254 /* These remaining bytes are:
256 * 10101000 11011100 00000000 00000000 11111111
259 * and we read them as 16 chunks (i.e. flipping odd/even order)
261 * 110-111-00 10-1-01-000
264 * this is the 287 distance low bit.
266 * The last 3 bits are not used. The 287 length is sort of
267 * out of band, coming up soon (because 287 encodes length
268 * 15; most codes do not do this).
272 * This padding is there because the first 32 bits are read
273 * at the beginning of decoding. If there were more things to
274 * be encoded, they would be in here.
278 * This byte is pulled as the length for the 287 match.
279 * Because it is 0xff, we pull a further 2 bytes for the
280 * actual length, i.e. a 16 bit number greater than 270.
284 * that is 0x126 = 294 = the match length - 3 (because we're
285 * encoding ["abc", <copy from 3 back, 297 chars>, EOF]).
290 {.name
= "abcdefghijklmnopqrstuvwxyz", /* [MS-XCA] 3.2 example 1. */
291 .decompressed
= BLOB_FROM_STRING("abcdefghijklmnopqrstuvwxyz"),
292 .compressed
= BLOB_FROM_ARRAY(
294 * In this case there are no matches encoded as there are no
295 * repeated symbols. Including the EOF, there are 27 symbols
296 * all occurring exactly as frequently as each other (once).
297 * From that we would expect the codes to be mostly 5 bits
298 * long, because 27 < 2^5 (32), but greater than 2^4. And
299 * that's what we see.
301 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
302 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
304 /* 14 non-zero bytes for 26 letters/nibbles */
305 0x50, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
306 0x55, 0x55, 0x55, 0x45, 0x44, 0x04,
307 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0, /* 80 */
308 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
309 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
311 0x04, /* 0x100 EOF */
313 0,0,0,0,0, 0,0,0,0,0, 0, /* 140 */
314 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
315 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
316 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
317 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
318 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 240 */
319 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,
321 0xd8, 0x52, 0x3e, 0xd7, 0x94, 0x11, 0x5b, 0xe9,
322 0x19, 0x5f, 0xf9, 0xd6, 0x7c, 0xdf, 0x8d, 0x04,
323 0x00, 0x00, 0x00, 0x00)
329 static void test_lzxpress_huffman_decompress(void **state
)
333 uint8_t *dest
= NULL
;
334 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
335 for (i
= 0; bidirectional_pairs
[i
].name
!= NULL
; i
++) {
336 struct lzx_pair p
= bidirectional_pairs
[i
];
337 dest
= talloc_array(mem_ctx
, uint8_t, p
.decompressed
.length
);
339 debug_message("%s compressed %zu decomp %zu\n", p
.name
,
341 p
.decompressed
.length
);
343 written
= lzxpress_huffman_decompress(p
.compressed
.data
,
346 p
.decompressed
.length
);
347 assert_int_not_equal(written
, -1);
348 assert_int_equal(written
, p
.decompressed
.length
);
350 assert_memory_equal(dest
, p
.decompressed
.data
, p
.decompressed
.length
);
355 static void test_lzxpress_huffman_compress(void **state
)
359 uint8_t *dest
= NULL
;
360 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
361 for (i
= 0; bidirectional_pairs
[i
].name
!= NULL
; i
++) {
362 struct lzx_pair p
= bidirectional_pairs
[i
];
363 debug_message("%s compressed %zu decomp %zu\n", p
.name
,
365 p
.decompressed
.length
);
367 written
= lzxpress_huffman_compress_talloc(mem_ctx
,
369 p
.decompressed
.length
,
372 assert_int_not_equal(written
, -1);
373 assert_int_equal(written
, p
.compressed
.length
);
374 assert_memory_equal(dest
, p
.compressed
.data
, p
.compressed
.length
);
380 static DATA_BLOB
datablob_from_file(TALLOC_CTX
*mem_ctx
,
381 const char *filename
)
384 FILE *fh
= fopen(filename
, "rb");
389 debug_message("could not open '%s'\n", filename
);
392 ret
= fstat(fileno(fh
), &s
);
397 b
.data
= talloc_array(mem_ctx
, uint8_t, s
.st_size
);
398 if (b
.data
== NULL
) {
402 len
= fread(b
.data
, 1, s
.st_size
, fh
);
403 if (ferror(fh
) || len
!= s
.st_size
) {
414 static void test_lzxpress_huffman_decompress_files(void **state
)
418 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
419 for (i
= 0; file_names
[i
] != NULL
; i
++) {
421 uint8_t *dest
= NULL
;
423 TALLOC_CTX
*tmp_ctx
= talloc_new(mem_ctx
);
424 struct lzx_pair p
= {
425 .name
= file_names
[i
]
428 debug_message("%s\n", p
.name
);
430 snprintf(filename
, sizeof(filename
),
431 "%s/%s.decomp", DECOMP_DIR
, p
.name
);
433 p
.decompressed
= datablob_from_file(tmp_ctx
, filename
);
434 assert_non_null(p
.decompressed
.data
);
436 snprintf(filename
, sizeof(filename
),
437 "%s/%s.lzhuff", COMP_DIR
, p
.name
);
439 p
.compressed
= datablob_from_file(tmp_ctx
, filename
);
440 assert_non_null(p
.compressed
.data
);
442 dest
= talloc_array(tmp_ctx
, uint8_t, p
.decompressed
.length
);
444 written
= lzxpress_huffman_decompress(p
.compressed
.data
,
447 p
.decompressed
.length
);
448 debug_end_timer("decompress", p
.decompressed
.length
);
450 written
== p
.decompressed
.length
&&
451 memcmp(dest
, p
.decompressed
.data
, p
.decompressed
.length
) == 0) {
452 debug_message("\033[1;32mdecompressed %s!\033[0m\n", p
.name
);
455 debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
457 debug_message("size %zd vs reference %zu\n",
458 written
, p
.decompressed
.length
);
460 talloc_free(tmp_ctx
);
462 debug_message("%d/%zu correct\n", score
, i
);
463 assert_int_equal(score
, i
);
467 static void test_lzxpress_huffman_decompress_more_compressed_files(void **state
)
470 * This tests the decompression of files that have been compressed on
471 * Windows with the level turned up (to 1, default for MS-XCA is 0).
473 * The format is identical, but it will have tried harder to find
479 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
480 for (i
= 0; file_names
[i
] != NULL
; i
++) {
482 uint8_t *dest
= NULL
;
484 TALLOC_CTX
*tmp_ctx
= talloc_new(mem_ctx
);
485 struct lzx_pair p
= {
486 .name
= file_names
[i
]
489 debug_message("%s\n", p
.name
);
491 snprintf(filename
, sizeof(filename
),
492 "%s/%s.decomp", DECOMP_DIR
, p
.name
);
494 p
.decompressed
= datablob_from_file(tmp_ctx
, filename
);
495 assert_non_null(p
.decompressed
.data
);
497 snprintf(filename
, sizeof(filename
),
498 "%s/%s.lzhuff", MORE_COMP_DIR
, p
.name
);
500 p
.compressed
= datablob_from_file(tmp_ctx
, filename
);
501 if (p
.compressed
.data
== NULL
) {
503 * We don't have all the vectors in the
504 * more-compressed directory, which is OK, we skip
510 dest
= talloc_array(tmp_ctx
, uint8_t, p
.decompressed
.length
);
512 written
= lzxpress_huffman_decompress(p
.compressed
.data
,
515 p
.decompressed
.length
);
516 debug_end_timer("decompress", p
.decompressed
.length
);
517 if (written
== p
.decompressed
.length
&&
518 memcmp(dest
, p
.decompressed
.data
, p
.decompressed
.length
) == 0) {
519 debug_message("\033[1;32mdecompressed %s!\033[0m\n", p
.name
);
522 debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
524 debug_message("size %zd vs reference %zu\n",
525 written
, p
.decompressed
.length
);
527 talloc_free(tmp_ctx
);
529 debug_message("%d/%d correct\n", score
, found
);
530 assert_int_equal(score
, found
);
535 * attempt_round_trip() tests whether a data blob can survive a compression
536 * and decompression cycle. If save_name is not NULL and LZXHUFF_DEBUG_FILES
537 * evals to true, the various stages are saved in files with that name and the
538 * '-original', '-compressed', and '-decompressed' suffixes. If ref_compressed
539 * has data, it'll print a message saying whether the compressed data matches
543 static ssize_t
attempt_round_trip(TALLOC_CTX
*mem_ctx
,
545 const char *save_name
,
546 DATA_BLOB ref_compressed
)
548 TALLOC_CTX
*tmp_ctx
= talloc_new(mem_ctx
);
549 DATA_BLOB compressed
= data_blob_talloc(tmp_ctx
, NULL
,
550 original
.length
* 4 / 3 + 260);
551 DATA_BLOB decompressed
= data_blob_talloc(tmp_ctx
, NULL
,
553 ssize_t comp_written
, decomp_written
;
555 comp_written
= lzxpress_huffman_compress_talloc(tmp_ctx
,
559 debug_end_timer("compress", original
.length
);
560 if (comp_written
<= 0) {
561 talloc_free(tmp_ctx
);
565 if (ref_compressed
.data
!= NULL
) {
567 * This is informational, not an assertion; there are
568 * ~infinite legitimate ways to compress the data, many as
569 * good as each other (think of compression as a language, not
572 debug_message("compressed size %zd vs reference %zu\n",
573 comp_written
, ref_compressed
.length
);
575 if (comp_written
== compressed
.length
&&
576 memcmp(compressed
.data
, ref_compressed
.data
, comp_written
) == 0) {
577 debug_message("\033[1;32mbyte identical!\033[0m\n");
581 decomp_written
= lzxpress_huffman_decompress(compressed
.data
,
585 debug_end_timer("decompress", original
.length
);
586 if (save_name
!= NULL
&& LZXHUFF_DEBUG_FILES
) {
590 snprintf(s
, sizeof(s
), "%s-original", save_name
);
591 fprintf(stderr
, "Saving %zu bytes to %s\n", original
.length
, s
);
593 fwrite(original
.data
, 1, original
.length
, fh
);
596 snprintf(s
, sizeof(s
), "%s-compressed", save_name
);
597 fprintf(stderr
, "Saving %zu bytes to %s\n", comp_written
, s
);
599 fwrite(compressed
.data
, 1, comp_written
, fh
);
602 * We save the decompressed file using original.length, not
603 * the returned size. If these differ, the returned size will
604 * be -1. By saving the whole buffer we can see at what point
607 snprintf(s
, sizeof(s
), "%s-decompressed", save_name
);
608 fprintf(stderr
, "Saving %zu bytes to %s\n", original
.length
, s
);
610 fwrite(decompressed
.data
, 1, original
.length
, fh
);
614 if (original
.length
!= decomp_written
||
615 memcmp(decompressed
.data
,
617 original
.length
) != 0) {
618 debug_message("\033[1;31mgot %zd, expected %zu\033[0m\n",
621 talloc_free(tmp_ctx
);
624 talloc_free(tmp_ctx
);
629 static void test_lzxpress_huffman_round_trip(void **state
)
633 ssize_t compressed_total
= 0;
634 ssize_t reference_total
= 0;
635 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
636 for (i
= 0; file_names
[i
] != NULL
; i
++) {
638 char *debug_files
= NULL
;
639 TALLOC_CTX
*tmp_ctx
= talloc_new(mem_ctx
);
641 struct lzx_pair p
= {
642 .name
= file_names
[i
]
644 debug_message("-------------------\n");
645 debug_message("%s\n", p
.name
);
647 snprintf(filename
, sizeof(filename
),
648 "%s/%s.decomp", DECOMP_DIR
, p
.name
);
650 p
.decompressed
= datablob_from_file(tmp_ctx
, filename
);
651 assert_non_null(p
.decompressed
.data
);
653 snprintf(filename
, sizeof(filename
),
654 "%s/%s.lzhuff", COMP_DIR
, p
.name
);
656 p
.compressed
= datablob_from_file(tmp_ctx
, filename
);
657 if (p
.compressed
.data
== NULL
) {
659 "Could not load %s reference file %s\n",
661 debug_message("%s decompressed %zu\n", p
.name
,
662 p
.decompressed
.length
);
664 debug_message("%s: reference compressed %zu decomp %zu\n",
667 p
.decompressed
.length
);
671 * We're going to save copies in /tmp.
673 snprintf(filename
, sizeof(filename
),
674 "/tmp/lzxhuffman-%s", p
.name
);
675 debug_files
= filename
;
678 comp_size
= attempt_round_trip(mem_ctx
, p
.decompressed
,
682 debug_message("\033[1;32mround trip!\033[0m\n");
684 if (p
.compressed
.length
) {
685 compressed_total
+= comp_size
;
686 reference_total
+= p
.compressed
.length
;
689 talloc_free(tmp_ctx
);
691 debug_message("%d/%zu correct\n", score
, i
);
692 print_message("\033[1;34mtotal compressed size: %zu\033[0m\n",
694 print_message("total reference size: %zd \n", reference_total
);
695 print_message("diff: %7zd \n",
696 reference_total
- compressed_total
);
697 assert_true(reference_total
!= 0);
698 print_message("ratio: \033[1;3%dm%.2f\033[0m \n",
699 2 + (compressed_total
>= reference_total
),
700 ((double)compressed_total
) / reference_total
);
702 * Assert that the compression is *about* as good as Windows. Of course
703 * it doesn't matter if we do better, but mysteriously getting better
704 * is usually a sign that something is wrong.
706 * At the time of writing, compressed_total is 2674004, or 10686 more
707 * than the Windows reference total. That's < 0.5% difference, we're
710 assert_true(labs(compressed_total
- reference_total
) <
711 compressed_total
/ 50);
713 assert_int_equal(score
, i
);
714 talloc_free(mem_ctx
);
718 * Bob Jenkins' Small Fast RNG.
720 * We don't need it to be this good, but we do need it to be reproduceable
721 * across platforms, which rand() etc aren't.
723 * http://burtleburtle.net/bob/rand/smallprng.html
733 #define ROTATE32(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
735 static uint32_t jsf32(struct jsf_rng
*x
) {
736 uint32_t e
= x
->a
- ROTATE32(x
->b
, 27);
737 x
->a
= x
->b
^ ROTATE32(x
->c
, 17);
744 static void jsf32_init(struct jsf_rng
*x
, uint32_t seed
) {
747 x
->b
= x
->c
= x
->d
= seed
;
748 for (i
= 0; i
< 20; ++i
) {
754 static void test_lzxpress_huffman_long_gpl_round_trip(void **state
)
757 * We use a kind of model-free Markov model to generate a massively
758 * extended pastiche of the GPLv3 (chosen because it is right there in
759 * "COPYING" and won't change often).
761 * The point is to check a round trip of a very long message with
762 * multiple repetitions on many scales, without having to add a very
767 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
768 DATA_BLOB gpl
= datablob_from_file(mem_ctx
, "COPYING");
769 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, 5 * 1024 * 1024);
774 if (gpl
.data
== NULL
) {
775 print_message("could not read COPYING\n");
782 original
.data
[0] = gpl
.data
[0];
783 for (i
= 1; i
< original
.length
; i
++) {
785 char p
= original
.data
[i
- 1];
787 original
.data
[i
] = c
;
789 m
= (j
+ jsf32(&rng
)) % (gpl
.length
- 50);
790 for (k
= m
; k
< m
+ 30; k
++) {
791 if (p
== gpl
.data
[k
] &&
792 c
== gpl
.data
[k
+ 1]) {
797 if (j
== gpl
.length
) {
802 comp_size
= attempt_round_trip(mem_ctx
, original
, "/tmp/gpl", ref
);
803 assert_true(comp_size
> 0);
804 assert_true(comp_size
< original
.length
);
806 talloc_free(mem_ctx
);
810 static void test_lzxpress_huffman_long_random_graph_round_trip(void **state
)
813 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
814 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, 5 * 1024 * 1024);
817 * There's a random trigram graph, with each pair of sequential bytes
818 * pointing to a successor. This would probably fall into a fairly
819 * simple loop, but we introduce damage into the system, randomly
820 * flipping about 1 bit in 64.
822 * The result is semi-structured and compressible.
824 uint8_t *d
= original
.data
;
825 uint8_t *table
= talloc_array(mem_ctx
, uint8_t, 65536);
826 uint32_t *table32
= (void*)table
;
831 for (i
= 0; i
< (65536 / 4); i
++) {
832 table32
[i
] = jsf32(&rng
);
838 for (i
= 2; i
< original
.length
; i
++) {
839 uint16_t k
= (d
[i
- 2] << 8) | d
[i
- 1];
840 uint32_t damage
= jsf32(&rng
) & jsf32(&rng
) & jsf32(&rng
);
841 damage
&= (damage
>> 16);
842 k
^= damage
& 0xffff;
846 comp_size
= attempt_round_trip(mem_ctx
, original
, "/tmp/random-graph", ref
);
847 assert_true(comp_size
> 0);
848 assert_true(comp_size
< original
.length
);
850 talloc_free(mem_ctx
);
854 static void test_lzxpress_huffman_chaos_graph_round_trip(void **state
)
857 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
858 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, 5 * 1024 * 1024);
861 * There's a random trigram graph, with each pair of sequential bytes
862 * pointing to a successor. This would probably fall into a fairly
863 * simple loop, but we keep changing the graph. The result is long
864 * periods of stability separatd by bursts of noise.
866 uint8_t *d
= original
.data
;
867 uint8_t *table
= talloc_array(mem_ctx
, uint8_t, 65536);
868 uint32_t *table32
= (void*)table
;
873 for (i
= 0; i
< (65536 / 4); i
++) {
874 table32
[i
] = jsf32(&rng
);
880 for (i
= 2; i
< original
.length
; i
++) {
881 uint16_t k
= (d
[i
- 2] << 8) | d
[i
- 1];
882 uint32_t damage
= jsf32(&rng
);
884 if ((damage
>> 29) == 0) {
885 uint16_t index
= damage
& 0xffff;
886 uint8_t value
= (damage
>> 16) & 0xff;
887 table
[index
] = value
;
891 comp_size
= attempt_round_trip(mem_ctx
, original
, "/tmp/chaos-graph", ref
);
892 assert_true(comp_size
> 0);
893 assert_true(comp_size
< original
.length
);
895 talloc_free(mem_ctx
);
899 static void test_lzxpress_huffman_sparse_random_graph_round_trip(void **state
)
902 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
903 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, 5 * 1024 * 1024);
906 * There's a random trigram graph, with each pair of sequential bytes
907 * pointing to a successor. This will fall into a fairly simple loops,
908 * but we introduce damage into the system, randomly mangling about 1
911 * The result has very long repetitive runs, which should lead to
914 uint8_t *d
= original
.data
;
915 uint8_t *table
= talloc_array(mem_ctx
, uint8_t, 65536);
916 uint32_t *table32
= (void*)table
;
921 for (i
= 0; i
< (65536 / 4); i
++) {
922 table32
[i
] = jsf32(&rng
);
928 for (i
= 2; i
< original
.length
; i
++) {
929 uint16_t k
= (d
[i
- 2] << 8) | d
[i
- 1];
930 uint32_t damage
= jsf32(&rng
);
931 if ((damage
& 0xffff0000) == 0) {
932 k
^= damage
& 0xffff;
937 comp_size
= attempt_round_trip(mem_ctx
, original
, "/tmp/sparse-random-graph", ref
);
938 assert_true(comp_size
> 0);
939 assert_true(comp_size
< original
.length
);
941 talloc_free(mem_ctx
);
945 static void test_lzxpress_huffman_random_noise_round_trip(void **state
)
948 size_t len
= 1024 * 1024;
949 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
950 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, len
);
954 * We are filling this up with incompressible noise, but we can assert
955 * quite tight bounds on how badly it will fail to compress.
957 * Specifically, with randomly distributed codes, the Huffman table
958 * should come out as roughly even, averaging 8 bit codes. Then there
959 * will be a 256 byte table every 64k, which is a 1/256 overhead (i.e.
960 * the compressed length will be 257/256 the original *on average*).
961 * We assert it is less than 1 in 200 but more than 1 in 300.
963 uint32_t *d32
= (uint32_t*)((void*)original
.data
);
967 for (i
= 0; i
< (len
/ 4); i
++) {
968 d32
[i
] = jsf32(&rng
);
971 comp_size
= attempt_round_trip(mem_ctx
, original
, "/tmp/random-noise", ref
);
972 assert_true(comp_size
> 0);
973 assert_true(comp_size
> original
.length
+ original
.length
/ 300);
974 assert_true(comp_size
< original
.length
+ original
.length
/ 200);
975 debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
976 len
, comp_size
, ((double)comp_size
) / len
);
978 talloc_free(mem_ctx
);
982 static void test_lzxpress_huffman_overlong_matches(void **state
)
985 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
986 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, 1024 * 1024);
988 uint8_t *d
= original
.data
;
991 * We are testing with something like "aaaaaaaaaaaaaaaaaaaaaaabbbbb"
992 * where typically the number of "a"s is > 65536, and the number of
995 ssize_t na
[] = {65535, 65536, 65537, 65559, 65575, 200000, -1};
996 ssize_t nb
[] = {1, 2, 20, 39, 40, 41, 42, -1};
1000 for (i
= 0; na
[i
] >= 0; i
++) {
1003 for (j
= 0; nb
[j
] >= 0; j
++) {
1005 memset(d
+ a
, 'b', b
);
1006 original
.length
= a
+ b
;
1007 snprintf(filename
, sizeof(filename
),
1008 "/tmp/overlong-%zd-%zd", a
, b
);
1009 comp_size
= attempt_round_trip(mem_ctx
,
1012 if (comp_size
> 0) {
1017 debug_message("%d/%zu correct\n", score
, i
* j
);
1018 assert_int_equal(score
, i
* j
);
1019 talloc_free(mem_ctx
);
1023 static void test_lzxpress_huffman_overlong_matches_abc(void **state
)
1025 size_t i
, j
= 0, k
= 0;
1026 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
1027 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, 1024 * 1024);
1028 DATA_BLOB ref
= {0};
1029 uint8_t *d
= original
.data
;
1032 * We are testing with something like "aaaabbbbcc" where typically
1033 * the number of "a"s + "b"s is around 65536, and the number of "c"s
1036 ssize_t nab
[] = {1, 21, 32767, 32768, 32769, -1};
1037 ssize_t nc
[] = {1, 2, 20, 39, 40, 41, 42, -1};
1041 for (i
= 0; nab
[i
] >= 0; i
++) {
1044 for (j
= 0; nab
[j
] >= 0; j
++) {
1046 memset(d
+ a
, 'b', b
);
1047 for (k
= 0; nc
[k
] >= 0; k
++) {
1049 memset(d
+ a
+ b
, 'c', c
);
1050 original
.length
= a
+ b
+ c
;
1051 snprintf(filename
, sizeof(filename
),
1052 "/tmp/overlong-abc-%zd-%zd-%zd",
1054 comp_size
= attempt_round_trip(mem_ctx
,
1057 if (comp_size
> 0) {
1063 debug_message("%d/%zu correct\n", score
, i
* j
* k
);
1064 assert_int_equal(score
, i
* j
* k
);
1065 talloc_free(mem_ctx
);
1069 static void test_lzxpress_huffman_extremely_compressible_middle(void **state
)
1071 size_t len
= 192 * 1024;
1072 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
1073 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, len
);
1074 DATA_BLOB ref
= {0};
1077 * When a middle block (i.e. not the first and not the last of >= 3),
1078 * can be entirely expressed as a match starting in the previous
1079 * block, the Huffman tree would end up with 1 element, which does not
1080 * work for the code construction. It really wants to use both bits.
1081 * So we need to ensure we have some way of dealing with this.
1083 memset(original
.data
, 'a', 0x10000 - 1);
1084 memset(original
.data
+ 0x10000 - 1, 'b', 0x10000 + 1);
1085 memset(original
.data
+ 0x20000, 'a', 0x10000);
1086 comp_size
= attempt_round_trip(mem_ctx
, original
, "/tmp/compressible-middle", ref
);
1087 assert_true(comp_size
> 0);
1088 assert_true(comp_size
< 1024);
1089 debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
1090 len
, comp_size
, ((double)comp_size
) / len
);
1092 talloc_free(mem_ctx
);
1096 static void test_lzxpress_huffman_max_length_limit(void **state
)
1098 size_t len
= 65 * 1024 * 1024;
1099 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
1100 DATA_BLOB original
= data_blob_talloc_zero(mem_ctx
, len
);
1101 DATA_BLOB ref
= {0};
1104 * Reputedly Windows has a 64MB limit in the maximum match length it
1105 * will encode. We follow this, and test that here with nearly 65 MB
1106 * of zeros between two letters; this should be encoded in three
1109 * 1. 'a', 64M × '\0'
1110 * 2. (1M - 2) × '\0' -- finishing off what would have been the same match
1113 * Which we can assert by saying the length is > 768, < 1024.
1115 original
.data
[0] = 'a';
1116 original
.data
[len
- 1] = 'b';
1117 comp_size
= attempt_round_trip(mem_ctx
, original
, "/tmp/max-length-limit", ref
);
1118 assert_true(comp_size
> 0x300);
1119 assert_true(comp_size
< 0x400);
1120 debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
1121 len
, comp_size
, ((double)comp_size
) / len
);
1123 talloc_free(mem_ctx
);
1127 static void test_lzxpress_huffman_short_boring_strings(void **state
)
1129 size_t len
= 64 * 1024;
1130 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
1131 DATA_BLOB original
= data_blob_talloc(mem_ctx
, NULL
, len
);
1132 DATA_BLOB ref
= {0};
1134 ssize_t lengths
[] = {
1135 1, 2, 20, 39, 40, 41, 42, 256, 270, 273, 274, 1000, 64000, -1};
1139 * How do short repetitive strings work? We're poking at the limit
1140 * around which LZ77 comprssion is turned on.
1142 * For this test we don't change the blob memory between runs, just
1143 * the declared length.
1145 memset(original
.data
, 'a', len
);
1146 for (i
= 0; lengths
[i
] >= 0; i
++) {
1147 original
.length
= lengths
[i
];
1148 snprintf(filename
, sizeof(filename
),
1149 "/tmp/short-boring-%zu",
1151 comp_size
= attempt_round_trip(mem_ctx
, original
, filename
, ref
);
1152 if (original
.length
< 41) {
1153 assert_true(comp_size
> 256 + original
.length
/ 8);
1154 } else if (original
.length
< 274) {
1155 assert_true(comp_size
== 261);
1157 assert_true(comp_size
== 263);
1159 assert_true(comp_size
< 261 + original
.length
/ 8);
1161 /* let's just show we didn't change the original */
1162 for (i
= 0; i
< len
; i
++) {
1163 if (original
.data
[i
] != 'a') {
1164 fail_msg("input data[%zu] was changed! (%2x, expected %2x)\n",
1165 i
, original
.data
[i
], 'a');
1169 talloc_free(mem_ctx
);
1173 static void test_lzxpress_huffman_compress_empty_or_null(void **state
)
1176 * We expect these to fail with a -1, except the last one, which does
1180 const uint8_t *input
= bidirectional_pairs
[0].decompressed
.data
;
1181 size_t ilen
= bidirectional_pairs
[0].decompressed
.length
;
1182 size_t olen
= bidirectional_pairs
[0].compressed
.length
;
1183 uint8_t output
[olen
];
1184 struct lzxhuff_compressor_mem cmp_mem
;
1186 ret
= lzxpress_huffman_compress(&cmp_mem
, input
, 0, output
, olen
);
1187 assert_int_equal(ret
, -1LL);
1188 ret
= lzxpress_huffman_compress(&cmp_mem
, input
, ilen
, output
, 0);
1189 assert_int_equal(ret
, -1LL);
1191 ret
= lzxpress_huffman_compress(&cmp_mem
, NULL
, ilen
, output
, olen
);
1192 assert_int_equal(ret
, -1LL);
1193 ret
= lzxpress_huffman_compress(&cmp_mem
, input
, ilen
, NULL
, olen
);
1194 assert_int_equal(ret
, -1LL);
1195 ret
= lzxpress_huffman_compress(NULL
, input
, ilen
, output
, olen
);
1196 assert_int_equal(ret
, -1LL);
1198 ret
= lzxpress_huffman_compress(&cmp_mem
, input
, ilen
, output
, olen
);
1199 assert_int_equal(ret
, olen
);
1203 static void test_lzxpress_huffman_decompress_empty_or_null(void **state
)
1206 * We expect these to fail with a -1, except the last one.
1209 const uint8_t *input
= bidirectional_pairs
[0].compressed
.data
;
1210 size_t ilen
= bidirectional_pairs
[0].compressed
.length
;
1211 size_t olen
= bidirectional_pairs
[0].decompressed
.length
;
1212 uint8_t output
[olen
];
1214 ret
= lzxpress_huffman_decompress(input
, 0, output
, olen
);
1215 assert_int_equal(ret
, -1LL);
1216 ret
= lzxpress_huffman_decompress(input
, ilen
, output
, 0);
1217 assert_int_equal(ret
, -1LL);
1219 ret
= lzxpress_huffman_decompress(NULL
, ilen
, output
, olen
);
1220 assert_int_equal(ret
, -1LL);
1221 ret
= lzxpress_huffman_decompress(input
, ilen
, NULL
, olen
);
1222 assert_int_equal(ret
, -1LL);
1224 ret
= lzxpress_huffman_decompress(input
, ilen
, output
, olen
);
1225 assert_int_equal(ret
, olen
);
1230 const struct CMUnitTest tests
[] = {
1231 cmocka_unit_test(test_lzxpress_huffman_short_boring_strings
),
1232 cmocka_unit_test(test_lzxpress_huffman_max_length_limit
),
1233 cmocka_unit_test(test_lzxpress_huffman_extremely_compressible_middle
),
1234 cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip
),
1235 cmocka_unit_test(test_lzxpress_huffman_chaos_graph_round_trip
),
1236 cmocka_unit_test(test_lzxpress_huffman_sparse_random_graph_round_trip
),
1237 cmocka_unit_test(test_lzxpress_huffman_round_trip
),
1238 cmocka_unit_test(test_lzxpress_huffman_decompress_files
),
1239 cmocka_unit_test(test_lzxpress_huffman_decompress_more_compressed_files
),
1240 cmocka_unit_test(test_lzxpress_huffman_compress
),
1241 cmocka_unit_test(test_lzxpress_huffman_decompress
),
1242 cmocka_unit_test(test_lzxpress_huffman_long_gpl_round_trip
),
1243 cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip
),
1244 cmocka_unit_test(test_lzxpress_huffman_random_noise_round_trip
),
1245 cmocka_unit_test(test_lzxpress_huffman_overlong_matches_abc
),
1246 cmocka_unit_test(test_lzxpress_huffman_overlong_matches
),
1247 cmocka_unit_test(test_lzxpress_huffman_decompress_empty_or_null
),
1248 cmocka_unit_test(test_lzxpress_huffman_compress_empty_or_null
),
1251 cmocka_set_message_output(CM_OUTPUT_SUBUNIT
);
1254 return cmocka_run_group_tests(tests
, NULL
, NULL
);