1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y
)
19 (declare (type node node
) (type ir2-block block
) (type tn x y
))
21 (vop move node block x y
))
24 ;;; If there is any CHECK-xxx template for TYPE, then return it,
25 ;;; otherwise return NIL.
26 (defun type-check-template (type)
27 (declare (type ctype type
))
28 (multiple-value-bind (check-ptype exact
) (primitive-type type
)
30 (primitive-type-check check-ptype
)
31 (let ((name (hairy-type-check-template-name type
)))
33 (template-or-lose name
)
36 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
37 ;;; yielding the checked result in RESULT. VALUE and result may be of
38 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
39 ;;; other type checks should have been converted to an explicit type
41 (defun emit-type-check (node block value result type
)
42 (declare (type tn value result
) (type node node
) (type ir2-block block
)
44 (emit-move-template node block
(type-check-template type
) value result
)
47 ;;; Allocate an indirect value cell. Maybe do some clever stack
48 ;;; allocation someday.
50 ;;; FIXME: DO-MAKE-VALUE-CELL is a bad name, since it doesn't make
51 ;;; clear what's the distinction between it and the MAKE-VALUE-CELL
52 ;;; VOP, and since the DO- further connotes iteration, which has
53 ;;; nothing to do with this. Clearer, more systematic names, anyone?
54 (defevent make-value-cell-event
"Allocate heap value cell for lexical var.")
55 (defun do-make-value-cell (node block value res
)
56 (event make-value-cell-event node
)
57 (vop make-value-cell node block value res
))
61 ;;; Return the TN that holds the value of THING in the environment ENV.
62 (declaim (ftype (function ((or nlx-info lambda-var
) physenv
) tn
)
64 (defun find-in-physenv (thing physenv
)
65 (or (cdr (assoc thing
(ir2-physenv-closure (physenv-info physenv
))))
68 ;; I think that a failure of this assertion means that we're
69 ;; trying to access a variable which was improperly closed
70 ;; over. The PHYSENV describes a physical environment. Every
71 ;; variable that a form refers to should either be in its
72 ;; physical environment directly, or grabbed from a
73 ;; surrounding physical environment when it was closed over.
74 ;; The ASSOC expression above finds closed-over variables, so
75 ;; if we fell through the ASSOC expression, it wasn't closed
76 ;; over. Therefore, it must be in our physical environment
77 ;; directly. If instead it is in some other physical
78 ;; environment, then it's bogus for us to reference it here
79 ;; without it being closed over. -- WHN 2001-09-29
80 (aver (eq physenv
(lambda-physenv (lambda-var-home thing
))))
83 (aver (eq physenv
(block-physenv (nlx-info-target thing
))))
84 (ir2-nlx-info-home (nlx-info-info thing
))))
85 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv
)))
87 ;;; If LEAF already has a constant TN, return that, otherwise make a
89 (defun constant-tn (leaf)
90 (declare (type constant leaf
))
92 (setf (leaf-info leaf
)
93 (make-constant-tn leaf
))))
95 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
96 ;;; isn't directly represented by a TN. ENV is the environment that
97 ;;; the reference is done in.
98 (defun leaf-tn (leaf env
)
99 (declare (type leaf leaf
) (type physenv env
))
102 (unless (lambda-var-indirect leaf
)
103 (find-in-physenv leaf env
)))
104 (constant (constant-tn leaf
))
107 ;;; This is used to conveniently get a handle on a constant TN during
108 ;;; IR2 conversion. It returns a constant TN representing the Lisp
110 (defun emit-constant (value)
111 (constant-tn (find-constant value
)))
113 ;;; Convert a REF node. The reference must not be delayed.
114 (defun ir2-convert-ref (node block
)
115 (declare (type ref node
) (type ir2-block block
))
116 (let* ((lvar (node-lvar node
))
117 (leaf (ref-leaf node
))
118 (locs (lvar-result-tns
119 lvar
(list (primitive-type (leaf-type leaf
)))))
123 (let ((tn (find-in-physenv leaf
(node-physenv node
))))
124 (if (lambda-var-indirect leaf
)
125 (vop value-cell-ref node block tn res
)
126 (emit-move node block tn res
))))
128 (if (legal-immediate-constant-p leaf
)
129 (emit-move node block
(constant-tn leaf
) res
)
130 (let* ((name (leaf-source-name leaf
))
131 (name-tn (emit-constant name
)))
132 (if (policy node
(zerop safety
))
133 (vop fast-symbol-value node block name-tn res
)
134 (vop symbol-value node block name-tn res
)))))
136 (ir2-convert-closure node block leaf res
))
138 (let ((unsafe (policy node
(zerop safety
)))
139 (name (leaf-source-name leaf
)))
140 (ecase (global-var-kind leaf
)
142 (aver (symbolp name
))
143 (let ((name-tn (emit-constant name
)))
145 (vop fast-symbol-value node block name-tn res
)
146 (vop symbol-value node block name-tn res
))))
148 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name
)))
150 (vop fdefn-fun node block fdefn-tn res
)
151 (vop safe-fdefn-fun node block fdefn-tn res
))))))))
152 (move-lvar-result node block locs lvar
))
155 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
156 (defun assertions-on-ir2-converted-clambda (clambda)
157 ;; This assertion was sort of an experiment. It would be nice and
158 ;; sane and easier to understand things if it were *always* true,
159 ;; but experimentally I observe that it's only *almost* always
160 ;; true. -- WHN 2001-01-02
162 (aver (eql (lambda-component clambda
)
163 (block-component (ir2-block-block ir2-block
))))
164 ;; Check for some weirdness which came up in bug
167 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
168 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
170 ;; * treats every HANDLEless :ENTRY record into a
172 ;; * expects every patch to correspond to an
173 ;; IR2-COMPONENT-ENTRIES record.
174 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
175 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
176 ;; was a HANDLEless :ENTRY record which didn't correspond to an
177 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
178 ;; when it's caught at dump time, so this assertion tries to catch
180 (aver (member clambda
181 (component-lambdas (lambda-component clambda
))))
182 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
183 ;; used as a queue for stuff pending to do in IR1, and now that
184 ;; we're doing IR2 it should've been completely flushed (but
186 (aver (null (component-new-functionals (lambda-component clambda
))))
189 ;;; Emit code to load a function object implementing FUNCTIONAL into
190 ;;; RES. This gets interesting when the referenced function is a
191 ;;; closure: we must make the closure and move the closed-over values
194 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
195 ;;; for the called function, since local call analysis converts all
196 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
199 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
200 ;;; don't initialize that slot. This can happen with closures over
201 ;;; top level variables, where optimization of the closure deleted the
202 ;;; variable. Since we committed to the closure format when we
203 ;;; pre-analyzed the top level code, we just leave an empty slot.
204 (defun ir2-convert-closure (ref ir2-block functional res
)
205 (declare (type ref ref
)
206 (type ir2-block ir2-block
)
207 (type functional functional
)
209 (aver (not (eql (functional-kind functional
) :deleted
)))
210 (unless (leaf-info functional
)
211 (setf (leaf-info functional
)
212 (make-entry-info :name
(functional-debug-name functional
))))
213 (let ((entry (make-load-time-constant-tn :entry functional
))
214 (closure (etypecase functional
216 (assertions-on-ir2-converted-clambda functional
)
217 (physenv-closure (get-lambda-physenv functional
)))
219 (aver (eq (functional-kind functional
) :toplevel-xep
))
223 (let ((this-env (node-physenv ref
)))
224 (vop make-closure ref ir2-block entry
(length closure
) res
)
225 (loop for what in closure and n from
0 do
226 (unless (and (lambda-var-p what
)
227 (null (leaf-refs what
)))
228 (vop closure-init ref ir2-block
230 (find-in-physenv what this-env
)
233 (emit-move ref ir2-block entry res
))))
236 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
237 ;;; deliver the value to that lvar. If the var is a lexical variable
238 ;;; with no refs, then we don't actually set anything, since the
239 ;;; variable has been deleted.
240 (defun ir2-convert-set (node block
)
241 (declare (type cset node
) (type ir2-block block
))
242 (let* ((lvar (node-lvar node
))
243 (leaf (set-var node
))
244 (val (lvar-tn node block
(set-value node
)))
247 lvar
(list (primitive-type (leaf-type leaf
))))
251 (when (leaf-refs leaf
)
252 (let ((tn (find-in-physenv leaf
(node-physenv node
))))
253 (if (lambda-var-indirect leaf
)
254 (vop value-cell-set node block tn val
)
255 (emit-move node block val tn
)))))
257 (ecase (global-var-kind leaf
)
259 (aver (symbolp (leaf-source-name leaf
)))
260 (vop set node block
(emit-constant (leaf-source-name leaf
)) val
)))))
262 (emit-move node block val
(first locs
))
263 (move-lvar-result node block locs lvar
)))
266 ;;;; utilities for receiving fixed values
268 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
269 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
270 ;;; single-value lvar.
272 ;;; The primitive-type of the result will always be the same as the
273 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
274 ;;; TNs that satisfy the operand primitive-type restriction. We may
275 ;;; have to make a temporary of the desired type and move the actual
276 ;;; lvar TN into it. This happens when we delete a type check in
277 ;;; unsafe code or when we locally know something about the type of an
278 ;;; argument variable.
279 (defun lvar-tn (node block lvar
)
280 (declare (type node node
) (type ir2-block block
) (type lvar lvar
))
281 (let* ((2lvar (lvar-info lvar
))
283 (ecase (ir2-lvar-kind 2lvar
)
285 (let ((ref (lvar-uses lvar
)))
286 (leaf-tn (ref-leaf ref
) (node-physenv ref
))))
288 (aver (= (length (ir2-lvar-locs 2lvar
)) 1))
289 (first (ir2-lvar-locs 2lvar
)))))
290 (ptype (ir2-lvar-primitive-type 2lvar
)))
292 (cond ((eq (tn-primitive-type lvar-tn
) ptype
) lvar-tn
)
294 (let ((temp (make-normal-tn ptype
)))
295 (emit-move node block lvar-tn temp
)
298 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
299 ;;; TNs holding the values of LVAR with PTYPES as their primitive
300 ;;; types. LVAR must be annotated for the same number of fixed values
301 ;;; are there are PTYPES.
303 ;;; If the lvar has a type check, check the values into temps and
304 ;;; return the temps. When we have more values than assertions, we
305 ;;; move the extra values with no check.
306 (defun lvar-tns (node block lvar ptypes
)
307 (declare (type node node
) (type ir2-block block
)
308 (type lvar lvar
) (list ptypes
))
309 (let* ((locs (ir2-lvar-locs (lvar-info lvar
)))
310 (nlocs (length locs
)))
311 (aver (= nlocs
(length ptypes
)))
313 (mapcar (lambda (from to-type
)
314 (if (eq (tn-primitive-type from
) to-type
)
316 (let ((temp (make-normal-tn to-type
)))
317 (emit-move node block from temp
)
322 ;;;; utilities for delivering values to lvars
324 ;;; Return a list of TNs with the specifier TYPES that can be used as
325 ;;; result TNs to evaluate an expression into LVAR. This is used
326 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
329 ;;; If the lvar isn't annotated (meaning the values are discarded) or
330 ;;; is unknown-values, the then we make temporaries for each supplied
331 ;;; value, providing a place to compute the result in until we decide
332 ;;; what to do with it (if anything.)
334 ;;; If the lvar is fixed-values, and wants the same number of values
335 ;;; as the user wants to deliver, then we just return the
336 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
337 ;;; discarded TNs. We always return a TN of the specified type, using
338 ;;; the lvar locs only when they are of the correct type.
339 (defun lvar-result-tns (lvar types
)
340 (declare (type (or lvar null
) lvar
) (type list types
))
342 (mapcar #'make-normal-tn types
)
343 (let ((2lvar (lvar-info lvar
)))
344 (ecase (ir2-lvar-kind 2lvar
)
346 (let* ((locs (ir2-lvar-locs 2lvar
))
347 (nlocs (length locs
))
348 (ntypes (length types
)))
349 (if (and (= nlocs ntypes
)
350 (do ((loc locs
(cdr loc
))
351 (type types
(cdr type
)))
353 (unless (eq (tn-primitive-type (car loc
)) (car type
))
356 (mapcar (lambda (loc type
)
357 (if (eq (tn-primitive-type loc
) type
)
359 (make-normal-tn type
)))
362 (mapcar #'make-normal-tn
363 (subseq types nlocs
)))
367 (mapcar #'make-normal-tn types
))))))
369 ;;; Make the first N standard value TNs, returning them in a list.
370 (defun make-standard-value-tns (n)
371 (declare (type unsigned-byte n
))
374 (res (standard-arg-location i
)))
377 ;;; Return a list of TNs wired to the standard value passing
378 ;;; conventions that can be used to receive values according to the
379 ;;; unknown-values convention. This is used with together
380 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
383 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
384 ;;; an empty list of temporaries.
386 ;;; If the lvar is annotated, then it must be :FIXED.
387 (defun standard-result-tns (lvar)
388 (declare (type (or lvar null
) lvar
))
390 (let ((2lvar (lvar-info lvar
)))
391 (ecase (ir2-lvar-kind 2lvar
)
393 (make-standard-value-tns (length (ir2-lvar-locs 2lvar
))))))
396 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
397 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
398 ;;; doing the appropriate coercions.
399 (defun move-results-coerced (node block src dest
)
400 (declare (type node node
) (type ir2-block block
) (list src dest
))
401 (let ((nsrc (length src
))
402 (ndest (length dest
)))
403 (mapc (lambda (from to
)
405 (emit-move node block from to
)))
407 (append src
(make-list (- ndest nsrc
)
408 :initial-element
(emit-constant nil
)))
413 ;;; Move each SRC TN into the corresponding DEST TN, checking types
414 ;;; and defaulting any unsupplied source values to NIL
415 (defun move-results-checked (node block src dest types
)
416 (declare (type node node
) (type ir2-block block
) (list src dest types
))
417 (let ((nsrc (length src
))
418 (ndest (length dest
))
419 (ntypes (length types
)))
420 (mapc (lambda (from to type
)
422 (emit-type-check node block from to type
)
423 (emit-move node block from to
)))
425 (append src
(make-list (- ndest nsrc
)
426 :initial-element
(emit-constant nil
)))
430 (append types
(make-list (- ndest ntypes
)))
434 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
435 ;;; the specified lvar. NODE and BLOCK provide context for emitting
436 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
437 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
440 ;;; If the lvar is fixed values, then move the results into the lvar
441 ;;; locations. If the lvar is unknown values, then do the moves into
442 ;;; the standard value locations, and use PUSH-VALUES to put the
443 ;;; values on the stack.
444 (defun move-lvar-result (node block results lvar
)
445 (declare (type node node
) (type ir2-block block
)
446 (list results
) (type (or lvar null
) lvar
))
448 (let ((2lvar (lvar-info lvar
)))
449 (ecase (ir2-lvar-kind 2lvar
)
451 (let ((locs (ir2-lvar-locs 2lvar
)))
452 (unless (eq locs results
)
453 (move-results-coerced node block results locs
))))
455 (let* ((nvals (length results
))
456 (locs (make-standard-value-tns nvals
)))
457 (move-results-coerced node block results locs
)
458 (vop* push-values node block
459 ((reference-tn-list locs nil
))
460 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))
465 (defun ir2-convert-cast (node block
)
466 (declare (type cast node
)
467 (type ir2-block block
))
468 (binding* ((lvar (node-lvar node
) :exit-if-null
)
469 (2lvar (lvar-info lvar
))
470 (value (cast-value node
))
471 (2value (lvar-info value
)))
472 (cond ((eq (ir2-lvar-kind 2lvar
) :unused
))
473 ((eq (ir2-lvar-kind 2lvar
) :unknown
)
474 (aver (eq (ir2-lvar-kind 2value
) :unknown
))
475 (aver (not (cast-type-check node
)))
476 (move-results-coerced node block
477 (ir2-lvar-locs 2value
)
478 (ir2-lvar-locs 2lvar
)))
479 ((eq (ir2-lvar-kind 2lvar
) :fixed
)
480 (aver (eq (ir2-lvar-kind 2value
) :fixed
))
481 (if (cast-type-check node
)
482 (move-results-checked node block
483 (ir2-lvar-locs 2value
)
484 (ir2-lvar-locs 2lvar
)
485 (multiple-value-bind (check types
)
486 (cast-check-types node nil
)
487 (aver (eq check
:simple
))
489 (move-results-coerced node block
490 (ir2-lvar-locs 2value
)
491 (ir2-lvar-locs 2lvar
))))
492 (t (bug "CAST cannot be :DELAYED.")))))
494 ;;;; template conversion
496 ;;; Build a TN-REFS list that represents access to the values of the
497 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
498 ;;; are returned in the second value as a list rather than being
499 ;;; accessed as a normal argument. NODE and BLOCK provide the context
500 ;;; for emitting any necessary type-checking code.
501 (defun reference-args (node block args template
)
502 (declare (type node node
) (type ir2-block block
) (list args
)
503 (type template template
))
504 (collect ((info-args))
507 (do ((args args
(cdr args
))
508 (types (template-arg-types template
) (cdr types
)))
510 (let ((type (first types
))
512 (if (and (consp type
) (eq (car type
) ':constant
))
513 (info-args (lvar-value arg
))
514 (let ((ref (reference-tn (lvar-tn node block arg
) nil
)))
516 (setf (tn-ref-across last
) ref
)
520 (values (the (or tn-ref null
) first
) (info-args)))))
522 ;;; Convert a conditional template. We try to exploit any
523 ;;; drop-through, but emit an unconditional branch afterward if we
524 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
526 (defun ir2-convert-conditional (node block template args info-args if not-p
)
527 (declare (type node node
) (type ir2-block block
)
528 (type template template
) (type (or tn-ref null
) args
)
529 (list info-args
) (type cif if
) (type boolean not-p
))
530 (aver (= (template-info-arg-count template
) (+ (length info-args
) 2)))
531 (let ((consequent (if-consequent if
))
532 (alternative (if-alternative if
)))
533 (cond ((drop-thru-p if consequent
)
534 (emit-template node block template args nil
535 (list* (block-label alternative
) (not not-p
)
538 (emit-template node block template args nil
539 (list* (block-label consequent
) not-p info-args
))
540 (unless (drop-thru-p if alternative
)
541 (vop branch node block
(block-label alternative
)))))))
543 ;;; Convert an IF that isn't the DEST of a conditional template.
544 (defun ir2-convert-if (node block
)
545 (declare (type ir2-block block
) (type cif node
))
546 (let* ((test (if-test node
))
547 (test-ref (reference-tn (lvar-tn node block test
) nil
))
548 (nil-ref (reference-tn (emit-constant nil
) nil
)))
549 (setf (tn-ref-across test-ref
) nil-ref
)
550 (ir2-convert-conditional node block
(template-or-lose 'if-eq
)
551 test-ref
() node t
)))
553 ;;; Return a list of primitive-types that we can pass to
554 ;;; LVAR-RESULT-TNS describing the result types we want for a
555 ;;; template call. We duplicate here the determination of output type
556 ;;; that was done in initially selecting the template, so we know that
557 ;;; the types we find are allowed by the template output type
559 (defun find-template-result-types (call template rtypes
)
560 (declare (type combination call
)
561 (type template template
) (list rtypes
))
562 (declare (ignore template
))
563 (let* ((dtype (node-derived-type call
))
565 (types (mapcar #'primitive-type
566 (if (values-type-p type
)
567 (append (values-type-required type
)
568 (values-type-optional type
))
570 (let ((nvals (length rtypes
))
571 (ntypes (length types
)))
572 (cond ((< ntypes nvals
)
574 (make-list (- nvals ntypes
)
575 :initial-element
*backend-t-primitive-type
*)))
577 (subseq types
0 nvals
))
581 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering
582 ;;; values to LVAR. As an efficiency hack, we pick off the common case
583 ;;; where the LVAR is fixed values and has locations that satisfy the
584 ;;; result restrictions. This can fail when there is a type check or a
585 ;;; values count mismatch.
586 (defun make-template-result-tns (call lvar template rtypes
)
587 (declare (type combination call
) (type (or lvar null
) lvar
)
588 (type template template
) (list rtypes
))
589 (let ((2lvar (when lvar
(lvar-info lvar
))))
590 (if (and 2lvar
(eq (ir2-lvar-kind 2lvar
) :fixed
))
591 (let ((locs (ir2-lvar-locs 2lvar
)))
592 (if (and (= (length rtypes
) (length locs
))
593 (do ((loc locs
(cdr loc
))
594 (rtype rtypes
(cdr rtype
)))
596 (unless (operand-restriction-ok
598 (tn-primitive-type (car loc
))
604 (find-template-result-types call template rtypes
))))
607 (find-template-result-types call template rtypes
)))))
609 ;;; Get the operands into TNs, make TN-REFs for them, and then call
610 ;;; the template emit function.
611 (defun ir2-convert-template (call block
)
612 (declare (type combination call
) (type ir2-block block
))
613 (let* ((template (combination-info call
))
614 (lvar (node-lvar call
))
615 (rtypes (template-result-types template
)))
616 (multiple-value-bind (args info-args
)
617 (reference-args call block
(combination-args call
) template
)
618 (aver (not (template-more-results-type template
)))
619 (if (eq rtypes
:conditional
)
620 (ir2-convert-conditional call block template args info-args
621 (lvar-dest lvar
) nil
)
622 (let* ((results (make-template-result-tns call lvar template rtypes
))
623 (r-refs (reference-tn-list results t
)))
624 (aver (= (length info-args
)
625 (template-info-arg-count template
)))
626 #!+stack-grows-downward-not-upward
627 (when (and lvar
(lvar-dynamic-extent lvar
))
628 (vop current-stack-pointer call block
629 (ir2-lvar-stack-pointer (lvar-info lvar
))))
631 (emit-template call block template args r-refs info-args
)
632 (emit-template call block template args r-refs
))
633 (move-lvar-result call block results lvar
)))))
636 ;;; We don't have to do much because operand count checking is done by
637 ;;; IR1 conversion. The only difference between this and the function
638 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
640 (defoptimizer (%%primitive ir2-convert
) ((template info
&rest args
) call block
)
641 (let* ((template (lvar-value template
))
642 (info (lvar-value info
))
643 (lvar (node-lvar call
))
644 (rtypes (template-result-types template
))
645 (results (make-template-result-tns call lvar template rtypes
))
646 (r-refs (reference-tn-list results t
)))
647 (multiple-value-bind (args info-args
)
648 (reference-args call block
(cddr (combination-args call
)) template
)
649 (aver (not (template-more-results-type template
)))
650 (aver (not (eq rtypes
:conditional
)))
651 (aver (null info-args
))
654 (emit-template call block template args r-refs info
)
655 (emit-template call block template args r-refs
))
657 (move-lvar-result call block results lvar
)))
662 ;;; Convert a LET by moving the argument values into the variables.
663 ;;; Since a LET doesn't have any passing locations, we move the
664 ;;; arguments directly into the variables. We must also allocate any
665 ;;; indirect value cells, since there is no function prologue to do
667 (defun ir2-convert-let (node block fun
)
668 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
669 (mapc (lambda (var arg
)
671 (let ((src (lvar-tn node block arg
))
672 (dest (leaf-info var
)))
673 (if (lambda-var-indirect var
)
674 (do-make-value-cell node block src dest
)
675 (emit-move node block src dest
)))))
676 (lambda-vars fun
) (basic-combination-args node
))
679 ;;; Emit any necessary moves into assignment temps for a local call to
680 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
681 ;;; values, and (possibly EQ) TNs that are the actual destination of
682 ;;; the arguments. When necessary, we allocate temporaries for
683 ;;; arguments to preserve parallel assignment semantics. These lists
684 ;;; exclude unused arguments and include implicit environment
685 ;;; arguments, i.e. they exactly correspond to the arguments passed.
687 ;;; OLD-FP is the TN currently holding the value we want to pass as
688 ;;; OLD-FP. If null, then the call is to the same environment (an
689 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
690 ;;; environment alone.
691 (defun emit-psetq-moves (node block fun old-fp
)
692 (declare (type combination node
) (type ir2-block block
) (type clambda fun
)
693 (type (or tn null
) old-fp
))
694 (let ((actuals (mapcar (lambda (x)
696 (lvar-tn node block x
)))
697 (combination-args node
))))
700 (dolist (var (lambda-vars fun
))
701 (let ((actual (pop actuals
))
702 (loc (leaf-info var
)))
705 ((lambda-var-indirect var
)
707 (make-normal-tn *backend-t-primitive-type
*)))
708 (do-make-value-cell node block actual temp
)
710 ((member actual
(locs))
711 (let ((temp (make-normal-tn (tn-primitive-type loc
))))
712 (emit-move node block actual temp
)
719 (let ((this-1env (node-physenv node
))
720 (called-env (physenv-info (lambda-physenv fun
))))
721 (dolist (thing (ir2-physenv-closure called-env
))
722 (temps (find-in-physenv (car thing
) this-1env
))
725 (locs (ir2-physenv-old-fp called-env
))))
727 (values (temps) (locs)))))
729 ;;; A tail-recursive local call is done by emitting moves of stuff
730 ;;; into the appropriate passing locations. After setting up the args
731 ;;; and environment, we just move our return-pc into the called
732 ;;; function's passing location.
733 (defun ir2-convert-tail-local-call (node block fun
)
734 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
735 (let ((this-env (physenv-info (node-physenv node
))))
736 (multiple-value-bind (temps locs
)
737 (emit-psetq-moves node block fun
(ir2-physenv-old-fp this-env
))
739 (mapc (lambda (temp loc
)
740 (emit-move node block temp loc
))
743 (emit-move node block
744 (ir2-physenv-return-pc this-env
)
745 (ir2-physenv-return-pc-pass
747 (lambda-physenv fun
)))))
751 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
752 ;;; except that the caller and callee environment are the same, so we
753 ;;; don't need to mess with the environment locations, return PC, etc.
754 (defun ir2-convert-assignment (node block fun
)
755 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
756 (multiple-value-bind (temps locs
) (emit-psetq-moves node block fun nil
)
758 (mapc (lambda (temp loc
)
759 (emit-move node block temp loc
))
763 ;;; Do stuff to set up the arguments to a non-tail local call
764 ;;; (including implicit environment args.) We allocate a frame
765 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
766 ;;; the values to pass and the list of passing location TNs.
767 (defun ir2-convert-local-call-args (node block fun
)
768 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
769 (let ((fp (make-stack-pointer-tn))
770 (nfp (make-number-stack-pointer-tn))
771 (old-fp (make-stack-pointer-tn)))
772 (multiple-value-bind (temps locs
)
773 (emit-psetq-moves node block fun old-fp
)
774 (vop current-fp node block old-fp
)
775 (vop allocate-frame node block
776 (physenv-info (lambda-physenv fun
))
778 (values fp nfp temps
(mapcar #'make-alias-tn locs
)))))
780 ;;; Handle a non-TR known-values local call. We emit the call, then
781 ;;; move the results to the lvar's destination.
782 (defun ir2-convert-local-known-call (node block fun returns lvar start
)
783 (declare (type node node
) (type ir2-block block
) (type clambda fun
)
784 (type return-info returns
) (type (or lvar null
) lvar
)
786 (multiple-value-bind (fp nfp temps arg-locs
)
787 (ir2-convert-local-call-args node block fun
)
788 (let ((locs (return-info-locations returns
)))
789 (vop* known-call-local node block
790 (fp nfp
(reference-tn-list temps nil
))
791 ((reference-tn-list locs t
))
792 arg-locs
(physenv-info (lambda-physenv fun
)) start
)
793 (move-lvar-result node block locs lvar
)))
796 ;;; Handle a non-TR unknown-values local call. We do different things
797 ;;; depending on what kind of values the lvar wants.
799 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
800 ;;; specifying the lvar's LOCS as the VOP results so that we don't
801 ;;; have to do anything after the call.
803 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
804 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
806 (defun ir2-convert-local-unknown-call (node block fun lvar start
)
807 (declare (type node node
) (type ir2-block block
) (type clambda fun
)
808 (type (or lvar null
) lvar
) (type label start
))
809 (multiple-value-bind (fp nfp temps arg-locs
)
810 (ir2-convert-local-call-args node block fun
)
811 (let ((2lvar (and lvar
(lvar-info lvar
)))
812 (env (physenv-info (lambda-physenv fun
)))
813 (temp-refs (reference-tn-list temps nil
)))
814 (if (and 2lvar
(eq (ir2-lvar-kind 2lvar
) :unknown
))
815 (vop* multiple-call-local node block
(fp nfp temp-refs
)
816 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))
818 (let ((locs (standard-result-tns lvar
)))
819 (vop* call-local node block
821 ((reference-tn-list locs t
))
822 arg-locs env start
(length locs
))
823 (move-lvar-result node block locs lvar
)))))
826 ;;; Dispatch to the appropriate function, depending on whether we have
827 ;;; a let, tail or normal call. If the function doesn't return, call
828 ;;; it using the unknown-value convention. We could compile it as a
829 ;;; tail call, but that might seem confusing in the debugger.
830 (defun ir2-convert-local-call (node block
)
831 (declare (type combination node
) (type ir2-block block
))
832 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node
))))
833 (kind (functional-kind fun
)))
834 (cond ((eq kind
:let
)
835 (ir2-convert-let node block fun
))
836 ((eq kind
:assignment
)
837 (ir2-convert-assignment node block fun
))
839 (ir2-convert-tail-local-call node block fun
))
841 (let ((start (block-label (lambda-block fun
)))
842 (returns (tail-set-info (lambda-tail-set fun
)))
843 (lvar (node-lvar node
)))
845 (return-info-kind returns
)
848 (ir2-convert-local-unknown-call node block fun lvar start
))
850 (ir2-convert-local-known-call node block fun returns
856 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
857 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
858 ;;; true if the thing is named (false if it is a function).
860 ;;; There are two interesting non-named cases:
861 ;;; -- We know it's a function. No check needed: return the
863 ;;; -- We don't know what it is.
864 (defun fun-lvar-tn (node block lvar
)
865 (declare (ignore node block
))
866 (declare (type lvar lvar
))
867 (let ((2lvar (lvar-info lvar
)))
868 (if (eq (ir2-lvar-kind 2lvar
) :delayed
)
869 (let ((name (lvar-fun-name lvar t
)))
871 (values (make-load-time-constant-tn :fdefinition name
) t
))
872 (let* ((locs (ir2-lvar-locs 2lvar
))
874 (function-ptype (primitive-type-or-lose 'function
)))
875 (aver (and (eq (ir2-lvar-kind 2lvar
) :fixed
)
876 (= (length locs
) 1)))
877 (aver (eq (tn-primitive-type loc
) function-ptype
))
880 ;;; Set up the args to NODE in the current frame, and return a TN-REF
881 ;;; list for the passing locations.
882 (defun move-tail-full-call-args (node block
)
883 (declare (type combination node
) (type ir2-block block
))
884 (let ((args (basic-combination-args node
))
887 (dotimes (num (length args
))
888 (let ((loc (standard-arg-location num
)))
889 (emit-move node block
(lvar-tn node block
(elt args num
)) loc
)
890 (let ((ref (reference-tn loc nil
)))
892 (setf (tn-ref-across last
) ref
)
897 ;;; Move the arguments into the passing locations and do a (possibly
898 ;;; named) tail call.
899 (defun ir2-convert-tail-full-call (node block
)
900 (declare (type combination node
) (type ir2-block block
))
901 (let* ((env (physenv-info (node-physenv node
)))
902 (args (basic-combination-args node
))
903 (nargs (length args
))
904 (pass-refs (move-tail-full-call-args node block
))
905 (old-fp (ir2-physenv-old-fp env
))
906 (return-pc (ir2-physenv-return-pc env
)))
908 (multiple-value-bind (fun-tn named
)
909 (fun-lvar-tn node block
(basic-combination-fun node
))
911 (vop* tail-call-named node block
912 (fun-tn old-fp return-pc pass-refs
)
915 (vop* tail-call node block
916 (fun-tn old-fp return-pc pass-refs
)
922 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
923 (defun ir2-convert-full-call-args (node block
)
924 (declare (type combination node
) (type ir2-block block
))
925 (let* ((args (basic-combination-args node
))
926 (fp (make-stack-pointer-tn))
927 (nargs (length args
)))
928 (vop allocate-full-call-frame node block nargs fp
)
933 (locs (standard-arg-location num
))
934 (let ((ref (reference-tn (lvar-tn node block
(elt args num
))
937 (setf (tn-ref-across last
) ref
)
941 (values fp first
(locs) nargs
)))))
943 ;;; Do full call when a fixed number of values are desired. We make
944 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
945 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
946 (defun ir2-convert-fixed-full-call (node block
)
947 (declare (type combination node
) (type ir2-block block
))
948 (multiple-value-bind (fp args arg-locs nargs
)
949 (ir2-convert-full-call-args node block
)
950 (let* ((lvar (node-lvar node
))
951 (locs (standard-result-tns lvar
))
952 (loc-refs (reference-tn-list locs t
))
953 (nvals (length locs
)))
954 (multiple-value-bind (fun-tn named
)
955 (fun-lvar-tn node block
(basic-combination-fun node
))
957 (vop* call-named node block
(fp fun-tn args
) (loc-refs)
958 arg-locs nargs nvals
)
959 (vop* call node block
(fp fun-tn args
) (loc-refs)
960 arg-locs nargs nvals
))
961 (move-lvar-result node block locs lvar
))))
964 ;;; Do full call when unknown values are desired.
965 (defun ir2-convert-multiple-full-call (node block
)
966 (declare (type combination node
) (type ir2-block block
))
967 (multiple-value-bind (fp args arg-locs nargs
)
968 (ir2-convert-full-call-args node block
)
969 (let* ((lvar (node-lvar node
))
970 (locs (ir2-lvar-locs (lvar-info lvar
)))
971 (loc-refs (reference-tn-list locs t
)))
972 (multiple-value-bind (fun-tn named
)
973 (fun-lvar-tn node block
(basic-combination-fun node
))
975 (vop* multiple-call-named node block
(fp fun-tn args
) (loc-refs)
977 (vop* multiple-call node block
(fp fun-tn args
) (loc-refs)
981 ;;; stuff to check in PONDER-FULL-CALL
983 ;;; There are some things which are intended always to be optimized
984 ;;; away by DEFTRANSFORMs and such, and so never compiled into full
985 ;;; calls. This has been a source of bugs so many times that it seems
986 ;;; worth listing some of them here so that we can check the list
987 ;;; whenever we compile a full call.
989 ;;; FIXME: It might be better to represent this property by setting a
990 ;;; flag in DEFKNOWN, instead of representing it by membership in this
992 (defvar *always-optimized-away
*
993 '(;; This should always be DEFTRANSFORMed away, but wasn't in a bug
994 ;; reported to cmucl-imp 2000-06-20.
996 ;; These should always turn into VOPs, but wasn't in a bug which
997 ;; appeared when LTN-POLICY stuff was being tweaked in
998 ;; sbcl-0.6.9.16. in sbcl-0.6.0
1002 ;;; more stuff to check in PONDER-FULL-CALL
1004 ;;; These came in handy when troubleshooting cold boot after making
1005 ;;; major changes in the package structure: various transforms and
1006 ;;; VOPs and stuff got attached to the wrong symbol, so that
1007 ;;; references to the right symbol were bogusly translated as full
1008 ;;; calls instead of primitives, sending the system off into infinite
1009 ;;; space. Having a report on all full calls generated makes it easier
1010 ;;; to figure out what form caused the problem this time.
1011 #!+sb-show
(defvar *show-full-called-fnames-p
* nil
)
1012 #!+sb-show
(defvar *full-called-fnames
* (make-hash-table :test
'equal
))
1014 ;;; Do some checks (and store some notes relevant for future checks)
1016 ;;; * Is this a full call to something we have reason to know should
1017 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1018 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1020 ;;; * Is this a full call to (SETF FOO) which might conflict with
1021 ;;; a DEFSETF or some such thing elsewhere in the program?
1022 (defun ponder-full-call (node)
1023 (let* ((lvar (basic-combination-fun node
))
1024 (fname (lvar-fun-name lvar t
)))
1025 (declare (type (or symbol cons
) fname
))
1027 #!+sb-show
(unless (gethash fname
*full-called-fnames
*)
1028 (setf (gethash fname
*full-called-fnames
*) t
))
1029 #!+sb-show
(when *show-full-called-fnames-p
*
1030 (/show
"converting full call to named function" fname
)
1031 (/show
(basic-combination-args node
))
1032 (/show
(policy node speed
) (policy node safety
))
1033 (/show
(policy node compilation-speed
))
1034 (let ((arg-types (mapcar (lambda (lvar)
1038 (basic-combination-args node
))))
1041 ;; When illegal code is compiled, all sorts of perverse paths
1042 ;; through the compiler can be taken, and it's much harder -- and
1043 ;; probably pointless -- to guarantee that always-optimized-away
1044 ;; functions are actually optimized away. Thus, we skip the check
1047 (when (memq fname
*always-optimized-away
*)
1048 (/show
(policy node speed
) (policy node safety
))
1049 (/show
(policy node compilation-speed
))
1050 (bug "full call to ~S" fname
)))
1053 (aver (legal-fun-name-p fname
))
1054 (destructuring-bind (setfoid &rest stem
) fname
1055 (when (eq setfoid
'setf
)
1056 (setf (gethash (car stem
) *setf-assumed-fboundp
*) t
))))))
1058 ;;; If the call is in a tail recursive position and the return
1059 ;;; convention is standard, then do a tail full call. If one or fewer
1060 ;;; values are desired, then use a single-value call, otherwise use a
1061 ;;; multiple-values call.
1062 (defun ir2-convert-full-call (node block
)
1063 (declare (type combination node
) (type ir2-block block
))
1064 (ponder-full-call node
)
1065 (cond ((node-tail-p node
)
1066 (ir2-convert-tail-full-call node block
))
1067 ((let ((lvar (node-lvar node
)))
1069 (eq (ir2-lvar-kind (lvar-info lvar
)) :unknown
)))
1070 (ir2-convert-multiple-full-call node block
))
1072 (ir2-convert-fixed-full-call node block
)))
1075 ;;;; entering functions
1077 ;;; Do all the stuff that needs to be done on XEP entry:
1078 ;;; -- Create frame.
1079 ;;; -- Copy any more arg.
1080 ;;; -- Set up the environment, accessing any closure variables.
1081 ;;; -- Move args from the standard passing locations to their internal
1083 (defun init-xep-environment (node block fun
)
1084 (declare (type bind node
) (type ir2-block block
) (type clambda fun
))
1085 (let ((start-label (entry-info-offset (leaf-info fun
)))
1086 (env (physenv-info (node-physenv node
))))
1087 (let ((ef (functional-entry-fun fun
)))
1088 (cond ((and (optional-dispatch-p ef
) (optional-dispatch-more-entry ef
))
1089 ;; Special case the xep-allocate-frame + copy-more-arg case.
1090 (vop xep-allocate-frame node block start-label t
)
1091 (vop copy-more-arg node block
(optional-dispatch-max-args ef
)))
1093 ;; No more args, so normal entry.
1094 (vop xep-allocate-frame node block start-label nil
)))
1095 (if (ir2-physenv-closure env
)
1096 (let ((closure (make-normal-tn *backend-t-primitive-type
*)))
1097 (vop setup-closure-environment node block start-label closure
)
1098 (when (getf (functional-plist ef
) :fin-function
)
1099 (vop funcallable-instance-lexenv node block closure closure
))
1101 (dolist (loc (ir2-physenv-closure env
))
1102 (vop closure-ref node block closure
(incf n
) (cdr loc
)))))
1103 (vop setup-environment node block start-label
)))
1105 (unless (eq (functional-kind fun
) :toplevel
)
1106 (let ((vars (lambda-vars fun
))
1108 (when (leaf-refs (first vars
))
1109 (emit-move node block
(make-arg-count-location)
1110 (leaf-info (first vars
))))
1111 (dolist (arg (rest vars
))
1112 (when (leaf-refs arg
)
1113 (let ((pass (standard-arg-location n
))
1114 (home (leaf-info arg
)))
1115 (if (lambda-var-indirect arg
)
1116 (do-make-value-cell node block pass home
)
1117 (emit-move node block pass home
))))
1120 (emit-move node block
(make-old-fp-passing-location t
)
1121 (ir2-physenv-old-fp env
)))
1125 ;;; Emit function prolog code. This is only called on bind nodes for
1126 ;;; functions that allocate environments. All semantics of let calls
1127 ;;; are handled by IR2-CONVERT-LET.
1129 ;;; If not an XEP, all we do is move the return PC from its passing
1130 ;;; location, since in a local call, the caller allocates the frame
1131 ;;; and sets up the arguments.
1132 (defun ir2-convert-bind (node block
)
1133 (declare (type bind node
) (type ir2-block block
))
1134 (let* ((fun (bind-lambda node
))
1135 (env (physenv-info (lambda-physenv fun
))))
1136 (aver (member (functional-kind fun
)
1137 '(nil :external
:optional
:toplevel
:cleanup
)))
1140 (init-xep-environment node block fun
)
1142 (when *collect-dynamic-statistics
*
1143 (vop count-me node block
*dynamic-counts-tn
*
1144 (block-number (ir2-block-block block
)))))
1148 (ir2-physenv-return-pc-pass env
)
1149 (ir2-physenv-return-pc env
))
1151 (let ((lab (gen-label)))
1152 (setf (ir2-physenv-environment-start env
) lab
)
1153 (vop note-environment-start node block lab
)))
1157 ;;;; function return
1159 ;;; Do stuff to return from a function with the specified values and
1160 ;;; convention. If the return convention is :FIXED and we aren't
1161 ;;; returning from an XEP, then we do a known return (letting
1162 ;;; representation selection insert the correct move-arg VOPs.)
1163 ;;; Otherwise, we use the unknown-values convention. If there is a
1164 ;;; fixed number of return values, then use RETURN, otherwise use
1165 ;;; RETURN-MULTIPLE.
1166 (defun ir2-convert-return (node block
)
1167 (declare (type creturn node
) (type ir2-block block
))
1168 (let* ((lvar (return-result node
))
1169 (2lvar (lvar-info lvar
))
1170 (lvar-kind (ir2-lvar-kind 2lvar
))
1171 (fun (return-lambda node
))
1172 (env (physenv-info (lambda-physenv fun
)))
1173 (old-fp (ir2-physenv-old-fp env
))
1174 (return-pc (ir2-physenv-return-pc env
))
1175 (returns (tail-set-info (lambda-tail-set fun
))))
1177 ((and (eq (return-info-kind returns
) :fixed
)
1179 (let ((locs (lvar-tns node block lvar
1180 (return-info-types returns
))))
1181 (vop* known-return node block
1182 (old-fp return-pc
(reference-tn-list locs nil
))
1184 (return-info-locations returns
))))
1185 ((eq lvar-kind
:fixed
)
1186 (let* ((types (mapcar #'tn-primitive-type
(ir2-lvar-locs 2lvar
)))
1187 (lvar-locs (lvar-tns node block lvar types
))
1188 (nvals (length lvar-locs
))
1189 (locs (make-standard-value-tns nvals
)))
1190 (mapc (lambda (val loc
)
1191 (emit-move node block val loc
))
1195 (vop return-single node block old-fp return-pc
(car locs
))
1196 (vop* return node block
1197 (old-fp return-pc
(reference-tn-list locs nil
))
1201 (aver (eq lvar-kind
:unknown
))
1202 (vop* return-multiple node block
1204 (reference-tn-list (ir2-lvar-locs 2lvar
) nil
))
1211 ;;; This is used by the debugger to find the top function on the
1212 ;;; stack. It returns the OLD-FP and RETURN-PC for the current
1213 ;;; function as multiple values.
1214 (defoptimizer (sb!kernel
:%caller-frame-and-pc ir2-convert
) (() node block
)
1215 (let ((ir2-physenv (physenv-info (node-physenv node
))))
1216 (move-lvar-result node block
1217 (list (ir2-physenv-old-fp ir2-physenv
)
1218 (ir2-physenv-return-pc ir2-physenv
))
1221 ;;;; multiple values
1223 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1224 ;;; the lvar for the correct number of values (with the lvar user
1225 ;;; responsible for defaulting), we can just pick them up from the
1227 (defun ir2-convert-mv-bind (node block
)
1228 (declare (type mv-combination node
) (type ir2-block block
))
1229 (let* ((lvar (first (basic-combination-args node
)))
1230 (fun (ref-leaf (lvar-uses (basic-combination-fun node
))))
1231 (vars (lambda-vars fun
)))
1232 (aver (eq (functional-kind fun
) :mv-let
))
1233 (mapc (lambda (src var
)
1234 (when (leaf-refs var
)
1235 (let ((dest (leaf-info var
)))
1236 (if (lambda-var-indirect var
)
1237 (do-make-value-cell node block src dest
)
1238 (emit-move node block src dest
)))))
1239 (lvar-tns node block lvar
1241 (primitive-type (leaf-type x
)))
1246 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1247 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1248 ;;; the first argument: all the other argument lvar TNs are
1249 ;;; ignored. This is because we require all of the values globs to be
1250 ;;; contiguous and on stack top.
1251 (defun ir2-convert-mv-call (node block
)
1252 (declare (type mv-combination node
) (type ir2-block block
))
1253 (aver (basic-combination-args node
))
1254 (let* ((start-lvar (lvar-info (first (basic-combination-args node
))))
1255 (start (first (ir2-lvar-locs start-lvar
)))
1256 (tails (and (node-tail-p node
)
1257 (lambda-tail-set (node-home-lambda node
))))
1258 (lvar (node-lvar node
))
1259 (2lvar (and lvar
(lvar-info lvar
))))
1260 (multiple-value-bind (fun named
)
1261 (fun-lvar-tn node block
(basic-combination-fun node
))
1262 (aver (and (not named
)
1263 (eq (ir2-lvar-kind start-lvar
) :unknown
)))
1266 (let ((env (physenv-info (node-physenv node
))))
1267 (vop tail-call-variable node block start fun
1268 (ir2-physenv-old-fp env
)
1269 (ir2-physenv-return-pc env
))))
1271 (eq (ir2-lvar-kind 2lvar
) :unknown
))
1272 (vop* multiple-call-variable node block
(start fun nil
)
1273 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))))
1275 (let ((locs (standard-result-tns lvar
)))
1276 (vop* call-variable node block
(start fun nil
)
1277 ((reference-tn-list locs t
)) (length locs
))
1278 (move-lvar-result node block locs lvar
)))))))
1280 ;;; Reset the stack pointer to the start of the specified
1281 ;;; unknown-values lvar (discarding it and all values globs on top of
1283 (defoptimizer (%pop-values ir2-convert
) ((%lvar
) node block
)
1284 (let* ((lvar (lvar-value %lvar
))
1285 (2lvar (lvar-info lvar
)))
1286 (cond ((eq (ir2-lvar-kind 2lvar
) :unknown
)
1287 (vop reset-stack-pointer node block
1288 (first (ir2-lvar-locs 2lvar
))))
1289 ((lvar-dynamic-extent lvar
)
1290 #!+stack-grows-downward-not-upward
1291 (vop reset-stack-pointer node block
1292 (ir2-lvar-stack-pointer 2lvar
))
1293 #!-stack-grows-downward-not-upward
1294 (vop %%pop-dx node block
1295 (first (ir2-lvar-locs 2lvar
))))
1296 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1299 (defoptimizer (%nip-values ir2-convert
) ((last-nipped last-preserved
1302 (let* ( ;; pointer immediately after the nipped block
1303 (after (lvar-value last-nipped
))
1304 (2after (lvar-info after
))
1305 ;; pointer to the first nipped word
1306 (first (lvar-value last-preserved
))
1307 (2first (lvar-info first
))
1309 (moved-tns (loop for lvar-ref in moved
1310 for lvar
= (lvar-value lvar-ref
)
1311 for
2lvar
= (lvar-info lvar
)
1313 collect
(first (ir2-lvar-locs 2lvar
)))))
1314 (aver (or (eq (ir2-lvar-kind 2after
) :unknown
)
1315 (lvar-dynamic-extent after
)))
1316 (aver (eq (ir2-lvar-kind 2first
) :unknown
))
1317 (when *check-consistency
*
1318 ;; we cannot move stack-allocated DX objects
1319 (dolist (moved-lvar moved
)
1320 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar
)))
1322 (flet ((nip-aligned (nipped)
1323 (vop* %%nip-values node block
1325 (first (ir2-lvar-locs 2first
))
1326 (reference-tn-list moved-tns nil
))
1327 ((reference-tn-list moved-tns t
))))
1328 #!-stack-grows-downward-not-upward
1329 (nip-unaligned (nipped)
1330 (vop* %%nip-dx node block
1332 (first (ir2-lvar-locs 2first
))
1333 (reference-tn-list moved-tns nil
))
1334 ((reference-tn-list moved-tns t
)))))
1335 (cond ((eq (ir2-lvar-kind 2after
) :unknown
)
1336 (nip-aligned (first (ir2-lvar-locs 2after
))))
1337 ((lvar-dynamic-extent after
)
1338 #!+stack-grows-downward-not-upward
1339 (nip-aligned (ir2-lvar-stack-pointer 2after
))
1340 #!-stack-grows-downward-not-upward
1341 (nip-unaligned (ir2-lvar-stack-pointer 2after
)))
1343 (bug "Trying to nip a not stack-allocated LVAR ~S." after
))))))
1345 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1346 (defoptimizer (values ir2-convert
) ((&rest values
) node block
)
1347 (let ((tns (mapcar (lambda (x)
1348 (lvar-tn node block x
))
1350 (move-lvar-result node block tns
(node-lvar node
))))
1352 ;;; In the normal case where unknown values are desired, we use the
1353 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1354 ;;; for a fixed number of values, we punt by doing a full call to the
1355 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1356 ;;; defaulting any unsupplied values. It seems unworthwhile to
1357 ;;; optimize this case.
1358 (defoptimizer (values-list ir2-convert
) ((list) node block
)
1359 (let* ((lvar (node-lvar node
))
1360 (2lvar (and lvar
(lvar-info lvar
))))
1362 (eq (ir2-lvar-kind 2lvar
) :unknown
))
1363 (let ((locs (ir2-lvar-locs 2lvar
)))
1364 (vop* values-list node block
1365 ((lvar-tn node block list
) nil
)
1366 ((reference-tn-list locs t
)))))
1367 (t (aver (or (not 2lvar
) ; i.e. we want to check the argument
1368 (eq (ir2-lvar-kind 2lvar
) :fixed
)))
1369 (ir2-convert-full-call node block
)))))
1371 (defoptimizer (%more-arg-values ir2-convert
) ((context start count
) node block
)
1372 (binding* ((lvar (node-lvar node
) :exit-if-null
)
1373 (2lvar (lvar-info lvar
)))
1374 (ecase (ir2-lvar-kind 2lvar
)
1375 (:fixed
(ir2-convert-full-call node block
))
1377 (let ((locs (ir2-lvar-locs 2lvar
)))
1378 (vop* %more-arg-values node block
1379 ((lvar-tn node block context
)
1380 (lvar-tn node block start
)
1381 (lvar-tn node block count
)
1383 ((reference-tn-list locs t
))))))))
1385 ;;;; special binding
1387 ;;; This is trivial, given our assumption of a shallow-binding
1389 (defoptimizer (%special-bind ir2-convert
) ((var value
) node block
)
1390 (let ((name (leaf-source-name (lvar-value var
))))
1391 (vop bind node block
(lvar-tn node block value
)
1392 (emit-constant name
))))
1393 (defoptimizer (%special-unbind ir2-convert
) ((var) node block
)
1394 (vop unbind node block
))
1396 ;;; ### It's not clear that this really belongs in this file, or
1397 ;;; should really be done this way, but this is the least violation of
1398 ;;; abstraction in the current setup. We don't want to wire
1399 ;;; shallow-binding assumptions into IR1tran.
1400 (def-ir1-translator progv
1401 ((vars vals
&body body
) start next result
)
1404 (with-unique-names (bind unbind
)
1405 (once-only ((n-save-bs '(%primitive current-binding-pointer
)))
1408 (labels ((,unbind
(vars)
1409 (declare (optimize (speed 2) (debug 0)))
1411 (%primitive bind nil var
)
1414 (declare (optimize (speed 2) (debug 0)))
1416 ((null vals
) (,unbind vars
))
1420 (,bind
(cdr vars
) (cdr vals
))))))
1421 (,bind
,vars
,vals
))
1424 (%primitive unbind-to-here
,n-save-bs
))))))
1428 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1429 ;;; environment. Note that this is never called on the escape exits
1430 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1432 (defun ir2-convert-exit (node block
)
1433 (declare (type exit node
) (type ir2-block block
))
1434 (let ((loc (find-in-physenv (find-nlx-info node
)
1435 (node-physenv node
)))
1436 (temp (make-stack-pointer-tn))
1437 (value (exit-value node
)))
1438 (vop value-cell-ref node block loc temp
)
1440 (let ((locs (ir2-lvar-locs (lvar-info value
))))
1441 (vop unwind node block temp
(first locs
) (second locs
)))
1442 (let ((0-tn (emit-constant 0)))
1443 (vop unwind node block temp
0-tn
0-tn
))))
1447 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1448 ;;; being entirely deleted.
1449 (defoptimizer (%cleanup-point ir2-convert
) (() node block
) node block
)
1451 ;;; This function invalidates a lexical exit on exiting from the
1452 ;;; dynamic extent. This is done by storing 0 into the indirect value
1453 ;;; cell that holds the closed unwind block.
1454 (defoptimizer (%lexical-exit-breakup ir2-convert
) ((info) node block
)
1455 (vop value-cell-set node block
1456 (find-in-physenv (lvar-value info
) (node-physenv node
))
1459 ;;; We have to do a spurious move of no values to the result lvar so
1460 ;;; that lifetime analysis won't get confused.
1461 (defun ir2-convert-throw (node block
)
1462 (declare (type mv-combination node
) (type ir2-block block
))
1463 (let ((args (basic-combination-args node
)))
1464 (check-catch-tag-type (first args
))
1465 (vop* throw node block
1466 ((lvar-tn node block
(first args
))
1468 (ir2-lvar-locs (lvar-info (second args
)))
1471 (move-lvar-result node block
() (node-lvar node
))
1474 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1475 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1476 ;;; the target PC by passing in the label to the vop. The vop is
1477 ;;; responsible for building a return-PC object.
1478 (defun emit-nlx-start (node block info tag
)
1479 (declare (type node node
) (type ir2-block block
) (type nlx-info info
)
1480 (type (or lvar null
) tag
))
1481 (let* ((2info (nlx-info-info info
))
1482 (kind (cleanup-kind (nlx-info-cleanup info
)))
1483 (block-tn (physenv-live-tn
1484 (make-normal-tn (primitive-type-or-lose 'catch-block
))
1485 (node-physenv node
)))
1486 (res (make-stack-pointer-tn))
1487 (target-label (ir2-nlx-info-target 2info
)))
1489 (vop current-binding-pointer node block
1490 (car (ir2-nlx-info-dynamic-state 2info
)))
1491 (vop* save-dynamic-state node block
1493 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info
)) t
)))
1494 (vop current-stack-pointer node block
(ir2-nlx-info-save-sp 2info
))
1498 (vop make-catch-block node block block-tn
1499 (lvar-tn node block tag
) target-label res
))
1500 ((:unwind-protect
:block
:tagbody
)
1501 (vop make-unwind-block node block block-tn target-label res
)))
1505 (do-make-value-cell node block res
(ir2-nlx-info-home 2info
)))
1507 (vop set-unwind-protect node block block-tn
))
1512 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1513 (defun ir2-convert-entry (node block
)
1514 (declare (type entry node
) (type ir2-block block
))
1515 (dolist (exit (entry-exits node
))
1516 (let ((info (find-nlx-info exit
)))
1518 (member (cleanup-kind (nlx-info-cleanup info
))
1519 '(:block
:tagbody
)))
1520 (emit-nlx-start node block info nil
))))
1523 ;;; Set up the unwind block for these guys.
1524 (defoptimizer (%catch ir2-convert
) ((info-lvar tag
) node block
)
1525 (check-catch-tag-type tag
)
1526 (emit-nlx-start node block
(lvar-value info-lvar
) tag
))
1527 (defoptimizer (%unwind-protect ir2-convert
) ((info-lvar cleanup
) node block
)
1528 (emit-nlx-start node block
(lvar-value info-lvar
) nil
))
1530 ;;; Emit the entry code for a non-local exit. We receive values and
1531 ;;; restore dynamic state.
1533 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1534 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1535 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1536 ;;; values, make the appropriate number of temps in the standard
1537 ;;; values locations and use the other variant, delivering the temps
1538 ;;; to the lvar using MOVE-LVAR-RESULT.
1540 ;;; In the UNWIND-PROTECT case, we deliver the first register
1541 ;;; argument, the argument count and the argument pointer to our lvar
1542 ;;; as multiple values. These values are the block exited to and the
1543 ;;; values start and count.
1545 ;;; After receiving values, we restore dynamic state. Except in the
1546 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1547 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1548 ;;; pointer alone, since the thrown values are still out there.
1549 (defoptimizer (%nlx-entry ir2-convert
) ((info-lvar) node block
)
1550 (let* ((info (lvar-value info-lvar
))
1551 (lvar (nlx-info-lvar info
))
1552 (2info (nlx-info-info info
))
1553 (top-loc (ir2-nlx-info-save-sp 2info
))
1554 (start-loc (make-nlx-entry-arg-start-location))
1555 (count-loc (make-arg-count-location))
1556 (target (ir2-nlx-info-target 2info
)))
1558 (ecase (cleanup-kind (nlx-info-cleanup info
))
1559 ((:catch
:block
:tagbody
)
1560 (let ((2lvar (and lvar
(lvar-info lvar
))))
1561 (if (and 2lvar
(eq (ir2-lvar-kind 2lvar
) :unknown
))
1562 (vop* nlx-entry-multiple node block
1563 (top-loc start-loc count-loc nil
)
1564 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))
1566 (let ((locs (standard-result-tns lvar
)))
1567 (vop* nlx-entry node block
1568 (top-loc start-loc count-loc nil
)
1569 ((reference-tn-list locs t
))
1572 (move-lvar-result node block locs lvar
)))))
1574 (let ((block-loc (standard-arg-location 0)))
1575 (vop uwp-entry node block target block-loc start-loc count-loc
)
1578 (list block-loc start-loc count-loc
)
1582 (when *collect-dynamic-statistics
*
1583 (vop count-me node block
*dynamic-counts-tn
*
1584 (block-number (ir2-block-block block
))))
1586 (vop* restore-dynamic-state node block
1587 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info
)) nil
))
1589 (vop unbind-to-here node block
1590 (car (ir2-nlx-info-dynamic-state 2info
)))))
1592 ;;;; n-argument functions
1594 (macrolet ((def (name)
1595 `(defoptimizer (,name ir2-convert
) ((&rest args
) node block
)
1596 (let* ((refs (move-tail-full-call-args node block
))
1597 (lvar (node-lvar node
))
1598 (res (lvar-result-tns
1600 (list (primitive-type (specifier-type 'list
))))))
1601 #!+stack-grows-downward-not-upward
1602 (when (and lvar
(lvar-dynamic-extent lvar
))
1603 (vop current-stack-pointer node block
1604 (ir2-lvar-stack-pointer (lvar-info lvar
))))
1605 (vop* ,name node block
(refs) ((first res
) nil
)
1607 (move-lvar-result node block res lvar
)))))
1612 ;;; Convert the code in a component into VOPs.
1613 (defun ir2-convert (component)
1614 (declare (type component component
))
1615 (let (#!+sb-dyncount
1616 (*dynamic-counts-tn
*
1617 (when *collect-dynamic-statistics
*
1619 (block-number (block-next (component-head component
))))
1620 (counts (make-array blocks
1621 :element-type
'(unsigned-byte 32)
1622 :initial-element
0))
1623 (info (make-dyncount-info
1624 :for
(component-name component
)
1625 :costs
(make-array blocks
1626 :element-type
'(unsigned-byte 32)
1629 (setf (ir2-component-dyncount-info (component-info component
))
1631 (emit-constant info
)
1632 (emit-constant counts
)))))
1634 (declare (type index num
))
1635 (do-ir2-blocks (2block component
)
1636 (let ((block (ir2-block-block 2block
)))
1637 (when (block-start block
)
1638 (setf (block-number block
) num
)
1640 (when *collect-dynamic-statistics
*
1641 (let ((first-node (block-start-node block
)))
1642 (unless (or (and (bind-p first-node
)
1643 (xep-p (bind-lambda first-node
)))
1645 (node-lvar first-node
))
1650 #!+sb-dyncount
*dynamic-counts-tn
* #!-sb-dyncount nil
1652 (ir2-convert-block block
)
1656 ;;; If necessary, emit a terminal unconditional branch to go to the
1657 ;;; successor block. If the successor is the component tail, then
1658 ;;; there isn't really any successor, but if the end is an unknown,
1659 ;;; non-tail call, then we emit an error trap just in case the
1660 ;;; function really does return.
1661 (defun finish-ir2-block (block)
1662 (declare (type cblock block
))
1663 (let* ((2block (block-info block
))
1664 (last (block-last block
))
1665 (succ (block-succ block
)))
1667 (aver (singleton-p succ
))
1668 (let ((target (first succ
)))
1669 (cond ((eq target
(component-tail (block-component block
)))
1670 (when (and (basic-combination-p last
)
1671 (eq (basic-combination-kind last
) :full
))
1672 (let* ((fun (basic-combination-fun last
))
1673 (use (lvar-uses fun
))
1674 (name (and (ref-p use
)
1675 (leaf-has-source-name-p (ref-leaf use
))
1676 (leaf-source-name (ref-leaf use
)))))
1677 (unless (or (node-tail-p last
)
1678 (info :function
:info name
)
1679 (policy last
(zerop safety
)))
1680 (vop nil-fun-returned-error last
2block
1682 (emit-constant name
)
1683 (multiple-value-bind (tn named
)
1684 (fun-lvar-tn last
2block fun
)
1687 ((not (eq (ir2-block-next 2block
) (block-info target
)))
1688 (vop branch last
2block
(block-label target
)))))))
1692 ;;; Convert the code in a block into VOPs.
1693 (defun ir2-convert-block (block)
1694 (declare (type cblock block
))
1695 (let ((2block (block-info block
)))
1696 (do-nodes (node lvar block
)
1700 (let ((2lvar (lvar-info lvar
)))
1701 ;; function REF in a local call is not annotated
1702 (when (and 2lvar
(not (eq (ir2-lvar-kind 2lvar
) :delayed
)))
1703 (ir2-convert-ref node
2block
)))))
1705 (let ((kind (basic-combination-kind node
)))
1708 (ir2-convert-local-call node
2block
))
1710 (ir2-convert-full-call node
2block
))
1712 (let* ((info (basic-combination-fun-info node
))
1713 (fun (fun-info-ir2-convert info
)))
1715 (funcall fun node
2block
))
1716 ((eq (basic-combination-info node
) :full
)
1717 (ir2-convert-full-call node
2block
))
1719 (ir2-convert-template node
2block
))))))))
1721 (when (lvar-info (if-test node
))
1722 (ir2-convert-if node
2block
)))
1724 (let ((fun (bind-lambda node
)))
1725 (when (eq (lambda-home fun
) fun
)
1726 (ir2-convert-bind node
2block
))))
1728 (ir2-convert-return node
2block
))
1730 (ir2-convert-set node
2block
))
1732 (ir2-convert-cast node
2block
))
1735 ((eq (basic-combination-kind node
) :local
)
1736 (ir2-convert-mv-bind node
2block
))
1737 ((eq (lvar-fun-name (basic-combination-fun node
))
1739 (ir2-convert-throw node
2block
))
1741 (ir2-convert-mv-call node
2block
))))
1743 (when (exit-entry node
)
1744 (ir2-convert-exit node
2block
)))
1746 (ir2-convert-entry node
2block
)))))
1748 (finish-ir2-block block
)