1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
19 (defun upgraded-element-type-specifier-or-give-up (lvar)
20 (let* ((element-ctype (extract-upgraded-element-type lvar
))
21 (element-type-specifier (type-specifier element-ctype
)))
22 (if (eq element-type-specifier
'*)
23 (give-up-ir1-transform
24 "upgraded array element type not known at compile time")
25 element-type-specifier
)))
27 ;;; Array access functions return an object from the array, hence its
28 ;;; type is going to be the array upgraded element type.
29 (defun extract-upgraded-element-type (array)
30 (let ((type (lvar-type array
)))
31 ;; Note that this IF mightn't be satisfied even if the runtime
32 ;; value is known to be a subtype of some specialized ARRAY, because
33 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
34 ;; which are represented in the compiler as INTERSECTION-TYPE, not
36 (if (array-type-p type
)
37 (array-type-specialized-element-type type
)
38 ;; KLUDGE: there is no good answer here, but at least
39 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
40 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
44 (defun extract-declared-element-type (array)
45 (let ((type (lvar-type array
)))
46 (if (array-type-p type
)
47 (array-type-element-type type
)
50 ;;; The ``new-value'' for array setters must fit in the array, and the
51 ;;; return type is going to be the same as the new-value for SETF
53 (defun assert-new-value-type (new-value array
)
54 (let ((type (lvar-type array
)))
55 (when (array-type-p type
)
58 (array-type-specialized-element-type type
)
59 (lexenv-policy (node-lexenv (lvar-dest new-value
))))))
60 (lvar-type new-value
))
62 (defun assert-array-complex (array)
65 (make-array-type :complexp t
66 :element-type
*wild-type
*)
67 (lexenv-policy (node-lexenv (lvar-dest array
))))
70 ;;; Return true if ARG is NIL, or is a constant-lvar whose
71 ;;; value is NIL, false otherwise.
72 (defun unsupplied-or-nil (arg)
73 (declare (type (or lvar null
) arg
))
75 (and (constant-lvar-p arg
)
76 (not (lvar-value arg
)))))
78 ;;;; DERIVE-TYPE optimizers
80 ;;; Array operations that use a specific number of indices implicitly
81 ;;; assert that the array is of that rank.
82 (defun assert-array-rank (array rank
)
85 (specifier-type `(array * ,(make-list rank
:initial-element
'*)))
86 (lexenv-policy (node-lexenv (lvar-dest array
)))))
88 (defoptimizer (array-in-bounds-p derive-type
) ((array &rest indices
))
89 (assert-array-rank array
(length indices
))
92 (defoptimizer (aref derive-type
) ((array &rest indices
) node
)
93 (assert-array-rank array
(length indices
))
94 (extract-upgraded-element-type array
))
96 (defoptimizer (%aset derive-type
) ((array &rest stuff
))
97 (assert-array-rank array
(1- (length stuff
)))
98 (assert-new-value-type (car (last stuff
)) array
))
100 (defoptimizer (hairy-data-vector-ref derive-type
) ((array index
))
101 (extract-upgraded-element-type array
))
102 (defoptimizer (data-vector-ref derive-type
) ((array index
))
103 (extract-upgraded-element-type array
))
105 (defoptimizer (data-vector-set derive-type
) ((array index new-value
))
106 (assert-new-value-type new-value array
))
107 (defoptimizer (hairy-data-vector-set derive-type
) ((array index new-value
))
108 (assert-new-value-type new-value array
))
110 ;;; Figure out the type of the data vector if we know the argument
112 (defoptimizer (%with-array-data derive-type
) ((array start end
))
113 (let ((atype (lvar-type array
)))
114 (when (array-type-p atype
)
116 `(simple-array ,(type-specifier
117 (array-type-specialized-element-type atype
))
120 (defoptimizer (array-row-major-index derive-type
) ((array &rest indices
))
121 (assert-array-rank array
(length indices
))
124 (defoptimizer (row-major-aref derive-type
) ((array index
))
125 (extract-upgraded-element-type array
))
127 (defoptimizer (%set-row-major-aref derive-type
) ((array index new-value
))
128 (assert-new-value-type new-value array
))
130 (defoptimizer (make-array derive-type
)
131 ((dims &key initial-element element-type initial-contents
132 adjustable fill-pointer displaced-index-offset displaced-to
))
133 (let ((simple (and (unsupplied-or-nil adjustable
)
134 (unsupplied-or-nil displaced-to
)
135 (unsupplied-or-nil fill-pointer
))))
136 (or (careful-specifier-type
137 `(,(if simple
'simple-array
'array
)
138 ,(cond ((not element-type
) t
)
139 ((constant-lvar-p element-type
)
140 (let ((ctype (careful-specifier-type
141 (lvar-value element-type
))))
143 ((or (null ctype
) (unknown-type-p ctype
)) '*)
144 (t (sb!xc
:upgraded-array-element-type
145 (lvar-value element-type
))))))
148 ,(cond ((constant-lvar-p dims
)
149 (let* ((val (lvar-value dims
))
150 (cdims (if (listp val
) val
(list val
))))
154 ((csubtypep (lvar-type dims
)
155 (specifier-type 'integer
))
159 (specifier-type 'array
))))
161 ;;; Complex array operations should assert that their array argument
162 ;;; is complex. In SBCL, vectors with fill-pointers are complex.
163 (defoptimizer (fill-pointer derive-type
) ((vector))
164 (assert-array-complex vector
))
165 (defoptimizer (%set-fill-pointer derive-type
) ((vector index
))
166 (declare (ignorable index
))
167 (assert-array-complex vector
))
169 (defoptimizer (vector-push derive-type
) ((object vector
))
170 (declare (ignorable object
))
171 (assert-array-complex vector
))
172 (defoptimizer (vector-push-extend derive-type
)
173 ((object vector
&optional index
))
174 (declare (ignorable object index
))
175 (assert-array-complex vector
))
176 (defoptimizer (vector-pop derive-type
) ((vector))
177 (assert-array-complex vector
))
181 ;;; Convert VECTOR into a MAKE-ARRAY followed by SETFs of all the
183 (define-source-transform vector
(&rest elements
)
184 (let ((len (length elements
))
186 (once-only ((n-vec `(make-array ,len
)))
188 ,@(mapcar (lambda (el)
189 (once-only ((n-val el
))
190 `(locally (declare (optimize (safety 0)))
191 (setf (svref ,n-vec
,(incf n
))
196 ;;; Just convert it into a MAKE-ARRAY.
197 (deftransform make-string
((length &key
198 (element-type 'character
)
200 #.
*default-init-char-form
*)))
201 `(the simple-string
(make-array (the index length
)
202 :element-type element-type
203 ,@(when initial-element
204 '(:initial-element initial-element
)))))
206 (deftransform make-array
((dims &key initial-element element-type
207 adjustable fill-pointer
)
209 (when (null initial-element
)
210 (give-up-ir1-transform))
211 (let* ((eltype (cond ((not element-type
) t
)
212 ((not (constant-lvar-p element-type
))
213 (give-up-ir1-transform
214 "ELEMENT-TYPE is not constant."))
216 (lvar-value element-type
))))
217 (eltype-type (ir1-transform-specifier-type eltype
))
218 (saetp (find-if (lambda (saetp)
219 (csubtypep eltype-type
(sb!vm
:saetp-ctype saetp
)))
220 sb
!vm
:*specialized-array-element-type-properties
*))
221 (creation-form `(make-array dims
222 :element-type
',(type-specifier (sb!vm
:saetp-ctype saetp
))
224 '(:fill-pointer fill-pointer
))
226 '(:adjustable adjustable
)))))
229 (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype
))
231 (cond ((and (constant-lvar-p initial-element
)
232 (eql (lvar-value initial-element
)
233 (sb!vm
:saetp-initial-element-default saetp
)))
236 ;; error checking for target, disabled on the host because
237 ;; (CTYPE-OF #\Null) is not possible.
239 (when (constant-lvar-p initial-element
)
240 (let ((value (lvar-value initial-element
)))
242 ((not (ctypep value
(sb!vm
:saetp-ctype saetp
)))
243 ;; this case will cause an error at runtime, so we'd
244 ;; better WARN about it now.
245 (warn 'array-initial-element-mismatch
246 :format-control
"~@<~S is not a ~S (which is the ~
251 (type-specifier (sb!vm
:saetp-ctype saetp
))
252 'upgraded-array-element-type
254 ((not (ctypep value eltype-type
))
255 ;; this case will not cause an error at runtime, but
256 ;; it's still worth STYLE-WARNing about.
257 (compiler-style-warn "~S is not a ~S."
259 `(let ((array ,creation-form
))
260 (multiple-value-bind (vector)
261 (%data-vector-and-index array
0)
262 (fill vector initial-element
))
265 ;;; The integer type restriction on the length ensures that it will be
266 ;;; a vector. The lack of :ADJUSTABLE, :FILL-POINTER, and
267 ;;; :DISPLACED-TO keywords ensures that it will be simple; the lack of
268 ;;; :INITIAL-ELEMENT relies on another transform to deal with that
269 ;;; kind of initialization efficiently.
270 (deftransform make-array
((length &key element-type
)
272 (let* ((eltype (cond ((not element-type
) t
)
273 ((not (constant-lvar-p element-type
))
274 (give-up-ir1-transform
275 "ELEMENT-TYPE is not constant."))
277 (lvar-value element-type
))))
278 (len (if (constant-lvar-p length
)
281 (eltype-type (ir1-transform-specifier-type eltype
))
284 ,(if (unknown-type-p eltype-type
)
285 (give-up-ir1-transform
286 "ELEMENT-TYPE is an unknown type: ~S" eltype
)
287 (sb!xc
:upgraded-array-element-type eltype
))
289 (saetp (find-if (lambda (saetp)
290 (csubtypep eltype-type
(sb!vm
:saetp-ctype saetp
)))
291 sb
!vm
:*specialized-array-element-type-properties
*)))
293 (give-up-ir1-transform
294 "cannot open-code creation of ~S" result-type-spec
))
296 (unless (csubtypep (ctype-of (sb!vm
:saetp-initial-element-default saetp
))
298 ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE
299 ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If
300 ;; INITIAL-ELEMENT is not supplied, the consequences of later
301 ;; reading an uninitialized element of new-array are undefined,"
302 ;; so this could be legal code as long as the user plans to
303 ;; write before he reads, and if he doesn't we're free to do
304 ;; anything we like. But in case the user doesn't know to write
305 ;; elements before he reads elements (or to read manuals before
306 ;; he writes code:-), we'll signal a STYLE-WARNING in case he
307 ;; didn't realize this.
308 (compiler-style-warn "The default initial element ~S is not a ~S."
309 (sb!vm
:saetp-initial-element-default saetp
)
311 (let* ((n-bits-per-element (sb!vm
:saetp-n-bits saetp
))
312 (typecode (sb!vm
:saetp-typecode saetp
))
313 (n-pad-elements (sb!vm
:saetp-n-pad-elements saetp
))
314 (padded-length-form (if (zerop n-pad-elements
)
316 `(+ length
,n-pad-elements
)))
319 ((= n-bits-per-element
0) 0)
320 ((>= n-bits-per-element sb
!vm
:n-word-bits
)
321 `(* ,padded-length-form
322 (the fixnum
; i.e., not RATIO
323 ,(/ n-bits-per-element sb
!vm
:n-word-bits
))))
325 (let ((n-elements-per-word (/ sb
!vm
:n-word-bits
326 n-bits-per-element
)))
327 (declare (type index n-elements-per-word
)) ; i.e., not RATIO
328 `(ceiling ,padded-length-form
,n-elements-per-word
))))))
330 `(truly-the ,result-type-spec
331 (allocate-vector ,typecode length
,n-words-form
))
332 '((declare (type index length
)))))))
334 ;;; The list type restriction does not ensure that the result will be a
335 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
336 ;;; and displaced-to keywords ensures that it will be simple.
338 ;;; FIXME: should we generalize this transform to non-simple (though
339 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
340 ;;; deal with those? Maybe when the DEFTRANSFORM
341 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
343 (deftransform make-array
((dims &key element-type
)
345 (unless (or (null element-type
) (constant-lvar-p element-type
))
346 (give-up-ir1-transform
347 "The element-type is not constant; cannot open code array creation."))
348 (unless (constant-lvar-p dims
)
349 (give-up-ir1-transform
350 "The dimension list is not constant; cannot open code array creation."))
351 (let ((dims (lvar-value dims
)))
352 (unless (every #'integerp dims
)
353 (give-up-ir1-transform
354 "The dimension list contains something other than an integer: ~S"
356 (if (= (length dims
) 1)
357 `(make-array ',(car dims
)
359 '(:element-type element-type
)))
360 (let* ((total-size (reduce #'* dims
))
363 ,(cond ((null element-type
) t
)
364 ((and (constant-lvar-p element-type
)
365 (ir1-transform-specifier-type
366 (lvar-value element-type
)))
367 (sb!xc
:upgraded-array-element-type
368 (lvar-value element-type
)))
370 ,(make-list rank
:initial-element
'*))))
371 `(let ((header (make-array-header sb
!vm
:simple-array-widetag
,rank
)))
372 (setf (%array-fill-pointer header
) ,total-size
)
373 (setf (%array-fill-pointer-p header
) nil
)
374 (setf (%array-available-elements header
) ,total-size
)
375 (setf (%array-data-vector header
)
376 (make-array ,total-size
378 '(:element-type element-type
))))
379 (setf (%array-displaced-p header
) nil
)
381 (mapcar (lambda (dim)
382 `(setf (%array-dimension header
,(incf axis
))
385 (truly-the ,spec header
))))))
387 ;;;; miscellaneous properties of arrays
389 ;;; Transforms for various array properties. If the property is know
390 ;;; at compile time because of a type spec, use that constant value.
392 ;;; Most of this logic may end up belonging in code/late-type.lisp;
393 ;;; however, here we also need the -OR-GIVE-UP for the transforms, and
394 ;;; maybe this is just too sloppy for actual type logic. -- CSR,
396 (defun array-type-dimensions-or-give-up (type)
398 (array-type (array-type-dimensions type
))
400 (let ((types (union-type-types type
)))
401 ;; there are at least two types, right?
402 (aver (> (length types
) 1))
403 (let ((result (array-type-dimensions-or-give-up (car types
))))
404 (dolist (type (cdr types
) result
)
405 (unless (equal (array-type-dimensions-or-give-up type
) result
)
406 (give-up-ir1-transform))))))
407 ;; FIXME: intersection type [e.g. (and (array * (*)) (satisfies foo)) ]
408 (t (give-up-ir1-transform))))
410 (defun conservative-array-type-complexp (type)
412 (array-type (array-type-complexp type
))
414 (let ((types (union-type-types type
)))
415 (aver (> (length types
) 1))
416 (let ((result (conservative-array-type-complexp (car types
))))
417 (dolist (type (cdr types
) result
)
418 (unless (eq (conservative-array-type-complexp type
) result
)
419 (return-from conservative-array-type-complexp
:maybe
))))))
420 ;; FIXME: intersection type
423 ;;; If we can tell the rank from the type info, use it instead.
424 (deftransform array-rank
((array))
425 (let ((array-type (lvar-type array
)))
426 (let ((dims (array-type-dimensions-or-give-up array-type
)))
427 (if (not (listp dims
))
428 (give-up-ir1-transform
429 "The array rank is not known at compile time: ~S"
433 ;;; If we know the dimensions at compile time, just use it. Otherwise,
434 ;;; if we can tell that the axis is in bounds, convert to
435 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
436 ;;; (if it's simple and a vector).
437 (deftransform array-dimension
((array axis
)
439 (unless (constant-lvar-p axis
)
440 (give-up-ir1-transform "The axis is not constant."))
441 (let ((array-type (lvar-type array
))
442 (axis (lvar-value axis
)))
443 (let ((dims (array-type-dimensions-or-give-up array-type
)))
445 (give-up-ir1-transform
446 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
447 (unless (> (length dims
) axis
)
448 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
451 (let ((dim (nth axis dims
)))
452 (cond ((integerp dim
)
455 (ecase (conservative-array-type-complexp array-type
)
457 '(%array-dimension array
0))
461 (give-up-ir1-transform
462 "can't tell whether array is simple"))))
464 '(%array-dimension array axis
)))))))
466 ;;; If the length has been declared and it's simple, just return it.
467 (deftransform length
((vector)
468 ((simple-array * (*))))
469 (let ((type (lvar-type vector
)))
470 (let ((dims (array-type-dimensions-or-give-up type
)))
471 (unless (and (listp dims
) (integerp (car dims
)))
472 (give-up-ir1-transform
473 "Vector length is unknown, must call LENGTH at runtime."))
476 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
477 ;;; simple, it will extract the length slot from the vector. It it's
478 ;;; complex, it will extract the fill pointer slot from the array
480 (deftransform length
((vector) (vector))
481 '(vector-length vector
))
483 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
484 ;;; compile-time constant.
485 (deftransform vector-length
((vector))
486 (let ((vtype (lvar-type vector
)))
487 (let ((dim (first (array-type-dimensions-or-give-up vtype
))))
489 (give-up-ir1-transform))
490 (when (conservative-array-type-complexp vtype
)
491 (give-up-ir1-transform))
494 ;;; Again, if we can tell the results from the type, just use it.
495 ;;; Otherwise, if we know the rank, convert into a computation based
496 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
497 ;;; multiplications because we know that the total size must be an
499 (deftransform array-total-size
((array)
501 (let ((array-type (lvar-type array
)))
502 (let ((dims (array-type-dimensions-or-give-up array-type
)))
504 (give-up-ir1-transform "can't tell the rank at compile time"))
506 (do ((form 1 `(truly-the index
507 (* (array-dimension array
,i
) ,form
)))
509 ((= i
(length dims
)) form
))
510 (reduce #'* dims
)))))
512 ;;; Only complex vectors have fill pointers.
513 (deftransform array-has-fill-pointer-p
((array))
514 (let ((array-type (lvar-type array
)))
515 (let ((dims (array-type-dimensions-or-give-up array-type
)))
516 (if (and (listp dims
) (not (= (length dims
) 1)))
518 (ecase (conservative-array-type-complexp array-type
)
524 (give-up-ir1-transform
525 "The array type is ambiguous; must call ~
526 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
528 ;;; Primitive used to verify indices into arrays. If we can tell at
529 ;;; compile-time or we are generating unsafe code, don't bother with
531 (deftransform %check-bound
((array dimension index
) * * :node node
)
532 (cond ((policy node
(and (> speed safety
) (= safety
0)))
534 ((not (constant-lvar-p dimension
))
535 (give-up-ir1-transform))
537 (let ((dim (lvar-value dimension
)))
538 `(the (integer 0 (,dim
)) index
)))))
542 ;;; This checks to see whether the array is simple and the start and
543 ;;; end are in bounds. If so, it proceeds with those values.
544 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
545 ;;; may be further optimized.
547 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
548 ;;; START-VAR and END-VAR to the start and end of the designated
549 ;;; portion of the data vector. SVALUE and EVALUE are any start and
550 ;;; end specified to the original operation, and are factored into the
551 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
552 ;;; offset of all displacements encountered, and does not include
555 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
556 ;;; forced to be inline, overriding the ordinary judgment of the
557 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
558 ;;; fairly picky about their arguments, figuring that if you haven't
559 ;;; bothered to get all your ducks in a row, you probably don't care
560 ;;; that much about speed anyway! But in some cases it makes sense to
561 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
562 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
563 ;;; sense to use FORCE-INLINE option in that case.
564 (def!macro with-array-data
(((data-var array
&key offset-var
)
565 (start-var &optional
(svalue 0))
566 (end-var &optional
(evalue nil
))
569 (once-only ((n-array array
)
570 (n-svalue `(the index
,svalue
))
571 (n-evalue `(the (or index null
) ,evalue
)))
572 `(multiple-value-bind (,data-var
575 ,@(when offset-var
`(,offset-var
)))
576 (if (not (array-header-p ,n-array
))
577 (let ((,n-array
,n-array
))
578 (declare (type (simple-array * (*)) ,n-array
))
579 ,(once-only ((n-len `(length ,n-array
))
580 (n-end `(or ,n-evalue
,n-len
)))
581 `(if (<= ,n-svalue
,n-end
,n-len
)
583 (values ,n-array
,n-svalue
,n-end
0)
584 (failed-%with-array-data
,n-array
587 (,(if force-inline
'%with-array-data-macro
'%with-array-data
)
588 ,n-array
,n-svalue
,n-evalue
))
591 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
592 ;;; DEFTRANSFORMs and DEFUNs.
593 (def!macro %with-array-data-macro
(array
600 (with-unique-names (size defaulted-end data cumulative-offset
)
601 `(let* ((,size
(array-total-size ,array
))
604 (unless (or ,unsafe?
(<= ,end
,size
))
606 `(error 'bounding-indices-bad-error
607 :datum
(cons ,start
,end
)
608 :expected-type
`(cons (integer 0 ,',size
)
609 (integer ,',start
,',size
))
611 `(failed-%with-array-data
,array
,start
,end
)))
614 (unless (or ,unsafe?
(<= ,start
,defaulted-end
))
616 `(error 'bounding-indices-bad-error
617 :datum
(cons ,start
,end
)
618 :expected-type
`(cons (integer 0 ,',size
)
619 (integer ,',start
,',size
))
621 `(failed-%with-array-data
,array
,start
,end
)))
622 (do ((,data
,array
(%array-data-vector
,data
))
623 (,cumulative-offset
0
624 (+ ,cumulative-offset
625 (%array-displacement
,data
))))
626 ((not (array-header-p ,data
))
627 (values (the (simple-array ,element-type
1) ,data
)
628 (the index
(+ ,cumulative-offset
,start
))
629 (the index
(+ ,cumulative-offset
,defaulted-end
))
630 (the index
,cumulative-offset
)))
631 (declare (type index
,cumulative-offset
))))))
633 (deftransform %with-array-data
((array start end
)
634 ;; It might very well be reasonable to
635 ;; allow general ARRAY here, I just
636 ;; haven't tried to understand the
637 ;; performance issues involved. --
638 ;; WHN, and also CSR 2002-05-26
639 ((or vector simple-array
) index
(or index null
))
642 :policy
(> speed space
))
643 "inline non-SIMPLE-vector-handling logic"
644 (let ((element-type (upgraded-element-type-specifier-or-give-up array
)))
645 `(%with-array-data-macro array start end
646 :unsafe?
,(policy node
(= safety
0))
647 :element-type
,element-type
)))
651 ;;; We convert all typed array accessors into AREF and %ASET with type
652 ;;; assertions on the array.
653 (macrolet ((define-bit-frob (reffer setter simplep
)
655 (define-source-transform ,reffer
(a &rest i
)
656 `(aref (the (,',(if simplep
'simple-array
'array
)
658 ,(mapcar (constantly '*) i
))
660 (define-source-transform ,setter
(a &rest i
)
661 `(%aset
(the (,',(if simplep
'simple-array
'array
)
663 ,(cdr (mapcar (constantly '*) i
)))
665 (define-bit-frob sbit %sbitset t
)
666 (define-bit-frob bit %bitset nil
))
667 (macrolet ((define-frob (reffer setter type
)
669 (define-source-transform ,reffer
(a i
)
670 `(aref (the ,',type
,a
) ,i
))
671 (define-source-transform ,setter
(a i v
)
672 `(%aset
(the ,',type
,a
) ,i
,v
)))))
673 (define-frob svref %svset simple-vector
)
674 (define-frob schar %scharset simple-string
)
675 (define-frob char %charset string
))
677 (macrolet (;; This is a handy macro for computing the row-major index
678 ;; given a set of indices. We wrap each index with a call
679 ;; to %CHECK-BOUND to ensure that everything works out
680 ;; correctly. We can wrap all the interior arithmetic with
681 ;; TRULY-THE INDEX because we know the resultant
682 ;; row-major index must be an index.
683 (with-row-major-index ((array indices index
&optional new-value
)
685 `(let (n-indices dims
)
686 (dotimes (i (length ,indices
))
687 (push (make-symbol (format nil
"INDEX-~D" i
)) n-indices
)
688 (push (make-symbol (format nil
"DIM-~D" i
)) dims
))
689 (setf n-indices
(nreverse n-indices
))
690 (setf dims
(nreverse dims
))
691 `(lambda (,',array
,@n-indices
692 ,@',(when new-value
(list new-value
)))
693 (let* (,@(let ((,index -
1))
694 (mapcar (lambda (name)
695 `(,name
(array-dimension
702 (do* ((dims dims
(cdr dims
))
703 (indices n-indices
(cdr indices
))
704 (last-dim nil
(car dims
))
705 (form `(%check-bound
,',array
717 ((null (cdr dims
)) form
)))))
720 ;; Just return the index after computing it.
721 (deftransform array-row-major-index
((array &rest indices
))
722 (with-row-major-index (array indices index
)
725 ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or
726 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
727 ;; expression for the row major index.
728 (deftransform aref
((array &rest indices
))
729 (with-row-major-index (array indices index
)
730 (hairy-data-vector-ref array index
)))
731 (deftransform %aset
((array &rest stuff
))
732 (let ((indices (butlast stuff
)))
733 (with-row-major-index (array indices index new-value
)
734 (hairy-data-vector-set array index new-value
)))))
736 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
737 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
738 ;;; array total size.
739 (deftransform row-major-aref
((array index
))
740 `(hairy-data-vector-ref array
741 (%check-bound array
(array-total-size array
) index
)))
742 (deftransform %set-row-major-aref
((array index new-value
))
743 `(hairy-data-vector-set array
744 (%check-bound array
(array-total-size array
) index
)
747 ;;;; bit-vector array operation canonicalization
749 ;;;; We convert all bit-vector operations to have the result array
750 ;;;; specified. This allows any result allocation to be open-coded,
751 ;;;; and eliminates the need for any VM-dependent transforms to handle
754 (macrolet ((def (fun)
756 (deftransform ,fun
((bit-array-1 bit-array-2
757 &optional result-bit-array
)
758 (bit-vector bit-vector
&optional null
) *
759 :policy
(>= speed space
))
760 `(,',fun bit-array-1 bit-array-2
761 (make-array (length bit-array-1
) :element-type
'bit
)))
762 ;; If result is T, make it the first arg.
763 (deftransform ,fun
((bit-array-1 bit-array-2 result-bit-array
)
764 (bit-vector bit-vector
(eql t
)) *)
765 `(,',fun bit-array-1 bit-array-2 bit-array-1
)))))
777 ;;; Similar for BIT-NOT, but there is only one arg...
778 (deftransform bit-not
((bit-array-1 &optional result-bit-array
)
779 (bit-vector &optional null
) *
780 :policy
(>= speed space
))
781 '(bit-not bit-array-1
782 (make-array (length bit-array-1
) :element-type
'bit
)))
783 (deftransform bit-not
((bit-array-1 result-bit-array
)
784 (bit-vector (eql t
)))
785 '(bit-not bit-array-1 bit-array-1
))
787 ;;; Pick off some constant cases.
788 (defoptimizer (array-header-p derive-type
) ((array))
789 (let ((type (lvar-type array
)))
790 (cond ((not (array-type-p type
))
791 ;; FIXME: use analogue of ARRAY-TYPE-DIMENSIONS-OR-GIVE-UP
794 (let ((dims (array-type-dimensions type
)))
795 (cond ((csubtypep type
(specifier-type '(simple-array * (*))))
797 (specifier-type 'null
))
798 ((and (listp dims
) (/= (length dims
) 1))
799 ;; multi-dimensional array, will have a header
800 (specifier-type '(eql t
)))