0.8.15:
[sbcl/smoofra.git] / src / compiler / sparc / insts.lisp
blob801be79e9cdb31c8ae4dcef9f00063b4af49b3f2
1 ;;;; the instruction set definition for the Sparc
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!VM")
14 (eval-when (:compile-toplevel :load-toplevel :execute)
15 (setf sb!assem:*assem-scheduler-p* t)
16 (setf sb!assem:*assem-max-locations* 100))
18 ;;; Constants, types, conversion functions, some disassembler stuff.
19 (defun reg-tn-encoding (tn)
20 (declare (type tn tn))
21 (sc-case tn
22 (zero zero-offset)
23 (null null-offset)
25 (if (eq (sb-name (sc-sb (tn-sc tn))) 'registers)
26 (tn-offset tn)
27 (error "~S isn't a register." tn)))))
29 (defun fp-reg-tn-encoding (tn)
30 (declare (type tn tn))
31 (unless (eq (sb-name (sc-sb (tn-sc tn))) 'float-registers)
32 (error "~S isn't a floating-point register." tn))
33 (let ((offset (tn-offset tn)))
34 (cond ((> offset 31)
35 (assert (member :sparc-v9 *backend-subfeatures*))
36 ;; No single register encoding greater than reg 31.
37 (assert (zerop (mod offset 2)))
38 ;; Upper bit of the register number is encoded in the low bit.
39 (1+ (- offset 32)))
41 (tn-offset tn)))))
43 ;;;(sb!disassem:set-disassem-params :instruction-alignment 32
44 ;;; :opcode-column-width 11)
46 (defvar *disassem-use-lisp-reg-names* t
47 #!+sb-doc
48 "If non-NIL, print registers using the Lisp register names.
49 Otherwise, use the Sparc register names")
51 (!def-vm-support-routine location-number (loc)
52 (etypecase loc
53 (null)
54 (number)
55 (fixup)
56 (tn
57 (ecase (sb-name (sc-sb (tn-sc loc)))
58 (registers
59 (unless (zerop (tn-offset loc))
60 (tn-offset loc)))
61 (float-registers
62 (sc-case loc
63 (single-reg
64 (+ (tn-offset loc) 32))
65 (double-reg
66 (let ((offset (tn-offset loc)))
67 (assert (zerop (mod offset 2)))
68 (values (+ offset 32) 2)))
69 #!+long-float
70 (long-reg
71 (let ((offset (tn-offset loc)))
72 (assert (zerop (mod offset 4)))
73 (values (+ offset 32) 4)))))
74 (control-registers
75 96)
76 (immediate-constant
77 nil)))
78 (symbol
79 (ecase loc
80 (:memory 0)
81 (:psr 97)
82 (:fsr 98)
83 (:y 99)))))
85 ;;; symbols used for disassembly printing
86 (defparameter reg-symbols
87 (map 'vector
88 (lambda (name)
89 (cond ((null name) nil)
90 (t (make-symbol (concatenate 'string "%" name)))))
91 *register-names*)
92 #!+sb-doc "The Lisp names for the Sparc integer registers")
94 (defparameter sparc-reg-symbols
95 #("%G0" "%G1" "%G2" "%G3" "%G4" "%G5" NIL NIL
96 "%O0" "%O1" "%O2" "%O3" "%O4" "%O5" "%O6" "%O7"
97 "%L0" "%L1" "%L2" "%L3" "%L4" "%L5" "%L6" "%L7"
98 "%I0" "%I1" "%I2" "%I3" "%I4" "%I5" NIL "%I7")
99 #!+sb-doc "The standard names for the Sparc integer registers")
101 (defun get-reg-name (index)
102 (if *disassem-use-lisp-reg-names*
103 (aref reg-symbols index)
104 (aref sparc-reg-symbols index)))
106 (defvar *note-sethi-inst* nil
107 "An alist for the disassembler indicating the target register and
108 value used in a SETHI instruction. This is used to make annotations
109 about function addresses and register values.")
111 (defvar *pseudo-atomic-set* nil)
113 (defun sign-extend-immed-value (val)
114 ;; val is a 13-bit signed number. Extend the sign appropriately.
115 (if (logbitp 12 val)
116 (- val (ash 1 13))
117 val))
119 ;; Look at the current instruction and see if we can't add some notes
120 ;; about what's happening.
122 (defun maybe-add-notes (reg dstate)
123 (let* ((word (sb!disassem::sap-ref-int (sb!disassem::dstate-segment-sap dstate)
124 (sb!disassem::dstate-cur-offs dstate)
125 n-word-bytes
126 (sb!disassem::dstate-byte-order dstate)))
127 (format (ldb (byte 2 30) word))
128 (op3 (ldb (byte 6 19) word))
129 (rs1 (ldb (byte 5 14) word))
130 (rd (ldb (byte 5 25) word))
131 (immed-p (not (zerop (ldb (byte 1 13) word))))
132 (immed-val (sign-extend-immed-value (ldb (byte 13 0) word))))
133 (declare (ignore immed-p))
134 ;; Only the value of format and rd are guaranteed to be correct
135 ;; because the disassembler is trying to print out the value of a
136 ;; register. The other values may not be right.
137 (case format
139 (case op3
140 (#b000000
141 (when (= reg rs1)
142 (handle-add-inst rs1 immed-val rd dstate)))
143 (#b111000
144 (when (= reg rs1)
145 (handle-jmpl-inst rs1 immed-val rd dstate)))
146 (#b010001
147 (when (= reg rs1)
148 (handle-andcc-inst rs1 immed-val rd dstate)))))
150 (case op3
151 ((#b000000 #b000100)
152 (when (= reg rs1)
153 (handle-ld/st-inst rs1 immed-val rd dstate))))))
154 ;; If this is not a SETHI instruction, and RD is the same as some
155 ;; register used by SETHI, we delete the entry. (In case we have
156 ;; a SETHI without any additional instruction because the low bits
157 ;; were zero.)
158 (unless (and (zerop format) (= #b100 (ldb (byte 3 22) word)))
159 (let ((sethi (assoc rd *note-sethi-inst*)))
160 (when sethi
161 (setf *note-sethi-inst* (delete sethi *note-sethi-inst*)))))))
163 (defun handle-add-inst (rs1 immed-val rd dstate)
164 (let* ((sethi (assoc rs1 *note-sethi-inst*)))
165 (cond
166 (sethi
167 ;; RS1 was used in a SETHI instruction. Assume that
168 ;; this is the offset part of the SETHI instruction for
169 ;; a full 32-bit address of something. Make a note
170 ;; about this usage as a Lisp assembly routine or
171 ;; foreign routine, if possible. If not, just note the
172 ;; final value.
173 (let ((addr (+ immed-val (ash (cdr sethi) 10))))
174 (or (sb!disassem::note-code-constant-absolute addr dstate)
175 (sb!disassem:maybe-note-assembler-routine addr t dstate)
176 (sb!disassem:note (format nil "~A = #x~8,'0X"
177 (get-reg-name rd) addr)
178 dstate)))
179 (setf *note-sethi-inst* (delete sethi *note-sethi-inst*)))
180 ((= rs1 null-offset)
181 ;; We have an ADD %NULL, <n>, RD instruction. This is a
182 ;; reference to a static symbol.
183 (sb!disassem:maybe-note-nil-indexed-object immed-val
184 dstate))
185 ((= rs1 alloc-offset)
186 ;; ADD %ALLOC, n. This must be some allocation or
187 ;; pseudo-atomic stuff
188 (cond ((and (= immed-val 4) (= rd alloc-offset)
189 (not *pseudo-atomic-set*))
190 ;; "ADD 4, %ALLOC" sets the flag
191 (sb!disassem::note "Set pseudo-atomic flag" dstate)
192 (setf *pseudo-atomic-set* t))
193 ((= rd alloc-offset)
194 ;; "ADD n, %ALLOC" is reseting the flag, with extra
195 ;; allocation.
196 (sb!disassem:note
197 (format nil "Reset pseudo-atomic, allocated ~D bytes"
198 (+ immed-val 4)) dstate)
199 (setf *pseudo-atomic-set* nil))))
200 #+nil ((and (= rs1 zero-offset) *pseudo-atomic-set*)
201 ;; "ADD %ZERO, num, RD" inside a pseudo-atomic is very
202 ;; likely loading up a header word. Make a note to that
203 ;; effect.
204 (let ((type (second (assoc (logand immed-val #xff) header-word-type-alist)))
205 (size (ldb (byte 24 8) immed-val)))
206 (when type
207 (sb!disassem:note (format nil "Header word ~A, size ~D?" type size)
208 dstate)))))))
210 (defun handle-jmpl-inst (rs1 immed-val rd dstate)
211 (declare (ignore rd))
212 (let* ((sethi (assoc rs1 *note-sethi-inst*)))
213 (when sethi
214 ;; RS1 was used in a SETHI instruction. Assume that
215 ;; this is the offset part of the SETHI instruction for
216 ;; a full 32-bit address of something. Make a note
217 ;; about this usage as a Lisp assembly routine or
218 ;; foreign routine, if possible. If not, just note the
219 ;; final value.
220 (let ((addr (+ immed-val (ash (cdr sethi) 10))))
221 (sb!disassem:maybe-note-assembler-routine addr t dstate)
222 (setf *note-sethi-inst* (delete sethi *note-sethi-inst*))))))
224 (defun handle-ld/st-inst (rs1 immed-val rd dstate)
225 (declare (ignore rd))
226 ;; Got an LDUW/LD or STW instruction, with immediate offset.
227 (case rs1
229 ;; A reference to a code constant (reg = %CODE)
230 (sb!disassem:note-code-constant immed-val dstate))
232 ;; A reference to a static symbol or static function (reg =
233 ;; %NULL)
234 (or (sb!disassem:maybe-note-nil-indexed-symbol-slot-ref immed-val
235 dstate)
236 #+nil (sb!disassem::maybe-note-static-function immed-val dstate)))
238 (let ((sethi (assoc rs1 *note-sethi-inst*)))
239 (when sethi
240 (let ((addr (+ immed-val (ash (cdr sethi) 10))))
241 (sb!disassem:maybe-note-assembler-routine addr nil dstate)
242 (setf *note-sethi-inst* (delete sethi *note-sethi-inst*))))))))
244 (defun handle-andcc-inst (rs1 immed-val rd dstate)
245 ;; ANDCC %ALLOC, 3, %ZERO instruction
246 (when (and (= rs1 alloc-offset) (= rd zero-offset) (= immed-val 3))
247 (sb!disassem:note "pseudo-atomic interrupted?" dstate)))
249 (sb!disassem:define-arg-type reg
250 :printer (lambda (value stream dstate)
251 (declare (stream stream) (fixnum value))
252 (let ((regname (get-reg-name value)))
253 (princ regname stream)
254 (sb!disassem:maybe-note-associated-storage-ref value
255 'registers
256 regname
257 dstate)
258 (maybe-add-notes value dstate))))
260 (defparameter float-reg-symbols
261 #.(coerce
262 (loop for n from 0 to 63 collect (make-symbol (format nil "%F~d" n)))
263 'vector))
265 (sb!disassem:define-arg-type fp-reg
266 :printer (lambda (value stream dstate)
267 (declare (stream stream) (fixnum value))
268 (let ((regname (aref float-reg-symbols value)))
269 (princ regname stream)
270 (sb!disassem:maybe-note-associated-storage-ref
271 value
272 'float-registers
273 regname
274 dstate))))
276 ;;; The extended 6 bit floating point register encoding for the double
277 ;;; and long instructions of the sparc v9.
278 (sb!disassem:define-arg-type fp-ext-reg
279 :printer (lambda (value stream dstate)
280 (declare (stream stream) (fixnum value))
281 (let* (;; Decode the register number.
282 (value (if (oddp value) (+ value 31) value))
283 (regname (aref float-reg-symbols value)))
284 (princ regname stream)
285 (sb!disassem:maybe-note-associated-storage-ref
286 value
287 'float-registers
288 regname
289 dstate))))
291 (sb!disassem:define-arg-type relative-label
292 :sign-extend t
293 :use-label (lambda (value dstate)
294 (declare (type (signed-byte 22) value)
295 (type sb!disassem:disassem-state dstate))
296 (+ (ash value 2) (sb!disassem:dstate-cur-addr dstate))))
298 (defconstant-eqx branch-conditions
299 '(:f :eq :le :lt :leu :ltu :n :vs :t :ne :gt :ge :gtu :geu :p :vc)
300 #'equalp)
302 ;;; Note that these aren't the standard names for branch-conditions, I
303 ;;; think they're a bit more readable (e.g., "eq" instead of "e").
304 ;;; You could just put a vector of the normal ones here too.
306 (sb!disassem:define-arg-type branch-condition
307 :printer (coerce branch-conditions 'vector))
309 (deftype branch-condition ()
310 `(member ,@branch-conditions))
312 (defun branch-condition (condition)
313 (or (position condition branch-conditions)
314 (error "Unknown branch condition: ~S~%Must be one of: ~S"
315 condition branch-conditions)))
317 (def!constant branch-cond-true
318 #b1000)
320 (defconstant-eqx branch-fp-conditions
321 '(:f :ne :lg :ul :l :ug :g :u :t :eq :ue :ge :uge :le :ule :o)
322 #'equalp)
324 (sb!disassem:define-arg-type branch-fp-condition
325 :printer (coerce branch-fp-conditions 'vector))
327 (sb!disassem:define-arg-type call-fixup :use-label t)
329 (deftype fp-branch-condition ()
330 `(member ,@branch-fp-conditions))
332 (defun fp-branch-condition (condition)
333 (or (position condition branch-fp-conditions)
334 (error "Unknown fp-branch condition: ~S~%Must be one of: ~S"
335 condition branch-fp-conditions)))
338 ;;;; dissassem:define-instruction-formats
340 (sb!disassem:define-instruction-format
341 (format-1 32 :default-printer '(:name :tab disp))
342 (op :field (byte 2 30) :value 1)
343 (disp :field (byte 30 0)))
345 (sb!disassem:define-instruction-format
346 (format-2-immed 32 :default-printer '(:name :tab immed ", " rd))
347 (op :field (byte 2 30) :value 0)
348 (rd :field (byte 5 25) :type 'reg)
349 (op2 :field (byte 3 22))
350 (immed :field (byte 22 0)))
354 (sb!disassem:define-instruction-format
355 (format-2-branch 32 :default-printer `(:name (:unless (:constant ,branch-cond-true) cond)
356 (:unless (a :constant 0) "," 'A)
357 :tab
358 disp))
359 (op :field (byte 2 30) :value 0)
360 (a :field (byte 1 29) :value 0)
361 (cond :field (byte 4 25) :type 'branch-condition)
362 (op2 :field (byte 3 22))
363 (disp :field (byte 22 0) :type 'relative-label))
365 ;; Branch with prediction instruction for V9
367 ;; Currently only %icc and %xcc are used of the four possible values
369 (defconstant-eqx integer-condition-registers
370 '(:icc :reserved :xcc :reserved)
371 #'equalp)
373 (defconstant-eqx integer-cond-reg-name-vec
374 (coerce integer-condition-registers 'vector)
375 #'equalp)
377 (deftype integer-condition-register ()
378 `(member ,@(remove :reserved integer-condition-registers)))
380 (defparameter integer-condition-reg-symbols
381 (map 'vector
382 (lambda (name)
383 (make-symbol (concatenate 'string "%" (string name))))
384 integer-condition-registers))
386 (sb!disassem:define-arg-type integer-condition-register
387 :printer (lambda (value stream dstate)
388 (declare (stream stream) (fixnum value) (ignore dstate))
389 (let ((regname (aref integer-condition-reg-symbols value)))
390 (princ regname stream))))
392 (defconstant-eqx branch-predictions
393 '(:pn :pt)
394 #'equalp)
396 (sb!disassem:define-arg-type branch-prediction
397 :printer (coerce branch-predictions 'vector))
399 (defun integer-condition (condition-reg)
400 (declare (type (member :icc :xcc) condition-reg))
401 (or (position condition-reg integer-condition-registers)
402 (error "Unknown integer condition register: ~S~%"
403 condition-reg)))
405 (defun branch-prediction (pred)
406 (or (position pred branch-predictions)
407 (error "Unknown branch prediction: ~S~%Must be one of: ~S~%"
408 pred branch-predictions)))
410 (defconstant-eqx branch-pred-printer
411 `(:name (:unless (:constant ,branch-cond-true) cond)
412 (:unless (a :constant 0) "," 'A)
413 (:unless (p :constant 1) "," 'pn)
414 :tab
416 ", "
417 disp)
418 #'equalp)
420 (sb!disassem:define-instruction-format
421 (format-2-branch-pred 32 :default-printer branch-pred-printer)
422 (op :field (byte 2 30) :value 0)
423 (a :field (byte 1 29) :value 0)
424 (cond :field (byte 4 25) :type 'branch-condition)
425 (op2 :field (byte 3 22))
426 (cc :field (byte 2 20) :type 'integer-condition-register)
427 (p :field (byte 1 19))
428 (disp :field (byte 19 0) :type 'relative-label))
430 (defconstant-eqx fp-condition-registers
431 '(:fcc0 :fcc1 :fcc2 :fcc3)
432 #'equalp)
434 (defconstant-eqx fp-cond-reg-name-vec
435 (coerce fp-condition-registers 'vector)
436 #'equalp)
438 (defparameter fp-condition-reg-symbols
439 (map 'vector
440 (lambda (name)
441 (make-symbol (concatenate 'string "%" (string name))))
442 fp-condition-registers))
444 (sb!disassem:define-arg-type fp-condition-register
445 :printer (lambda (value stream dstate)
446 (declare (stream stream) (fixnum value) (ignore dstate))
447 (let ((regname (aref fp-condition-reg-symbols value)))
448 (princ regname stream))))
450 (sb!disassem:define-arg-type fp-condition-register-shifted
451 :printer (lambda (value stream dstate)
452 (declare (stream stream) (fixnum value) (ignore dstate))
453 (let ((regname (aref fp-condition-reg-symbols (ash value -1))))
454 (princ regname stream))))
456 (defun fp-condition (condition-reg)
457 (or (position condition-reg fp-condition-registers)
458 (error "Unknown integer condition register: ~S~%"
459 condition-reg)))
461 (defconstant-eqx fp-branch-pred-printer
462 `(:name (:unless (:constant ,branch-cond-true) cond)
463 (:unless (a :constant 0) "," 'A)
464 (:unless (p :constant 1) "," 'pn)
465 :tab
467 ", "
468 disp)
469 #'equalp)
471 (sb!disassem:define-instruction-format
472 (format-2-fp-branch-pred 32 :default-printer fp-branch-pred-printer)
473 (op :field (byte 2 30) :value 0)
474 (a :field (byte 1 29) :value 0)
475 (cond :field (byte 4 25) :type 'branch-fp-condition)
476 (op2 :field (byte 3 22))
477 (fcc :field (byte 2 20) :type 'fp-condition-register)
478 (p :field (byte 1 19))
479 (disp :field (byte 19 0) :type 'relative-label))
483 (sb!disassem:define-instruction-format
484 (format-2-unimp 32 :default-printer '(:name :tab data))
485 (op :field (byte 2 30) :value 0)
486 (ignore :field (byte 5 25) :value 0)
487 (op2 :field (byte 3 22) :value 0)
488 (data :field (byte 22 0)))
490 (defconstant-eqx f3-printer
491 '(:name :tab
492 (:unless (:same-as rd) rs1 ", ")
493 (:choose rs2 immed) ", "
495 #'equalp)
497 (sb!disassem:define-instruction-format
498 (format-3-reg 32 :default-printer f3-printer)
499 (op :field (byte 2 30))
500 (rd :field (byte 5 25) :type 'reg)
501 (op3 :field (byte 6 19))
502 (rs1 :field (byte 5 14) :type 'reg)
503 (i :field (byte 1 13) :value 0)
504 (asi :field (byte 8 5) :value 0)
505 (rs2 :field (byte 5 0) :type 'reg))
507 (sb!disassem:define-instruction-format
508 (format-3-immed 32 :default-printer f3-printer)
509 (op :field (byte 2 30))
510 (rd :field (byte 5 25) :type 'reg)
511 (op3 :field (byte 6 19))
512 (rs1 :field (byte 5 14) :type 'reg)
513 (i :field (byte 1 13) :value 1)
514 (immed :field (byte 13 0) :sign-extend t)) ; usually sign extended
516 (sb!disassem:define-instruction-format
517 (format-binary-fpop 32
518 :default-printer '(:name :tab rs1 ", " rs2 ", " rd))
519 (op :field (byte 2 30))
520 (rd :field (byte 5 25) :type 'fp-reg)
521 (op3 :field (byte 6 19))
522 (rs1 :field (byte 5 14) :type 'fp-reg)
523 (opf :field (byte 9 5))
524 (rs2 :field (byte 5 0) :type 'fp-reg))
526 ;;; Floating point load/save instructions encoding.
527 (sb!disassem:define-instruction-format
528 (format-unary-fpop 32 :default-printer '(:name :tab rs2 ", " rd))
529 (op :field (byte 2 30))
530 (rd :field (byte 5 25) :type 'fp-reg)
531 (op3 :field (byte 6 19))
532 (rs1 :field (byte 5 14) :value 0)
533 (opf :field (byte 9 5))
534 (rs2 :field (byte 5 0) :type 'fp-reg))
536 ;;; Floating point comparison instructions encoding.
538 ;; This is a merge of the instructions for FP comparison and FP
539 ;; conditional moves available in the Sparc V9. The main problem is
540 ;; that the new instructions use part of the opcode space used by the
541 ;; comparison instructions. In particular, the OPF field is arranged
542 ;; as so:
544 ;; Bit 1 0
545 ;; 3 5
546 ;; FMOVcc 0nn0000xx %fccn
547 ;; 1000000xx %icc
548 ;; 1100000xx %xcc
549 ;; FMOVR 0ccc001yy
550 ;; FCMP 001010zzz
552 ;; So we see that if we break up the OPF field into 4 pieces, opf0,
553 ;; opf1, opf2, and opf3, we can distinguish between these
554 ;; instructions. So bit 9 (opf2) can be used to distinguish between
555 ;; FCMP and the rest. Also note that the nn field overlaps with the
556 ;; ccc. We need to take this into account as well.
558 (sb!disassem:define-instruction-format
559 (format-fpop2 32
560 :default-printer #!-sparc-v9 '(:name :tab rs1 ", " rs2)
561 #!+sparc-v9 '(:name :tab rd ", " rs1 ", " rs2))
562 (op :field (byte 2 30))
563 (rd :field (byte 5 25) :value 0)
564 (op3 :field (byte 6 19))
565 (rs1 :field (byte 5 14))
566 (opf0 :field (byte 1 13))
567 (opf1 :field (byte 3 10))
568 (opf2 :field (byte 1 9))
569 (opf3 :field (byte 4 5))
570 (rs2 :field (byte 5 0) :type 'fp-reg))
572 ;;; Shift instructions
573 (sb!disassem:define-instruction-format
574 (format-3-shift-reg 32 :default-printer f3-printer)
575 (op :field (byte 2 30))
576 (rd :field (byte 5 25) :type 'reg)
577 (op3 :field (byte 6 19))
578 (rs1 :field (byte 5 14) :type 'reg)
579 (i :field (byte 1 13) :value 0)
580 (x :field (byte 1 12))
581 (asi :field (byte 7 5) :value 0)
582 (rs2 :field (byte 5 0) :type 'reg))
584 (sb!disassem:define-instruction-format
585 (format-3-shift-immed 32 :default-printer f3-printer)
586 (op :field (byte 2 30))
587 (rd :field (byte 5 25) :type 'reg)
588 (op3 :field (byte 6 19))
589 (rs1 :field (byte 5 14) :type 'reg)
590 (i :field (byte 1 13) :value 1)
591 (x :field (byte 1 12))
592 (immed :field (byte 12 0) :sign-extend nil))
595 ;;; Conditional moves (only available for Sparc V9 architectures)
597 ;; The names of all of the condition registers on the V9: 4 FP
598 ;; conditions, the original integer condition register and the new
599 ;; extended register. The :reserved register is reserved on the V9.
601 (defconstant-eqx cond-move-condition-registers
602 '(:fcc0 :fcc1 :fcc2 :fcc3 :icc :reserved :xcc :reserved)
603 #'equalp)
605 (defconstant-eqx cond-move-cond-reg-name-vec
606 (coerce cond-move-condition-registers 'vector)
607 #'equalp)
609 (deftype cond-move-condition-register ()
610 `(member ,@(remove :reserved cond-move-condition-registers)))
612 (defparameter cond-move-condition-reg-symbols
613 (map 'vector
614 (lambda (name)
615 (make-symbol (concatenate 'string "%" (string name))))
616 cond-move-condition-registers))
618 (sb!disassem:define-arg-type cond-move-condition-register
619 :printer (lambda (value stream dstate)
620 (declare (stream stream) (fixnum value) (ignore dstate))
621 (let ((regname (aref cond-move-condition-reg-symbols value)))
622 (princ regname stream))))
624 ;; From the given condition register, figure out what the cc2, cc1,
625 ;; and cc0 bits should be. Return cc2 and cc1/cc0 concatenated.
626 (defun cond-move-condition-parts (condition-reg)
627 (let ((posn (position condition-reg cond-move-condition-registers)))
628 (if posn
629 (truncate posn 4)
630 (error "Unknown conditional move condition register: ~S~%"
631 condition-reg))))
633 (defun cond-move-condition (condition-reg)
634 (or (position condition-reg cond-move-condition-registers)
635 (error "Unknown conditional move condition register: ~S~%"
636 condition-reg)))
638 (defconstant-eqx cond-move-printer
639 `(:name cond :tab
640 cc ", " (:choose immed rs2) ", " rd)
641 #'equalp)
643 ;; Conditional move integer register on integer or FP condition code
644 (sb!disassem:define-instruction-format
645 (format-4-cond-move 32 :default-printer cond-move-printer)
646 (op :field (byte 2 30))
647 (rd :field (byte 5 25) :type 'reg)
648 (op3 :field (byte 6 19))
649 (cc2 :field (byte 1 18) :value 1)
650 (cond :field (byte 4 14) :type 'branch-condition)
651 (i :field (byte 1 13) :value 0)
652 (cc :field (byte 2 11) :type 'integer-condition-register)
653 (empty :field (byte 6 5) :value 0)
654 (rs2 :field (byte 5 0) :type 'reg))
656 (sb!disassem:define-instruction-format
657 (format-4-cond-move-immed 32 :default-printer cond-move-printer)
658 (op :field (byte 2 30))
659 (rd :field (byte 5 25) :type 'reg)
660 (op3 :field (byte 6 19))
661 (cc2 :field (byte 1 18) :value 1)
662 (cond :field (byte 4 14) :type 'branch-condition)
663 (i :field (byte 1 13) :value 1)
664 (cc :field (byte 2 11) :type 'integer-condition-register)
665 (immed :field (byte 11 0) :sign-extend t))
667 ;; Floating-point versions of the above integer conditional moves
668 (defconstant-eqx cond-fp-move-printer
669 `(:name rs1 :tab opf1 ", " rs2 ", " rd)
670 #'equalp)
672 ;;; Conditional move on integer register condition (only on Sparc
673 ;;; V9). That is, move an integer register if some other integer
674 ;;; register satisfies some condition.
676 (defconstant-eqx cond-move-integer-conditions
677 '(:reserved :z :lez :lz :reserved :nz :gz :gez)
678 #'equalp)
680 (defconstant-eqx cond-move-integer-condition-vec
681 (coerce cond-move-integer-conditions 'vector)
682 #'equalp)
684 (deftype cond-move-integer-condition ()
685 `(member ,@(remove :reserved cond-move-integer-conditions)))
687 (sb!disassem:define-arg-type register-condition
688 :printer (lambda (value stream dstate)
689 (declare (stream stream) (fixnum value) (ignore dstate))
690 (let ((regname (aref cond-move-integer-condition-vec value)))
691 (princ regname stream))))
693 (defconstant-eqx cond-move-integer-printer
694 `(:name rcond :tab rs1 ", " (:choose immed rs2) ", " rd)
695 #'equalp)
697 (defun register-condition (rcond)
698 (or (position rcond cond-move-integer-conditions)
699 (error "Unknown register condition: ~S~%" rcond)))
701 (sb!disassem:define-instruction-format
702 (format-4-cond-move-integer 32 :default-printer cond-move-integer-printer)
703 (op :field (byte 2 30))
704 (rd :field (byte 5 25) :type 'reg)
705 (op3 :field (byte 6 19))
706 (rs1 :field (byte 5 14) :type 'reg)
707 (i :field (byte 1 13) :value 0)
708 (rcond :field (byte 3 10) :type 'register-condition)
709 (opf :field (byte 5 5))
710 (rs2 :field (byte 5 0) :type 'reg))
712 (sb!disassem:define-instruction-format
713 (format-4-cond-move-integer-immed 32 :default-printer cond-move-integer-printer)
714 (op :field (byte 2 30))
715 (rd :field (byte 5 25) :type 'reg)
716 (op3 :field (byte 6 19))
717 (rs1 :field (byte 5 14) :type 'reg)
718 (i :field (byte 1 13) :value 1)
719 (rcond :field (byte 3 10) :type 'register-condition)
720 (immed :field (byte 10 0) :sign-extend t))
722 (defconstant-eqx trap-printer
723 `(:name rd :tab cc ", " immed)
724 #'equalp)
726 (sb!disassem:define-instruction-format
727 (format-4-trap 32 :default-printer trap-printer)
728 (op :field (byte 2 30))
729 (rd :field (byte 5 25) :type 'reg)
730 (op3 :field (byte 6 19))
731 (rs1 :field (byte 5 14) :type 'reg)
732 (i :field (byte 1 13) :value 1)
733 (cc :field (byte 2 11) :type 'integer-condition-register)
734 (immed :field (byte 11 0) :sign-extend t)) ; usually sign extended
737 (defconstant-eqx cond-fp-move-integer-printer
738 `(:name opf1 :tab rs1 ", " rs2 ", " rd)
739 #'equalp)
742 ;;;; Primitive emitters.
744 (define-bitfield-emitter emit-word 32
745 (byte 32 0))
747 (define-bitfield-emitter emit-short 16
748 (byte 16 0))
750 (define-bitfield-emitter emit-format-1 32
751 (byte 2 30) (byte 30 0))
753 (define-bitfield-emitter emit-format-2-immed 32
754 (byte 2 30) (byte 5 25) (byte 3 22) (byte 22 0))
756 (define-bitfield-emitter emit-format-2-branch 32
757 (byte 2 30) (byte 1 29) (byte 4 25) (byte 3 22) (byte 22 0))
759 ;; Integer and FP branches with prediction for V9
760 (define-bitfield-emitter emit-format-2-branch-pred 32
761 (byte 2 30) (byte 1 29) (byte 4 25) (byte 3 22) (byte 2 20) (byte 1 19) (byte 19 0))
762 (define-bitfield-emitter emit-format-2-fp-branch-pred 32
763 (byte 2 30) (byte 1 29) (byte 4 25) (byte 3 22) (byte 2 20) (byte 1 19) (byte 19 0))
765 (define-bitfield-emitter emit-format-2-unimp 32
766 (byte 2 30) (byte 5 25) (byte 3 22) (byte 22 0))
768 (define-bitfield-emitter emit-format-3-reg 32
769 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 1 13) (byte 8 5)
770 (byte 5 0))
772 (define-bitfield-emitter emit-format-3-immed 32
773 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 1 13) (byte 13 0))
775 (define-bitfield-emitter emit-format-3-fpop 32
776 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 9 5) (byte 5 0))
778 (define-bitfield-emitter emit-format-3-fpop2 32
779 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14)
780 (byte 1 13) (byte 3 10) (byte 1 9) (byte 4 5)
781 (byte 5 0))
783 ;;; Shift instructions
785 (define-bitfield-emitter emit-format-3-shift-reg 32
786 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 1 13) (byte 1 12) (byte 7 5)
787 (byte 5 0))
789 (define-bitfield-emitter emit-format-3-shift-immed 32
790 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 1 13) (byte 1 12) (byte 12 0))
792 ;;; Conditional moves
794 ;; Conditional move in condition code
795 (define-bitfield-emitter emit-format-4-cond-move 32
796 (byte 2 30) (byte 5 25) (byte 6 19) (byte 1 18) (byte 4 14) (byte 1 13) (byte 2 11)
797 (byte 11 0))
799 ;; Conditional move on integer condition
800 (define-bitfield-emitter emit-format-4-cond-move-integer 32
801 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 1 13) (byte 3 10) (byte 5 5)
802 (byte 5 0))
804 (define-bitfield-emitter emit-format-4-cond-move-integer-immed 32
805 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 1 13) (byte 3 10)
806 (byte 10 0))
808 (define-bitfield-emitter emit-format-4-trap 32
809 (byte 2 30) (byte 5 25) (byte 6 19) (byte 5 14) (byte 1 13) (byte 2 11)
810 (byte 11 0))
813 ;;;; Most of the format-3-instructions.
815 (defun emit-format-3-inst (segment op op3 dst src1 src2
816 &key load-store fixup dest-kind)
817 (unless src2
818 (cond ((and (typep src1 'tn) load-store)
819 (setf src2 0))
821 (setf src2 src1)
822 (setf src1 dst))))
823 (etypecase src2
825 (emit-format-3-reg segment op
826 (if dest-kind
827 (fp-reg-tn-encoding dst)
828 (reg-tn-encoding dst))
829 op3 (reg-tn-encoding src1) 0 0 (reg-tn-encoding src2)))
830 (integer
831 (emit-format-3-immed segment op
832 (if dest-kind
833 (fp-reg-tn-encoding dst)
834 (reg-tn-encoding dst))
835 op3 (reg-tn-encoding src1) 1 src2))
836 (fixup
837 (unless (or load-store fixup)
838 (error "Fixups aren't allowed."))
839 (note-fixup segment :add src2)
840 (emit-format-3-immed segment op
841 (if dest-kind
842 (fp-reg-tn-encoding dst)
843 (reg-tn-encoding dst))
844 op3 (reg-tn-encoding src1) 1 0))))
846 ;;; Shift instructions because an extra bit is used in Sparc V9's to
847 ;;; indicate whether the shift is a 32-bit or 64-bit shift.
849 (defun emit-format-3-shift-inst (segment op op3 dst src1 src2 &key extended)
850 (unless src2
851 (setf src2 src1)
852 (setf src1 dst))
853 (etypecase src2
855 (emit-format-3-shift-reg segment op (reg-tn-encoding dst)
856 op3 (reg-tn-encoding src1) 0 (if extended 1 0)
857 0 (reg-tn-encoding src2)))
858 (integer
859 (emit-format-3-shift-immed segment op (reg-tn-encoding dst)
860 op3 (reg-tn-encoding src1) 1
861 (if extended 1 0) src2))))
864 (eval-when (:compile-toplevel :execute)
866 ;;; have to do this because def!constant is evalutated in the null lex env.
867 (defmacro with-ref-format (printer)
868 `(let* ((addend
869 '(:choose (:plus-integer immed) ("+" rs2)))
870 (ref-format
871 `("[" rs1 (:unless (:constant 0) ,addend) "]"
872 (:choose (:unless (:constant 0) asi) nil))))
873 ,printer))
875 (defconstant-eqx load-printer
876 (with-ref-format `(:NAME :TAB ,ref-format ", " rd))
877 #'equalp)
879 (defconstant-eqx store-printer
880 (with-ref-format `(:NAME :TAB rd ", " ,ref-format))
881 #'equalp)
883 ) ; EVAL-WHEN
885 (macrolet ((define-f3-inst (name op op3 &key fixup load-store (dest-kind 'reg)
886 (printer :default) reads writes flushable print-name)
887 (let ((printer
888 (if (eq printer :default)
889 (case load-store
890 ((nil) :default)
891 ((:load t) 'load-printer)
892 (:store 'store-printer))
893 printer)))
894 (when (and (atom reads) (not (null reads)))
895 (setf reads (list reads)))
896 (when (and (atom writes) (not (null writes)))
897 (setf writes (list writes)))
898 `(define-instruction ,name (segment dst src1 &optional src2)
899 (:declare (type tn dst)
900 ,(if (or fixup load-store)
901 '(type (or tn (signed-byte 13) null fixup) src1 src2)
902 '(type (or tn (signed-byte 13) null) src1 src2)))
903 (:printer format-3-reg
904 ((op ,op) (op3 ,op3) (rd nil :type ',dest-kind))
905 ,printer
906 ,@(when print-name `(:print-name ,print-name)))
907 (:printer format-3-immed
908 ((op ,op) (op3 ,op3) (rd nil :type ',dest-kind))
909 ,printer
910 ,@(when print-name `(:print-name ,print-name)))
911 ,@(when flushable
912 '((:attributes flushable)))
913 (:dependencies
914 (reads src1)
915 ,@(let ((reads-list nil))
916 (dolist (read reads)
917 (push (list 'reads read) reads-list))
918 reads-list)
919 ,@(cond ((eq load-store :store)
920 '((reads dst)
921 (if src2 (reads src2))))
922 ((eq load-store t)
923 '((reads :memory)
924 (reads dst)
925 (if src2 (reads src2))))
926 ((eq load-store :load)
927 '((reads :memory)
928 (if src2 (reads src2) (reads dst))))
930 '((if src2 (reads src2) (reads dst)))))
931 ,@(let ((writes-list nil))
932 (dolist (write writes)
933 (push (list 'writes write) writes-list))
934 writes-list)
935 ,@(cond ((eq load-store :store)
936 '((writes :memory :partially t)))
937 ((eq load-store t)
938 '((writes :memory :partially t)
939 (writes dst)))
940 ((eq load-store :load)
941 '((writes dst)))
943 '((writes dst)))))
944 (:delay 0)
945 (:emitter (emit-format-3-inst segment ,op ,op3 dst src1 src2
946 :load-store ,load-store
947 :fixup ,fixup
948 :dest-kind (not (eq ',dest-kind 'reg)))))))
950 (define-f3-shift-inst (name op op3 &key extended)
951 `(define-instruction ,name (segment dst src1 &optional src2)
952 (:declare (type tn dst)
953 (type (or tn (unsigned-byte 6) null) src1 src2))
954 (:printer format-3-shift-reg
955 ((op ,op) (op3 ,op3) (x ,(if extended 1 0)) (i 0)))
956 (:printer format-3-shift-immed
957 ((op ,op) (op3 ,op3) (x ,(if extended 1 0)) (i 1)))
958 (:dependencies
959 (reads src1)
960 (if src2 (reads src2) (reads dst))
961 (writes dst))
962 (:delay 0)
963 (:emitter (emit-format-3-shift-inst segment ,op ,op3 dst src1 src2
964 :extended ,extended)))))
966 (define-f3-inst ldsb #b11 #b001001 :load-store :load)
967 (define-f3-inst ldsh #b11 #b001010 :load-store :load)
968 (define-f3-inst ldub #b11 #b000001 :load-store :load)
969 (define-f3-inst lduh #b11 #b000010 :load-store :load)
971 ;; This instruction is called lduw for V9 , but looks exactly like ld
972 ;; on previous architectures.
973 (define-f3-inst ld #b11 #b000000 :load-store :load
974 #!+sparc-v9 :print-name #!+sparc-v9 'lduw)
976 (define-f3-inst ldsw #b11 #b001000 :load-store :load) ; v9
978 ;; ldd is deprecated on the Sparc V9.
979 (define-f3-inst ldd #b11 #b000011 :load-store :load)
981 (define-f3-inst ldx #b11 #b001011 :load-store :load) ; v9
983 (define-f3-inst ldf #b11 #b100000 :dest-kind fp-reg :load-store :load)
984 (define-f3-inst lddf #b11 #b100011 :dest-kind fp-reg :load-store :load)
985 (define-f3-inst ldqf #b11 #b100010 :dest-kind fp-reg :load-store :load) ; v9
986 (define-f3-inst stb #b11 #b000101 :load-store :store)
987 (define-f3-inst sth #b11 #b000110 :load-store :store)
988 (define-f3-inst st #b11 #b000100 :load-store :store)
990 ;; std is deprecated on the Sparc V9.
991 (define-f3-inst std #b11 #b000111 :load-store :store)
993 (define-f3-inst stx #b11 #b001110 :load-store :store) ; v9
995 (define-f3-inst stf #b11 #b100100 :dest-kind fp-reg :load-store :store)
996 (define-f3-inst stdf #b11 #b100111 :dest-kind fp-reg :load-store :store)
997 (define-f3-inst stqf #b11 #b100110 :dest-kind fp-reg :load-store :store) ; v9
998 (define-f3-inst ldstub #b11 #b001101 :load-store t)
1000 ;; swap is deprecated on the Sparc V9
1001 (define-f3-inst swap #b11 #b001111 :load-store t)
1003 (define-f3-inst add #b10 #b000000 :fixup t)
1004 (define-f3-inst addcc #b10 #b010000 :writes :psr)
1005 (define-f3-inst addx #b10 #b001000 :reads :psr)
1006 (define-f3-inst addxcc #b10 #b011000 :reads :psr :writes :psr)
1007 (define-f3-inst taddcc #b10 #b100000 :writes :psr)
1009 ;; taddcctv is deprecated on the Sparc V9. Use taddcc and bpvs or
1010 ;; taddcc and trap to get a similar effect. (Requires changing the C
1011 ;; code though!)
1012 ;;(define-f3-inst taddcctv #b10 #b100010 :writes :psr)
1014 (define-f3-inst sub #b10 #b000100)
1015 (define-f3-inst subcc #b10 #b010100 :writes :psr)
1016 (define-f3-inst subx #b10 #b001100 :reads :psr)
1017 (define-f3-inst subxcc #b10 #b011100 :reads :psr :writes :psr)
1018 (define-f3-inst tsubcc #b10 #b100001 :writes :psr)
1020 ;; tsubcctv is deprecated on the Sparc V9. Use tsubcc and bpvs or
1021 ;; tsubcc and trap to get a similar effect. (Requires changing the C
1022 ;; code though!)
1023 ;;(define-f3-inst tsubcctv #b10 #b100011 :writes :psr)
1025 (define-f3-inst mulscc #b10 #b100100 :reads :y :writes (:psr :y))
1026 (define-f3-inst and #b10 #b000001)
1027 (define-f3-inst andcc #b10 #b010001 :writes :psr)
1028 (define-f3-inst andn #b10 #b000101)
1029 (define-f3-inst andncc #b10 #b010101 :writes :psr)
1030 (define-f3-inst or #b10 #b000010)
1031 (define-f3-inst orcc #b10 #b010010 :writes :psr)
1032 (define-f3-inst orn #b10 #b000110)
1033 (define-f3-inst orncc #b10 #b010110 :writes :psr)
1034 (define-f3-inst xor #b10 #b000011)
1035 (define-f3-inst xorcc #b10 #b010011 :writes :psr)
1036 (define-f3-inst xnor #b10 #b000111)
1037 (define-f3-inst xnorcc #b10 #b010111 :writes :psr)
1039 (define-f3-shift-inst sll #b10 #b100101)
1040 (define-f3-shift-inst srl #b10 #b100110)
1041 (define-f3-shift-inst sra #b10 #b100111)
1042 (define-f3-shift-inst sllx #b10 #b100101 :extended t) ; v9
1043 (define-f3-shift-inst srlx #b10 #b100110 :extended t) ; v9
1044 (define-f3-shift-inst srax #b10 #b100111 :extended t) ; v9
1046 (define-f3-inst save #b10 #b111100 :reads :psr :writes :psr)
1047 (define-f3-inst restore #b10 #b111101 :reads :psr :writes :psr)
1049 ;; smul, smulcc, umul, umulcc, sdiv, sdivcc, udiv, and udivcc are
1050 ;; deprecated on the Sparc V9. Use mulx, sdivx, and udivx instead.
1051 (define-f3-inst smul #b10 #b001011 :writes :y) ; v8
1052 (define-f3-inst smulcc #b10 #b011011 :writes (:psr :y)) ; v8
1053 (define-f3-inst umul #b10 #b001010 :writes :y) ; v8
1054 (define-f3-inst umulcc #b10 #b011010 :writes (:psr :y)) ; v8
1055 (define-f3-inst sdiv #b10 #b001111 :reads :y) ; v8
1056 (define-f3-inst sdivcc #b10 #b011111 :reads :y :writes :psr) ; v8
1057 (define-f3-inst udiv #b10 #b001110 :reads :y) ; v8
1058 (define-f3-inst udivcc #b10 #b011110 :reads :y :writes :psr) ; v8
1060 (define-f3-inst mulx #b10 #b001001) ; v9 for both signed and unsigned
1061 (define-f3-inst sdivx #b10 #b101101) ; v9
1062 (define-f3-inst udivx #b10 #b001101) ; v9
1064 (define-f3-inst popc #b10 #b101110) ; v9: count one bits
1066 ) ; MACROLET
1069 ;;;; Random instructions.
1071 ;; ldfsr is deprecated on the Sparc V9. Use ldxfsr instead
1072 (define-instruction ldfsr (segment src1 src2)
1073 (:declare (type tn src1) (type (signed-byte 13) src2))
1074 (:printer format-3-immed ((op #b11) (op3 #b100001) (rd 0)))
1075 :pinned
1076 (:delay 0)
1077 (:emitter (emit-format-3-immed segment #b11 0 #b100001
1078 (reg-tn-encoding src1) 1 src2)))
1080 #!+sparc-64
1081 (define-instruction ldxfsr (segment src1 src2)
1082 (:declare (type tn src1) (type (signed-byte 13) src2))
1083 (:printer format-3-immed ((op #b11) (op3 #b100001) (rd 1))
1084 '(:name :tab "[" rs1 (:unless (:constant 0) "+" immed) "], %FSR")
1085 :print-name 'ldx)
1086 :pinned
1087 (:delay 0)
1088 (:emitter (emit-format-3-immed segment #b11 1 #b100001
1089 (reg-tn-encoding src1) 1 src2)))
1091 ;; stfsr is deprecated on the Sparc V9. Use stxfsr instead.
1092 (define-instruction stfsr (segment src1 src2)
1093 (:declare (type tn src1) (type (signed-byte 13) src2))
1094 (:printer format-3-immed ((op #b11) (op3 #b100101) (rd 0)))
1095 :pinned
1096 (:delay 0)
1097 (:emitter (emit-format-3-immed segment #b11 0 #b100101
1098 (reg-tn-encoding src1) 1 src2)))
1100 #!+sparc-64
1101 (define-instruction stxfsr (segment src1 src2)
1102 (:declare (type tn src1) (type (signed-byte 13) src2))
1103 (:printer format-3-immed ((op #b11) (op3 #b100101) (rd 1))
1104 '(:name :tab "%FSR, [" rs1 "+" (:unless (:constant 0) "+" immed) "]")
1105 :print-name 'stx)
1106 :pinned
1107 (:delay 0)
1108 (:emitter (emit-format-3-immed segment #b11 1 #b100101
1109 (reg-tn-encoding src1) 1 src2)))
1111 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
1112 (defun sethi-arg-printer (value stream dstate)
1113 (format stream "%hi(#x~8,'0x)" (ash value 10))
1114 ;; Save the immediate value and the destination register from this
1115 ;; sethi instruction. This is used later to print some possible
1116 ;; notes about the value loaded by sethi.
1117 (let* ((word (sb!disassem::sap-ref-int (sb!disassem::dstate-segment-sap dstate)
1118 (sb!disassem::dstate-cur-offs dstate)
1119 n-word-bytes
1120 (sb!disassem::dstate-byte-order dstate)))
1121 (imm22 (ldb (byte 22 0) word))
1122 (rd (ldb (byte 5 25) word)))
1123 (push (cons rd imm22) *note-sethi-inst*)))
1124 ) ; EVAL-WHEN
1127 (define-instruction sethi (segment dst src1)
1128 (:declare (type tn dst)
1129 (type (or (signed-byte 22) (unsigned-byte 22) fixup) src1))
1130 (:printer format-2-immed
1131 ((op2 #b100) (immed nil :printer #'sethi-arg-printer)))
1132 (:dependencies (writes dst))
1133 (:delay 0)
1134 (:emitter
1135 (etypecase src1
1136 (integer
1137 (emit-format-2-immed segment #b00 (reg-tn-encoding dst) #b100
1138 src1))
1139 (fixup
1140 (note-fixup segment :sethi src1)
1141 (emit-format-2-immed segment #b00 (reg-tn-encoding dst) #b100 0)))))
1143 ;; rdy is deprecated on the Sparc V9. It's not needed with 64-bit
1144 ;; registers.
1145 (define-instruction rdy (segment dst)
1146 (:declare (type tn dst))
1147 (:printer format-3-reg ((op #b10) (op3 #b101000) (rs1 0) (immed 0))
1148 '('RD :tab '%Y ", " rd))
1149 (:dependencies (reads :y) (writes dst))
1150 (:delay 0)
1151 (:emitter (emit-format-3-reg segment #b10 (reg-tn-encoding dst) #b101000
1152 0 0 0 0)))
1154 (defconstant-eqx wry-printer
1155 '('WR :tab rs1 (:unless (:constant 0) ", " (:choose immed rs2)) ", " '%Y)
1156 #'equalp)
1158 ;; wry is deprecated on the Sparc V9. It's not needed with 64-bit
1159 ;; registers.
1160 (define-instruction wry (segment src1 &optional src2)
1161 (:declare (type tn src1) (type (or (signed-byte 13) tn null) src2))
1162 (:printer format-3-reg ((op #b10) (op3 #b110000) (rd 0)) wry-printer)
1163 (:printer format-3-immed ((op #b10) (op3 #b110000) (rd 0)) wry-printer)
1164 (:dependencies (reads src1) (if src2 (reads src2)) (writes :y))
1165 (:delay 3)
1166 (:emitter
1167 (etypecase src2
1168 (null
1169 (emit-format-3-reg segment #b10 0 #b110000 (reg-tn-encoding src1) 0 0 0))
1171 (emit-format-3-reg segment #b10 0 #b110000 (reg-tn-encoding src1) 0 0
1172 (reg-tn-encoding src2)))
1173 (integer
1174 (emit-format-3-immed segment #b10 0 #b110000 (reg-tn-encoding src1) 1
1175 src2)))))
1177 (defun snarf-error-junk (sap offset &optional length-only)
1178 (let* ((length (sb!sys:sap-ref-8 sap offset))
1179 (vector (make-array length :element-type '(unsigned-byte 8))))
1180 (declare (type sb!sys:system-area-pointer sap)
1181 (type (unsigned-byte 8) length)
1182 (type (simple-array (unsigned-byte 8) (*)) vector))
1183 (cond (length-only
1184 (values 0 (1+ length) nil nil))
1186 (sb!kernel:copy-from-system-area sap (* n-byte-bits (1+ offset))
1187 vector (* n-word-bits
1188 vector-data-offset)
1189 (* length n-byte-bits))
1190 (collect ((sc-offsets)
1191 (lengths))
1192 (lengths 1) ; the length byte
1193 (let* ((index 0)
1194 (error-number (sb!c:read-var-integer vector index)))
1195 (lengths index)
1196 (loop
1197 (when (>= index length)
1198 (return))
1199 (let ((old-index index))
1200 (sc-offsets (sb!c:read-var-integer vector index))
1201 (lengths (- index old-index))))
1202 (values error-number
1203 (1+ length)
1204 (sc-offsets)
1205 (lengths))))))))
1207 (defun unimp-control (chunk inst stream dstate)
1208 (declare (ignore inst))
1209 (flet ((nt (x) (if stream (sb!disassem:note x dstate))))
1210 (case (format-2-unimp-data chunk dstate)
1211 (#.error-trap
1212 (nt "Error trap")
1213 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
1214 (#.cerror-trap
1215 (nt "Cerror trap")
1216 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
1217 (#.object-not-list-trap
1218 (nt "Object not list trap"))
1219 (#.breakpoint-trap
1220 (nt "Breakpoint trap"))
1221 (#.pending-interrupt-trap
1222 (nt "Pending interrupt trap"))
1223 (#.halt-trap
1224 (nt "Halt trap"))
1225 (#.fun-end-breakpoint-trap
1226 (nt "Function end breakpoint trap"))
1227 (#.object-not-instance-trap
1228 (nt "Object not instance trap"))
1231 (define-instruction unimp (segment data)
1232 (:declare (type (unsigned-byte 22) data))
1233 (:printer format-2-unimp () :default :control #'unimp-control
1234 :print-name #!-sparc-v9 'unimp #!+sparc-v9 'illtrap)
1235 (:delay 0)
1236 (:emitter (emit-format-2-unimp segment 0 0 0 data)))
1240 ;;;; Branch instructions.
1242 ;; The branch instruction is deprecated on the Sparc V9. Use the
1243 ;; branch with prediction instructions instead.
1244 (defun emit-relative-branch (segment a op2 cond-or-target target &optional fp)
1245 (emit-back-patch segment 4
1246 (lambda (segment posn)
1247 (unless target
1248 (setf target cond-or-target)
1249 (setf cond-or-target :t))
1250 (emit-format-2-branch
1251 segment #b00 a
1252 (if fp
1253 (fp-branch-condition cond-or-target)
1254 (branch-condition cond-or-target))
1256 (let ((offset (ash (- (label-position target) posn) -2)))
1257 (when (and (= a 1) (> 0 offset))
1258 (error "Offset of BA must be positive"))
1259 offset)))))
1261 (defun emit-relative-branch-integer (segment a op2 cond-or-target target &optional (cc :icc) (pred :pt))
1262 (declare (type integer-condition-register cc))
1263 (assert (member :sparc-v9 *backend-subfeatures*))
1264 (emit-back-patch segment 4
1265 (lambda (segment posn)
1266 (unless target
1267 (setf target cond-or-target)
1268 (setf cond-or-target :t))
1269 (emit-format-2-branch-pred
1270 segment #b00 a
1271 (branch-condition cond-or-target)
1273 (integer-condition cc)
1274 (branch-prediction pred)
1275 (let ((offset (ash (- (label-position target) posn) -2)))
1276 (when (and (= a 1) (> 0 offset))
1277 (error "Offset of BA must be positive"))
1278 offset)))))
1280 (defun emit-relative-branch-fp (segment a op2 cond-or-target target &optional (cc :fcc0) (pred :pt))
1281 (assert (member :sparc-v9 *backend-subfeatures*))
1282 (emit-back-patch segment 4
1283 (lambda (segment posn)
1284 (unless target
1285 (setf target cond-or-target)
1286 (setf cond-or-target :t))
1287 (emit-format-2-branch-pred
1288 segment #b00 a
1289 (fp-branch-condition cond-or-target)
1291 (fp-condition cc)
1292 (branch-prediction pred)
1293 (let ((offset (ash (- (label-position target) posn) -2)))
1294 (when (and (= a 1) (> 0 offset))
1295 (error "Offset of BA must be positive"))
1296 offset)))))
1298 ;; So that I don't have to go change the syntax of every single use of
1299 ;; branches, I'm keeping the Lisp instruction names the same. They
1300 ;; just get translated to the branch with prediction
1301 ;; instructions. However, the disassembler uses the correct V9
1302 ;; mnemonic.
1303 (define-instruction b (segment cond-or-target &rest args)
1304 (:declare (type (or label branch-condition) cond-or-target))
1305 (:printer format-2-branch ((op #b00) (op2 #b010)))
1306 (:attributes branch)
1307 (:dependencies (reads :psr))
1308 (:delay 1)
1309 (:emitter
1310 (cond
1311 ((member :sparc-v9 *backend-subfeatures*)
1312 (destructuring-bind (&optional target pred cc) args
1313 (declare (type (or label null) target))
1314 (emit-relative-branch-integer segment 0 #b001 cond-or-target target (or cc :icc) (or pred :pt))))
1316 (destructuring-bind (&optional target) args
1317 (declare (type (or label null) target))
1318 (emit-relative-branch segment 0 #b010 cond-or-target target))))))
1320 (define-instruction bp (segment cond-or-target &optional target pred cc)
1321 (:declare (type (or label branch-condition) cond-or-target)
1322 (type (or label null) target))
1323 (:printer format-2-branch-pred ((op #b00) (op2 #b001))
1324 branch-pred-printer
1325 :print-name 'bp)
1326 (:attributes branch)
1327 (:dependencies (reads :psr))
1328 (:delay 1)
1329 (:emitter
1330 (emit-relative-branch-integer segment 0 #b001 cond-or-target target (or cc :icc) (or pred :pt))))
1332 (define-instruction ba (segment cond-or-target &rest args)
1333 (:declare (type (or label branch-condition) cond-or-target))
1334 (:printer format-2-branch ((op #b00) (op2 #b010) (a 1))
1336 :print-name 'b)
1337 (:attributes branch)
1338 (:dependencies (reads :psr))
1339 (:delay 0)
1340 (:emitter
1341 (cond
1342 ((member :sparc-v9 *backend-subfeatures*)
1343 (destructuring-bind (&optional target pred cc) args
1344 (declare (type (or label null) target))
1345 (emit-relative-branch-integer segment 1 #b001 cond-or-target target (or cc :icc) (or pred :pt))))
1347 (destructuring-bind (&optional target) args
1348 (declare (type (or label null) target))
1349 (emit-relative-branch segment 1 #b010 cond-or-target target))))))
1351 (define-instruction bpa (segment cond-or-target &optional target pred cc)
1352 (:declare (type (or label branch-condition) cond-or-target)
1353 (type (or label null) target))
1354 (:printer format-2-branch ((op #b00) (op2 #b001) (a 1))
1356 :print-name 'bp)
1357 (:attributes branch)
1358 (:dependencies (reads :psr))
1359 (:delay 0)
1360 (:emitter
1361 (emit-relative-branch-integer segment 1 #b001 cond-or-target target (or cc :icc) (or pred :pt))))
1363 ;; This doesn't cover all of the possible formats for the trap
1364 ;; instruction. We really only want a trap with a immediate trap
1365 ;; value and with RS1 = register 0. Also, the Sparc Compliance
1366 ;; Definition 2.4.1 says only trap numbers 16-31 are allowed for user
1367 ;; code. All other trap numbers have other uses. The restriction on
1368 ;; target will prevent us from using bad trap numbers by mistake.
1370 (define-instruction t (segment condition target &optional cc)
1371 (:declare (type branch-condition condition)
1372 ;; KLUDGE: see comments in vm.lisp regarding
1373 ;; pseudo-atomic-trap.
1374 #!-linux
1375 (type (integer 16 31) target))
1376 (:printer format-3-immed ((op #b10)
1377 (rd nil :type 'branch-condition)
1378 (op3 #b111010)
1379 (rs1 0))
1380 '(:name rd :tab immed))
1381 (:attributes branch)
1382 (:dependencies (reads :psr))
1383 (:delay 0)
1384 (:emitter
1385 (cond
1386 ((member :sparc-v9 *backend-subfeatures*)
1387 (unless cc
1388 (setf cc :icc))
1389 (emit-format-4-trap segment
1390 #b10
1391 (branch-condition condition)
1392 #b111010 0 1
1393 (integer-condition cc)
1394 target))
1396 (assert (null cc))
1397 (emit-format-3-immed segment #b10 (branch-condition condition)
1398 #b111010 0 1 target)))))
1400 ;;; KLUDGE: we leave this commented out, as these two (T and TCC)
1401 ;;; operations are actually indistinguishable from their bitfields,
1402 ;;; breaking the disassembler if these are left in. The printer isn't
1403 ;;; terribly smart, but the emitted code is right. - CSR, 2002-08-04
1404 #+nil
1405 (define-instruction tcc (segment condition target &optional (cc #!-sparc-64 :icc #!+sparc-64 :xcc))
1406 (:declare (type branch-condition condition)
1407 ;; KLUDGE: see above.
1408 #!-linux
1409 (type (integer 16 31) target)
1410 (type integer-condition-register cc))
1411 (:printer format-4-trap ((op #b10)
1412 (rd nil :type 'branch-condition)
1413 (op3 #b111010)
1414 (rs1 0))
1415 trap-printer)
1416 (:attributes branch)
1417 (:dependencies (reads :psr))
1418 (:delay 0)
1419 (:emitter (emit-format-4-trap segment
1420 #b10
1421 (branch-condition condition)
1422 #b111010 0 1
1423 (integer-condition cc)
1424 target)))
1426 ;; Same as for the branch instructions. On the Sparc V9, we will use
1427 ;; the FP branch with prediction instructions instead.
1429 (define-instruction fb (segment condition target &rest args)
1430 (:declare (type fp-branch-condition condition) (type label target))
1431 (:printer format-2-branch ((op #B00)
1432 (cond nil :type 'branch-fp-condition)
1433 (op2 #b110)))
1434 (:attributes branch)
1435 (:dependencies (reads :fsr))
1436 (:delay 1)
1437 (:emitter
1438 (cond
1439 ((member :sparc-v9 *backend-subfeatures*)
1440 (destructuring-bind (&optional fcc pred) args
1441 (emit-relative-branch-fp segment 0 #b101 condition target (or fcc :fcc0) (or pred :pt))))
1443 (assert (null args))
1444 (emit-relative-branch segment 0 #b110 condition target t)))))
1446 (define-instruction fbp (segment condition target &optional fcc pred)
1447 (:declare (type fp-branch-condition condition) (type label target))
1448 (:printer format-2-fp-branch-pred ((op #b00) (op2 #b101))
1449 fp-branch-pred-printer
1450 :print-name 'fbp)
1451 (:attributes branch)
1452 (:dependencies (reads :fsr))
1453 (:delay 1)
1454 (:emitter
1455 (emit-relative-branch-fp segment 0 #b101 condition target (or fcc :fcc0) (or pred :pt))))
1457 (defconstant-eqx jal-printer
1458 '(:name :tab
1459 (:choose (rs1 (:unless (:constant 0) (:plus-integer immed)))
1460 (:cond ((rs2 :constant 0) rs1)
1461 ((rs1 :constant 0) rs2)
1462 (t rs1 "+" rs2)))
1463 (:unless (:constant 0) ", " rd))
1464 #'equalp)
1466 (define-instruction jal (segment dst src1 &optional src2)
1467 (:declare (type tn dst)
1468 (type (or tn integer) src1)
1469 (type (or null fixup tn (signed-byte 13)) src2))
1470 (:printer format-3-reg ((op #b10) (op3 #b111000)) jal-printer)
1471 (:printer format-3-immed ((op #b10) (op3 #b111000)) jal-printer)
1472 (:attributes branch)
1473 (:dependencies (reads src1) (if src2 (reads src2) (reads dst)) (writes dst))
1474 (:delay 1)
1475 (:emitter
1476 (unless src2
1477 (setf src2 src1)
1478 (setf src1 0))
1479 (etypecase src2
1481 (emit-format-3-reg segment #b10 (reg-tn-encoding dst) #b111000
1482 (if (integerp src1)
1483 src1
1484 (reg-tn-encoding src1))
1485 0 0 (reg-tn-encoding src2)))
1486 (integer
1487 (emit-format-3-immed segment #b10 (reg-tn-encoding dst) #b111000
1488 (reg-tn-encoding src1) 1 src2))
1489 (fixup
1490 (note-fixup segment :add src2)
1491 (emit-format-3-immed segment #b10 (reg-tn-encoding dst)
1492 #b111000 (reg-tn-encoding src1) 1 0)))))
1494 (define-instruction j (segment src1 &optional src2)
1495 (:declare (type tn src1) (type (or tn (signed-byte 13) fixup null) src2))
1496 (:printer format-3-reg ((op #b10) (op3 #b111000) (rd 0)) jal-printer)
1497 (:printer format-3-immed ((op #b10) (op3 #b111000) (rd 0)) jal-printer)
1498 (:attributes branch)
1499 (:dependencies (reads src1) (if src2 (reads src2)))
1500 (:delay 1)
1501 (:emitter
1502 (etypecase src2
1503 (null
1504 (emit-format-3-reg segment #b10 0 #b111000 (reg-tn-encoding src1) 0 0 0))
1506 (emit-format-3-reg segment #b10 0 #b111000 (reg-tn-encoding src1) 0 0
1507 (reg-tn-encoding src2)))
1508 (integer
1509 (emit-format-3-immed segment #b10 0 #b111000 (reg-tn-encoding src1) 1
1510 src2))
1511 (fixup
1512 (note-fixup segment :add src2)
1513 (emit-format-3-immed segment #b10 0 #b111000 (reg-tn-encoding src1) 1
1514 0)))))
1518 ;;;; Unary and binary fp insts.
1520 (macrolet ((define-unary-fp-inst (name opf &key reads extended)
1521 `(define-instruction ,name (segment dst src)
1522 (:declare (type tn dst src))
1523 (:printer format-unary-fpop
1524 ((op #b10) (op3 #b110100) (opf ,opf)
1525 (rs1 0)
1526 (rs2 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
1527 (rd nil :type ',(if extended 'fp-ext-reg 'fp-reg))))
1528 (:dependencies
1529 ,@(when reads
1530 `((reads ,reads)))
1531 (reads dst)
1532 (reads src)
1533 (writes dst))
1534 (:delay 0)
1535 (:emitter (emit-format-3-fpop segment #b10 (fp-reg-tn-encoding dst)
1536 #b110100 0 ,opf (fp-reg-tn-encoding src)))))
1538 (define-binary-fp-inst (name opf &key (op3 #b110100)
1539 reads writes delay extended)
1540 `(define-instruction ,name (segment dst src1 src2)
1541 (:declare (type tn dst src1 src2))
1542 (:printer format-binary-fpop
1543 ((op #b10) (op3 ,op3) (opf ,opf)
1544 (rs1 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
1545 (rs2 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
1546 (rd nil :type ',(if extended 'fp-ext-reg 'fp-reg))
1548 (:dependencies
1549 ,@(when reads
1550 `((reads ,reads)))
1551 (reads src1)
1552 (reads src2)
1553 ,@(when writes
1554 `((writes ,writes)))
1555 (writes dst))
1556 ,@(if delay
1557 `((:delay ,delay))
1558 '((:delay 0)))
1559 (:emitter (emit-format-3-fpop segment #b10 (fp-reg-tn-encoding dst)
1560 ,op3 (fp-reg-tn-encoding src1) ,opf
1561 (fp-reg-tn-encoding src2)))))
1563 (define-cmp-fp-inst (name opf &key extended)
1564 (let ((opf0 #b0)
1565 (opf1 #b010)
1566 (opf2 #b1))
1567 `(define-instruction ,name (segment src1 src2 &optional (fcc :fcc0))
1568 (:declare (type tn src1 src2)
1569 (type (member :fcc0 :fcc1 :fcc2 :fcc3) fcc))
1570 (:printer format-fpop2
1571 ((op #b10)
1572 (op3 #b110101)
1573 (opf0 ,opf0)
1574 (opf1 ,opf1)
1575 (opf2 ,opf2)
1576 (opf3 ,opf)
1577 (rs1 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
1578 (rs2 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
1579 #!-sparc-v9
1580 (rd 0)
1581 #!+sparc-v9
1582 (rd nil :type 'fp-condition-register))
1584 (:dependencies
1585 (reads src1)
1586 (reads src2)
1587 (writes :fsr))
1588 ;; The Sparc V9 doesn't need a delay after a FP compare.
1590 ;; KLUDGE FIXME YAARGH -- how to express that? I guess for now we
1591 ;; do the worst case, and hope to fix it.
1592 ;; (:delay #-sparc-v9 1 #+sparc-v9 0)
1593 (:delay 1)
1594 (:emitter
1595 (emit-format-3-fpop2 segment #b10
1596 (or (position fcc '(:fcc0 :fcc1 :fcc2 :fcc3))
1598 #b110101
1599 (fp-reg-tn-encoding src1)
1600 ,opf0 ,opf1 ,opf2 ,opf
1601 (fp-reg-tn-encoding src2)))))))
1603 (define-unary-fp-inst fitos #b011000100 :reads :fsr)
1604 (define-unary-fp-inst fitod #b011001000 :reads :fsr :extended t)
1605 (define-unary-fp-inst fitoq #b011001100 :reads :fsr :extended t) ; v8
1607 (define-unary-fp-inst fxtos #b010000100 :reads :fsr) ; v9
1608 (define-unary-fp-inst fxtod #b010001000 :reads :fsr :extended t) ; v9
1609 (define-unary-fp-inst fxtoq #b010001100 :reads :fsr :extended t) ; v9
1612 ;; I (Raymond Toy) don't think these f{sd}toir instructions exist on
1613 ;; any Ultrasparc, but I only have a V9 manual. The code in
1614 ;; float.lisp seems to indicate that they only existed on non-sun4
1615 ;; machines (sun3 68K machines?).
1616 (define-unary-fp-inst fstoir #b011000001 :reads :fsr)
1617 (define-unary-fp-inst fdtoir #b011000010 :reads :fsr)
1619 (define-unary-fp-inst fstoi #b011010001)
1620 (define-unary-fp-inst fdtoi #b011010010 :extended t)
1621 (define-unary-fp-inst fqtoi #b011010011 :extended t) ; v8
1623 (define-unary-fp-inst fstox #b010000001) ; v9
1624 (define-unary-fp-inst fdtox #b010000010 :extended t) ; v9
1625 (define-unary-fp-inst fqtox #b010000011 :extended t) ; v9
1627 (define-unary-fp-inst fstod #b011001001 :reads :fsr)
1628 (define-unary-fp-inst fstoq #b011001101 :reads :fsr) ; v8
1629 (define-unary-fp-inst fdtos #b011000110 :reads :fsr)
1630 (define-unary-fp-inst fdtoq #b011001110 :reads :fsr) ; v8
1631 (define-unary-fp-inst fqtos #b011000111 :reads :fsr) ; v8
1632 (define-unary-fp-inst fqtod #b011001011 :reads :fsr) ; v8
1634 (define-unary-fp-inst fmovs #b000000001)
1635 (define-unary-fp-inst fmovd #b000000010 :extended t) ; v9
1636 (define-unary-fp-inst fmovq #b000000011 :extended t) ; v9
1638 (define-unary-fp-inst fnegs #b000000101)
1639 (define-unary-fp-inst fnegd #b000000110 :extended t) ; v9
1640 (define-unary-fp-inst fnegq #b000000111 :extended t) ; v9
1642 (define-unary-fp-inst fabss #b000001001)
1643 (define-unary-fp-inst fabsd #b000001010 :extended t) ; v9
1644 (define-unary-fp-inst fabsq #b000001011 :extended t) ; v9
1646 (define-unary-fp-inst fsqrts #b000101001 :reads :fsr) ; V7
1647 (define-unary-fp-inst fsqrtd #b000101010 :reads :fsr :extended t) ; V7
1648 (define-unary-fp-inst fsqrtq #b000101011 :reads :fsr :extended t) ; v8
1650 (define-binary-fp-inst fadds #b001000001)
1651 (define-binary-fp-inst faddd #b001000010 :extended t)
1652 (define-binary-fp-inst faddq #b001000011 :extended t) ; v8
1653 (define-binary-fp-inst fsubs #b001000101)
1654 (define-binary-fp-inst fsubd #b001000110 :extended t)
1655 (define-binary-fp-inst fsubq #b001000111 :extended t) ; v8
1657 (define-binary-fp-inst fmuls #b001001001)
1658 (define-binary-fp-inst fmuld #b001001010 :extended t)
1659 (define-binary-fp-inst fmulq #b001001011 :extended t) ; v8
1660 (define-binary-fp-inst fdivs #b001001101)
1661 (define-binary-fp-inst fdivd #b001001110 :extended t)
1662 (define-binary-fp-inst fdivq #b001001111 :extended t) ; v8
1664 ;;; Float comparison instructions.
1666 (define-cmp-fp-inst fcmps #b0001)
1667 (define-cmp-fp-inst fcmpd #b0010 :extended t)
1668 (define-cmp-fp-inst fcmpq #b0011 :extended t) ;v8
1669 (define-cmp-fp-inst fcmpes #b0101)
1670 (define-cmp-fp-inst fcmped #b0110 :extended t)
1671 (define-cmp-fp-inst fcmpeq #b0111 :extended t) ; v8
1673 ) ; MACROLET
1675 ;;;; li, jali, ji, nop, cmp, not, neg, move, and more
1677 (defun %li (reg value)
1678 (etypecase value
1679 ((signed-byte 13)
1680 (inst add reg zero-tn value))
1681 ((or (signed-byte 32) (unsigned-byte 32))
1682 (let ((hi (ldb (byte 22 10) value))
1683 (lo (ldb (byte 10 0) value)))
1684 (inst sethi reg hi)
1685 (unless (zerop lo)
1686 (inst add reg lo))))
1687 (fixup
1688 (inst sethi reg value)
1689 (inst add reg value))))
1691 (define-instruction-macro li (reg value)
1692 `(%li ,reg ,value))
1694 ;;; Jal to a full 32-bit address. Tmpreg is trashed.
1695 (define-instruction jali (segment link tmpreg value)
1696 (:declare (type tn link tmpreg)
1697 (type (or (signed-byte 13) (signed-byte 32) (unsigned-byte 32)
1698 fixup) value))
1699 (:attributes variable-length)
1700 (:vop-var vop)
1701 (:attributes branch)
1702 (:dependencies (writes link) (writes tmpreg))
1703 (:delay 1)
1704 (:emitter
1705 (assemble (segment vop)
1706 (etypecase value
1707 ((signed-byte 13)
1708 (inst jal link zero-tn value))
1709 ((or (signed-byte 32) (unsigned-byte 32))
1710 (let ((hi (ldb (byte 22 10) value))
1711 (lo (ldb (byte 10 0) value)))
1712 (inst sethi tmpreg hi)
1713 (inst jal link tmpreg lo)))
1714 (fixup
1715 (inst sethi tmpreg value)
1716 (inst jal link tmpreg value))))))
1718 ;;; Jump to a full 32-bit address. Tmpreg is trashed.
1719 (define-instruction ji (segment tmpreg value)
1720 (:declare (type tn tmpreg)
1721 (type (or (signed-byte 13) (signed-byte 32) (unsigned-byte 32)
1722 fixup) value))
1723 (:attributes variable-length)
1724 (:vop-var vop)
1725 (:attributes branch)
1726 (:dependencies (writes tmpreg))
1727 (:delay 1)
1728 (:emitter
1729 (assemble (segment vop)
1730 (inst jali zero-tn tmpreg value))))
1732 (define-instruction nop (segment)
1733 (:printer format-2-immed ((rd 0) (op2 #b100) (immed 0)) '(:name))
1734 (:attributes flushable)
1735 (:delay 0)
1736 (:emitter (emit-format-2-immed segment 0 0 #b100 0)))
1738 (!def-vm-support-routine emit-nop (segment)
1739 (emit-format-2-immed segment 0 0 #b100 0))
1741 (define-instruction cmp (segment src1 &optional src2)
1742 (:declare (type tn src1) (type (or null tn (signed-byte 13)) src2))
1743 (:printer format-3-reg ((op #b10) (op3 #b010100) (rd 0))
1744 '(:name :tab rs1 ", " rs2))
1745 (:printer format-3-immed ((op #b10) (op3 #b010100) (rd 0))
1746 '(:name :tab rs1 ", " immed))
1747 (:dependencies (reads src1) (if src2 (reads src2)) (writes :psr))
1748 (:delay 0)
1749 (:emitter
1750 (etypecase src2
1751 (null
1752 (emit-format-3-reg segment #b10 0 #b010100 (reg-tn-encoding src1) 0 0 0))
1754 (emit-format-3-reg segment #b10 0 #b010100 (reg-tn-encoding src1) 0 0
1755 (reg-tn-encoding src2)))
1756 (integer
1757 (emit-format-3-immed segment #b10 0 #b010100 (reg-tn-encoding src1) 1
1758 src2)))))
1760 (define-instruction not (segment dst &optional src1)
1761 (:declare (type tn dst) (type (or tn null) src1))
1762 (:printer format-3-reg ((op #b10) (op3 #b000111) (rs2 0))
1763 '(:name :tab (:unless (:same-as rd) rs1 ", " ) rd))
1764 (:dependencies (if src1 (reads src1) (reads dst)) (writes dst))
1765 (:delay 0)
1766 (:emitter
1767 (unless src1
1768 (setf src1 dst))
1769 (emit-format-3-reg segment #b10 (reg-tn-encoding dst) #b000111
1770 (reg-tn-encoding src1) 0 0 0)))
1772 (define-instruction neg (segment dst &optional src1)
1773 (:declare (type tn dst) (type (or tn null) src1))
1774 (:printer format-3-reg ((op #b10) (op3 #b000100) (rs1 0))
1775 '(:name :tab (:unless (:same-as rd) rs2 ", " ) rd))
1776 (:dependencies (if src1 (reads src1) (reads dst)) (writes dst))
1777 (:delay 0)
1778 (:emitter
1779 (unless src1
1780 (setf src1 dst))
1781 (emit-format-3-reg segment #b10 (reg-tn-encoding dst) #b000100
1782 0 0 0 (reg-tn-encoding src1))))
1784 (define-instruction move (segment dst src1)
1785 (:declare (type tn dst src1))
1786 (:printer format-3-reg ((op #b10) (op3 #b000010) (rs1 0))
1787 '(:name :tab rs2 ", " rd)
1788 :print-name 'mov)
1789 (:attributes flushable)
1790 (:dependencies (reads src1) (writes dst))
1791 (:delay 0)
1792 (:emitter (emit-format-3-reg segment #b10 (reg-tn-encoding dst) #b000010
1793 0 0 0 (reg-tn-encoding src1))))
1797 ;;;; Instructions for dumping data and header objects.
1799 (define-instruction word (segment word)
1800 (:declare (type (or (unsigned-byte 32) (signed-byte 32)) word))
1801 :pinned
1802 (:delay 0)
1803 (:emitter
1804 (emit-word segment word)))
1806 (define-instruction short (segment short)
1807 (:declare (type (or (unsigned-byte 16) (signed-byte 16)) short))
1808 :pinned
1809 (:delay 0)
1810 (:emitter
1811 (emit-short segment short)))
1813 (define-instruction byte (segment byte)
1814 (:declare (type (or (unsigned-byte 8) (signed-byte 8)) byte))
1815 :pinned
1816 (:delay 0)
1817 (:emitter
1818 (emit-byte segment byte)))
1820 (define-bitfield-emitter emit-header-object 32
1821 (byte 24 8) (byte 8 0))
1823 (defun emit-header-data (segment type)
1824 (emit-back-patch
1825 segment 4
1826 (lambda (segment posn)
1827 (emit-word segment
1828 (logior type
1829 (ash (+ posn (component-header-length))
1830 (- n-widetag-bits word-shift)))))))
1832 (define-instruction simple-fun-header-word (segment)
1833 :pinned
1834 (:delay 0)
1835 (:emitter
1836 (emit-header-data segment simple-fun-header-widetag)))
1838 (define-instruction lra-header-word (segment)
1839 :pinned
1840 (:delay 0)
1841 (:emitter
1842 (emit-header-data segment return-pc-header-widetag)))
1845 ;;;; Instructions for converting between code objects, functions, and lras.
1847 (defun emit-compute-inst (segment vop dst src label temp calc)
1848 (emit-chooser
1849 ;; We emit either 12 or 4 bytes, so we maintain 8 byte alignments.
1850 segment 12 3
1851 (lambda (segment posn delta-if-after)
1852 (let ((delta (funcall calc label posn delta-if-after)))
1853 (when (<= (- (ash 1 12)) delta (1- (ash 1 12)))
1854 (emit-back-patch segment 4
1855 (lambda (segment posn)
1856 (assemble (segment vop)
1857 (inst add dst src
1858 (funcall calc label posn 0)))))
1859 t)))
1860 (lambda (segment posn)
1861 (let ((delta (funcall calc label posn 0)))
1862 (assemble (segment vop)
1863 (inst sethi temp (ldb (byte 22 10) delta))
1864 (inst or temp (ldb (byte 10 0) delta))
1865 (inst add dst src temp))))))
1867 ;; code = fn - fn-ptr-type - header - label-offset + other-pointer-tag
1868 (define-instruction compute-code-from-fn (segment dst src label temp)
1869 (:declare (type tn dst src temp) (type label label))
1870 (:attributes variable-length)
1871 (:dependencies (reads src) (writes dst) (writes temp))
1872 (:delay 0)
1873 (:vop-var vop)
1874 (:emitter
1875 (emit-compute-inst segment vop dst src label temp
1876 (lambda (label posn delta-if-after)
1877 (- other-pointer-lowtag
1878 fun-pointer-lowtag
1879 (label-position label posn delta-if-after)
1880 (component-header-length))))))
1882 ;; code = lra - other-pointer-tag - header - label-offset + other-pointer-tag
1883 (define-instruction compute-code-from-lra (segment dst src label temp)
1884 (:declare (type tn dst src temp) (type label label))
1885 (:attributes variable-length)
1886 (:dependencies (reads src) (writes dst) (writes temp))
1887 (:delay 0)
1888 (:vop-var vop)
1889 (:emitter
1890 (emit-compute-inst segment vop dst src label temp
1891 (lambda (label posn delta-if-after)
1892 (- (+ (label-position label posn delta-if-after)
1893 (component-header-length)))))))
1895 ;; lra = code + other-pointer-tag + header + label-offset - other-pointer-tag
1896 (define-instruction compute-lra-from-code (segment dst src label temp)
1897 (:declare (type tn dst src temp) (type label label))
1898 (:attributes variable-length)
1899 (:dependencies (reads src) (writes dst) (writes temp))
1900 (:delay 0)
1901 (:vop-var vop)
1902 (:emitter
1903 (emit-compute-inst segment vop dst src label temp
1904 (lambda (label posn delta-if-after)
1905 (+ (label-position label posn delta-if-after)
1906 (component-header-length))))))
1908 ;;; Sparc V9 additions
1912 ;; Conditional move integer on condition code
1913 (define-instruction cmove (segment condition dst src &optional (ccreg :icc))
1914 (:declare (type (or branch-condition fp-branch-condition) condition)
1915 (type cond-move-condition-register ccreg)
1916 (type tn dst)
1917 (type (or (signed-byte 13) tn) src))
1918 (:printer format-4-cond-move
1919 ((op #b10)
1920 (op3 #b101100)
1921 (cc2 #b1)
1922 (i 0)
1923 (cc nil :type 'integer-condition-register))
1924 cond-move-printer
1925 :print-name 'mov)
1926 (:printer format-4-cond-move-immed
1927 ((op #b10)
1928 (op3 #b101100)
1929 (cc2 #b1)
1930 (i 1)
1931 (cc nil :type 'integer-condition-register))
1932 cond-move-printer
1933 :print-name 'mov)
1934 (:printer format-4-cond-move
1935 ((op #b10)
1936 (op3 #b101100)
1937 (cc2 #b0)
1938 (cond nil :type 'branch-fp-condition)
1939 (i 0)
1940 (cc nil :type 'fp-condition-register))
1941 cond-move-printer
1942 :print-name 'mov)
1943 (:printer format-4-cond-move-immed
1944 ((op #b10)
1945 (op3 #b101100)
1946 (cc2 #b0)
1947 (cond nil :type 'branch-fp-condition)
1948 (i 1)
1949 (cc nil :type 'fp-condition-register))
1950 cond-move-printer
1951 :print-name 'mov)
1952 (:delay 0)
1953 (:dependencies
1954 (if (member ccreg '(:icc :xcc))
1955 (reads :psr)
1956 (reads :fsr))
1957 (reads src)
1958 (reads dst)
1959 (writes dst))
1960 (:emitter
1961 (let ((op #b10)
1962 (op3 #b101100))
1963 (multiple-value-bind (cc2 cc01)
1964 (cond-move-condition-parts ccreg)
1965 (etypecase src
1967 (emit-format-4-cond-move segment
1969 (reg-tn-encoding dst)
1972 (if (member ccreg '(:icc :xcc))
1973 (branch-condition condition)
1974 (fp-branch-condition condition))
1976 cc01
1977 (reg-tn-encoding src)))
1978 (integer
1979 (emit-format-4-cond-move segment
1981 (reg-tn-encoding dst)
1984 (if (member ccreg '(:icc :xcc))
1985 (branch-condition condition)
1986 (fp-branch-condition condition))
1988 cc01
1989 src)))))))
1991 ;; Conditional move floating-point on condition codes
1992 (macrolet ((define-cond-fp-move (name print-name op op3 opf_low &key extended)
1993 `(define-instruction ,name (segment condition dst src &optional (ccreg :fcc0))
1994 (:declare (type (or branch-condition fp-branch-condition) condition)
1995 (type cond-move-condition-register ccreg)
1996 (type tn dst src))
1997 (:printer format-fpop2
1998 ((op ,op)
1999 (op3 ,op3)
2000 (opf0 0)
2001 (opf1 nil :type 'fp-condition-register-shifted)
2002 (opf2 0)
2003 (opf3 ,opf_low)
2004 (rs1 nil :type 'branch-fp-condition)
2005 (rs2 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
2006 (rd nil :type ',(if extended 'fp-ext-reg 'fp-reg)))
2007 cond-fp-move-printer
2008 :print-name ',print-name)
2009 (:printer format-fpop2
2010 ((op ,op)
2011 (op3 ,op3)
2012 (opf0 1)
2013 (opf1 nil :type 'integer-condition-register)
2014 (opf2 0)
2015 (rs1 nil :type 'branch-condition)
2016 (opf3 ,opf_low)
2017 (rs2 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
2018 (rd nil :type ',(if extended 'fp-ext-reg 'fp-reg)))
2019 cond-fp-move-printer
2020 :print-name ',print-name)
2021 (:delay 0)
2022 (:dependencies
2023 (if (member ccreg '(:icc :xcc))
2024 (reads :psr)
2025 (reads :fsr))
2026 (reads src)
2027 (reads dst)
2028 (writes dst))
2029 (:emitter
2030 (multiple-value-bind (opf_cc2 opf_cc01)
2031 (cond-move-condition-parts ccreg)
2032 (emit-format-3-fpop2 segment
2034 (fp-reg-tn-encoding dst)
2035 ,op3
2036 (if (member ccreg '(:icc :xcc))
2037 (branch-condition condition)
2038 (fp-branch-condition condition))
2039 opf_cc2
2040 (ash opf_cc01 1)
2042 ,opf_low
2043 (fp-reg-tn-encoding src)))))))
2044 (define-cond-fp-move cfmovs fmovs #b10 #b110101 #b0001)
2045 (define-cond-fp-move cfmovd fmovd #b10 #b110101 #b0010 :extended t)
2046 (define-cond-fp-move cfmovq fmovq #b10 #b110101 #b0011 :extended t))
2049 ;; Move on integer register condition
2051 ;; movr dst src reg reg-cond
2053 ;; This means if reg satisfies reg-cond, src is copied to dst. If the
2054 ;; condition is not satisfied, nothing is done.
2056 (define-instruction movr (segment dst src2 src1 reg-condition)
2057 (:declare (type cond-move-integer-condition reg-condition)
2058 (type tn dst src1)
2059 (type (or (signed-byte 10) tn) src2))
2060 (:printer format-4-cond-move-integer
2061 ((op #b10)
2062 (op3 #b101111)
2063 (i 0)))
2064 (:printer format-4-cond-move-integer-immed
2065 ((op #b10)
2066 (op3 #b101111)
2067 (i 1)))
2068 (:delay 0)
2069 (:dependencies
2070 (reads :psr)
2071 (reads src2)
2072 (reads src1)
2073 (reads dst)
2074 (writes dst))
2075 (:emitter
2076 (etypecase src2
2078 (emit-format-4-cond-move-integer
2079 segment #b10 (reg-tn-encoding dst) #b101111 (reg-tn-encoding src1)
2080 0 (register-condition reg-condition)
2081 0 (reg-tn-encoding src2)))
2082 (integer
2083 (emit-format-4-cond-move-integer-immed
2084 segment #b10 (reg-tn-encoding dst) #b101111 (reg-tn-encoding src1)
2085 1 (register-condition reg-condition) src2)))))
2088 ;; Same as MOVR, except we move FP registers depending on the value of
2089 ;; an integer register.
2091 ;; fmovr dst src reg cond
2093 ;; This means if REG satifies COND, SRC is COPIED to DST. Nothing
2094 ;; happens if the condition is not satisfied.
2095 (macrolet ((define-cond-fp-move-integer (name opf_low &key extended)
2096 `(define-instruction ,name (segment dst src2 src1 reg-condition)
2097 (:declare (type cond-move-integer-condition reg-condition)
2098 (type tn dst src1 src2))
2099 (:printer format-fpop2
2100 ((op #b10)
2101 (rd nil :type ',(if extended 'fp-ext-reg 'fp-reg))
2102 (op3 #b110101)
2103 (rs1 nil :type 'reg)
2104 (opf0 0)
2105 (opf1 nil :type 'register-condition)
2106 (opf2 0)
2107 (opf3 ,opf_low)
2108 (rs2 nil :type ',(if extended 'fp-ext-reg 'fp-reg))
2110 cond-fp-move-integer-printer)
2111 (:delay 0)
2112 (:dependencies
2113 (reads src2)
2114 (reads src1)
2115 (reads dst)
2116 (writes dst))
2117 (:emitter
2118 (emit-format-3-fpop2
2119 segment
2120 #b10
2121 (fp-reg-tn-encoding dst)
2122 #b110101
2123 (reg-tn-encoding src1)
2125 (register-condition reg-condition)
2127 ,opf_low
2128 (fp-reg-tn-encoding src2))))))
2129 (define-cond-fp-move-integer fmovrs #b0101)
2130 (define-cond-fp-move-integer fmovrd #b0110 :extended t)
2131 (define-cond-fp-move-integer fmovrq #b0111 :extended t))