3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 ;;; FIXME: Many of these have nontrivial types, e.g. *PRINT-LEVEL*,
17 ;;; *PRINT-LENGTH*, and *PRINT-LINES* are (OR NULL UNSIGNED-BYTE).
19 (defvar *print-readably
* nil
21 "If true, all objects will be printed readably. If readable printing
22 is impossible, an error will be signalled. This overrides the value of
24 (defvar *print-escape
* t
26 "Should we print in a reasonably machine-readable way? (possibly
27 overridden by *PRINT-READABLY*)")
28 (defvar *print-pretty
* nil
; (set later when pretty-printer is initialized)
30 "Should pretty printing be used?")
31 (defvar *print-base
* 10.
33 "The output base for RATIONALs (including integers).")
34 (defvar *print-radix
* nil
36 "Should base be verified when printing RATIONALs?")
37 (defvar *print-level
* nil
39 "How many levels should be printed before abbreviating with \"#\"?")
40 (defvar *print-length
* nil
42 "How many elements at any level should be printed before abbreviating
44 (defvar *print-circle
* nil
46 "Should we use #n= and #n# notation to preserve uniqueness in general (and
47 circularity in particular) when printing?")
48 (defvar *print-case
* :upcase
50 "What case should the printer should use default?")
51 (defvar *print-array
* t
53 "Should the contents of arrays be printed?")
54 (defvar *print-gensym
* t
56 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
57 (defvar *print-lines
* nil
59 "The maximum number of lines to print per object.")
60 (defvar *print-right-margin
* nil
62 "The position of the right margin in ems (for pretty-printing).")
63 (defvar *print-miser-width
* nil
65 "If the remaining space between the current column and the right margin
66 is less than this, then print using ``miser-style'' output. Miser
67 style conditional newlines are turned on, and all indentations are
68 turned off. If NIL, never use miser mode.")
69 (defvar *print-pprint-dispatch
*)
71 (setf (fdocumentation '*print-pprint-dispatch
* 'variable
)
72 "The pprint-dispatch-table that controls how to pretty-print objects.")
74 (defmacro with-standard-io-syntax
(&body body
)
76 "Bind the reader and printer control variables to values that enable READ
77 to reliably read the results of PRINT. These values are:
78 *PACKAGE* the COMMON-LISP-USER package
88 *PRINT-MISER-WIDTH* NIL
89 *PRINT-PPRINT-DISPATCH* the standard pprint dispatch table
93 *PRINT-RIGHT-MARGIN* NIL
95 *READ-DEFAULT-FLOAT-FORMAT* SINGLE-FLOAT
98 *READTABLE* the standard readtable"
99 `(%with-standard-io-syntax
(lambda () ,@body
)))
101 (defun %with-standard-io-syntax
(function)
102 (declare (type function function
))
103 (let ((*package
* (find-package "COMMON-LISP-USER"))
106 (*print-case
* :upcase
)
113 (*print-miser-width
* nil
)
114 (*print-pprint-dispatch
* sb
!pretty
::*standard-pprint-dispatch-table
*)
118 (*print-right-margin
* nil
)
120 (*read-default-float-format
* 'single-float
)
122 (*read-suppress
* nil
)
123 (*readtable
* *standard-readtable
*))
126 ;;;; routines to print objects
129 ;;; keyword variables shared by WRITE and WRITE-TO-STRING, and
130 ;;; the bindings they map to.
131 (eval-when (:compile-toplevel
:load-toplevel
)
132 (defvar *printer-keyword-variables
*
133 '(:escape
*print-escape
*
136 :circle
*print-circle
*
137 :pretty
*print-pretty
*
139 :length
*print-length
*
142 :gensym
*print-gensym
*
143 :readably
*print-readably
*
144 :right-margin
*print-right-margin
*
145 :miser-width
*print-miser-width
*
147 :pprint-dispatch
*print-pprint-dispatch
*)))
149 (defun write (object &key
150 ((:stream stream
) *standard-output
*)
151 ((:escape
*print-escape
*) *print-escape
*)
152 ((:radix
*print-radix
*) *print-radix
*)
153 ((:base
*print-base
*) *print-base
*)
154 ((:circle
*print-circle
*) *print-circle
*)
155 ((:pretty
*print-pretty
*) *print-pretty
*)
156 ((:level
*print-level
*) *print-level
*)
157 ((:length
*print-length
*) *print-length
*)
158 ((:case
*print-case
*) *print-case
*)
159 ((:array
*print-array
*) *print-array
*)
160 ((:gensym
*print-gensym
*) *print-gensym
*)
161 ((:readably
*print-readably
*) *print-readably
*)
162 ((:right-margin
*print-right-margin
*)
163 *print-right-margin
*)
164 ((:miser-width
*print-miser-width
*)
166 ((:lines
*print-lines
*) *print-lines
*)
167 ((:pprint-dispatch
*print-pprint-dispatch
*)
168 *print-pprint-dispatch
*))
170 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*."
171 (output-object object
(out-synonym-of stream
))
174 ;;; Optimize common case of constant keyword arguments
175 (define-compiler-macro write
(&whole form object
&rest keys
)
179 ;; Odd number of keys, punt
181 (return-from write form
)))
182 (let* ((key (pop keys
))
184 (variable (or (getf *printer-keyword-variables
* key
)
185 (when (eq :stream key
)
187 (return-from write form
))))
188 (when (assoc variable bind
)
189 ;; First key has precedence, but we still need to execute the
190 ;; argument, and in the right order.
191 (setf variable
(gensym "IGNORE"))
192 (push variable ignore
))
193 (push (list variable value
) bind
)))
194 (unless (assoc 'stream bind
)
195 (push (list 'stream
'*standard-output
*) bind
))
196 `(let ,(nreverse bind
)
197 ,@(when ignore
`((declare (ignore ,@ignore
))))
198 (output-object ,object stream
))))
200 (defun prin1 (object &optional stream
)
202 "Output a mostly READable printed representation of OBJECT on the specified
204 (let ((*print-escape
* t
))
205 (output-object object
(out-synonym-of stream
)))
208 (defun princ (object &optional stream
)
210 "Output an aesthetic but not necessarily READable printed representation
211 of OBJECT on the specified STREAM."
212 (let ((*print-escape
* nil
)
213 (*print-readably
* nil
))
214 (output-object object
(out-synonym-of stream
)))
217 (defun print (object &optional stream
)
219 "Output a newline, the mostly READable printed representation of OBJECT, and
220 space to the specified STREAM."
221 (let ((stream (out-synonym-of stream
)))
223 (prin1 object stream
)
224 (write-char #\space stream
)
227 (defun pprint (object &optional stream
)
229 "Prettily output OBJECT preceded by a newline."
230 (let ((*print-pretty
* t
)
232 (stream (out-synonym-of stream
)))
234 (output-object object stream
))
237 (defun write-to-string
239 ((:escape
*print-escape
*) *print-escape
*)
240 ((:radix
*print-radix
*) *print-radix
*)
241 ((:base
*print-base
*) *print-base
*)
242 ((:circle
*print-circle
*) *print-circle
*)
243 ((:pretty
*print-pretty
*) *print-pretty
*)
244 ((:level
*print-level
*) *print-level
*)
245 ((:length
*print-length
*) *print-length
*)
246 ((:case
*print-case
*) *print-case
*)
247 ((:array
*print-array
*) *print-array
*)
248 ((:gensym
*print-gensym
*) *print-gensym
*)
249 ((:readably
*print-readably
*) *print-readably
*)
250 ((:right-margin
*print-right-margin
*) *print-right-margin
*)
251 ((:miser-width
*print-miser-width
*) *print-miser-width
*)
252 ((:lines
*print-lines
*) *print-lines
*)
253 ((:pprint-dispatch
*print-pprint-dispatch
*)
254 *print-pprint-dispatch
*))
256 "Return the printed representation of OBJECT as a string."
257 (stringify-object object
))
259 ;;; Optimize common case of constant keyword arguments
260 (define-compiler-macro write-to-string
(&whole form object
&rest keys
)
264 ;; Odd number of keys, punt
266 (return-from write-to-string form
)))
267 (let* ((key (pop keys
))
269 (variable (or (getf *printer-keyword-variables
* key
)
270 (return-from write-to-string form
))))
271 (when (assoc variable bind
)
272 ;; First key has precedence, but we still need to execute the
273 ;; argument, and in the right order.
274 (setf variable
(gensym "IGNORE"))
275 (push variable ignore
))
276 (push (list variable value
) bind
)))
278 `(let ,(nreverse bind
)
279 ,@(when ignore
`((declare (ignore ,@ignore
))))
280 (stringify-object ,object
))
281 `(stringify-object ,object
))))
283 (defun prin1-to-string (object)
285 "Return the printed representation of OBJECT as a string with
287 (let ((*print-escape
* t
))
288 (stringify-object object
)))
290 (defun princ-to-string (object)
292 "Return the printed representation of OBJECT as a string with
294 (let ((*print-escape
* nil
)
295 (*print-readably
* nil
))
296 (stringify-object object
)))
298 ;;; This produces the printed representation of an object as a string.
299 ;;; The few ...-TO-STRING functions above call this.
300 (defun stringify-object (object)
301 (let ((stream (make-string-output-stream)))
302 (setup-printer-state)
303 (output-object object stream
)
304 (get-output-stream-string stream
)))
306 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
308 ;;; guts of PRINT-UNREADABLE-OBJECT
309 (defun %print-unreadable-object
(object stream type identity body
)
310 (declare (type (or null function
) body
))
311 (when *print-readably
*
312 (error 'print-not-readable
:object object
))
313 (flet ((print-description ()
315 (write (type-of object
) :stream stream
:circle nil
316 :level nil
:length nil
)
317 (write-char #\space stream
))
319 (pprint-newline :fill stream
)
322 (when (or body
(not type
))
323 (write-char #\space stream
))
324 (pprint-newline :fill stream
)
325 (write-char #\
{ stream
)
326 (write (get-lisp-obj-address object
) :stream stream
328 (write-char #\
} stream
))))
329 (cond ((print-pretty-on-stream-p stream
)
330 ;; Since we're printing prettily on STREAM, format the
331 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
332 ;; not rebind the stream when it is already a pretty stream,
333 ;; so output from the body will go to the same stream.
334 (pprint-logical-block (stream nil
:prefix
"#<" :suffix
">")
335 (print-description)))
337 (write-string "#<" stream
)
339 (write-char #\
> stream
))))
342 ;;;; OUTPUT-OBJECT -- the main entry point
344 ;;; Objects whose print representation identifies them EQLly don't
345 ;;; need to be checked for circularity.
346 (defun uniquely-identified-by-print-p (x)
350 (symbol-package x
))))
352 ;;; Output OBJECT to STREAM observing all printer control variables.
353 (defun output-object (object stream
)
354 (labels ((print-it (stream)
356 (sb!pretty
:output-pretty-object object stream
)
357 (output-ugly-object object stream
)))
359 (multiple-value-bind (marker initiate
)
360 (check-for-circularity object t
)
361 (if (eq initiate
:initiate
)
362 (let ((*circularity-hash-table
*
363 (make-hash-table :test
'eq
)))
364 (check-it (make-broadcast-stream))
365 (let ((*circularity-counter
* 0))
369 (when (handle-circularity marker stream
)
371 (print-it stream
))))))
372 (cond (;; Maybe we don't need to bother with circularity detection.
373 (or (not *print-circle
*)
374 (uniquely-identified-by-print-p object
))
376 (;; If we have already started circularity detection, this
377 ;; object might be a shared reference. If we have not, then
378 ;; if it is a compound object it might contain a circular
379 ;; reference to itself or multiple shared references.
380 (or *circularity-hash-table
*
381 (compound-object-p object
))
384 (print-it stream
)))))
386 ;;; a hack to work around recurring gotchas with printing while
387 ;;; DEFGENERIC PRINT-OBJECT is being built
389 ;;; (hopefully will go away naturally when CLOS moves into cold init)
390 (defvar *print-object-is-disabled-p
*)
392 ;;; Output OBJECT to STREAM observing all printer control variables
393 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
394 ;;; then the pretty printer will be used for any components of OBJECT,
395 ;;; just not for OBJECT itself.
396 (defun output-ugly-object (object stream
)
398 ;; KLUDGE: The TYPECASE approach here is non-ANSI; the ANSI definition of
399 ;; PRINT-OBJECT says it provides printing and we're supposed to provide
400 ;; PRINT-OBJECT methods covering all classes. We deviate from this
401 ;; by using PRINT-OBJECT only when we print instance values. However,
402 ;; ANSI makes it hard to tell that we're deviating from this:
403 ;; (1) ANSI specifies that the user isn't supposed to call PRINT-OBJECT
405 ;; (2) ANSI (section 11.1.2.1.2) says it's undefined to define
406 ;; a method on an external symbol in the CL package which is
407 ;; applicable to arg lists containing only direct instances of
408 ;; standardized classes.
409 ;; Thus, in order for the user to detect our sleaziness in conforming
410 ;; code, he has to do something relatively obscure like
411 ;; (1) actually use tools like FIND-METHOD to look for PRINT-OBJECT
413 ;; (2) define a PRINT-OBJECT method which is specialized on the stream
414 ;; value (e.g. a Gray stream object).
415 ;; As long as no one comes up with a non-obscure way of detecting this
416 ;; sleaziness, fixing this nonconformity will probably have a low
417 ;; priority. -- WHN 2001-11-25
420 (output-symbol object stream
)
421 (output-list object stream
)))
423 (cond ((not (and (boundp '*print-object-is-disabled-p
*)
424 *print-object-is-disabled-p
*))
425 (print-object object stream
))
426 ((typep object
'structure-object
)
427 (default-structure-print object stream
*current-level-in-print
*))
429 (write-string "#<INSTANCE but not STRUCTURE-OBJECT>" stream
))))
430 (funcallable-instance
432 ((not (and (boundp '*print-object-is-disabled-p
*)
433 *print-object-is-disabled-p
*))
434 (print-object object stream
))
435 (t (output-fun object stream
))))
437 (output-fun object stream
))
439 (output-symbol object stream
))
443 (output-integer object stream
))
445 (output-float object stream
))
447 (output-ratio object stream
))
449 (output-complex object stream
))))
451 (output-character object stream
))
453 (output-vector object stream
))
455 (output-array object stream
))
457 (output-sap object stream
))
459 (output-weak-pointer object stream
))
461 (output-lra object stream
))
463 (output-code-component object stream
))
465 (output-fdefn object stream
))
467 (output-random object stream
))))
471 ;;; values of *PRINT-CASE* and (READTABLE-CASE *READTABLE*) the last
472 ;;; time the printer was called
473 (defvar *previous-case
* nil
)
474 (defvar *previous-readtable-case
* nil
)
476 ;;; This variable contains the current definition of one of three
477 ;;; symbol printers. SETUP-PRINTER-STATE sets this variable.
478 (defvar *internal-symbol-output-fun
* nil
)
480 ;;; This function sets the internal global symbol
481 ;;; *INTERNAL-SYMBOL-OUTPUT-FUN* to the right function depending on
482 ;;; the value of *PRINT-CASE*. See the manual for details. The print
483 ;;; buffer stream is also reset.
484 (defun setup-printer-state ()
485 (unless (and (eq *print-case
* *previous-case
*)
486 (eq (readtable-case *readtable
*) *previous-readtable-case
*))
487 (setq *previous-case
* *print-case
*)
488 (setq *previous-readtable-case
* (readtable-case *readtable
*))
489 (unless (member *print-case
* '(:upcase
:downcase
:capitalize
))
490 (setq *print-case
* :upcase
)
491 (error "invalid *PRINT-CASE* value: ~S" *previous-case
*))
492 (unless (member *previous-readtable-case
*
493 '(:upcase
:downcase
:invert
:preserve
))
494 (setf (readtable-case *readtable
*) :upcase
)
495 (error "invalid READTABLE-CASE value: ~S" *previous-readtable-case
*))
497 (setq *internal-symbol-output-fun
*
498 (case *previous-readtable-case
*
501 (:upcase
#'output-preserve-symbol
)
502 (:downcase
#'output-lowercase-symbol
)
503 (:capitalize
#'output-capitalize-symbol
)))
506 (:upcase
#'output-uppercase-symbol
)
507 (:downcase
#'output-preserve-symbol
)
508 (:capitalize
#'output-capitalize-symbol
)))
509 (:preserve
#'output-preserve-symbol
)
510 (:invert
#'output-invert-symbol
)))))
512 ;;; Output PNAME (a symbol-name or package-name) surrounded with |'s,
513 ;;; and with any embedded |'s or \'s escaped.
514 (defun output-quoted-symbol-name (pname stream
)
515 (write-char #\| stream
)
516 (dotimes (index (length pname
))
517 (let ((char (schar pname index
)))
518 (when (or (char= char
#\\) (char= char
#\|
))
519 (write-char #\\ stream
))
520 (write-char char stream
)))
521 (write-char #\| stream
))
523 (defun output-symbol (object stream
)
524 (if (or *print-escape
* *print-readably
*)
525 (let ((package (symbol-package object
))
526 (name (symbol-name object
)))
528 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
529 ;; requires that keywords be printed with preceding colons
530 ;; always, regardless of the value of *PACKAGE*.
531 ((eq package
*keyword-package
*)
532 (write-char #\
: stream
))
533 ;; Otherwise, if the symbol's home package is the current
534 ;; one, then a prefix is never necessary.
535 ((eq package
(sane-package)))
536 ;; Uninterned symbols print with a leading #:.
538 (when (or *print-gensym
* *print-readably
*)
539 (write-string "#:" stream
)))
541 (multiple-value-bind (symbol accessible
)
542 (find-symbol name
(sane-package))
543 ;; If we can find the symbol by looking it up, it need not
544 ;; be qualified. This can happen if the symbol has been
545 ;; inherited from a package other than its home package.
546 (unless (and accessible
(eq symbol object
))
547 (output-symbol-name (package-name package
) stream
)
548 (multiple-value-bind (symbol externalp
)
549 (find-external-symbol name package
)
550 (declare (ignore symbol
))
552 (write-char #\
: stream
)
553 (write-string "::" stream
)))))))
554 (output-symbol-name name stream
))
555 (output-symbol-name (symbol-name object
) stream nil
)))
557 ;;; Output the string NAME as if it were a symbol name. In other
558 ;;; words, diddle its case according to *PRINT-CASE* and
560 (defun output-symbol-name (name stream
&optional
(maybe-quote t
))
561 (declare (type simple-string name
))
562 (let ((*readtable
* (if *print-readably
* *standard-readtable
* *readtable
*)))
563 (setup-printer-state)
564 (if (and maybe-quote
(symbol-quotep name
))
565 (output-quoted-symbol-name name stream
)
566 (funcall *internal-symbol-output-fun
* name stream
))))
568 ;;;; escaping symbols
570 ;;; When we print symbols we have to figure out if they need to be
571 ;;; printed with escape characters. This isn't a whole lot easier than
572 ;;; reading symbols in the first place.
574 ;;; For each character, the value of the corresponding element is a
575 ;;; fixnum with bits set corresponding to attributes that the
576 ;;; character has. At characters have at least one bit set, so we can
577 ;;; search for any character with a positive test.
578 (defvar *character-attributes
*
579 (make-array 160 ; FIXME
580 :element-type
'(unsigned-byte 16)
582 (declaim (type (simple-array (unsigned-byte 16) (#.160)) ; FIXME
583 *character-attributes
*))
585 ;;; constants which are a bit-mask for each interesting character attribute
586 (defconstant other-attribute
(ash 1 0)) ; Anything else legal.
587 (defconstant number-attribute
(ash 1 1)) ; A numeric digit.
588 (defconstant uppercase-attribute
(ash 1 2)) ; An uppercase letter.
589 (defconstant lowercase-attribute
(ash 1 3)) ; A lowercase letter.
590 (defconstant sign-attribute
(ash 1 4)) ; +-
591 (defconstant extension-attribute
(ash 1 5)) ; ^_
592 (defconstant dot-attribute
(ash 1 6)) ; .
593 (defconstant slash-attribute
(ash 1 7)) ; /
594 (defconstant funny-attribute
(ash 1 8)) ; Anything illegal.
596 (eval-when (:compile-toplevel
:load-toplevel
:execute
)
598 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
599 ;;; that don't need to be escaped (according to READTABLE-CASE.)
600 (defparameter *attribute-names
*
601 `((number . number-attribute
) (lowercase . lowercase-attribute
)
602 (uppercase . uppercase-attribute
) (letter . letter-attribute
)
603 (sign . sign-attribute
) (extension . extension-attribute
)
604 (dot . dot-attribute
) (slash . slash-attribute
)
605 (other . other-attribute
) (funny . funny-attribute
)))
609 (flet ((set-bit (char bit
)
610 (let ((code (char-code char
)))
611 (setf (aref *character-attributes
* code
)
612 (logior bit
(aref *character-attributes
* code
))))))
614 (dolist (char '(#\
! #\
@ #\$
#\%
#\
& #\
* #\
= #\~
#\
[ #\
] #\
{ #\
}
616 (set-bit char other-attribute
))
619 (set-bit (digit-char i
) number-attribute
))
621 (do ((code (char-code #\A
) (1+ code
))
622 (end (char-code #\Z
)))
624 (declare (fixnum code end
))
625 (set-bit (code-char code
) uppercase-attribute
)
626 (set-bit (char-downcase (code-char code
)) lowercase-attribute
))
628 (set-bit #\- sign-attribute
)
629 (set-bit #\
+ sign-attribute
)
630 (set-bit #\^ extension-attribute
)
631 (set-bit #\_ extension-attribute
)
632 (set-bit #\. dot-attribute
)
633 (set-bit #\
/ slash-attribute
)
635 ;; Mark anything not explicitly allowed as funny.
636 (dotimes (i 160) ; FIXME
637 (when (zerop (aref *character-attributes
* i
))
638 (setf (aref *character-attributes
* i
) funny-attribute
))))
640 ;;; For each character, the value of the corresponding element is the
641 ;;; lowest base in which that character is a digit.
642 (defvar *digit-bases
*
643 (make-array 128 ; FIXME
644 :element-type
'(unsigned-byte 8)
645 :initial-element
36))
646 (declaim (type (simple-array (unsigned-byte 8) (#.128)) ; FIXME
649 (let ((char (digit-char i
36)))
650 (setf (aref *digit-bases
* (char-code char
)) i
)))
652 ;;; A FSM-like thingie that determines whether a symbol is a potential
653 ;;; number or has evil characters in it.
654 (defun symbol-quotep (name)
655 (declare (simple-string name
))
656 (macrolet ((advance (tag &optional
(at-end t
))
659 ,(if at-end
'(go TEST-SIGN
) '(return nil
)))
660 (setq current
(schar name index
)
661 code
(char-code current
)
663 ((< code
160) (aref attributes code
))
664 ((upper-case-p current
) uppercase-attribute
)
665 ((lower-case-p current
) lowercase-attribute
)
666 (t other-attribute
)))
669 (test (&rest attributes
)
681 `(and (< code
128) ; FIXME
682 (< (the fixnum
(aref bases code
)) base
))))
684 (prog ((len (length name
))
685 (attributes *character-attributes
*)
686 (bases *digit-bases
*)
689 (case (readtable-case *readtable
*)
690 (:upcase uppercase-attribute
)
691 (:downcase lowercase-attribute
)
692 (t (logior lowercase-attribute uppercase-attribute
))))
697 (declare (fixnum len base index bits code
))
700 TEST-SIGN
; At end, see whether it is a sign...
701 (return (not (test sign
)))
703 OTHER
; not potential number, see whether funny chars...
704 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
707 (do ((i (1- index
) (1+ i
)))
708 ((= i len
) (return-from symbol-quotep nil
))
709 (unless (zerop (logand (let* ((char (schar name i
))
710 (code (char-code char
)))
712 ((< code
160) (aref attributes code
))
713 ((upper-case-p char
) uppercase-attribute
)
714 ((lower-case-p char
) lowercase-attribute
)
715 (t other-attribute
)))
717 (return-from symbol-quotep t
))))
722 (advance LAST-DIGIT-ALPHA
)
724 (when (test letter number other slash
) (advance OTHER nil
))
725 (when (char= current
#\.
) (advance DOT-FOUND
))
726 (when (test sign extension
) (advance START-STUFF nil
))
729 DOT-FOUND
; leading dots...
730 (when (test letter
) (advance START-DOT-MARKER nil
))
731 (when (digitp) (advance DOT-DIGIT
))
732 (when (test number other
) (advance OTHER nil
))
733 (when (test extension slash sign
) (advance START-DOT-STUFF nil
))
734 (when (char= current
#\.
) (advance DOT-FOUND
))
737 START-STUFF
; leading stuff before any dot or digit
740 (advance LAST-DIGIT-ALPHA
)
742 (when (test number other
) (advance OTHER nil
))
743 (when (test letter
) (advance START-MARKER nil
))
744 (when (char= current
#\.
) (advance START-DOT-STUFF nil
))
745 (when (test sign extension slash
) (advance START-STUFF nil
))
748 START-MARKER
; number marker in leading stuff...
749 (when (test letter
) (advance OTHER nil
))
752 START-DOT-STUFF
; leading stuff containing dot without digit...
753 (when (test letter
) (advance START-DOT-STUFF nil
))
754 (when (digitp) (advance DOT-DIGIT
))
755 (when (test sign extension dot slash
) (advance START-DOT-STUFF nil
))
756 (when (test number other
) (advance OTHER nil
))
759 START-DOT-MARKER
; number marker in leading stuff with dot..
760 ;; leading stuff containing dot without digit followed by letter...
761 (when (test letter
) (advance OTHER nil
))
764 DOT-DIGIT
; in a thing with dots...
765 (when (test letter
) (advance DOT-MARKER
))
766 (when (digitp) (advance DOT-DIGIT
))
767 (when (test number other
) (advance OTHER nil
))
768 (when (test sign extension dot slash
) (advance DOT-DIGIT
))
771 DOT-MARKER
; number marker in number with dot...
772 (when (test letter
) (advance OTHER nil
))
775 LAST-DIGIT-ALPHA
; previous char is a letter digit...
776 (when (or (digitp) (test sign slash
))
777 (advance ALPHA-DIGIT
))
778 (when (test letter number other dot
) (advance OTHER nil
))
781 ALPHA-DIGIT
; seen a digit which is a letter...
782 (when (or (digitp) (test sign slash
))
784 (advance LAST-DIGIT-ALPHA
)
785 (advance ALPHA-DIGIT
)))
786 (when (test letter
) (advance ALPHA-MARKER
))
787 (when (test number other dot
) (advance OTHER nil
))
790 ALPHA-MARKER
; number marker in number with alpha digit...
791 (when (test letter
) (advance OTHER nil
))
794 DIGIT
; seen only ordinary (non-alphabetic) numeric digits...
797 (advance ALPHA-DIGIT
)
799 (when (test number other
) (advance OTHER nil
))
800 (when (test letter
) (advance MARKER
))
801 (when (test extension slash sign
) (advance DIGIT
))
802 (when (char= current
#\.
) (advance DOT-DIGIT
))
805 MARKER
; number marker in a numeric number...
806 ;; ("What," you may ask, "is a 'number marker'?" It's something
807 ;; that a conforming implementation might use in number syntax.
808 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
809 (when (test letter
) (advance OTHER nil
))
812 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN*
814 ;;;; case hackery: These functions are stored in
815 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN* according to the values of
816 ;;;; *PRINT-CASE* and READTABLE-CASE.
819 ;;; READTABLE-CASE *PRINT-CASE*
821 ;;; :DOWNCASE :DOWNCASE
823 (defun output-preserve-symbol (pname stream
)
824 (declare (simple-string pname
))
825 (write-string pname stream
))
828 ;;; READTABLE-CASE *PRINT-CASE*
829 ;;; :UPCASE :DOWNCASE
830 (defun output-lowercase-symbol (pname stream
)
831 (declare (simple-string pname
))
832 (dotimes (index (length pname
))
833 (let ((char (schar pname index
)))
834 (write-char (char-downcase char
) stream
))))
837 ;;; READTABLE-CASE *PRINT-CASE*
838 ;;; :DOWNCASE :UPCASE
839 (defun output-uppercase-symbol (pname stream
)
840 (declare (simple-string pname
))
841 (dotimes (index (length pname
))
842 (let ((char (schar pname index
)))
843 (write-char (char-upcase char
) stream
))))
846 ;;; READTABLE-CASE *PRINT-CASE*
847 ;;; :UPCASE :CAPITALIZE
848 ;;; :DOWNCASE :CAPITALIZE
849 (defun output-capitalize-symbol (pname stream
)
850 (declare (simple-string pname
))
851 (let ((prev-not-alphanum t
)
852 (up (eq (readtable-case *readtable
*) :upcase
)))
853 (dotimes (i (length pname
))
854 (let ((char (char pname i
)))
856 (if (or prev-not-alphanum
(lower-case-p char
))
858 (char-downcase char
))
859 (if prev-not-alphanum
863 (setq prev-not-alphanum
(not (alphanumericp char
)))))))
866 ;;; READTABLE-CASE *PRINT-CASE*
868 (defun output-invert-symbol (pname stream
)
869 (declare (simple-string pname
))
872 (dotimes (i (length pname
))
873 (let ((ch (schar pname i
)))
874 (when (both-case-p ch
)
875 (if (upper-case-p ch
)
877 (setq all-upper nil
)))))
878 (cond (all-upper (output-lowercase-symbol pname stream
))
879 (all-lower (output-uppercase-symbol pname stream
))
881 (write-string pname stream
)))))
885 (let ((*readtable
* (copy-readtable nil
)))
886 (format t
"READTABLE-CASE Input Symbol-name~@
887 ----------------------------------~%")
888 (dolist (readtable-case '(:upcase
:downcase
:preserve
:invert
))
889 (setf (readtable-case *readtable
*) readtable-case
)
890 (dolist (input '("ZEBRA" "Zebra" "zebra"))
891 (format t
"~&:~A~16T~A~24T~A"
892 (string-upcase readtable-case
)
894 (symbol-name (read-from-string input
)))))))
897 (let ((*readtable
* (copy-readtable nil
)))
898 (format t
"READTABLE-CASE *PRINT-CASE* Symbol-name Output Princ~@
899 --------------------------------------------------------~%")
900 (dolist (readtable-case '(:upcase
:downcase
:preserve
:invert
))
901 (setf (readtable-case *readtable
*) readtable-case
)
902 (dolist (*print-case
* '(:upcase
:downcase
:capitalize
))
903 (dolist (symbol '(|ZEBRA| |Zebra| |zebra|
))
904 (format t
"~&:~A~15T:~A~29T~A~42T~A~50T~A"
905 (string-upcase readtable-case
)
906 (string-upcase *print-case
*)
908 (prin1-to-string symbol
)
909 (princ-to-string symbol
)))))))
912 ;;;; recursive objects
914 (defun output-list (list stream
)
915 (descend-into (stream)
916 (write-char #\
( stream
)
920 (punt-print-if-too-long length stream
)
921 (output-object (pop list
) stream
)
924 (when (or (atom list
)
925 (check-for-circularity list
))
926 (write-string " . " stream
)
927 (output-object list stream
)
929 (write-char #\space stream
)
931 (write-char #\
) stream
)))
933 (defun output-vector (vector stream
)
934 (declare (vector vector
))
935 (cond ((stringp vector
)
936 (cond ((and *print-readably
*
937 (not (eq (array-element-type vector
)
940 (make-array 0 :element-type
'character
))))))
941 (error 'print-not-readable
:object vector
))
942 ((or *print-escape
* *print-readably
*)
943 (write-char #\" stream
)
944 (quote-string vector stream
)
945 (write-char #\" stream
))
947 (write-string vector stream
))))
948 ((not (or *print-array
* *print-readably
*))
949 (output-terse-array vector stream
))
950 ((bit-vector-p vector
)
951 (write-string "#*" stream
)
952 (dovector (bit vector
)
953 ;; (Don't use OUTPUT-OBJECT here, since this code
954 ;; has to work for all possible *PRINT-BASE* values.)
955 (write-char (if (zerop bit
) #\
0 #\
1) stream
)))
957 (when (and *print-readably
*
958 (not (array-readably-printable-p vector
)))
959 (error 'print-not-readable
:object vector
))
960 (descend-into (stream)
961 (write-string "#(" stream
)
962 (dotimes (i (length vector
))
964 (write-char #\space stream
))
965 (punt-print-if-too-long i stream
)
966 (output-object (aref vector i
) stream
))
967 (write-string ")" stream
)))))
969 ;;; This function outputs a string quoting characters sufficiently
970 ;;; so that someone can read it in again. Basically, put a slash in
971 ;;; front of an character satisfying NEEDS-SLASH-P.
972 (defun quote-string (string stream
)
973 (macrolet ((needs-slash-p (char)
974 ;; KLUDGE: We probably should look at the readtable, but just do
975 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
976 `(or (char= ,char
#\\)
978 (with-array-data ((data string
) (start) (end)
979 :check-fill-pointer t
)
980 (do ((index start
(1+ index
)))
982 (let ((char (schar data index
)))
983 (when (needs-slash-p char
) (write-char #\\ stream
))
984 (write-char char stream
))))))
986 (defun array-readably-printable-p (array)
987 (and (eq (array-element-type array
) t
)
988 (let ((zero (position 0 (array-dimensions array
)))
989 (number (position 0 (array-dimensions array
)
990 :test
(complement #'eql
)
992 (or (null zero
) (null number
) (> zero number
)))))
994 ;;; Output the printed representation of any array in either the #< or #A
996 (defun output-array (array stream
)
997 (if (or *print-array
* *print-readably
*)
998 (output-array-guts array stream
)
999 (output-terse-array array stream
)))
1001 ;;; Output the abbreviated #< form of an array.
1002 (defun output-terse-array (array stream
)
1003 (let ((*print-level
* nil
)
1004 (*print-length
* nil
))
1005 (print-unreadable-object (array stream
:type t
:identity t
))))
1007 ;;; Output the readable #A form of an array.
1008 (defun output-array-guts (array stream
)
1009 (when (and *print-readably
*
1010 (not (array-readably-printable-p array
)))
1011 (error 'print-not-readable
:object array
))
1012 (write-char #\
# stream
)
1013 (let ((*print-base
* 10)
1014 (*print-radix
* nil
))
1015 (output-integer (array-rank array
) stream
))
1016 (write-char #\A stream
)
1017 (with-array-data ((data array
) (start) (end))
1018 (declare (ignore end
))
1019 (sub-output-array-guts data
(array-dimensions array
) stream start
)))
1021 (defun sub-output-array-guts (array dimensions stream index
)
1022 (declare (type (simple-array * (*)) array
) (fixnum index
))
1023 (cond ((null dimensions
)
1024 (output-object (aref array index
) stream
))
1026 (descend-into (stream)
1027 (write-char #\
( stream
)
1028 (let* ((dimension (car dimensions
))
1029 (dimensions (cdr dimensions
))
1030 (count (reduce #'* dimensions
)))
1031 (dotimes (i dimension
)
1033 (write-char #\space stream
))
1034 (punt-print-if-too-long i stream
)
1035 (sub-output-array-guts array dimensions stream index
)
1036 (incf index count
)))
1037 (write-char #\
) stream
)))))
1039 ;;; a trivial non-generic-function placeholder for PRINT-OBJECT, for
1040 ;;; use until CLOS is set up (at which time it will be replaced with
1041 ;;; the real generic function implementation)
1042 (defun print-object (instance stream
)
1043 (default-structure-print instance stream
*current-level-in-print
*))
1045 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
1047 (defun %output-radix
(base stream
)
1048 (write-char #\
# stream
)
1049 (write-char (case base
1053 (t (%output-reasonable-integer-in-base base
10 stream
)
1057 (defun %output-reasonable-integer-in-base
(n base stream
)
1058 (multiple-value-bind (q r
)
1060 ;; Recurse until you have all the digits pushed on
1063 (%output-reasonable-integer-in-base q base stream
))
1064 ;; Then as each recursive call unwinds, turn the
1065 ;; digit (in remainder) into a character and output
1068 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r
)
1071 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
1072 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
1073 ;;; always prior a GC to drop overly large bignums from the cache.
1075 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1076 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1077 (defvar *power-cache
* nil
)
1079 (defconstant +power-cache-integer-length-limit
+ 2048)
1081 (defun scrub-power-cache ()
1082 (let ((cache *power-cache
*))
1083 (dolist (cell cache
)
1084 (let ((powers (cdr cell
)))
1085 (declare (simple-vector powers
))
1086 (let ((too-big (position-if
1088 (>= (integer-length x
)
1089 +power-cache-integer-length-limit
+))
1092 (setf (cdr cell
) (subseq powers
0 too-big
))))))
1093 ;; Since base 10 is overwhelmingly common, make sure it's at head.
1094 ;; Try to keep other bases in a hopefully sensible order as well.
1095 (if (eql 10 (caar cache
))
1096 (setf *power-cache
* cache
)
1097 ;; If we modify the list destructively we need to copy it, otherwise
1098 ;; an alist lookup in progress might be screwed.
1099 (setf *power-cache
* (sort (copy-list cache
)
1101 (declare (fixnum a b
))
1111 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1112 ;;; the vector holds integers for which
1113 ;;; (aref powers k) == (expt base (expt 2 k))
1115 (defun powers-for-base (base limit
)
1116 (flet ((compute-powers (from)
1118 (do ((p from
(* p p
)))
1120 ;; We don't actually need this, but we also
1121 ;; prefer not to cons it up a second time...
1124 (nreverse powers
))))
1125 ;; Grab a local reference so that we won't stuff consed at the
1126 ;; head by other threads -- or sorting by SCRUB-POWER-CACHE.
1127 (let ((cache *power-cache
*))
1128 (let ((cell (assoc base cache
)))
1130 (let* ((powers (cdr cell
))
1131 (len (length powers
))
1132 (max (svref powers
(1- len
))))
1136 (concatenate 'vector powers
1137 (compute-powers (* max max
)))))
1138 (setf (cdr cell
) new
)
1140 (let ((powers (coerce (compute-powers base
) 'vector
)))
1141 ;; Add new base to head: SCRUB-POWER-CACHE will later
1142 ;; put it to a better place.
1143 (setf *power-cache
* (acons base powers cache
))
1146 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1147 (defun %output-huge-integer-in-base
(n base stream
)
1148 (declare (type bignum n
) (type fixnum base
))
1149 ;; POWER is a vector for which the following holds:
1150 ;; (aref power k) == (expt base (expt 2 k))
1151 (let* ((power (powers-for-base base n
))
1152 (k-start (or (position-if (lambda (x) (> x n
)) power
)
1153 (bug "power-vector too short"))))
1154 (labels ((bisect (n k exactp
)
1155 (declare (fixnum k
))
1156 ;; N is the number to bisect
1157 ;; K on initial entry BASE^(2^K) > N
1158 ;; EXACTP is true if 2^K is the exact number of digits
1161 (loop repeat
(ash 1 k
) do
(write-char #\
0 stream
))))
1164 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n
)
1168 (multiple-value-bind (q r
) (truncate n
(aref power k
))
1169 ;; EXACTP is NIL only at the head of the
1170 ;; initial number, as we don't know the number
1171 ;; of digits there, but we do know that it
1172 ;; doesn't get any leading zeros.
1174 (bisect r k
(or exactp
(plusp q
))))))))
1175 (bisect n k-start nil
))))
1177 (defun %output-integer-in-base
(integer base stream
)
1178 (when (minusp integer
)
1179 (write-char #\- stream
)
1180 (setf integer
(- integer
)))
1181 ;; The ideal cutoff point between these two algorithms is almost
1182 ;; certainly quite platform dependent: this gives 87 for 32 bit
1183 ;; SBCL, which is about right at least for x86/Darwin.
1184 (if (or (fixnump integer
)
1185 (< (integer-length integer
) (* 3 sb
!vm
:n-positive-fixnum-bits
)))
1186 (%output-reasonable-integer-in-base integer base stream
)
1187 (%output-huge-integer-in-base integer base stream
)))
1189 (defun output-integer (integer stream
)
1190 (let ((base *print-base
*))
1191 (when (and (/= base
10) *print-radix
*)
1192 (%output-radix base stream
))
1193 (%output-integer-in-base integer base stream
)
1194 (when (and *print-radix
* (= base
10))
1195 (write-char #\. stream
))))
1197 (defun output-ratio (ratio stream
)
1198 (let ((base *print-base
*))
1200 (%output-radix base stream
))
1201 (%output-integer-in-base
(numerator ratio
) base stream
)
1202 (write-char #\
/ stream
)
1203 (%output-integer-in-base
(denominator ratio
) base stream
)))
1205 (defun output-complex (complex stream
)
1206 (write-string "#C(" stream
)
1207 ;; FIXME: Could this just be OUTPUT-NUMBER?
1208 (output-object (realpart complex
) stream
)
1209 (write-char #\space stream
)
1210 (output-object (imagpart complex
) stream
)
1211 (write-char #\
) stream
))
1215 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1216 ;;; most of the work for all printing of floating point numbers in
1217 ;;; FORMAT. It converts a floating point number to a string in a free
1218 ;;; or fixed format with no exponent. The interpretation of the
1219 ;;; arguments is as follows:
1221 ;;; X - The floating point number to convert, which must not be
1223 ;;; WIDTH - The preferred field width, used to determine the number
1224 ;;; of fraction digits to produce if the FDIGITS parameter
1225 ;;; is unspecified or NIL. If the non-fraction digits and the
1226 ;;; decimal point alone exceed this width, no fraction digits
1227 ;;; will be produced unless a non-NIL value of FDIGITS has been
1228 ;;; specified. Field overflow is not considerd an error at this
1230 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1231 ;;; trailing zeroes may be introduced as needed. May be
1232 ;;; unspecified or NIL, in which case as many digits as possible
1233 ;;; are generated, subject to the constraint that there are no
1234 ;;; trailing zeroes.
1235 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1236 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1237 ;;; and cannot lose precision.
1238 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1239 ;;; number of fraction digits which will be produced, regardless
1240 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1241 ;;; the ~E format directive to prevent complete loss of
1242 ;;; significance in the printed value due to a bogus choice of
1246 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1247 ;;; where the results have the following interpretation:
1249 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1250 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1251 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1253 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1255 ;;; POINT-POS - The position of the digit preceding the decimal
1256 ;;; point. Zero indicates point before first digit.
1258 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1259 ;;; accuracy. Specifically, the decimal number printed is the closest
1260 ;;; possible approximation to the true value of the binary number to
1261 ;;; be printed from among all decimal representations with the same
1262 ;;; number of digits. In free-format output, i.e. with the number of
1263 ;;; digits unconstrained, it is guaranteed that all the information is
1264 ;;; preserved, so that a properly- rounding reader can reconstruct the
1265 ;;; original binary number, bit-for-bit, from its printed decimal
1266 ;;; representation. Furthermore, only as many digits as necessary to
1267 ;;; satisfy this condition will be printed.
1269 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1270 ;;; see below for comments.
1272 (defun flonum-to-string (x &optional width fdigits scale fmin
)
1273 (declare (type float x
))
1274 ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with
1275 ;; possibly-negative X.
1278 ;; Zero is a special case which FLOAT-STRING cannot handle.
1280 (let ((s (make-string (1+ fdigits
) :initial-element
#\
0)))
1281 (setf (schar s
0) #\.
)
1282 (values s
(length s
) t
(zerop fdigits
) 0))
1283 (values "." 1 t t
0)))
1285 (multiple-value-bind (e string
)
1287 (flonum-to-digits x
(min (- (+ fdigits
(or scale
0)))
1289 (if (and width
(> width
1))
1290 (let ((w (multiple-value-list
1294 (if (and scale
(minusp scale
))
1297 (f (multiple-value-list
1298 (flonum-to-digits x
(- (+ (or fmin
0)
1299 (if scale scale
0)))))))
1301 ((>= (length (cadr w
)) (length (cadr f
)))
1303 (t (values-list f
))))
1304 (flonum-to-digits x
)))
1305 (let ((e (+ e
(or scale
0)))
1306 (stream (make-string-output-stream)))
1309 (write-string string stream
:end
(min (length string
)
1311 (dotimes (i (- e
(length string
)))
1312 (write-char #\
0 stream
))
1313 (write-char #\. stream
)
1314 (write-string string stream
:start
(min (length
1317 (dotimes (i (- fdigits
1319 (min (length string
) e
))))
1320 (write-char #\
0 stream
))))
1322 (write-string "." stream
)
1324 (write-char #\
0 stream
))
1325 (write-string string stream
)
1327 (dotimes (i (+ fdigits e
(- (length string
))))
1328 (write-char #\
0 stream
)))))
1329 (let ((string (get-output-stream-string stream
)))
1330 (values string
(length string
)
1331 (char= (char string
0) #\.
)
1332 (char= (char string
(1- (length string
))) #\.
)
1333 (position #\. string
))))))))
1335 ;;; implementation of figure 1 from Burger and Dybvig, 1996. As the
1336 ;;; implementation of the Dragon from Classic CMUCL (and previously in
1337 ;;; SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN THINK OF
1338 ;;; ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE PAPER!",
1339 ;;; and in this case we have to add that even reading the paper might
1340 ;;; not bring immediate illumination as CSR has attempted to turn
1341 ;;; idiomatic Scheme into idiomatic Lisp.
1343 ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized
1344 ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has
1345 ;;; an improved algorithm, but CSR ran out of energy.
1347 ;;; possible extension for the enthusiastic: printing floats in bases
1348 ;;; other than base 10.
1349 (defconstant single-float-min-e
1350 (- 2 sb
!vm
:single-float-bias sb
!vm
:single-float-digits
))
1351 (defconstant double-float-min-e
1352 (- 2 sb
!vm
:double-float-bias sb
!vm
:double-float-digits
))
1354 (defconstant long-float-min-e
1355 (nth-value 1 (decode-float least-positive-long-float
)))
1357 (defun flonum-to-digits (v &optional position relativep
)
1358 (let ((print-base 10) ; B
1360 (float-digits (float-digits v
)) ; p
1361 (digit-characters "0123456789")
1364 (single-float single-float-min-e
)
1365 (double-float double-float-min-e
)
1367 (long-float long-float-min-e
))))
1368 (multiple-value-bind (f e
)
1369 (integer-decode-float v
)
1370 (let (;; FIXME: these even tests assume normal IEEE rounding
1371 ;; mode. I wonder if we should cater for non-normal?
1374 (with-push-char (:element-type base-char
)
1375 (labels ((scale (r s m
+ m-
)
1377 (s s
(* s print-base
)))
1378 ((not (or (> (+ r m
+) s
)
1379 (and high-ok
(= (+ r m
+) s
))))
1381 (r r
(* r print-base
))
1382 (m+ m
+ (* m
+ print-base
))
1383 (m- m-
(* m- print-base
)))
1384 ((not (or (< (* (+ r m
+) print-base
) s
)
1386 (= (* (+ r m
+) print-base
) s
))))
1387 (values k
(generate r s m
+ m-
)))))))
1388 (generate (r s m
+ m-
)
1392 (setf (values d r
) (truncate (* r print-base
) s
))
1393 (setf m
+ (* m
+ print-base
))
1394 (setf m-
(* m- print-base
))
1395 (setf tc1
(or (< r m-
) (and low-ok
(= r m-
))))
1396 (setf tc2
(or (> (+ r m
+) s
)
1397 (and high-ok
(= (+ r m
+) s
))))
1400 (push-char (char digit-characters d
))
1404 ((and (not tc1
) tc2
) (1+ d
))
1405 ((and tc1
(not tc2
)) d
)
1407 (if (< (* r
2) s
) d
(1+ d
))))))
1408 (push-char (char digit-characters d
))
1409 (return-from generate
(get-pushed-string))))))
1413 (let* ((be (expt float-radix e
))
1414 (be1 (* be float-radix
)))
1415 (if (/= f
(expt float-radix
(1- float-digits
)))
1425 (/= f
(expt float-radix
(1- float-digits
))))
1427 s
(* (expt float-radix
(- e
)) 2)
1430 (setf r
(* f float-radix
2)
1431 s
(* (expt float-radix
(- 1 e
)) 2)
1436 (aver (> position
0))
1438 ;; running out of letters here
1439 (l 1 (* l print-base
)))
1440 ((>= (* s l
) (+ r m
+))
1442 (if (< (+ r
(* s
(/ (expt print-base
(- k position
)) 2)))
1443 (* s
(expt print-base k
)))
1444 (setf position
(- k position
))
1445 (setf position
(- k position
1))))))
1446 (let ((low (max m-
(/ (* s
(expt print-base position
)) 2)))
1447 (high (max m
+ (/ (* s
(expt print-base position
)) 2))))
1454 (values r s m
+ m-
))))
1455 (multiple-value-bind (r s m
+ m-
) (initialize)
1456 (scale r s m
+ m-
))))))))
1458 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1459 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1460 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1461 ;;; original number. There may be some loss of precision due the
1462 ;;; floating point representation. The scaling is always done with
1463 ;;; long float arithmetic, which helps printing of lesser precisions
1464 ;;; as well as avoiding generic arithmetic.
1466 ;;; When computing our initial scale factor using EXPT, we pull out
1467 ;;; part of the computation to avoid over/under flow. When
1468 ;;; denormalized, we must pull out a large factor, since there is more
1469 ;;; negative exponent range than positive range.
1471 (eval-when (:compile-toplevel
:execute
)
1472 (setf *read-default-float-format
*
1473 #!+long-float
'long-float
#!-long-float
'double-float
))
1474 (defun scale-exponent (original-x)
1475 (let* ((x (coerce original-x
'long-float
)))
1476 (multiple-value-bind (sig exponent
) (decode-float x
)
1477 (declare (ignore sig
))
1479 (values (float 0.0e0 original-x
) 1)
1480 (let* ((ex (locally (declare (optimize (safety 0)))
1483 ;; this is the closest double float
1484 ;; to (log 2 10), but expressed so
1485 ;; that we're not vulnerable to the
1486 ;; host lisp's interpretation of
1487 ;; arithmetic. (FIXME: it turns
1488 ;; out that sbcl itself is off by 1
1489 ;; ulp in this value, which is a
1490 ;; little unfortunate.)
1493 (sb!kernel
:make-double-float
1070810131 1352628735)
1495 (error "(log 2 10) not computed")))))))
1497 (if (float-denormalized-p x
)
1499 (* x
1.0e16
(expt 10.0e0
(- (- ex
) 16)))
1501 (* x
1.0e18
(expt 10.0e0
(- (- ex
) 18)))
1502 (* x
10.0e0
(expt 10.0e0
(- (- ex
) 1))))
1503 (/ x
10.0e0
(expt 10.0e0
(1- ex
))))))
1504 (do ((d 10.0e0
(* d
10.0e0
))
1508 (do ((m 10.0e0
(* m
10.0e0
))
1512 (values (float z original-x
) ex
))
1513 (declare (long-float m
) (integer ex
))))
1514 (declare (long-float d
))))))))
1515 (eval-when (:compile-toplevel
:execute
)
1516 (setf *read-default-float-format
* 'single-float
))
1518 ;;;; entry point for the float printer
1520 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1521 ;;; argument is printed free-format, in either exponential or
1522 ;;; non-exponential notation, depending on its magnitude.
1524 ;;; NOTE: When a number is to be printed in exponential format, it is
1525 ;;; scaled in floating point. Since precision may be lost in this
1526 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1527 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1528 ;;; extensive computations with integers of similar magnitude to that
1529 ;;; of the number being printed. For large exponents, the bignums
1530 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1531 ;;; fast and the exponent range is not too large, then it might become
1532 ;;; attractive to handle exponential notation with the same accuracy
1533 ;;; as non-exponential notation, using the method described in the
1534 ;;; Steele and White paper.
1536 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1537 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1538 ;;; probably (a) implement the optimizations suggested by Burger and
1539 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1540 ;;; fixed-format printing.
1542 ;;; Print the appropriate exponent marker for X and the specified exponent.
1543 (defun print-float-exponent (x exp stream
)
1544 (declare (type float x
) (type integer exp
) (type stream stream
))
1545 (let ((*print-radix
* nil
))
1546 (if (typep x
*read-default-float-format
*)
1548 (format stream
"e~D" exp
))
1549 (format stream
"~C~D"
1557 (defun output-float-infinity (x stream
)
1558 (declare (float x
) (stream stream
))
1560 (write-string "#." stream
))
1562 (error 'print-not-readable
:object x
))
1564 (write-string "#<" stream
)))
1565 (write-string "SB-EXT:" stream
)
1566 (write-string (symbol-name (float-format-name x
)) stream
)
1567 (write-string (if (plusp x
) "-POSITIVE-" "-NEGATIVE-")
1569 (write-string "INFINITY" stream
)
1571 (write-string ">" stream
)))
1573 (defun output-float-nan (x stream
)
1574 (print-unreadable-object (x stream
)
1575 (princ (float-format-name x
) stream
)
1576 (write-string (if (float-trapping-nan-p x
) " trapping" " quiet") stream
)
1577 (write-string " NaN" stream
)))
1579 ;;; the function called by OUTPUT-OBJECT to handle floats
1580 (defun output-float (x stream
)
1582 ((float-infinity-p x
)
1583 (output-float-infinity x stream
))
1585 (output-float-nan x stream
))
1587 (let ((x (cond ((minusp (float-sign x
))
1588 (write-char #\- stream
)
1594 (write-string "0.0" stream
)
1595 (print-float-exponent x
0 stream
))
1597 (output-float-aux x stream -
3 8)))))))
1599 (defun output-float-aux (x stream e-min e-max
)
1600 (multiple-value-bind (e string
)
1601 (flonum-to-digits x
)
1606 (write-string string stream
:end
(min (length string
) e
))
1607 (dotimes (i (- e
(length string
)))
1608 (write-char #\
0 stream
))
1609 (write-char #\. stream
)
1610 (write-string string stream
:start
(min (length string
) e
))
1611 (when (<= (length string
) e
)
1612 (write-char #\
0 stream
))
1613 (print-float-exponent x
0 stream
))
1615 (write-string "0." stream
)
1617 (write-char #\
0 stream
))
1618 (write-string string stream
)
1619 (print-float-exponent x
0 stream
))))
1620 (t (write-string string stream
:end
1)
1621 (write-char #\. stream
)
1622 (write-string string stream
:start
1)
1623 (print-float-exponent x
(1- e
) stream
)))))
1625 ;;;; other leaf objects
1627 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1628 ;;; the character name or the character in the #\char format.
1629 (defun output-character (char stream
)
1630 (if (or *print-escape
* *print-readably
*)
1631 (let ((graphicp (and (graphic-char-p char
)
1632 (standard-char-p char
)))
1633 (name (char-name char
)))
1634 (write-string "#\\" stream
)
1635 (if (and name
(not graphicp
))
1636 (quote-string name stream
)
1637 (write-char char stream
)))
1638 (write-char char stream
)))
1640 (defun output-sap (sap stream
)
1641 (declare (type system-area-pointer sap
))
1643 (format stream
"#.(~S #X~8,'0X)" 'int-sap
(sap-int sap
)))
1645 (print-unreadable-object (sap stream
)
1646 (format stream
"system area pointer: #X~8,'0X" (sap-int sap
))))))
1648 (defun output-weak-pointer (weak-pointer stream
)
1649 (declare (type weak-pointer weak-pointer
))
1650 (print-unreadable-object (weak-pointer stream
)
1651 (multiple-value-bind (value validp
) (weak-pointer-value weak-pointer
)
1653 (write-string "weak pointer: " stream
)
1654 (write value
:stream stream
))
1656 (write-string "broken weak pointer" stream
))))))
1658 (defun output-code-component (component stream
)
1659 (print-unreadable-object (component stream
:identity t
)
1660 (let ((dinfo (%code-debug-info component
)))
1661 (cond ((eq dinfo
:bogus-lra
)
1662 (write-string "bogus code object" stream
))
1664 (write-string "code object" stream
)
1666 (write-char #\space stream
)
1667 (output-object (sb!c
::debug-info-name dinfo
) stream
)))))))
1669 (defun output-lra (lra stream
)
1670 (print-unreadable-object (lra stream
:identity t
)
1671 (write-string "return PC object" stream
)))
1673 (defun output-fdefn (fdefn stream
)
1674 (print-unreadable-object (fdefn stream
)
1675 (write-string "FDEFINITION object for " stream
)
1676 (output-object (fdefn-name fdefn
) stream
)))
1680 ;;; Output OBJECT as using PRINT-OBJECT if it's a
1681 ;;; FUNCALLABLE-STANDARD-CLASS, or return NIL otherwise.
1683 ;;; The definition here is a simple temporary placeholder. It will be
1684 ;;; overwritten by a smarter version (capable of calling generic
1685 ;;; PRINT-OBJECT when appropriate) when CLOS is installed.
1686 (defun printed-as-funcallable-standard-class (object stream
)
1687 (declare (ignore object stream
))
1690 (defun output-fun (object stream
)
1691 (let* ((*print-length
* 3) ; in case we have to..
1692 (*print-level
* 3) ; ..print an interpreted function definition
1693 (name (%fun-name object
))
1694 (proper-name-p (and (legal-fun-name-p name
) (fboundp name
)
1695 (eq (fdefinition name
) object
))))
1696 (print-unreadable-object (object stream
:identity
(not proper-name-p
))
1697 (format stream
"~:[FUNCTION~;CLOSURE~]~@[ ~S~]"
1701 ;;;; catch-all for unknown things
1703 (defun output-random (object stream
)
1704 (print-unreadable-object (object stream
:identity t
)
1705 (let ((lowtag (lowtag-of object
)))
1707 (#.sb
!vm
:other-pointer-lowtag
1708 (let ((widetag (widetag-of object
)))
1710 (#.sb
!vm
:value-cell-header-widetag
1711 (write-string "value cell " stream
)
1712 (output-object (value-cell-ref object
) stream
))
1714 (write-string "unknown pointer object, widetag=" stream
)
1715 (let ((*print-base
* 16) (*print-radix
* t
))
1716 (output-integer widetag stream
))))))
1717 ((#.sb
!vm
:fun-pointer-lowtag
1718 #.sb
!vm
:instance-pointer-lowtag
1719 #.sb
!vm
:list-pointer-lowtag
)
1720 (write-string "unknown pointer object, lowtag=" stream
)
1721 (let ((*print-base
* 16) (*print-radix
* t
))
1722 (output-integer lowtag stream
)))
1724 (case (widetag-of object
)
1725 (#.sb
!vm
:unbound-marker-widetag
1726 (write-string "unbound marker" stream
))
1728 (write-string "unknown immediate object, lowtag=" stream
)
1729 (let ((*print-base
* 2) (*print-radix
* t
))
1730 (output-integer lowtag stream
))
1731 (write-string ", widetag=" stream
)
1732 (let ((*print-base
* 16) (*print-radix
* t
))
1733 (output-integer (widetag-of object
) stream
)))))))))