Prepare for SDCC 4.5.0 release.
[sdcc.git] / sdcc / support / cpp / gcc / config / dummy / dummy.h
blob4be466225bff329d8a929ed869930650942337ff
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
40 /* Redefines for option macros. */
42 #define TARGET_CMPXCHG16B TARGET_CX16
43 #define TARGET_CMPXCHG16B_P(x) TARGET_CX16_P(x)
45 #define TARGET_LP64 TARGET_ABI_64
46 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
47 #define TARGET_X32 TARGET_ABI_X32
48 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
49 #define TARGET_16BIT TARGET_CODE16
50 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
52 #define TARGET_MMX_WITH_SSE (TARGET_64BIT && TARGET_SSE2)
54 #include "config/vxworks-dummy.h"
56 #include "config/dummy/dummy-opts.h"
58 #define MAX_STRINGOP_ALGS 4
60 /* Specify what algorithm to use for stringops on known size.
61 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
62 known at compile time or estimated via feedback, the SIZE array
63 is walked in order until MAX is greater then the estimate (or -1
64 means infinity). Corresponding ALG is used then.
65 When NOALIGN is true the code guaranting the alignment of the memory
66 block is skipped.
68 For example initializer:
69 {{256, loop}, {-1, rep_prefix_4_byte}}
70 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
71 be used otherwise. */
72 struct stringop_algs
76 /* Analog of COSTS_N_INSNS when optimizing for size. */
77 #ifndef COSTS_N_BYTES
78 #define COSTS_N_BYTES(N) ((N) * 2)
79 #endif
81 /* Define the specific costs for a given cpu. NB: hard_register is used
82 by TARGET_REGISTER_MOVE_COST and TARGET_MEMORY_MOVE_COST to compute
83 hard register move costs by register allocator. Relative costs of
84 pseudo register load and store versus pseudo register moves in RTL
85 expressions for TARGET_RTX_COSTS can be different from relative
86 costs of hard registers to get the most efficient operations with
87 pseudo registers. */
89 struct processor_costs {
90 /* Costs used by register allocator. integer->integer register move
91 cost is 2. */
92 struct
94 const int movzbl_load; /* cost of loading using movzbl */
95 const int int_load[3]; /* cost of loading integer registers
96 in QImode, HImode and SImode relative
97 to reg-reg move (2). */
98 const int int_store[3]; /* cost of storing integer register
99 in QImode, HImode and SImode */
100 const int fp_move; /* cost of reg,reg fld/fst */
101 const int fp_load[3]; /* cost of loading FP register
102 in SFmode, DFmode and XFmode */
103 const int fp_store[3]; /* cost of storing FP register
104 in SFmode, DFmode and XFmode */
105 const int mmx_move; /* cost of moving MMX register. */
106 const int mmx_load[2]; /* cost of loading MMX register
107 in SImode and DImode */
108 const int mmx_store[2]; /* cost of storing MMX register
109 in SImode and DImode */
110 const int xmm_move; /* cost of moving XMM register. */
111 const int ymm_move; /* cost of moving XMM register. */
112 const int zmm_move; /* cost of moving XMM register. */
113 const int sse_load[5]; /* cost of loading SSE register
114 in 32bit, 64bit, 128bit, 256bit and 512bit */
115 const int sse_store[5]; /* cost of storing SSE register
116 in SImode, DImode and TImode. */
117 const int sse_to_integer; /* cost of moving SSE register to integer. */
118 const int integer_to_sse; /* cost of moving integer register to SSE. */
119 const int mask_to_integer; /* cost of moving mask register to integer. */
120 const int integer_to_mask; /* cost of moving integer register to mask. */
121 const int mask_load[3]; /* cost of loading mask registers
122 in QImode, HImode and SImode. */
123 const int mask_store[3]; /* cost of storing mask register
124 in QImode, HImode and SImode. */
125 const int mask_move; /* cost of moving mask register. */
126 } hard_register;
128 const int add; /* cost of an add instruction */
129 const int lea; /* cost of a lea instruction */
130 const int shift_var; /* variable shift costs */
131 const int shift_const; /* constant shift costs */
132 const int mult_init[5]; /* cost of starting a multiply
133 in QImode, HImode, SImode, DImode, TImode*/
134 const int mult_bit; /* cost of multiply per each bit set */
135 const int divide[5]; /* cost of a divide/mod
136 in QImode, HImode, SImode, DImode, TImode*/
137 int movsx; /* The cost of movsx operation. */
138 int movzx; /* The cost of movzx operation. */
139 const int large_insn; /* insns larger than this cost more */
140 const int move_ratio; /* The threshold of number of scalar
141 memory-to-memory move insns. */
142 const int clear_ratio; /* The threshold of number of scalar
143 memory clearing insns. */
144 const int int_load[3]; /* cost of loading integer registers
145 in QImode, HImode and SImode relative
146 to reg-reg move (2). */
147 const int int_store[3]; /* cost of storing integer register
148 in QImode, HImode and SImode */
149 const int sse_load[5]; /* cost of loading SSE register
150 in 32bit, 64bit, 128bit, 256bit and 512bit */
151 const int sse_store[5]; /* cost of storing SSE register
152 in 32bit, 64bit, 128bit, 256bit and 512bit */
153 const int sse_unaligned_load[5];/* cost of unaligned load. */
154 const int sse_unaligned_store[5];/* cost of unaligned store. */
155 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
156 zmm_move;
157 const int sse_to_integer; /* cost of moving SSE register to integer. */
158 const int gather_static, gather_per_elt; /* Cost of gather load is computed
159 as static + per_item * nelts. */
160 const int scatter_static, scatter_per_elt; /* Cost of gather store is
161 computed as static + per_item * nelts. */
162 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
163 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
164 const int prefetch_block; /* bytes moved to cache for prefetch. */
165 const int simultaneous_prefetches; /* number of parallel prefetch
166 operations. */
167 const int branch_cost; /* Default value for BRANCH_COST. */
168 const int fadd; /* cost of FADD and FSUB instructions. */
169 const int fmul; /* cost of FMUL instruction. */
170 const int fdiv; /* cost of FDIV instruction. */
171 const int fabs; /* cost of FABS instruction. */
172 const int fchs; /* cost of FCHS instruction. */
173 const int fsqrt; /* cost of FSQRT instruction. */
174 /* Specify what algorithm
175 to use for stringops on unknown size. */
176 const int sse_op; /* cost of cheap SSE instruction. */
177 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
178 const int mulss; /* cost of MULSS instructions. */
179 const int mulsd; /* cost of MULSD instructions. */
180 const int fmass; /* cost of FMASS instructions. */
181 const int fmasd; /* cost of FMASD instructions. */
182 const int divss; /* cost of DIVSS instructions. */
183 const int divsd; /* cost of DIVSD instructions. */
184 const int sqrtss; /* cost of SQRTSS instructions. */
185 const int sqrtsd; /* cost of SQRTSD instructions. */
186 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
187 /* Specify reassociation width for integer,
188 fp, vector integer and vector fp
189 operations. Generally should correspond
190 to number of instructions executed in
191 parallel. See also
192 ix86_reassociation_width. */
193 struct stringop_algs *memcpy, *memset;
194 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
195 cost model. */
196 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
197 vectorizer cost model. */
199 /* The "0:0:8" label alignment specified for some processors generates
200 secondary 8-byte alignment only for those label/jump/loop targets
201 which have primary alignment. */
202 const char *const align_loop; /* Loop alignment. */
203 const char *const align_jump; /* Jump alignment. */
204 const char *const align_label; /* Label alignment. */
205 const char *const align_func; /* Function alignment. */
208 extern const struct processor_costs *ix86_cost;
209 extern const struct processor_costs ix86_size_cost;
211 #define ix86_cur_cost() \
212 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
214 /* Macros used in the machine description to test the flags. */
216 /* configure can arrange to change it. */
218 #ifndef TARGET_CPU_DEFAULT
219 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
220 #endif
222 #ifndef TARGET_FPMATH_DEFAULT
223 #define TARGET_FPMATH_DEFAULT \
224 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
225 #endif
227 #ifndef TARGET_FPMATH_DEFAULT_P
228 #define TARGET_FPMATH_DEFAULT_P(x) \
229 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
230 #endif
232 /* If the i387 is disabled or -miamcu is used , then do not return
233 values in it. */
234 #define TARGET_FLOAT_RETURNS_IN_80387 \
235 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
236 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
237 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
239 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
240 compile-time constant. */
241 #ifdef IN_LIBGCC2
242 #undef TARGET_64BIT
243 #ifdef __x86_64__
244 #define TARGET_64BIT 1
245 #else
246 #define TARGET_64BIT 0
247 #endif
248 #else
249 #ifndef TARGET_BI_ARCH
250 #undef TARGET_64BIT
251 #undef TARGET_64BIT_P
252 #if TARGET_64BIT_DEFAULT
253 #define TARGET_64BIT 1
254 #define TARGET_64BIT_P(x) 1
255 #else
256 #define TARGET_64BIT 0
257 #define TARGET_64BIT_P(x) 0
258 #endif
259 #endif
260 #endif
262 #define HAS_LONG_COND_BRANCH 1
263 #define HAS_LONG_UNCOND_BRANCH 1
265 #define TARGET_CPU_P(CPU) (ix86_tune == PROCESSOR_ ## CPU)
267 /* Feature tests against the various tunings. */
268 enum ix86_tune_indices {
269 #undef DEF_TUNE
270 #define DEF_TUNE(tune, name, selector) tune,
271 // #include "x86-tune.def"
272 #undef DEF_TUNE
273 X86_TUNE_LAST
276 /* Feature tests against the various architecture variations. */
277 enum ix86_arch_indices {
278 X86_ARCH_CMOV,
279 X86_ARCH_CMPXCHG,
280 X86_ARCH_CMPXCHG8B,
281 X86_ARCH_XADD,
282 X86_ARCH_BSWAP,
284 X86_ARCH_LAST
287 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
289 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
290 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
291 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
292 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
293 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
295 /* For sane SSE instruction set generation we need fcomi instruction.
296 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
297 expands to a sequence that includes conditional move. */
298 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
300 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
302 extern unsigned char ix86_prefetch_sse;
303 #define TARGET_PREFETCH_SSE ix86_prefetch_sse
305 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 \
309 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
311 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
312 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
313 #define TARGET_HARD_XF_REGS (TARGET_80387)
315 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
316 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
317 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
318 #define TARGET_SUN_TLS 0
320 #ifndef TARGET_64BIT_DEFAULT
321 #define TARGET_64BIT_DEFAULT 0
322 #endif
323 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
324 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
325 #endif
327 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
328 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
330 /* Fence to use after loop using storent. */
332 extern GTY(()) tree x86_mfence;
333 #define FENCE_FOLLOWING_MOVNT x86_mfence
335 /* Once GDB has been enhanced to deal with functions without frame
336 pointers, we can change this to allow for elimination of
337 the frame pointer in leaf functions. */
338 #define TARGET_DEFAULT 0
340 /* Extra bits to force. */
341 #define TARGET_SUBTARGET_DEFAULT 0
342 #define TARGET_SUBTARGET_ISA_DEFAULT 0
344 /* Extra bits to force on w/ 32-bit mode. */
345 #define TARGET_SUBTARGET32_DEFAULT 0
346 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
348 /* Extra bits to force on w/ 64-bit mode. */
349 #define TARGET_SUBTARGET64_DEFAULT 0
350 /* Enable MMX, SSE and SSE2 by default. */
351 #define TARGET_SUBTARGET64_ISA_DEFAULT \
352 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
354 /* Replace MACH-O, ifdefs by in-line tests, where possible.
355 (a) Macros defined in config/i386/darwin.h */
356 #define TARGET_MACHO 0
357 #define TARGET_MACHO_SYMBOL_STUBS 0
358 #define MACHOPIC_ATT_STUB 0
359 /* (b) Macros defined in config/darwin.h */
360 #define MACHO_DYNAMIC_NO_PIC_P 0
361 #define MACHOPIC_INDIRECT 0
362 #define MACHOPIC_PURE 0
364 /* For the RDOS */
365 #define TARGET_RDOS 0
367 /* For the Windows 64-bit ABI. */
368 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
370 /* For the Windows 32-bit ABI. */
371 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
373 /* This is re-defined by cygming.h. */
374 #define TARGET_SEH 0
376 /* The default abi used by target. */
377 #define DEFAULT_ABI SYSV_ABI
379 /* The default TLS segment register used by target. */
380 #define DEFAULT_TLS_SEG_REG \
381 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
383 /* Subtargets may reset this to 1 in order to enable 96-bit long double
384 with the rounding mode forced to 53 bits. */
385 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
387 #ifndef SUBTARGET_DRIVER_SELF_SPECS
388 # define SUBTARGET_DRIVER_SELF_SPECS ""
389 #endif
391 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
393 /* -march=native handling only makes sense with compiler running on
394 an x86 or x86_64 chip. If changing this condition, also change
395 the condition in driver-i386.cc. */
396 #if defined(__i386__) || defined(__x86_64__)
397 /* In driver-i386.cc. */
398 extern const char *host_detect_local_cpu (int argc, const char **argv);
399 #define EXTRA_SPEC_FUNCTIONS \
400 { "local_cpu_detect", host_detect_local_cpu },
401 #define HAVE_LOCAL_CPU_DETECT
402 #endif
404 #if TARGET_64BIT_DEFAULT
405 #define OPT_ARCH64 "!m32"
406 #define OPT_ARCH32 "m32"
407 #else
408 #define OPT_ARCH64 "m64|mx32"
409 #define OPT_ARCH32 "m64|mx32:;"
410 #endif
412 /* Specs for the compiler proper */
414 #ifndef CC1_CPU_SPEC
415 #define CC1_CPU_SPEC_1 ""
417 #ifndef HAVE_LOCAL_CPU_DETECT
418 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
419 #else
420 #endif
421 #endif
423 /* Target CPU builtins. */
424 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
426 /* Target Pragmas. */
427 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
429 /* Target hooks for D language. */
430 #define TARGET_D_CPU_VERSIONS ix86_d_target_versions
431 #define TARGET_D_REGISTER_CPU_TARGET_INFO ix86_d_register_target_info
432 #define TARGET_D_HAS_STDCALL_CONVENTION ix86_d_has_stdcall_convention
434 #ifndef CC1_SPEC
435 #define CC1_SPEC "%(cc1_cpu) "
436 #endif
438 /* This macro defines names of additional specifications to put in the
439 specs that can be used in various specifications like CC1_SPEC. Its
440 definition is an initializer with a subgrouping for each command option.
442 Each subgrouping contains a string constant, that defines the
443 specification name, and a string constant that used by the GCC driver
444 program.
446 Do not define this macro if it does not need to do anything. */
448 #ifndef SUBTARGET_EXTRA_SPECS
449 #define SUBTARGET_EXTRA_SPECS
450 #endif
452 /* Whether to allow x87 floating-point arithmetic on MODE (one of
453 SFmode, DFmode and XFmode) in the current excess precision
454 configuration. */
455 #define X87_ENABLE_ARITH(MODE) \
456 (ix86_unsafe_math_optimizations \
457 || ix86_excess_precision == EXCESS_PRECISION_FAST \
458 || (MODE) == XFmode)
460 /* Likewise, whether to allow direct conversions from integer mode
461 IMODE (HImode, SImode or DImode) to MODE. */
462 #define X87_ENABLE_FLOAT(MODE, IMODE) \
463 (ix86_unsafe_math_optimizations \
464 || ix86_excess_precision == EXCESS_PRECISION_FAST \
465 || (MODE) == XFmode \
466 || ((MODE) == DFmode && (IMODE) == SImode) \
467 || (IMODE) == HImode)
469 /* target machine storage layout */
471 #define SHORT_TYPE_SIZE 16
472 #define INT_TYPE_SIZE 32
473 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
474 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
475 #define LONG_LONG_TYPE_SIZE 64
476 #define FLOAT_TYPE_SIZE 32
477 #define DOUBLE_TYPE_SIZE 64
478 #define LONG_DOUBLE_TYPE_SIZE \
479 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
481 #define WIDEST_HARDWARE_FP_SIZE 80
483 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
484 #define MAX_BITS_PER_WORD 64
485 #else
486 #define MAX_BITS_PER_WORD 32
487 #endif
489 /* Define this if most significant byte of a word is the lowest numbered. */
490 /* That is true on the 80386. */
492 #define BITS_BIG_ENDIAN 0
494 /* Define this if most significant byte of a word is the lowest numbered. */
495 /* That is not true on the 80386. */
496 #define BYTES_BIG_ENDIAN 0
498 /* Define this if most significant word of a multiword number is the lowest
499 numbered. */
500 /* Not true for 80386 */
501 #define WORDS_BIG_ENDIAN 0
503 /* Width of a word, in units (bytes). */
504 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
506 #ifndef IN_LIBGCC2
507 #define MIN_UNITS_PER_WORD 4
508 #endif
510 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
511 #define PARM_BOUNDARY BITS_PER_WORD
513 /* Boundary (in *bits*) on which stack pointer should be aligned. */
514 #define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
516 /* Stack boundary of the main function guaranteed by OS. */
517 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
519 /* Minimum stack boundary. */
520 #define MIN_STACK_BOUNDARY BITS_PER_WORD
522 /* Boundary (in *bits*) on which the stack pointer prefers to be
523 aligned; the compiler cannot rely on having this alignment. */
524 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
526 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
527 both 32bit and 64bit, to support codes that need 128 bit stack
528 alignment for SSE instructions, but can't realign the stack. */
529 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
530 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
532 /* 1 if -mstackrealign should be turned on by default. It will
533 generate an alternate prologue and epilogue that realigns the
534 runtime stack if nessary. This supports mixing codes that keep a
535 4-byte aligned stack, as specified by i386 psABI, with codes that
536 need a 16-byte aligned stack, as required by SSE instructions. */
537 #define STACK_REALIGN_DEFAULT 0
539 /* Boundary (in *bits*) on which the incoming stack is aligned. */
540 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
542 /* According to Windows x64 software convention, the maximum stack allocatable
543 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
544 instructions allowed to adjust the stack pointer in the epilog, forcing the
545 use of frame pointer for frames larger than 2 GB. This theorical limit
546 is reduced by 256, an over-estimated upper bound for the stack use by the
547 prologue.
548 We define only one threshold for both the prolog and the epilog. When the
549 frame size is larger than this threshold, we allocate the area to save SSE
550 regs, then save them, and then allocate the remaining. There is no SEH
551 unwind info for this later allocation. */
552 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
554 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
555 mandatory for the 64-bit ABI, and may or may not be true for other
556 operating systems. */
557 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
559 /* Minimum allocation boundary for the code of a function. */
560 #define FUNCTION_BOUNDARY 8
562 /* C++ stores the virtual bit in the lowest bit of function pointers. */
563 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
565 /* Minimum size in bits of the largest boundary to which any
566 and all fundamental data types supported by the hardware
567 might need to be aligned. No data type wants to be aligned
568 rounder than this.
570 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
571 and Pentium Pro XFmode values at 128 bit boundaries.
573 When increasing the maximum, also update
574 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
576 #define BIGGEST_ALIGNMENT \
577 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
579 /* Maximum stack alignment. */
580 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
582 /* Alignment value for attribute ((aligned)). It is a constant since
583 it is the part of the ABI. We shouldn't change it with -mavx. */
584 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
586 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
587 #define ALIGN_MODE_128(MODE) \
588 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
590 /* The published ABIs say that doubles should be aligned on word
591 boundaries, so lower the alignment for structure fields unless
592 -malign-double is set. */
594 /* ??? Blah -- this macro is used directly by libobjc. Since it
595 supports no vector modes, cut out the complexity and fall back
596 on BIGGEST_FIELD_ALIGNMENT. */
597 #ifdef IN_TARGET_LIBS
598 #ifdef __x86_64__
599 #define BIGGEST_FIELD_ALIGNMENT 128
600 #else
601 #define BIGGEST_FIELD_ALIGNMENT 32
602 #endif
603 #else
604 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
605 x86_field_alignment ((TYPE), (COMPUTED))
606 #endif
608 /* If defined, a C expression to compute the alignment for a static
609 variable. TYPE is the data type, and ALIGN is the alignment that
610 the object would ordinarily have. The value of this macro is used
611 instead of that alignment to align the object.
613 If this macro is not defined, then ALIGN is used.
615 One use of this macro is to increase alignment of medium-size
616 data to make it all fit in fewer cache lines. Another is to
617 cause character arrays to be word-aligned so that `strcpy' calls
618 that copy constants to character arrays can be done inline. */
620 #define DATA_ALIGNMENT(TYPE, ALIGN) \
621 ix86_data_alignment ((TYPE), (ALIGN), true)
623 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
624 some alignment increase, instead of optimization only purposes. E.g.
625 AMD x86-64 psABI says that variables with array type larger than 15 bytes
626 must be aligned to 16 byte boundaries.
628 If this macro is not defined, then ALIGN is used. */
630 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
631 ix86_data_alignment ((TYPE), (ALIGN), false)
633 /* If defined, a C expression to compute the alignment for a local
634 variable. TYPE is the data type, and ALIGN is the alignment that
635 the object would ordinarily have. The value of this macro is used
636 instead of that alignment to align the object.
638 If this macro is not defined, then ALIGN is used.
640 One use of this macro is to increase alignment of medium-size
641 data to make it all fit in fewer cache lines. */
643 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
644 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
646 /* If defined, a C expression to compute the alignment for stack slot.
647 TYPE is the data type, MODE is the widest mode available, and ALIGN
648 is the alignment that the slot would ordinarily have. The value of
649 this macro is used instead of that alignment to align the slot.
651 If this macro is not defined, then ALIGN is used when TYPE is NULL,
652 Otherwise, LOCAL_ALIGNMENT will be used.
654 One use of this macro is to set alignment of stack slot to the
655 maximum alignment of all possible modes which the slot may have. */
657 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
658 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
660 /* If defined, a C expression to compute the alignment for a local
661 variable DECL.
663 If this macro is not defined, then
664 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
666 One use of this macro is to increase alignment of medium-size
667 data to make it all fit in fewer cache lines. */
669 #define LOCAL_DECL_ALIGNMENT(DECL) \
670 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
672 /* If defined, a C expression to compute the minimum required alignment
673 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
674 MODE, assuming normal alignment ALIGN.
676 If this macro is not defined, then (ALIGN) will be used. */
678 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
679 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
682 /* Set this nonzero if move instructions will actually fail to work
683 when given unaligned data. */
684 #define STRICT_ALIGNMENT 0
686 /* If bit field type is int, don't let it cross an int,
687 and give entire struct the alignment of an int. */
688 /* Required on the 386 since it doesn't have bit-field insns. */
689 #define PCC_BITFIELD_TYPE_MATTERS 1
691 /* Standard register usage. */
693 /* This processor has special stack-like registers. See reg-stack.cc
694 for details. */
696 #define STACK_REGS
698 #define IS_STACK_MODE(MODE) \
699 (X87_FLOAT_MODE_P (MODE) \
700 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
701 || TARGET_MIX_SSE_I387))
703 /* Number of actual hardware registers.
704 The hardware registers are assigned numbers for the compiler
705 from 0 to just below FIRST_PSEUDO_REGISTER.
706 All registers that the compiler knows about must be given numbers,
707 even those that are not normally considered general registers.
709 In the 80386 we give the 8 general purpose registers the numbers 0-7.
710 We number the floating point registers 8-15.
711 Note that registers 0-7 can be accessed as a short or int,
712 while only 0-3 may be used with byte `mov' instructions.
714 Reg 16 does not correspond to any hardware register, but instead
715 appears in the RTL as an argument pointer prior to reload, and is
716 eliminated during reloading in favor of either the stack or frame
717 pointer. */
719 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
721 /* Number of hardware registers that go into the DWARF-2 unwind info.
722 If not defined, equals FIRST_PSEUDO_REGISTER. */
724 #define DWARF_FRAME_REGISTERS 17
726 /* 1 for registers that have pervasive standard uses
727 and are not available for the register allocator.
728 On the 80386, the stack pointer is such, as is the arg pointer.
730 REX registers are disabled for 32bit targets in
731 TARGET_CONDITIONAL_REGISTER_USAGE. */
733 #define FIXED_REGISTERS \
734 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
735 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
736 /*arg,flags,fpsr,frame*/ \
737 1, 1, 1, 1, \
738 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
739 0, 0, 0, 0, 0, 0, 0, 0, \
740 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
741 0, 0, 0, 0, 0, 0, 0, 0, \
742 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
743 0, 0, 0, 0, 0, 0, 0, 0, \
744 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
745 0, 0, 0, 0, 0, 0, 0, 0, \
746 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
747 0, 0, 0, 0, 0, 0, 0, 0, \
748 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
749 0, 0, 0, 0, 0, 0, 0, 0, \
750 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
751 0, 0, 0, 0, 0, 0, 0, 0 }
753 /* 1 for registers not available across function calls.
754 These must include the FIXED_REGISTERS and also any
755 registers that can be used without being saved.
756 The latter must include the registers where values are returned
757 and the register where structure-value addresses are passed.
758 Aside from that, you can include as many other registers as you like.
760 Value is set to 1 if the register is call used unconditionally.
761 Bit one is set if the register is call used on TARGET_32BIT ABI.
762 Bit two is set if the register is call used on TARGET_64BIT ABI.
763 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
765 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
767 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
768 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
770 #define CALL_USED_REGISTERS \
771 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
772 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
773 /*arg,flags,fpsr,frame*/ \
774 1, 1, 1, 1, \
775 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
776 1, 1, 1, 1, 1, 1, 6, 6, \
777 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
778 1, 1, 1, 1, 1, 1, 1, 1, \
779 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
780 1, 1, 1, 1, 2, 2, 2, 2, \
781 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
782 6, 6, 6, 6, 6, 6, 6, 6, \
783 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
784 1, 1, 1, 1, 1, 1, 1, 1, \
785 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
786 1, 1, 1, 1, 1, 1, 1, 1, \
787 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
788 1, 1, 1, 1, 1, 1, 1, 1 }
790 /* Order in which to allocate registers. Each register must be
791 listed once, even those in FIXED_REGISTERS. List frame pointer
792 late and fixed registers last. Note that, in general, we prefer
793 registers listed in CALL_USED_REGISTERS, keeping the others
794 available for storage of persistent values.
796 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
797 so this is just empty initializer for array. */
799 #define REG_ALLOC_ORDER \
800 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
801 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
802 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
803 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
804 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
806 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
807 to be rearranged based on a particular function. When using sse math,
808 we want to allocate SSE before x87 registers and vice versa. */
810 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
813 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
815 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
816 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
817 && GENERAL_REGNO_P (REGNO) \
818 && ((MODE) == XFmode || (MODE) == XCmode))
820 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
822 #define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
824 #define VALID_AVX256_REG_MODE(MODE) \
825 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
826 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
827 || (MODE) == V4DFmode || (MODE) == V16HFmode)
829 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
830 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
832 #define VALID_AVX512F_SCALAR_MODE(MODE) \
833 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
834 || (MODE) == SFmode)
836 #define VALID_AVX512FP16_SCALAR_MODE(MODE) \
837 ((MODE) == HImode || (MODE) == HFmode)
839 #define VALID_AVX512F_REG_MODE(MODE) \
840 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
841 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
842 || (MODE) == V4TImode || (MODE) == V32HFmode)
844 #define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
845 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
847 #define VALID_AVX512VL_128_REG_MODE(MODE) \
848 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
849 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
850 || (MODE) == TFmode || (MODE) == V1TImode || (MODE) == V8HFmode \
851 || (MODE) == TImode)
853 #define VALID_AVX512FP16_REG_MODE(MODE) \
854 ((MODE) == V8HFmode || (MODE) == V16HFmode || (MODE) == V32HFmode \
855 || (MODE) == V2HFmode)
857 #define VALID_SSE2_REG_MODE(MODE) \
858 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
859 || (MODE) == V8HFmode || (MODE) == V4HFmode || (MODE) == V2HFmode \
860 || (MODE) == V4QImode || (MODE) == V2HImode || (MODE) == V1SImode \
861 || (MODE) == V2DImode || (MODE) == V2QImode || (MODE) == DFmode \
862 || (MODE) == HFmode)
864 #define VALID_SSE_REG_MODE(MODE) \
865 ((MODE) == V1TImode || (MODE) == TImode \
866 || (MODE) == V4SFmode || (MODE) == V4SImode \
867 || (MODE) == SFmode || (MODE) == TFmode || (MODE) == TDmode)
869 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
870 ((MODE) == V2SFmode || (MODE) == SFmode)
872 /* To match ia32 psABI, V4HFmode should be added here. */
873 #define VALID_MMX_REG_MODE(MODE) \
874 ((MODE) == V1DImode || (MODE) == DImode \
875 || (MODE) == V2SImode || (MODE) == SImode \
876 || (MODE) == V4HImode || (MODE) == V8QImode \
877 || (MODE) == V4HFmode)
879 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
881 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
883 #define VALID_FP_MODE_P(MODE) \
884 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
885 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)
887 #define VALID_INT_MODE_P(MODE) \
888 ((MODE) == QImode || (MODE) == HImode \
889 || (MODE) == SImode || (MODE) == DImode \
890 || (MODE) == CQImode || (MODE) == CHImode \
891 || (MODE) == CSImode || (MODE) == CDImode \
892 || (MODE) == SDmode || (MODE) == DDmode \
893 || (MODE) == HFmode || (MODE) == HCmode \
894 || (MODE) == V2HImode || (MODE) == V2HFmode \
895 || (MODE) == V1SImode || (MODE) == V4QImode || (MODE) == V2QImode \
896 || (TARGET_64BIT \
897 && ((MODE) == TImode || (MODE) == CTImode \
898 || (MODE) == TFmode || (MODE) == TCmode \
899 || (MODE) == V8QImode || (MODE) == V4HImode \
900 || (MODE) == V2SImode || (MODE) == TDmode)))
902 /* Return true for modes passed in SSE registers. */
903 #define SSE_REG_MODE_P(MODE) \
904 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
905 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
906 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
907 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
908 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
909 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
910 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
911 || (MODE) == V16SFmode || (MODE) == V32HFmode || (MODE) == V16HFmode \
912 || (MODE) == V8HFmode)
914 #define X87_FLOAT_MODE_P(MODE) \
915 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
917 #define SSE_FLOAT_MODE_P(MODE) \
918 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
920 #define SSE_FLOAT_MODE_SSEMATH_OR_HF_P(MODE) \
921 ((SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
922 || (TARGET_AVX512FP16 && (MODE) == HFmode))
924 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
925 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
926 || (MODE) == V8SFmode || (MODE) == V4DFmode))
928 #define VALID_BCST_MODE_P(MODE) \
929 ((MODE) == SFmode || (MODE) == DFmode \
930 || (MODE) == SImode || (MODE) == DImode \
931 || (MODE) == HFmode)
933 /* It is possible to write patterns to move flags; but until someone
934 does it, */
935 #define AVOID_CCMODE_COPIES
937 /* Specify the modes required to caller save a given hard regno.
938 We do this on i386 to prevent flags from being saved at all.
940 Kill any attempts to combine saving of modes. */
942 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
943 (CC_REGNO_P (REGNO) ? VOIDmode \
944 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
945 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), NULL) \
946 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
947 && TARGET_PARTIAL_REG_STALL) \
948 || MASK_REGNO_P (REGNO)) ? SImode \
949 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
950 || MASK_REGNO_P (REGNO)) ? SImode \
951 : (MODE))
953 /* Specify the registers used for certain standard purposes.
954 The values of these macros are register numbers. */
956 /* on the 386 the pc register is %eip, and is not usable as a general
957 register. The ordinary mov instructions won't work */
958 /* #define PC_REGNUM */
960 /* Base register for access to arguments of the function. */
961 #define ARG_POINTER_REGNUM ARGP_REG
963 /* Register to use for pushing function arguments. */
964 #define STACK_POINTER_REGNUM SP_REG
966 /* Base register for access to local variables of the function. */
967 #define FRAME_POINTER_REGNUM FRAME_REG
968 #define HARD_FRAME_POINTER_REGNUM BP_REG
970 #define FIRST_INT_REG AX_REG
971 #define LAST_INT_REG SP_REG
973 #define FIRST_QI_REG AX_REG
974 #define LAST_QI_REG BX_REG
976 /* First & last stack-like regs */
977 #define FIRST_STACK_REG ST0_REG
978 #define LAST_STACK_REG ST7_REG
980 #define FIRST_SSE_REG XMM0_REG
981 #define LAST_SSE_REG XMM7_REG
983 #define FIRST_MMX_REG MM0_REG
984 #define LAST_MMX_REG MM7_REG
986 #define FIRST_REX_INT_REG R8_REG
987 #define LAST_REX_INT_REG R15_REG
989 #define FIRST_REX_SSE_REG XMM8_REG
990 #define LAST_REX_SSE_REG XMM15_REG
992 #define FIRST_EXT_REX_SSE_REG XMM16_REG
993 #define LAST_EXT_REX_SSE_REG XMM31_REG
995 #define FIRST_MASK_REG MASK0_REG
996 #define LAST_MASK_REG MASK7_REG
998 /* Override this in other tm.h files to cope with various OS lossage
999 requiring a frame pointer. */
1000 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1001 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1002 #endif
1004 /* Define the shadow offset for asan. Other OS's can override in the
1005 respective tm.h files. */
1006 #ifndef SUBTARGET_SHADOW_OFFSET
1007 #define SUBTARGET_SHADOW_OFFSET \
1008 (TARGET_LP64 ? HOST_WIDE_INT_C (0x7fff8000) : HOST_WIDE_INT_1 << 29)
1009 #endif
1011 /* Make sure we can access arbitrary call frames. */
1012 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1014 /* Register to hold the addressing base for position independent
1015 code access to data items. We don't use PIC pointer for 64bit
1016 mode. Define the regnum to dummy value to prevent gcc from
1017 pessimizing code dealing with EBX.
1019 To avoid clobbering a call-saved register unnecessarily, we renumber
1020 the pic register when possible. The change is visible after the
1021 prologue has been emitted. */
1023 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1025 #define PIC_OFFSET_TABLE_REGNUM \
1026 (ix86_use_pseudo_pic_reg () \
1027 ? (pic_offset_table_rtx \
1028 ? INVALID_REGNUM \
1029 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1030 : INVALID_REGNUM)
1032 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1034 /* This is overridden by <cygwin.h>. */
1035 #define MS_AGGREGATE_RETURN 0
1037 #define KEEP_AGGREGATE_RETURN_POINTER 0
1039 /* Define the classes of registers for register constraints in the
1040 machine description. Also define ranges of constants.
1042 One of the classes must always be named ALL_REGS and include all hard regs.
1043 If there is more than one class, another class must be named NO_REGS
1044 and contain no registers.
1046 The name GENERAL_REGS must be the name of a class (or an alias for
1047 another name such as ALL_REGS). This is the class of registers
1048 that is allowed by "g" or "r" in a register constraint.
1049 Also, registers outside this class are allocated only when
1050 instructions express preferences for them.
1052 The classes must be numbered in nondecreasing order; that is,
1053 a larger-numbered class must never be contained completely
1054 in a smaller-numbered class. This is why CLOBBERED_REGS class
1055 is listed early, even though in 64-bit mode it contains more
1056 registers than just %eax, %ecx, %edx.
1058 For any two classes, it is very desirable that there be another
1059 class that represents their union.
1061 The flags and fpsr registers are in no class. */
1063 enum reg_class
1065 NO_REGS,
1066 AREG, DREG, CREG, BREG, SIREG, DIREG,
1067 AD_REGS, /* %eax/%edx for DImode */
1068 CLOBBERED_REGS, /* call-clobbered integer registers */
1069 Q_REGS, /* %eax %ebx %ecx %edx */
1070 NON_Q_REGS, /* %esi %edi %ebp %esp */
1071 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
1072 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1073 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1074 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1075 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1076 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1077 FLOAT_REGS,
1078 SSE_FIRST_REG,
1079 NO_REX_SSE_REGS,
1080 SSE_REGS,
1081 ALL_SSE_REGS,
1082 MMX_REGS,
1083 FLOAT_SSE_REGS,
1084 FLOAT_INT_REGS,
1085 INT_SSE_REGS,
1086 FLOAT_INT_SSE_REGS,
1087 MASK_REGS,
1088 ALL_MASK_REGS,
1089 INT_MASK_REGS,
1090 ALL_REGS,
1091 LIM_REG_CLASSES
1094 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1096 #define INTEGER_CLASS_P(CLASS) \
1097 reg_class_subset_p ((CLASS), GENERAL_REGS)
1098 #define FLOAT_CLASS_P(CLASS) \
1099 reg_class_subset_p ((CLASS), FLOAT_REGS)
1100 #define SSE_CLASS_P(CLASS) \
1101 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1102 #define INT_SSE_CLASS_P(CLASS) \
1103 reg_class_subset_p ((CLASS), INT_SSE_REGS)
1104 #define MMX_CLASS_P(CLASS) \
1105 ((CLASS) == MMX_REGS)
1106 #define MASK_CLASS_P(CLASS) \
1107 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
1108 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1109 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1110 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1111 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1112 #define MAYBE_SSE_CLASS_P(CLASS) \
1113 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1114 #define MAYBE_MMX_CLASS_P(CLASS) \
1115 reg_classes_intersect_p ((CLASS), MMX_REGS)
1116 #define MAYBE_MASK_CLASS_P(CLASS) \
1117 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
1119 #define Q_CLASS_P(CLASS) \
1120 reg_class_subset_p ((CLASS), Q_REGS)
1122 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1123 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1125 /* Give names of register classes as strings for dump file. */
1127 #define REG_CLASS_NAMES \
1128 { "NO_REGS", \
1129 "AREG", "DREG", "CREG", "BREG", \
1130 "SIREG", "DIREG", \
1131 "AD_REGS", \
1132 "CLOBBERED_REGS", \
1133 "Q_REGS", "NON_Q_REGS", \
1134 "TLS_GOTBASE_REGS", \
1135 "INDEX_REGS", \
1136 "LEGACY_REGS", \
1137 "GENERAL_REGS", \
1138 "FP_TOP_REG", "FP_SECOND_REG", \
1139 "FLOAT_REGS", \
1140 "SSE_FIRST_REG", \
1141 "NO_REX_SSE_REGS", \
1142 "SSE_REGS", \
1143 "ALL_SSE_REGS", \
1144 "MMX_REGS", \
1145 "FLOAT_SSE_REGS", \
1146 "FLOAT_INT_REGS", \
1147 "INT_SSE_REGS", \
1148 "FLOAT_INT_SSE_REGS", \
1149 "MASK_REGS", \
1150 "ALL_MASK_REGS", \
1151 "INT_MASK_REGS", \
1152 "ALL_REGS" }
1154 /* Define which registers fit in which classes. This is an initializer
1155 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1157 Note that CLOBBERED_REGS are calculated by
1158 TARGET_CONDITIONAL_REGISTER_USAGE. */
1160 #define REG_CLASS_CONTENTS \
1161 { { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1162 { 0x01, 0x0, 0x0 }, /* AREG */ \
1163 { 0x02, 0x0, 0x0 }, /* DREG */ \
1164 { 0x04, 0x0, 0x0 }, /* CREG */ \
1165 { 0x08, 0x0, 0x0 }, /* BREG */ \
1166 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1167 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1168 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1169 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1170 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1171 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1172 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1173 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1174 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1175 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1176 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1177 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1178 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1179 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1180 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1181 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1182 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1183 { 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1184 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1185 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1186 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1187 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1188 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1189 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1190 { 0x900ff, 0xff0, 0xff0 }, /* INT_MASK_REGS */ \
1191 { 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
1194 /* The same information, inverted:
1195 Return the class number of the smallest class containing
1196 reg number REGNO. This could be a conditional expression
1197 or could index an array. */
1199 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1201 /* When this hook returns true for MODE, the compiler allows
1202 registers explicitly used in the rtl to be used as spill registers
1203 but prevents the compiler from extending the lifetime of these
1204 registers. */
1205 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1207 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1208 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1210 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1211 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1213 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1214 #define REX_INT_REGNO_P(N) \
1215 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1217 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1218 #define GENERAL_REGNO_P(N) \
1219 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1221 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1222 #define ANY_QI_REGNO_P(N) \
1223 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1225 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1226 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1228 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1229 #define SSE_REGNO_P(N) \
1230 (LEGACY_SSE_REGNO_P (N) \
1231 || REX_SSE_REGNO_P (N) \
1232 || EXT_REX_SSE_REGNO_P (N))
1234 #define LEGACY_SSE_REGNO_P(N) \
1235 IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)
1237 #define REX_SSE_REGNO_P(N) \
1238 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1240 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1242 #define EXT_REX_SSE_REGNO_P(N) \
1243 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1245 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1246 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1248 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1249 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1250 #define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
1252 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1253 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1255 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1256 #define CC_REGNO_P(X) ((X) == FLAGS_REG)
1258 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1259 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1260 || (N) == XMM4_REG \
1261 || (N) == XMM8_REG \
1262 || (N) == XMM12_REG \
1263 || (N) == XMM16_REG \
1264 || (N) == XMM20_REG \
1265 || (N) == XMM24_REG \
1266 || (N) == XMM28_REG)
1268 /* First floating point reg */
1269 #define FIRST_FLOAT_REG FIRST_STACK_REG
1270 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1272 #define GET_SSE_REGNO(N) \
1273 ((N) < 8 ? FIRST_SSE_REG + (N) \
1274 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1275 : FIRST_EXT_REX_SSE_REG + (N) - 16)
1277 /* The class value for index registers, and the one for base regs. */
1279 #define INDEX_REG_CLASS INDEX_REGS
1280 #define BASE_REG_CLASS GENERAL_REGS
1282 /* Stack layout; function entry, exit and calling. */
1284 /* Define this if pushing a word on the stack
1285 makes the stack pointer a smaller address. */
1286 #define STACK_GROWS_DOWNWARD 1
1288 /* Define this to nonzero if the nominal address of the stack frame
1289 is at the high-address end of the local variables;
1290 that is, each additional local variable allocated
1291 goes at a more negative offset in the frame. */
1292 #define FRAME_GROWS_DOWNWARD 1
1294 #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
1296 /* If defined, the maximum amount of space required for outgoing arguments
1297 will be computed and placed into the variable `crtl->outgoing_args_size'.
1298 No space will be pushed onto the stack for each call; instead, the
1299 function prologue should increase the stack frame size by this amount.
1301 In 32bit mode enabling argument accumulation results in about 5% code size
1302 growth because move instructions are less compact than push. In 64bit
1303 mode the difference is less drastic but visible.
1305 FIXME: Unlike earlier implementations, the size of unwind info seems to
1306 actually grow with accumulation. Is that because accumulated args
1307 unwind info became unnecesarily bloated?
1309 With the 64-bit MS ABI, we can generate correct code with or without
1310 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1311 generated without accumulated args is terrible.
1313 If stack probes are required, the space used for large function
1314 arguments on the stack must also be probed, so enable
1315 -maccumulate-outgoing-args so this happens in the prologue.
1317 We must use argument accumulation in interrupt function if stack
1318 may be realigned to avoid DRAP. */
1320 #define ACCUMULATE_OUTGOING_ARGS \
1321 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1322 && optimize_function_for_speed_p (cfun)) \
1323 || (cfun->machine->func_type != TYPE_NORMAL \
1324 && crtl->stack_realign_needed) \
1325 || TARGET_STACK_PROBE \
1326 || TARGET_64BIT_MS_ABI \
1327 || (TARGET_MACHO && crtl->profile))
1329 /* We want the stack and args grow in opposite directions, even if
1330 targetm.calls.push_argument returns false. */
1331 #define PUSH_ARGS_REVERSED 1
1333 /* Offset of first parameter from the argument pointer register value. */
1334 #define FIRST_PARM_OFFSET(FNDECL) 0
1336 /* Define this macro if functions should assume that stack space has been
1337 allocated for arguments even when their values are passed in registers.
1339 The value of this macro is the size, in bytes, of the area reserved for
1340 arguments passed in registers for the function represented by FNDECL.
1342 This space can be allocated by the caller, or be a part of the
1343 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1344 which. */
1345 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1347 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1348 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1350 /* Define how to find the value returned by a library function
1351 assuming the value has mode MODE. */
1353 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1355 /* Define the size of the result block used for communication between
1356 untyped_call and untyped_return. The block contains a DImode value
1357 followed by the block used by fnsave and frstor. */
1359 #define APPLY_RESULT_SIZE (8+108)
1361 /* 1 if N is a possible register number for function argument passing. */
1362 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1364 /* Define a data type for recording info about an argument list
1365 during the scan of that argument list. This data type should
1366 hold all necessary information about the function itself
1367 and about the args processed so far, enough to enable macros
1368 such as FUNCTION_ARG to determine where the next arg should go. */
1370 typedef struct ix86_args {
1371 int words; /* # words passed so far */
1372 int nregs; /* # registers available for passing */
1373 int regno; /* next available register number */
1374 int fastcall; /* fastcall or thiscall calling convention
1375 is used */
1376 int sse_words; /* # sse words passed so far */
1377 int sse_nregs; /* # sse registers available for passing */
1378 int warn_avx512f; /* True when we want to warn
1379 about AVX512F ABI. */
1380 int warn_avx; /* True when we want to warn about AVX ABI. */
1381 int warn_sse; /* True when we want to warn about SSE ABI. */
1382 int warn_mmx; /* True when we want to warn about MMX ABI. */
1383 int warn_empty; /* True when we want to warn about empty classes
1384 passing ABI change. */
1385 int sse_regno; /* next available sse register number */
1386 int mmx_words; /* # mmx words passed so far */
1387 int mmx_nregs; /* # mmx registers available for passing */
1388 int mmx_regno; /* next available mmx register number */
1389 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1390 int caller; /* true if it is caller. */
1391 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1392 SFmode/DFmode arguments should be passed
1393 in SSE registers. Otherwise 0. */
1394 int stdarg; /* Set to 1 if function is stdarg. */
1395 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1396 MS_ABI for ms abi. */
1397 tree decl; /* Callee decl. */
1398 } CUMULATIVE_ARGS;
1400 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1401 for a call to a function whose data type is FNTYPE.
1402 For a library call, FNTYPE is 0. */
1404 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1405 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1406 (N_NAMED_ARGS) != -1)
1408 /* Output assembler code to FILE to increment profiler label # LABELNO
1409 for profiling a function entry. */
1411 #define FUNCTION_PROFILER(FILE, LABELNO) \
1412 x86_function_profiler ((FILE), (LABELNO))
1414 #define MCOUNT_NAME "_mcount"
1416 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1418 #define PROFILE_COUNT_REGISTER "edx"
1420 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1421 the stack pointer does not matter. The value is tested only in
1422 functions that have frame pointers.
1423 No definition is equivalent to always zero. */
1424 /* Note on the 386 it might be more efficient not to define this since
1425 we have to restore it ourselves from the frame pointer, in order to
1426 use pop */
1428 #define EXIT_IGNORE_STACK 1
1430 /* Define this macro as a C expression that is nonzero for registers
1431 used by the epilogue or the `return' pattern. */
1433 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1435 /* Output assembler code for a block containing the constant parts
1436 of a trampoline, leaving space for the variable parts. */
1438 /* On the 386, the trampoline contains two instructions:
1439 mov #STATIC,ecx
1440 jmp FUNCTION
1441 The trampoline is generated entirely at runtime. The operand of JMP
1442 is the address of FUNCTION relative to the instruction following the
1443 JMP (which is 5 bytes long). */
1445 /* Length in units of the trampoline for entering a nested function. */
1447 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
1449 /* Definitions for register eliminations.
1451 This is an array of structures. Each structure initializes one pair
1452 of eliminable registers. The "from" register number is given first,
1453 followed by "to". Eliminations of the same "from" register are listed
1454 in order of preference.
1456 There are two registers that can always be eliminated on the i386.
1457 The frame pointer and the arg pointer can be replaced by either the
1458 hard frame pointer or to the stack pointer, depending upon the
1459 circumstances. The hard frame pointer is not used before reload and
1460 so it is not eligible for elimination. */
1462 #define ELIMINABLE_REGS \
1463 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1464 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1465 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1466 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1468 /* Define the offset between two registers, one to be eliminated, and the other
1469 its replacement, at the start of a routine. */
1471 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1472 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1474 /* Addressing modes, and classification of registers for them. */
1476 /* Macros to check register numbers against specific register classes. */
1478 /* These assume that REGNO is a hard or pseudo reg number.
1479 They give nonzero only if REGNO is a hard reg of the suitable class
1480 or a pseudo reg currently allocated to a suitable hard reg.
1481 Since they use reg_renumber, they are safe only once reg_renumber
1482 has been allocated, which happens in reginfo.cc during register
1483 allocation. */
1485 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1486 ((REGNO) < STACK_POINTER_REGNUM \
1487 || REX_INT_REGNO_P (REGNO) \
1488 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1489 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1491 #define REGNO_OK_FOR_BASE_P(REGNO) \
1492 (GENERAL_REGNO_P (REGNO) \
1493 || (REGNO) == ARG_POINTER_REGNUM \
1494 || (REGNO) == FRAME_POINTER_REGNUM \
1495 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1497 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1498 and check its validity for a certain class.
1499 We have two alternate definitions for each of them.
1500 The usual definition accepts all pseudo regs; the other rejects
1501 them unless they have been allocated suitable hard regs.
1502 The symbol REG_OK_STRICT causes the latter definition to be used.
1504 Most source files want to accept pseudo regs in the hope that
1505 they will get allocated to the class that the insn wants them to be in.
1506 Source files for reload pass need to be strict.
1507 After reload, it makes no difference, since pseudo regs have
1508 been eliminated by then. */
1511 /* Non strict versions, pseudos are ok. */
1512 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1513 (REGNO (X) < STACK_POINTER_REGNUM \
1514 || REX_INT_REGNO_P (REGNO (X)) \
1515 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1517 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1518 (GENERAL_REGNO_P (REGNO (X)) \
1519 || REGNO (X) == ARG_POINTER_REGNUM \
1520 || REGNO (X) == FRAME_POINTER_REGNUM \
1521 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1523 /* Strict versions, hard registers only */
1524 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1525 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1527 #ifndef REG_OK_STRICT
1528 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1529 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1531 #else
1532 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1533 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1534 #endif
1536 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1537 that is a valid memory address for an instruction.
1538 The MODE argument is the machine mode for the MEM expression
1539 that wants to use this address.
1541 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1542 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1544 See legitimize_pic_address in i386.cc for details as to what
1545 constitutes a legitimate address when -fpic is used. */
1547 #define MAX_REGS_PER_ADDRESS 2
1549 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1551 /* If defined, a C expression to determine the base term of address X.
1552 This macro is used in only one place: `find_base_term' in alias.cc.
1554 It is always safe for this macro to not be defined. It exists so
1555 that alias analysis can understand machine-dependent addresses.
1557 The typical use of this macro is to handle addresses containing
1558 a label_ref or symbol_ref within an UNSPEC. */
1560 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1562 /* Nonzero if the constant value X is a legitimate general operand
1563 when generating PIC code. It is given that flag_pic is on and
1564 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1566 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1568 #define STRIP_UNARY(X) (UNARY_P (X) ? XEXP (X, 0) : X)
1570 #define SYMBOLIC_CONST(X) \
1571 (GET_CODE (X) == SYMBOL_REF \
1572 || GET_CODE (X) == LABEL_REF \
1573 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1575 /* Max number of args passed in registers. If this is more than 3, we will
1576 have problems with ebx (register #4), since it is a caller save register and
1577 is also used as the pic register in ELF. So for now, don't allow more than
1578 3 registers to be passed in registers. */
1580 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1581 #define X86_64_REGPARM_MAX 6
1582 #define X86_64_MS_REGPARM_MAX 4
1584 #define X86_32_REGPARM_MAX 3
1586 #define REGPARM_MAX \
1587 (TARGET_64BIT \
1588 ? (TARGET_64BIT_MS_ABI \
1589 ? X86_64_MS_REGPARM_MAX \
1590 : X86_64_REGPARM_MAX) \
1591 : X86_32_REGPARM_MAX)
1593 #define X86_64_SSE_REGPARM_MAX 8
1594 #define X86_64_MS_SSE_REGPARM_MAX 4
1596 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1598 #define SSE_REGPARM_MAX \
1599 (TARGET_64BIT \
1600 ? (TARGET_64BIT_MS_ABI \
1601 ? X86_64_MS_SSE_REGPARM_MAX \
1602 : X86_64_SSE_REGPARM_MAX) \
1603 : X86_32_SSE_REGPARM_MAX)
1605 #define X86_32_MMX_REGPARM_MAX (TARGET_MMX ? (TARGET_MACHO ? 0 : 3) : 0)
1607 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : X86_32_MMX_REGPARM_MAX)
1609 /* Specify the machine mode that this machine uses
1610 for the index in the tablejump instruction. */
1611 #define CASE_VECTOR_MODE \
1612 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1614 /* Define this as 1 if `char' should by default be signed; else as 0. */
1615 #define DEFAULT_SIGNED_CHAR 1
1617 /* The constant maximum number of bytes that a single instruction can
1618 move quickly between memory and registers or between two memory
1619 locations. */
1620 #define MAX_MOVE_MAX 64
1622 /* Max number of bytes we can move from memory to memory in one
1623 reasonably fast instruction, as opposed to MOVE_MAX_PIECES which
1624 is the number of bytes at a time which we can move efficiently.
1625 MOVE_MAX_PIECES defaults to MOVE_MAX. */
1627 #define MOVE_MAX \
1628 ((TARGET_AVX512F \
1629 && (ix86_move_max == PVW_AVX512 \
1630 || ix86_store_max == PVW_AVX512)) \
1631 ? 64 \
1632 : ((TARGET_AVX \
1633 && (ix86_move_max >= PVW_AVX256 \
1634 || ix86_store_max >= PVW_AVX256)) \
1635 ? 32 \
1636 : ((TARGET_SSE2 \
1637 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1638 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1639 ? 16 : UNITS_PER_WORD)))
1641 /* STORE_MAX_PIECES is the number of bytes at a time that we can store
1642 efficiently. Allow 16/32/64 bytes only if inter-unit move is enabled
1643 since vec_duplicate enabled by inter-unit move is used to implement
1644 store_by_pieces of 16/32/64 bytes. */
1645 #define STORE_MAX_PIECES \
1646 (TARGET_INTER_UNIT_MOVES_TO_VEC \
1647 ? ((TARGET_AVX512F && ix86_store_max == PVW_AVX512) \
1648 ? 64 \
1649 : ((TARGET_AVX \
1650 && ix86_store_max >= PVW_AVX256) \
1651 ? 32 \
1652 : ((TARGET_SSE2 \
1653 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1654 ? 16 : UNITS_PER_WORD))) \
1655 : UNITS_PER_WORD)
1657 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1658 move-instruction pairs, we will do a cpymem or libcall instead.
1659 Increasing the value will always make code faster, but eventually
1660 incurs high cost in increased code size.
1662 If you don't define this, a reasonable default is used. */
1664 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1666 /* If a clear memory operation would take CLEAR_RATIO or more simple
1667 move-instruction sequences, we will do a clrmem or libcall instead. */
1669 #define CLEAR_RATIO(speed) ((speed) ? ix86_cost->clear_ratio : 2)
1671 /* Define if shifts truncate the shift count which implies one can
1672 omit a sign-extension or zero-extension of a shift count.
1674 On i386, shifts do truncate the count. But bit test instructions
1675 take the modulo of the bit offset operand. */
1677 /* #define SHIFT_COUNT_TRUNCATED */
1679 /* A macro to update M and UNSIGNEDP when an object whose type is
1680 TYPE and which has the specified mode and signedness is to be
1681 stored in a register. This macro is only called when TYPE is a
1682 scalar type.
1684 On i386 it is sometimes useful to promote HImode and QImode
1685 quantities to SImode. The choice depends on target type. */
1687 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1688 do { \
1689 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1690 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1691 (MODE) = SImode; \
1692 } while (0)
1694 /* Specify the machine mode that pointers have.
1695 After generation of rtl, the compiler makes no further distinction
1696 between pointers and any other objects of this machine mode. */
1697 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1699 /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1700 NONLOCAL needs space to save both shadow stack and stack pointers.
1702 FIXME: We only need to save and restore stack pointer in ptr_mode.
1703 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1704 to save and restore stack pointer. See
1705 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1707 #define STACK_SAVEAREA_MODE(LEVEL) \
1708 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1710 /* Specify the machine_mode of the size increment
1711 operand of an 'allocate_stack' named pattern. */
1712 #define STACK_SIZE_MODE Pmode
1714 /* A C expression whose value is zero if pointers that need to be extended
1715 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1716 greater then zero if they are zero-extended and less then zero if the
1717 ptr_extend instruction should be used. */
1719 #define POINTERS_EXTEND_UNSIGNED 1
1721 /* A function address in a call instruction
1722 is a byte address (for indexing purposes)
1723 so give the MEM rtx a byte's mode. */
1724 #define FUNCTION_MODE QImode
1727 /* A C expression for the cost of a branch instruction. A value of 1
1728 is the default; other values are interpreted relative to that. */
1730 #define BRANCH_COST(speed_p, predictable_p) \
1731 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1733 /* An integer expression for the size in bits of the largest integer machine
1734 mode that should actually be used. We allow pairs of registers. */
1735 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1737 /* Define this macro as a C expression which is nonzero if accessing
1738 less than a word of memory (i.e. a `char' or a `short') is no
1739 faster than accessing a word of memory, i.e., if such access
1740 require more than one instruction or if there is no difference in
1741 cost between byte and (aligned) word loads.
1743 When this macro is not defined, the compiler will access a field by
1744 finding the smallest containing object; when it is defined, a
1745 fullword load will be used if alignment permits. Unless bytes
1746 accesses are faster than word accesses, using word accesses is
1747 preferable since it may eliminate subsequent memory access if
1748 subsequent accesses occur to other fields in the same word of the
1749 structure, but to different bytes. */
1751 #define SLOW_BYTE_ACCESS 0
1753 /* Nonzero if access to memory by shorts is slow and undesirable. */
1754 #define SLOW_SHORT_ACCESS 0
1756 /* Define this macro if it is as good or better to call a constant
1757 function address than to call an address kept in a register.
1759 Desirable on the 386 because a CALL with a constant address is
1760 faster than one with a register address. */
1762 #define NO_FUNCTION_CSE 1
1764 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1765 return the mode to be used for the comparison.
1767 For floating-point equality comparisons, CCFPEQmode should be used.
1768 VOIDmode should be used in all other cases.
1770 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1771 possible, to allow for more combinations. */
1773 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1775 /* Return nonzero if MODE implies a floating point inequality can be
1776 reversed. */
1778 #define REVERSIBLE_CC_MODE(MODE) 1
1780 /* A C expression whose value is reversed condition code of the CODE for
1781 comparison done in CC_MODE mode. */
1782 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1785 /* Control the assembler format that we output, to the extent
1786 this does not vary between assemblers. */
1788 /* How to refer to registers in assembler output.
1789 This sequence is indexed by compiler's hard-register-number (see above). */
1791 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1792 For non floating point regs, the following are the HImode names.
1794 For float regs, the stack top is sometimes referred to as "%st(0)"
1795 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1796 "y" code. */
1798 #define HI_REGISTER_NAMES \
1799 {"ax","dx","cx","bx","si","di","bp","sp", \
1800 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1801 "argp", "flags", "fpsr", "frame", \
1802 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1803 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1804 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1805 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
1806 "xmm16", "xmm17", "xmm18", "xmm19", \
1807 "xmm20", "xmm21", "xmm22", "xmm23", \
1808 "xmm24", "xmm25", "xmm26", "xmm27", \
1809 "xmm28", "xmm29", "xmm30", "xmm31", \
1810 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
1812 #define REGISTER_NAMES HI_REGISTER_NAMES
1814 #define QI_REGISTER_NAMES \
1815 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
1817 #define QI_HIGH_REGISTER_NAMES \
1818 {"ah", "dh", "ch", "bh"}
1820 /* Table of additional register names to use in user input. */
1822 #define ADDITIONAL_REGISTER_NAMES \
1824 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
1825 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
1826 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
1827 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
1828 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
1829 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
1830 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
1831 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
1832 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
1833 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
1834 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
1835 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
1836 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
1837 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
1838 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
1839 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
1840 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
1841 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
1842 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
1843 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
1844 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
1845 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
1846 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
1849 /* How to renumber registers for dbx and gdb. */
1851 #define DBX_REGISTER_NUMBER(N) \
1852 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1854 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1855 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1856 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1858 /* Before the prologue, RA is at 0(%esp). */
1859 #define INCOMING_RETURN_ADDR_RTX \
1860 gen_rtx_MEM (Pmode, stack_pointer_rtx)
1862 /* After the prologue, RA is at -4(AP) in the current frame. */
1863 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1864 ((COUNT) == 0 \
1865 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1866 -UNITS_PER_WORD)) \
1867 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
1869 /* PC is dbx register 8; let's use that column for RA. */
1870 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1872 /* Before the prologue, there are return address and error code for
1873 exception handler on the top of the frame. */
1874 #define INCOMING_FRAME_SP_OFFSET \
1875 (cfun->machine->func_type == TYPE_EXCEPTION \
1876 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
1878 /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
1879 .cfi_startproc. */
1880 #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1882 /* Describe how we implement __builtin_eh_return. */
1883 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1884 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1887 /* Select a format to encode pointers in exception handling data. CODE
1888 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1889 true if the symbol may be affected by dynamic relocations.
1891 ??? All x86 object file formats are capable of representing this.
1892 After all, the relocation needed is the same as for the call insn.
1893 Whether or not a particular assembler allows us to enter such, I
1894 guess we'll have to see. */
1895 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1896 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1898 /* These are a couple of extensions to the formats accepted
1899 by asm_fprintf:
1900 %z prints out opcode suffix for word-mode instruction
1901 %r prints out word-mode name for reg_names[arg] */
1902 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
1903 case 'z': \
1904 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
1905 break; \
1907 case 'r': \
1909 unsigned int regno = va_arg ((ARGS), int); \
1910 if (LEGACY_INT_REGNO_P (regno)) \
1911 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
1912 fputs (reg_names[regno], (FILE)); \
1913 break; \
1916 /* This is how to output an insn to push a register on the stack. */
1918 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1919 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
1921 /* This is how to output an insn to pop a register from the stack. */
1923 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1924 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
1926 /* This is how to output an element of a case-vector that is absolute. */
1928 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1929 ix86_output_addr_vec_elt ((FILE), (VALUE))
1931 /* This is how to output an element of a case-vector that is relative. */
1933 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1934 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
1936 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
1938 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1940 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
1941 (PTR) += TARGET_AVX ? 1 : 2; \
1944 /* A C statement or statements which output an assembler instruction
1945 opcode to the stdio stream STREAM. The macro-operand PTR is a
1946 variable of type `char *' which points to the opcode name in
1947 its "internal" form--the form that is written in the machine
1948 description. */
1950 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1951 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1953 /* A C statement to output to the stdio stream FILE an assembler
1954 command to pad the location counter to a multiple of 1<<LOG
1955 bytes if it is within MAX_SKIP bytes. */
1957 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1958 # define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP) \
1959 do { \
1960 if ((LOG) != 0) { \
1961 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
1962 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
1963 else \
1964 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
1966 } while (0)
1967 #endif
1969 /* Write the extra assembler code needed to declare a function
1970 properly. */
1972 #undef ASM_OUTPUT_FUNCTION_LABEL
1973 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1974 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
1976 /* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM.
1977 If not defined, assemble_name will be used to output the name of the
1978 symbol. This macro may be used to modify the way a symbol is referenced
1979 depending on information encoded by TARGET_ENCODE_SECTION_INFO. */
1981 #ifndef ASM_OUTPUT_SYMBOL_REF
1982 #define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \
1983 do { \
1984 const char *name \
1985 = assemble_name_resolve (XSTR (x, 0)); \
1986 /* In -masm=att wrap identifiers that start with $ \
1987 into parens. */ \
1988 if (ASSEMBLER_DIALECT == ASM_ATT \
1989 && name[0] == '$' \
1990 && user_label_prefix[0] == '\0') \
1992 fputc ('(', (FILE)); \
1993 assemble_name_raw ((FILE), name); \
1994 fputc (')', (FILE)); \
1996 else \
1997 assemble_name_raw ((FILE), name); \
1998 } while (0)
1999 #endif
2001 /* Under some conditions we need jump tables in the text section,
2002 because the assembler cannot handle label differences between
2003 sections. */
2005 #define JUMP_TABLES_IN_TEXT_SECTION \
2006 (flag_pic && !(TARGET_64BIT || HAVE_AS_GOTOFF_IN_DATA))
2008 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2009 and switch back. For x86 we do this only to save a few bytes that
2010 would otherwise be unused in the text section. */
2011 #define CRT_MKSTR2(VAL) #VAL
2012 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2014 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2015 asm (SECTION_OP "\n\t" \
2016 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2017 TEXT_SECTION_ASM_OP);
2019 /* Default threshold for putting data in large sections
2020 with x86-64 medium memory model */
2021 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2023 /* Which processor to tune code generation for. These must be in sync
2024 with processor_target_table in i386.cc. */
2026 enum processor_type
2028 PROCESSOR_GENERIC = 0,
2029 PROCESSOR_I386, /* 80386 */
2030 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2031 PROCESSOR_PENTIUM,
2032 PROCESSOR_LAKEMONT,
2033 PROCESSOR_PENTIUMPRO,
2034 PROCESSOR_PENTIUM4,
2035 PROCESSOR_NOCONA,
2036 PROCESSOR_CORE2,
2037 PROCESSOR_NEHALEM,
2038 PROCESSOR_SANDYBRIDGE,
2039 PROCESSOR_HASWELL,
2040 PROCESSOR_BONNELL,
2041 PROCESSOR_SILVERMONT,
2042 PROCESSOR_GOLDMONT,
2043 PROCESSOR_GOLDMONT_PLUS,
2044 PROCESSOR_TREMONT,
2045 PROCESSOR_KNL,
2046 PROCESSOR_KNM,
2047 PROCESSOR_SKYLAKE,
2048 PROCESSOR_SKYLAKE_AVX512,
2049 PROCESSOR_CANNONLAKE,
2050 PROCESSOR_ICELAKE_CLIENT,
2051 PROCESSOR_ICELAKE_SERVER,
2052 PROCESSOR_CASCADELAKE,
2053 PROCESSOR_TIGERLAKE,
2054 PROCESSOR_COOPERLAKE,
2055 PROCESSOR_SAPPHIRERAPIDS,
2056 PROCESSOR_ALDERLAKE,
2057 PROCESSOR_ROCKETLAKE,
2058 PROCESSOR_INTEL,
2059 PROCESSOR_GEODE,
2060 PROCESSOR_K6,
2061 PROCESSOR_ATHLON,
2062 PROCESSOR_K8,
2063 PROCESSOR_AMDFAM10,
2064 PROCESSOR_BDVER1,
2065 PROCESSOR_BDVER2,
2066 PROCESSOR_BDVER3,
2067 PROCESSOR_BDVER4,
2068 PROCESSOR_BTVER1,
2069 PROCESSOR_BTVER2,
2070 PROCESSOR_ZNVER1,
2071 PROCESSOR_ZNVER2,
2072 PROCESSOR_ZNVER3,
2073 PROCESSOR_max
2076 #if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2077 extern const char *const processor_names[];
2079 // sdcpp #include "wide-int-bitmask.h"
2081 enum pta_flag
2083 #define DEF_PTA(NAME) _ ## NAME,
2084 // #include "i386-isa.def"
2085 #undef DEF_PTA
2086 END_PTA
2089 /* wide_int_bitmask can handle only 128 flags. */
2090 STATIC_ASSERT (END_PTA <= 128);
2092 #define WIDE_INT_BITMASK_FROM_NTH(N) (N < 64 ? wide_int_bitmask (0, 1ULL << N) \
2093 : wide_int_bitmask (1ULL << (N - 64), 0))
2095 #define DEF_PTA(NAME) constexpr wide_int_bitmask PTA_ ## NAME \
2096 = WIDE_INT_BITMASK_FROM_NTH ((pta_flag) _ ## NAME);
2097 // #include "i386-isa.def"
2098 #undef DEF_PTA
2100 #ifndef GENERATOR_FILE
2102 #include "insn-attr-common.h"
2104 // #include "common/config/i386/i386-cpuinfo.h"
2106 extern unsigned int const pta_size;
2107 extern unsigned int const num_arch_names;
2108 #endif
2110 #endif
2112 extern enum processor_type ix86_tune;
2113 extern enum processor_type ix86_arch;
2115 /* Size of the RED_ZONE area. */
2116 #define RED_ZONE_SIZE 128
2117 /* Reserved area of the red zone for temporaries. */
2118 #define RED_ZONE_RESERVE 8
2120 extern unsigned int ix86_preferred_stack_boundary;
2121 extern unsigned int ix86_incoming_stack_boundary;
2123 /* Smallest class containing REGNO. */
2124 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2126 enum ix86_fpcmp_strategy {
2127 IX86_FPCMP_SAHF,
2128 IX86_FPCMP_COMI,
2129 IX86_FPCMP_ARITH
2132 /* To properly truncate FP values into integers, we need to set i387 control
2133 word. We can't emit proper mode switching code before reload, as spills
2134 generated by reload may truncate values incorrectly, but we still can avoid
2135 redundant computation of new control word by the mode switching pass.
2136 The fldcw instructions are still emitted redundantly, but this is probably
2137 not going to be noticeable problem, as most CPUs do have fast path for
2138 the sequence.
2140 The machinery is to emit simple truncation instructions and split them
2141 before reload to instructions having USEs of two memory locations that
2142 are filled by this code to old and new control word.
2144 Post-reload pass may be later used to eliminate the redundant fildcw if
2145 needed. */
2147 enum ix86_stack_slot
2149 SLOT_TEMP = 0,
2150 SLOT_CW_STORED,
2151 SLOT_CW_ROUNDEVEN,
2152 SLOT_CW_TRUNC,
2153 SLOT_CW_FLOOR,
2154 SLOT_CW_CEIL,
2155 SLOT_STV_TEMP,
2156 SLOT_FLOATxFDI_387,
2157 MAX_386_STACK_LOCALS
2160 enum ix86_entity
2162 X86_DIRFLAG = 0,
2163 AVX_U128,
2164 I387_ROUNDEVEN,
2165 I387_TRUNC,
2166 I387_FLOOR,
2167 I387_CEIL,
2168 MAX_386_ENTITIES
2171 enum x86_dirflag_state
2173 X86_DIRFLAG_RESET,
2174 X86_DIRFLAG_ANY
2177 enum avx_u128_state
2179 AVX_U128_CLEAN,
2180 AVX_U128_DIRTY,
2181 AVX_U128_ANY
2184 /* Define this macro if the port needs extra instructions inserted
2185 for mode switching in an optimizing compilation. */
2187 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2188 ix86_optimize_mode_switching[(ENTITY)]
2190 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2191 initializer for an array of integers. Each initializer element N
2192 refers to an entity that needs mode switching, and specifies the
2193 number of different modes that might need to be set for this
2194 entity. The position of the initializer in the initializer -
2195 starting counting at zero - determines the integer that is used to
2196 refer to the mode-switched entity in question. */
2198 #define NUM_MODES_FOR_MODE_SWITCHING \
2199 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2200 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2203 /* Avoid renaming of stack registers, as doing so in combination with
2204 scheduling just increases amount of live registers at time and in
2205 the turn amount of fxch instructions needed.
2207 ??? Maybe Pentium chips benefits from renaming, someone can try....
2209 Don't rename evex to non-evex sse registers. */
2211 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2212 (!STACK_REGNO_P (SRC) \
2213 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2216 #define FASTCALL_PREFIX '@'
2218 #ifndef USED_FOR_TARGET
2219 /* Structure describing stack frame layout.
2220 Stack grows downward:
2222 [arguments]
2223 <- ARG_POINTER
2224 saved pc
2226 saved static chain if ix86_static_chain_on_stack
2228 saved frame pointer if frame_pointer_needed
2229 <- HARD_FRAME_POINTER
2230 [saved regs]
2231 <- reg_save_offset
2232 [padding0]
2233 <- stack_realign_offset
2234 [saved SSE regs]
2236 [stub-saved registers for ms x64 --> sysv clobbers
2237 <- Start of out-of-line, stub-saved/restored regs
2238 (see libgcc/config/i386/(sav|res)ms64*.S)
2239 [XMM6-15]
2240 [RSI]
2241 [RDI]
2242 [?RBX] only if RBX is clobbered
2243 [?RBP] only if RBP and RBX are clobbered
2244 [?R12] only if R12 and all previous regs are clobbered
2245 [?R13] only if R13 and all previous regs are clobbered
2246 [?R14] only if R14 and all previous regs are clobbered
2247 [?R15] only if R15 and all previous regs are clobbered
2248 <- end of stub-saved/restored regs
2249 [padding1]
2251 <- sse_reg_save_offset
2252 [padding2]
2253 | <- FRAME_POINTER
2254 [va_arg registers] |
2256 [frame] |
2258 [padding2] | = to_allocate
2259 <- STACK_POINTER
2261 struct GTY(()) ix86_frame
2263 int nsseregs;
2264 int nregs;
2265 int va_arg_size;
2266 int red_zone_size;
2267 int outgoing_arguments_size;
2269 /* The offsets relative to ARG_POINTER. */
2270 HOST_WIDE_INT frame_pointer_offset;
2271 HOST_WIDE_INT hard_frame_pointer_offset;
2272 HOST_WIDE_INT stack_pointer_offset;
2273 HOST_WIDE_INT hfp_save_offset;
2274 HOST_WIDE_INT reg_save_offset;
2275 HOST_WIDE_INT stack_realign_allocate;
2276 HOST_WIDE_INT stack_realign_offset;
2277 HOST_WIDE_INT sse_reg_save_offset;
2279 /* When save_regs_using_mov is set, emit prologue using
2280 move instead of push instructions. */
2281 bool save_regs_using_mov;
2283 /* Assume without checking that:
2284 EXPENSIVE_P = expensive_function_p (EXPENSIVE_COUNT). */
2285 bool expensive_p;
2286 int expensive_count;
2289 /* Machine specific frame tracking during prologue/epilogue generation. All
2290 values are positive, but since the x86 stack grows downward, are subtratced
2291 from the CFA to produce a valid address. */
2293 struct GTY(()) machine_frame_state
2295 /* This pair tracks the currently active CFA as reg+offset. When reg
2296 is drap_reg, we don't bother trying to record here the real CFA when
2297 it might really be a DW_CFA_def_cfa_expression. */
2298 rtx cfa_reg;
2299 HOST_WIDE_INT cfa_offset;
2301 /* The current offset (canonically from the CFA) of ESP and EBP.
2302 When stack frame re-alignment is active, these may not be relative
2303 to the CFA. However, in all cases they are relative to the offsets
2304 of the saved registers stored in ix86_frame. */
2305 HOST_WIDE_INT sp_offset;
2306 HOST_WIDE_INT fp_offset;
2308 /* The size of the red-zone that may be assumed for the purposes of
2309 eliding register restore notes in the epilogue. This may be zero
2310 if no red-zone is in effect, or may be reduced from the real
2311 red-zone value by a maximum runtime stack re-alignment value. */
2312 int red_zone_offset;
2314 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2315 value within the frame. If false then the offset above should be
2316 ignored. Note that DRAP, if valid, *always* points to the CFA and
2317 thus has an offset of zero. */
2318 BOOL_BITFIELD sp_valid : 1;
2319 BOOL_BITFIELD fp_valid : 1;
2320 BOOL_BITFIELD drap_valid : 1;
2322 /* Indicate whether the local stack frame has been re-aligned. When
2323 set, the SP/FP offsets above are relative to the aligned frame
2324 and not the CFA. */
2325 BOOL_BITFIELD realigned : 1;
2327 /* Indicates whether the stack pointer has been re-aligned. When set,
2328 SP/FP continue to be relative to the CFA, but the stack pointer
2329 should only be used for offsets > sp_realigned_offset, while
2330 the frame pointer should be used for offsets <= sp_realigned_fp_last.
2331 The flags realigned and sp_realigned are mutually exclusive. */
2332 BOOL_BITFIELD sp_realigned : 1;
2334 /* If sp_realigned is set, this is the last valid offset from the CFA
2335 that can be used for access with the frame pointer. */
2336 HOST_WIDE_INT sp_realigned_fp_last;
2338 /* If sp_realigned is set, this is the offset from the CFA that the stack
2339 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2340 Access via the stack pointer is only valid for offsets that are greater than
2341 this value. */
2342 HOST_WIDE_INT sp_realigned_offset;
2345 /* Private to winnt.cc. */
2346 struct seh_frame_state;
2348 enum function_type
2350 TYPE_UNKNOWN = 0,
2351 TYPE_NORMAL,
2352 /* The current function is an interrupt service routine with a
2353 pointer argument as specified by the "interrupt" attribute. */
2354 TYPE_INTERRUPT,
2355 /* The current function is an interrupt service routine with a
2356 pointer argument and an integer argument as specified by the
2357 "interrupt" attribute. */
2358 TYPE_EXCEPTION
2361 enum queued_insn_type
2363 TYPE_NONE = 0,
2364 TYPE_ENDBR,
2365 TYPE_PATCHABLE_AREA
2368 struct GTY(()) machine_function {
2369 struct stack_local_entry *stack_locals;
2370 int varargs_gpr_size;
2371 int varargs_fpr_size;
2372 int optimize_mode_switching[MAX_386_ENTITIES];
2374 /* Cached initial frame layout for the current function. */
2375 struct ix86_frame frame;
2377 /* For -fsplit-stack support: A stack local which holds a pointer to
2378 the stack arguments for a function with a variable number of
2379 arguments. This is set at the start of the function and is used
2380 to initialize the overflow_arg_area field of the va_list
2381 structure. */
2382 rtx split_stack_varargs_pointer;
2384 /* This value is used for amd64 targets and specifies the current abi
2385 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2386 ENUM_BITFIELD(calling_abi) call_abi : 8;
2388 /* Nonzero if the function accesses a previous frame. */
2389 BOOL_BITFIELD accesses_prev_frame : 1;
2391 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2392 expander to determine the style used. */
2393 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2395 /* Nonzero if the current function calls pc thunk and
2396 must not use the red zone. */
2397 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2399 /* If true, the current function needs the default PIC register, not
2400 an alternate register (on x86) and must not use the red zone (on
2401 x86_64), even if it's a leaf function. We don't want the
2402 function to be regarded as non-leaf because TLS calls need not
2403 affect register allocation. This flag is set when a TLS call
2404 instruction is expanded within a function, and never reset, even
2405 if all such instructions are optimized away. Use the
2406 ix86_current_function_calls_tls_descriptor macro for a better
2407 approximation. */
2408 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2410 /* If true, the current function has a STATIC_CHAIN is placed on the
2411 stack below the return address. */
2412 BOOL_BITFIELD static_chain_on_stack : 1;
2414 /* If true, it is safe to not save/restore DRAP register. */
2415 BOOL_BITFIELD no_drap_save_restore : 1;
2417 /* Function type. */
2418 ENUM_BITFIELD(function_type) func_type : 2;
2420 /* How to generate indirec branch. */
2421 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2423 /* If true, the current function has local indirect jumps, like
2424 "indirect_jump" or "tablejump". */
2425 BOOL_BITFIELD has_local_indirect_jump : 1;
2427 /* How to generate function return. */
2428 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2430 /* If true, the current function is a function specified with
2431 the "interrupt" or "no_caller_saved_registers" attribute. */
2432 BOOL_BITFIELD no_caller_saved_registers : 1;
2434 /* If true, there is register available for argument passing. This
2435 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2436 if there is scratch register available for indirect sibcall. In
2437 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2438 pass arguments and can be used for indirect sibcall. */
2439 BOOL_BITFIELD arg_reg_available : 1;
2441 /* If true, we're out-of-lining reg save/restore for regs clobbered
2442 by 64-bit ms_abi functions calling a sysv_abi function. */
2443 BOOL_BITFIELD call_ms2sysv : 1;
2445 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2446 needs padding prior to out-of-line stub save/restore area. */
2447 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2449 /* This is the number of extra registers saved by stub (valid range is
2450 0-6). Each additional register is only saved/restored by the stubs
2451 if all successive ones are. (Will always be zero when using a hard
2452 frame pointer.) */
2453 unsigned int call_ms2sysv_extra_regs:3;
2455 /* Nonzero if the function places outgoing arguments on stack. */
2456 BOOL_BITFIELD outgoing_args_on_stack : 1;
2458 /* If true, ENDBR or patchable area is queued at function entrance. */
2459 ENUM_BITFIELD(queued_insn_type) insn_queued_at_entrance : 2;
2461 /* If true, the function label has been emitted. */
2462 BOOL_BITFIELD function_label_emitted : 1;
2464 /* True if the function needs a stack frame. */
2465 BOOL_BITFIELD stack_frame_required : 1;
2467 /* True if we should act silently, rather than raise an error for
2468 invalid calls. */
2469 BOOL_BITFIELD silent_p : 1;
2471 /* True if red zone is used. */
2472 BOOL_BITFIELD red_zone_used : 1;
2474 /* The largest alignment, in bytes, of stack slot actually used. */
2475 unsigned int max_used_stack_alignment;
2477 /* During prologue/epilogue generation, the current frame state.
2478 Otherwise, the frame state at the end of the prologue. */
2479 struct machine_frame_state fs;
2481 /* During SEH output, this is non-null. */
2482 struct seh_frame_state * GTY((skip(""))) seh;
2485 extern GTY(()) tree sysv_va_list_type_node;
2486 extern GTY(()) tree ms_va_list_type_node;
2487 #endif
2489 #define ix86_stack_locals (cfun->machine->stack_locals)
2490 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2491 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2492 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2493 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2494 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2495 (cfun->machine->tls_descriptor_call_expanded_p)
2496 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2497 calls are optimized away, we try to detect cases in which it was
2498 optimized away. Since such instructions (use (reg REG_SP)), we can
2499 verify whether there's any such instruction live by testing that
2500 REG_SP is live. */
2501 #define ix86_current_function_calls_tls_descriptor \
2502 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2503 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2504 #define ix86_red_zone_used (cfun->machine->red_zone_used)
2506 /* Control behavior of x86_file_start. */
2507 #define X86_FILE_START_VERSION_DIRECTIVE false
2508 #define X86_FILE_START_FLTUSED false
2510 /* Flag to mark data that is in the large address area. */
2511 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2512 #define SYMBOL_REF_FAR_ADDR_P(X) \
2513 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2515 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2516 have defined always, to avoid ifdefing. */
2517 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2518 #define SYMBOL_REF_DLLIMPORT_P(X) \
2519 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2521 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2522 #define SYMBOL_REF_DLLEXPORT_P(X) \
2523 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2525 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2526 #define SYMBOL_REF_STUBVAR_P(X) \
2527 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2529 extern void debug_ready_dispatch (void);
2530 extern void debug_dispatch_window (int);
2532 /* The value at zero is only defined for the BMI instructions
2533 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2534 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2535 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 2 : 0)
2536 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2537 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 2 : 0)
2540 /* Flags returned by ix86_get_callcvt (). */
2541 #define IX86_CALLCVT_CDECL 0x1
2542 #define IX86_CALLCVT_STDCALL 0x2
2543 #define IX86_CALLCVT_FASTCALL 0x4
2544 #define IX86_CALLCVT_THISCALL 0x8
2545 #define IX86_CALLCVT_REGPARM 0x10
2546 #define IX86_CALLCVT_SSEREGPARM 0x20
2548 #define IX86_BASE_CALLCVT(FLAGS) \
2549 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2550 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2552 #define RECIP_MASK_NONE 0x00
2553 #define RECIP_MASK_DIV 0x01
2554 #define RECIP_MASK_SQRT 0x02
2555 #define RECIP_MASK_VEC_DIV 0x04
2556 #define RECIP_MASK_VEC_SQRT 0x08
2557 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2558 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2559 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2561 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2562 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2563 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2564 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2566 /* Use 128-bit AVX instructions in the auto-vectorizer. */
2567 #define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2568 /* Use 256-bit AVX instructions in the auto-vectorizer. */
2569 #define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2570 || prefer_vector_width_type == PVW_AVX256)
2572 #define TARGET_INDIRECT_BRANCH_REGISTER \
2573 (ix86_indirect_branch_register \
2574 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2576 #define IX86_HLE_ACQUIRE (1 << 16)
2577 #define IX86_HLE_RELEASE (1 << 17)
2579 /* For switching between functions with different target attributes. */
2580 #define SWITCHABLE_TARGET 1
2582 #define TARGET_SUPPORTS_WIDE_INT 1
2584 #if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2585 extern enum attr_cpu ix86_schedule;
2587 #define NUM_X86_64_MS_CLOBBERED_REGS 12
2588 #endif
2590 /* __builtin_eh_return can't handle stack realignment, so disable MMX/SSE
2591 in 32-bit libgcc functions that call it. */
2592 #ifndef __x86_64__
2593 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((target ("no-mmx,no-sse")))
2594 #endif
2597 Local variables:
2598 version-control: t
2599 End: