1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
21 /* Notes on implementation:
23 Thread Local Store (TLS)
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
95 elfNN_aarch64_check_relocs()
97 This function is invoked for each relocation.
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
107 elfNN_aarch64_allocate_dynrelocs ()
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
115 elfNN_aarch64_size_dynamic_sections ()
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
122 elfNN_aarch64_relocate_section ()
124 Calls elfNN_aarch64_final_link_relocate ()
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
134 elfNN_aarch64_final_link_relocate ()
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
140 #include "libiberty.h"
142 #include "bfd_stdint.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
212 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
214 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
215 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
238 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
239 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
252 #define ELIMINATE_COPY_RELOCS 1
254 /* Return size of a relocation entry. HTAB is the bfd's
255 elf_aarch64_link_hash_entry. */
256 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
258 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
259 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
260 #define PLT_ENTRY_SIZE (32)
261 #define PLT_SMALL_ENTRY_SIZE (16)
262 #define PLT_TLSDESC_ENTRY_SIZE (32)
264 /* Encoding of the nop instruction. */
265 #define INSN_NOP 0xd503201f
267 #define aarch64_compute_jump_table_size(htab) \
268 (((htab)->root.srelplt == NULL) ? 0 \
269 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
271 /* The first entry in a procedure linkage table looks like this
272 if the distance between the PLTGOT and the PLT is < 4GB use
273 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
274 in x16 and needs to work out PLTGOT[1] by using an address of
275 [x16,#-GOT_ENTRY_SIZE]. */
276 static const bfd_byte elfNN_aarch64_small_plt0_entry
[PLT_ENTRY_SIZE
] =
278 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
279 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
281 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
282 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
284 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
285 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
287 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
288 0x1f, 0x20, 0x03, 0xd5, /* nop */
289 0x1f, 0x20, 0x03, 0xd5, /* nop */
290 0x1f, 0x20, 0x03, 0xd5, /* nop */
293 /* Per function entry in a procedure linkage table looks like this
294 if the distance between the PLTGOT and the PLT is < 4GB use
295 these PLT entries. */
296 static const bfd_byte elfNN_aarch64_small_plt_entry
[PLT_SMALL_ENTRY_SIZE
] =
298 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
300 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
301 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
303 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
304 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
306 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
309 static const bfd_byte
310 elfNN_aarch64_tlsdesc_small_plt_entry
[PLT_TLSDESC_ENTRY_SIZE
] =
312 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
313 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
314 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
316 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
319 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
320 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
322 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
323 0x1f, 0x20, 0x03, 0xd5, /* nop */
324 0x1f, 0x20, 0x03, 0xd5, /* nop */
327 #define elf_info_to_howto elfNN_aarch64_info_to_howto
328 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
330 #define AARCH64_ELF_ABI_VERSION 0
332 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
333 #define ALL_ONES (~ (bfd_vma) 0)
335 /* Indexed by the bfd interal reloc enumerators.
336 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
339 static reloc_howto_type elfNN_aarch64_howto_table
[] =
343 /* Basic data relocations. */
345 /* Deprecated, but retained for backwards compatibility. */
346 HOWTO64 (R_AARCH64_NULL
, /* type */
348 3, /* size (0 = byte, 1 = short, 2 = long) */
350 FALSE
, /* pc_relative */
352 complain_overflow_dont
, /* complain_on_overflow */
353 bfd_elf_generic_reloc
, /* special_function */
354 "R_AARCH64_NULL", /* name */
355 FALSE
, /* partial_inplace */
358 FALSE
), /* pcrel_offset */
359 HOWTO (R_AARCH64_NONE
, /* type */
361 3, /* size (0 = byte, 1 = short, 2 = long) */
363 FALSE
, /* pc_relative */
365 complain_overflow_dont
, /* complain_on_overflow */
366 bfd_elf_generic_reloc
, /* special_function */
367 "R_AARCH64_NONE", /* name */
368 FALSE
, /* partial_inplace */
371 FALSE
), /* pcrel_offset */
374 HOWTO64 (AARCH64_R (ABS64
), /* type */
376 4, /* size (4 = long long) */
378 FALSE
, /* pc_relative */
380 complain_overflow_unsigned
, /* complain_on_overflow */
381 bfd_elf_generic_reloc
, /* special_function */
382 AARCH64_R_STR (ABS64
), /* name */
383 FALSE
, /* partial_inplace */
384 ALL_ONES
, /* src_mask */
385 ALL_ONES
, /* dst_mask */
386 FALSE
), /* pcrel_offset */
389 HOWTO (AARCH64_R (ABS32
), /* type */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
393 FALSE
, /* pc_relative */
395 complain_overflow_unsigned
, /* complain_on_overflow */
396 bfd_elf_generic_reloc
, /* special_function */
397 AARCH64_R_STR (ABS32
), /* name */
398 FALSE
, /* partial_inplace */
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
401 FALSE
), /* pcrel_offset */
404 HOWTO (AARCH64_R (ABS16
), /* type */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
408 FALSE
, /* pc_relative */
410 complain_overflow_unsigned
, /* complain_on_overflow */
411 bfd_elf_generic_reloc
, /* special_function */
412 AARCH64_R_STR (ABS16
), /* name */
413 FALSE
, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE
), /* pcrel_offset */
418 /* .xword: (S+A-P) */
419 HOWTO64 (AARCH64_R (PREL64
), /* type */
421 4, /* size (4 = long long) */
423 TRUE
, /* pc_relative */
425 complain_overflow_signed
, /* complain_on_overflow */
426 bfd_elf_generic_reloc
, /* special_function */
427 AARCH64_R_STR (PREL64
), /* name */
428 FALSE
, /* partial_inplace */
429 ALL_ONES
, /* src_mask */
430 ALL_ONES
, /* dst_mask */
431 TRUE
), /* pcrel_offset */
434 HOWTO (AARCH64_R (PREL32
), /* type */
436 2, /* size (0 = byte, 1 = short, 2 = long) */
438 TRUE
, /* pc_relative */
440 complain_overflow_signed
, /* complain_on_overflow */
441 bfd_elf_generic_reloc
, /* special_function */
442 AARCH64_R_STR (PREL32
), /* name */
443 FALSE
, /* partial_inplace */
444 0xffffffff, /* src_mask */
445 0xffffffff, /* dst_mask */
446 TRUE
), /* pcrel_offset */
449 HOWTO (AARCH64_R (PREL16
), /* type */
451 1, /* size (0 = byte, 1 = short, 2 = long) */
453 TRUE
, /* pc_relative */
455 complain_overflow_signed
, /* complain_on_overflow */
456 bfd_elf_generic_reloc
, /* special_function */
457 AARCH64_R_STR (PREL16
), /* name */
458 FALSE
, /* partial_inplace */
459 0xffff, /* src_mask */
460 0xffff, /* dst_mask */
461 TRUE
), /* pcrel_offset */
463 /* Group relocations to create a 16, 32, 48 or 64 bit
464 unsigned data or abs address inline. */
466 /* MOVZ: ((S+A) >> 0) & 0xffff */
467 HOWTO (AARCH64_R (MOVW_UABS_G0
), /* type */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
471 FALSE
, /* pc_relative */
473 complain_overflow_unsigned
, /* complain_on_overflow */
474 bfd_elf_generic_reloc
, /* special_function */
475 AARCH64_R_STR (MOVW_UABS_G0
), /* name */
476 FALSE
, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 FALSE
), /* pcrel_offset */
481 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
482 HOWTO (AARCH64_R (MOVW_UABS_G0_NC
), /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 FALSE
, /* pc_relative */
488 complain_overflow_dont
, /* complain_on_overflow */
489 bfd_elf_generic_reloc
, /* special_function */
490 AARCH64_R_STR (MOVW_UABS_G0_NC
), /* name */
491 FALSE
, /* partial_inplace */
492 0xffff, /* src_mask */
493 0xffff, /* dst_mask */
494 FALSE
), /* pcrel_offset */
496 /* MOVZ: ((S+A) >> 16) & 0xffff */
497 HOWTO (AARCH64_R (MOVW_UABS_G1
), /* type */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
501 FALSE
, /* pc_relative */
503 complain_overflow_unsigned
, /* complain_on_overflow */
504 bfd_elf_generic_reloc
, /* special_function */
505 AARCH64_R_STR (MOVW_UABS_G1
), /* name */
506 FALSE
, /* partial_inplace */
507 0xffff, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE
), /* pcrel_offset */
511 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
512 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC
), /* type */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
516 FALSE
, /* pc_relative */
518 complain_overflow_dont
, /* complain_on_overflow */
519 bfd_elf_generic_reloc
, /* special_function */
520 AARCH64_R_STR (MOVW_UABS_G1_NC
), /* name */
521 FALSE
, /* partial_inplace */
522 0xffff, /* src_mask */
523 0xffff, /* dst_mask */
524 FALSE
), /* pcrel_offset */
526 /* MOVZ: ((S+A) >> 32) & 0xffff */
527 HOWTO64 (AARCH64_R (MOVW_UABS_G2
), /* type */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
531 FALSE
, /* pc_relative */
533 complain_overflow_unsigned
, /* complain_on_overflow */
534 bfd_elf_generic_reloc
, /* special_function */
535 AARCH64_R_STR (MOVW_UABS_G2
), /* name */
536 FALSE
, /* partial_inplace */
537 0xffff, /* src_mask */
538 0xffff, /* dst_mask */
539 FALSE
), /* pcrel_offset */
541 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
542 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC
), /* type */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
546 FALSE
, /* pc_relative */
548 complain_overflow_dont
, /* complain_on_overflow */
549 bfd_elf_generic_reloc
, /* special_function */
550 AARCH64_R_STR (MOVW_UABS_G2_NC
), /* name */
551 FALSE
, /* partial_inplace */
552 0xffff, /* src_mask */
553 0xffff, /* dst_mask */
554 FALSE
), /* pcrel_offset */
556 /* MOVZ: ((S+A) >> 48) & 0xffff */
557 HOWTO64 (AARCH64_R (MOVW_UABS_G3
), /* type */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
561 FALSE
, /* pc_relative */
563 complain_overflow_unsigned
, /* complain_on_overflow */
564 bfd_elf_generic_reloc
, /* special_function */
565 AARCH64_R_STR (MOVW_UABS_G3
), /* name */
566 FALSE
, /* partial_inplace */
567 0xffff, /* src_mask */
568 0xffff, /* dst_mask */
569 FALSE
), /* pcrel_offset */
571 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
572 signed data or abs address inline. Will change instruction
573 to MOVN or MOVZ depending on sign of calculated value. */
575 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
576 HOWTO (AARCH64_R (MOVW_SABS_G0
), /* type */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
580 FALSE
, /* pc_relative */
582 complain_overflow_signed
, /* complain_on_overflow */
583 bfd_elf_generic_reloc
, /* special_function */
584 AARCH64_R_STR (MOVW_SABS_G0
), /* name */
585 FALSE
, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 FALSE
), /* pcrel_offset */
590 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
591 HOWTO64 (AARCH64_R (MOVW_SABS_G1
), /* type */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
595 FALSE
, /* pc_relative */
597 complain_overflow_signed
, /* complain_on_overflow */
598 bfd_elf_generic_reloc
, /* special_function */
599 AARCH64_R_STR (MOVW_SABS_G1
), /* name */
600 FALSE
, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 FALSE
), /* pcrel_offset */
605 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
606 HOWTO64 (AARCH64_R (MOVW_SABS_G2
), /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE
, /* pc_relative */
612 complain_overflow_signed
, /* complain_on_overflow */
613 bfd_elf_generic_reloc
, /* special_function */
614 AARCH64_R_STR (MOVW_SABS_G2
), /* name */
615 FALSE
, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 FALSE
), /* pcrel_offset */
620 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
621 addresses: PG(x) is (x & ~0xfff). */
623 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
624 HOWTO (AARCH64_R (LD_PREL_LO19
), /* type */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
628 TRUE
, /* pc_relative */
630 complain_overflow_signed
, /* complain_on_overflow */
631 bfd_elf_generic_reloc
, /* special_function */
632 AARCH64_R_STR (LD_PREL_LO19
), /* name */
633 FALSE
, /* partial_inplace */
634 0x7ffff, /* src_mask */
635 0x7ffff, /* dst_mask */
636 TRUE
), /* pcrel_offset */
638 /* ADR: (S+A-P) & 0x1fffff */
639 HOWTO (AARCH64_R (ADR_PREL_LO21
), /* type */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
643 TRUE
, /* pc_relative */
645 complain_overflow_signed
, /* complain_on_overflow */
646 bfd_elf_generic_reloc
, /* special_function */
647 AARCH64_R_STR (ADR_PREL_LO21
), /* name */
648 FALSE
, /* partial_inplace */
649 0x1fffff, /* src_mask */
650 0x1fffff, /* dst_mask */
651 TRUE
), /* pcrel_offset */
653 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
654 HOWTO (AARCH64_R (ADR_PREL_PG_HI21
), /* type */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
658 TRUE
, /* pc_relative */
660 complain_overflow_signed
, /* complain_on_overflow */
661 bfd_elf_generic_reloc
, /* special_function */
662 AARCH64_R_STR (ADR_PREL_PG_HI21
), /* name */
663 FALSE
, /* partial_inplace */
664 0x1fffff, /* src_mask */
665 0x1fffff, /* dst_mask */
666 TRUE
), /* pcrel_offset */
668 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
669 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC
), /* type */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
673 TRUE
, /* pc_relative */
675 complain_overflow_dont
, /* complain_on_overflow */
676 bfd_elf_generic_reloc
, /* special_function */
677 AARCH64_R_STR (ADR_PREL_PG_HI21_NC
), /* name */
678 FALSE
, /* partial_inplace */
679 0x1fffff, /* src_mask */
680 0x1fffff, /* dst_mask */
681 TRUE
), /* pcrel_offset */
683 /* ADD: (S+A) & 0xfff [no overflow check] */
684 HOWTO (AARCH64_R (ADD_ABS_LO12_NC
), /* type */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
688 FALSE
, /* pc_relative */
690 complain_overflow_dont
, /* complain_on_overflow */
691 bfd_elf_generic_reloc
, /* special_function */
692 AARCH64_R_STR (ADD_ABS_LO12_NC
), /* name */
693 FALSE
, /* partial_inplace */
694 0x3ffc00, /* src_mask */
695 0x3ffc00, /* dst_mask */
696 FALSE
), /* pcrel_offset */
698 /* LD/ST8: (S+A) & 0xfff */
699 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC
), /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 FALSE
, /* pc_relative */
705 complain_overflow_dont
, /* complain_on_overflow */
706 bfd_elf_generic_reloc
, /* special_function */
707 AARCH64_R_STR (LDST8_ABS_LO12_NC
), /* name */
708 FALSE
, /* partial_inplace */
709 0xfff, /* src_mask */
710 0xfff, /* dst_mask */
711 FALSE
), /* pcrel_offset */
713 /* Relocations for control-flow instructions. */
715 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
716 HOWTO (AARCH64_R (TSTBR14
), /* type */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
720 TRUE
, /* pc_relative */
722 complain_overflow_signed
, /* complain_on_overflow */
723 bfd_elf_generic_reloc
, /* special_function */
724 AARCH64_R_STR (TSTBR14
), /* name */
725 FALSE
, /* partial_inplace */
726 0x3fff, /* src_mask */
727 0x3fff, /* dst_mask */
728 TRUE
), /* pcrel_offset */
730 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
731 HOWTO (AARCH64_R (CONDBR19
), /* type */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
735 TRUE
, /* pc_relative */
737 complain_overflow_signed
, /* complain_on_overflow */
738 bfd_elf_generic_reloc
, /* special_function */
739 AARCH64_R_STR (CONDBR19
), /* name */
740 FALSE
, /* partial_inplace */
741 0x7ffff, /* src_mask */
742 0x7ffff, /* dst_mask */
743 TRUE
), /* pcrel_offset */
745 /* B: ((S+A-P) >> 2) & 0x3ffffff */
746 HOWTO (AARCH64_R (JUMP26
), /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 TRUE
, /* pc_relative */
752 complain_overflow_signed
, /* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 AARCH64_R_STR (JUMP26
), /* name */
755 FALSE
, /* partial_inplace */
756 0x3ffffff, /* src_mask */
757 0x3ffffff, /* dst_mask */
758 TRUE
), /* pcrel_offset */
760 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
761 HOWTO (AARCH64_R (CALL26
), /* type */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
765 TRUE
, /* pc_relative */
767 complain_overflow_signed
, /* complain_on_overflow */
768 bfd_elf_generic_reloc
, /* special_function */
769 AARCH64_R_STR (CALL26
), /* name */
770 FALSE
, /* partial_inplace */
771 0x3ffffff, /* src_mask */
772 0x3ffffff, /* dst_mask */
773 TRUE
), /* pcrel_offset */
775 /* LD/ST16: (S+A) & 0xffe */
776 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC
), /* type */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
780 FALSE
, /* pc_relative */
782 complain_overflow_dont
, /* complain_on_overflow */
783 bfd_elf_generic_reloc
, /* special_function */
784 AARCH64_R_STR (LDST16_ABS_LO12_NC
), /* name */
785 FALSE
, /* partial_inplace */
786 0xffe, /* src_mask */
787 0xffe, /* dst_mask */
788 FALSE
), /* pcrel_offset */
790 /* LD/ST32: (S+A) & 0xffc */
791 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC
), /* type */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
795 FALSE
, /* pc_relative */
797 complain_overflow_dont
, /* complain_on_overflow */
798 bfd_elf_generic_reloc
, /* special_function */
799 AARCH64_R_STR (LDST32_ABS_LO12_NC
), /* name */
800 FALSE
, /* partial_inplace */
801 0xffc, /* src_mask */
802 0xffc, /* dst_mask */
803 FALSE
), /* pcrel_offset */
805 /* LD/ST64: (S+A) & 0xff8 */
806 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC
), /* type */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
810 FALSE
, /* pc_relative */
812 complain_overflow_dont
, /* complain_on_overflow */
813 bfd_elf_generic_reloc
, /* special_function */
814 AARCH64_R_STR (LDST64_ABS_LO12_NC
), /* name */
815 FALSE
, /* partial_inplace */
816 0xff8, /* src_mask */
817 0xff8, /* dst_mask */
818 FALSE
), /* pcrel_offset */
820 /* LD/ST128: (S+A) & 0xff0 */
821 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC
), /* type */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
825 FALSE
, /* pc_relative */
827 complain_overflow_dont
, /* complain_on_overflow */
828 bfd_elf_generic_reloc
, /* special_function */
829 AARCH64_R_STR (LDST128_ABS_LO12_NC
), /* name */
830 FALSE
, /* partial_inplace */
831 0xff0, /* src_mask */
832 0xff0, /* dst_mask */
833 FALSE
), /* pcrel_offset */
835 /* Set a load-literal immediate field to bits
836 0x1FFFFC of G(S)-P */
837 HOWTO (AARCH64_R (GOT_LD_PREL19
), /* type */
839 2, /* size (0 = byte,1 = short,2 = long) */
841 TRUE
, /* pc_relative */
843 complain_overflow_signed
, /* complain_on_overflow */
844 bfd_elf_generic_reloc
, /* special_function */
845 AARCH64_R_STR (GOT_LD_PREL19
), /* name */
846 FALSE
, /* partial_inplace */
847 0xffffe0, /* src_mask */
848 0xffffe0, /* dst_mask */
849 TRUE
), /* pcrel_offset */
851 /* Get to the page for the GOT entry for the symbol
852 (G(S) - P) using an ADRP instruction. */
853 HOWTO (AARCH64_R (ADR_GOT_PAGE
), /* type */
855 2, /* size (0 = byte, 1 = short, 2 = long) */
857 TRUE
, /* pc_relative */
859 complain_overflow_dont
, /* complain_on_overflow */
860 bfd_elf_generic_reloc
, /* special_function */
861 AARCH64_R_STR (ADR_GOT_PAGE
), /* name */
862 FALSE
, /* partial_inplace */
863 0x1fffff, /* src_mask */
864 0x1fffff, /* dst_mask */
865 TRUE
), /* pcrel_offset */
867 /* LD64: GOT offset G(S) & 0xff8 */
868 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC
), /* type */
870 2, /* size (0 = byte, 1 = short, 2 = long) */
872 FALSE
, /* pc_relative */
874 complain_overflow_dont
, /* complain_on_overflow */
875 bfd_elf_generic_reloc
, /* special_function */
876 AARCH64_R_STR (LD64_GOT_LO12_NC
), /* name */
877 FALSE
, /* partial_inplace */
878 0xff8, /* src_mask */
879 0xff8, /* dst_mask */
880 FALSE
), /* pcrel_offset */
882 /* LD32: GOT offset G(S) & 0xffc */
883 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC
), /* type */
885 2, /* size (0 = byte, 1 = short, 2 = long) */
887 FALSE
, /* pc_relative */
889 complain_overflow_dont
, /* complain_on_overflow */
890 bfd_elf_generic_reloc
, /* special_function */
891 AARCH64_R_STR (LD32_GOT_LO12_NC
), /* name */
892 FALSE
, /* partial_inplace */
893 0xffc, /* src_mask */
894 0xffc, /* dst_mask */
895 FALSE
), /* pcrel_offset */
897 /* Lower 16 bits of GOT offset for the symbol. */
898 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC
), /* type */
900 2, /* size (0 = byte, 1 = short, 2 = long) */
902 FALSE
, /* pc_relative */
904 complain_overflow_dont
, /* complain_on_overflow */
905 bfd_elf_generic_reloc
, /* special_function */
906 AARCH64_R_STR (MOVW_GOTOFF_G0_NC
), /* name */
907 FALSE
, /* partial_inplace */
908 0xffff, /* src_mask */
909 0xffff, /* dst_mask */
910 FALSE
), /* pcrel_offset */
912 /* Higher 16 bits of GOT offset for the symbol. */
913 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1
), /* type */
915 2, /* size (0 = byte, 1 = short, 2 = long) */
917 FALSE
, /* pc_relative */
919 complain_overflow_unsigned
, /* complain_on_overflow */
920 bfd_elf_generic_reloc
, /* special_function */
921 AARCH64_R_STR (MOVW_GOTOFF_G1
), /* name */
922 FALSE
, /* partial_inplace */
923 0xffff, /* src_mask */
924 0xffff, /* dst_mask */
925 FALSE
), /* pcrel_offset */
927 /* LD64: GOT offset for the symbol. */
928 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15
), /* type */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
932 FALSE
, /* pc_relative */
934 complain_overflow_unsigned
, /* complain_on_overflow */
935 bfd_elf_generic_reloc
, /* special_function */
936 AARCH64_R_STR (LD64_GOTOFF_LO15
), /* name */
937 FALSE
, /* partial_inplace */
938 0x7ff8, /* src_mask */
939 0x7ff8, /* dst_mask */
940 FALSE
), /* pcrel_offset */
942 /* LD32: GOT offset to the page address of GOT table.
943 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
944 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14
), /* type */
946 2, /* size (0 = byte, 1 = short, 2 = long) */
948 FALSE
, /* pc_relative */
950 complain_overflow_unsigned
, /* complain_on_overflow */
951 bfd_elf_generic_reloc
, /* special_function */
952 AARCH64_R_STR (LD32_GOTPAGE_LO14
), /* name */
953 FALSE
, /* partial_inplace */
954 0x5ffc, /* src_mask */
955 0x5ffc, /* dst_mask */
956 FALSE
), /* pcrel_offset */
958 /* LD64: GOT offset to the page address of GOT table.
959 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
960 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15
), /* type */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
964 FALSE
, /* pc_relative */
966 complain_overflow_unsigned
, /* complain_on_overflow */
967 bfd_elf_generic_reloc
, /* special_function */
968 AARCH64_R_STR (LD64_GOTPAGE_LO15
), /* name */
969 FALSE
, /* partial_inplace */
970 0x7ff8, /* src_mask */
971 0x7ff8, /* dst_mask */
972 FALSE
), /* pcrel_offset */
974 /* Get to the page for the GOT entry for the symbol
975 (G(S) - P) using an ADRP instruction. */
976 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21
), /* type */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
980 TRUE
, /* pc_relative */
982 complain_overflow_dont
, /* complain_on_overflow */
983 bfd_elf_generic_reloc
, /* special_function */
984 AARCH64_R_STR (TLSGD_ADR_PAGE21
), /* name */
985 FALSE
, /* partial_inplace */
986 0x1fffff, /* src_mask */
987 0x1fffff, /* dst_mask */
988 TRUE
), /* pcrel_offset */
990 HOWTO (AARCH64_R (TLSGD_ADR_PREL21
), /* type */
992 2, /* size (0 = byte, 1 = short, 2 = long) */
994 TRUE
, /* pc_relative */
996 complain_overflow_dont
, /* complain_on_overflow */
997 bfd_elf_generic_reloc
, /* special_function */
998 AARCH64_R_STR (TLSGD_ADR_PREL21
), /* name */
999 FALSE
, /* partial_inplace */
1000 0x1fffff, /* src_mask */
1001 0x1fffff, /* dst_mask */
1002 TRUE
), /* pcrel_offset */
1004 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1005 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC
), /* type */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 FALSE
, /* pc_relative */
1011 complain_overflow_dont
, /* complain_on_overflow */
1012 bfd_elf_generic_reloc
, /* special_function */
1013 AARCH64_R_STR (TLSGD_ADD_LO12_NC
), /* name */
1014 FALSE
, /* partial_inplace */
1015 0xfff, /* src_mask */
1016 0xfff, /* dst_mask */
1017 FALSE
), /* pcrel_offset */
1019 /* Lower 16 bits of GOT offset to tls_index. */
1020 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC
), /* type */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 FALSE
, /* pc_relative */
1026 complain_overflow_dont
, /* complain_on_overflow */
1027 bfd_elf_generic_reloc
, /* special_function */
1028 AARCH64_R_STR (TLSGD_MOVW_G0_NC
), /* name */
1029 FALSE
, /* partial_inplace */
1030 0xffff, /* src_mask */
1031 0xffff, /* dst_mask */
1032 FALSE
), /* pcrel_offset */
1034 /* Higher 16 bits of GOT offset to tls_index. */
1035 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1
), /* type */
1036 16, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 FALSE
, /* pc_relative */
1041 complain_overflow_unsigned
, /* complain_on_overflow */
1042 bfd_elf_generic_reloc
, /* special_function */
1043 AARCH64_R_STR (TLSGD_MOVW_G1
), /* name */
1044 FALSE
, /* partial_inplace */
1045 0xffff, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE
), /* pcrel_offset */
1049 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21
), /* type */
1050 12, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 FALSE
, /* pc_relative */
1055 complain_overflow_dont
, /* complain_on_overflow */
1056 bfd_elf_generic_reloc
, /* special_function */
1057 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21
), /* name */
1058 FALSE
, /* partial_inplace */
1059 0x1fffff, /* src_mask */
1060 0x1fffff, /* dst_mask */
1061 FALSE
), /* pcrel_offset */
1063 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC
), /* type */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 FALSE
, /* pc_relative */
1069 complain_overflow_dont
, /* complain_on_overflow */
1070 bfd_elf_generic_reloc
, /* special_function */
1071 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC
), /* name */
1072 FALSE
, /* partial_inplace */
1073 0xff8, /* src_mask */
1074 0xff8, /* dst_mask */
1075 FALSE
), /* pcrel_offset */
1077 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC
), /* type */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 FALSE
, /* pc_relative */
1083 complain_overflow_dont
, /* complain_on_overflow */
1084 bfd_elf_generic_reloc
, /* special_function */
1085 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC
), /* name */
1086 FALSE
, /* partial_inplace */
1087 0xffc, /* src_mask */
1088 0xffc, /* dst_mask */
1089 FALSE
), /* pcrel_offset */
1091 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19
), /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 FALSE
, /* pc_relative */
1097 complain_overflow_dont
, /* complain_on_overflow */
1098 bfd_elf_generic_reloc
, /* special_function */
1099 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19
), /* name */
1100 FALSE
, /* partial_inplace */
1101 0x1ffffc, /* src_mask */
1102 0x1ffffc, /* dst_mask */
1103 FALSE
), /* pcrel_offset */
1105 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC
), /* type */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 FALSE
, /* pc_relative */
1111 complain_overflow_dont
, /* complain_on_overflow */
1112 bfd_elf_generic_reloc
, /* special_function */
1113 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC
), /* name */
1114 FALSE
, /* partial_inplace */
1115 0xffff, /* src_mask */
1116 0xffff, /* dst_mask */
1117 FALSE
), /* pcrel_offset */
1119 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1
), /* type */
1120 16, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 FALSE
, /* pc_relative */
1125 complain_overflow_unsigned
, /* complain_on_overflow */
1126 bfd_elf_generic_reloc
, /* special_function */
1127 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1
), /* name */
1128 FALSE
, /* partial_inplace */
1129 0xffff, /* src_mask */
1130 0xffff, /* dst_mask */
1131 FALSE
), /* pcrel_offset */
1133 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1134 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12
), /* type */
1135 12, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1138 FALSE
, /* pc_relative */
1140 complain_overflow_unsigned
, /* complain_on_overflow */
1141 bfd_elf_generic_reloc
, /* special_function */
1142 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12
), /* name */
1143 FALSE
, /* partial_inplace */
1144 0xfff, /* src_mask */
1145 0xfff, /* dst_mask */
1146 FALSE
), /* pcrel_offset */
1148 /* Unsigned 12 bit byte offset to module TLS base address. */
1149 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12
), /* type */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1153 FALSE
, /* pc_relative */
1155 complain_overflow_unsigned
, /* complain_on_overflow */
1156 bfd_elf_generic_reloc
, /* special_function */
1157 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12
), /* name */
1158 FALSE
, /* partial_inplace */
1159 0xfff, /* src_mask */
1160 0xfff, /* dst_mask */
1161 FALSE
), /* pcrel_offset */
1163 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1164 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC
), /* type */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 FALSE
, /* pc_relative */
1170 complain_overflow_dont
, /* complain_on_overflow */
1171 bfd_elf_generic_reloc
, /* special_function */
1172 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC
), /* name */
1173 FALSE
, /* partial_inplace */
1174 0xfff, /* src_mask */
1175 0xfff, /* dst_mask */
1176 FALSE
), /* pcrel_offset */
1178 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1179 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC
), /* type */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 FALSE
, /* pc_relative */
1185 complain_overflow_dont
, /* complain_on_overflow */
1186 bfd_elf_generic_reloc
, /* special_function */
1187 AARCH64_R_STR (TLSLD_ADD_LO12_NC
), /* name */
1188 FALSE
, /* partial_inplace */
1189 0xfff, /* src_mask */
1190 0xfff, /* dst_mask */
1191 FALSE
), /* pcrel_offset */
1193 /* Get to the page for the GOT entry for the symbol
1194 (G(S) - P) using an ADRP instruction. */
1195 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21
), /* type */
1196 12, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1199 TRUE
, /* pc_relative */
1201 complain_overflow_signed
, /* complain_on_overflow */
1202 bfd_elf_generic_reloc
, /* special_function */
1203 AARCH64_R_STR (TLSLD_ADR_PAGE21
), /* name */
1204 FALSE
, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE
), /* pcrel_offset */
1209 HOWTO (AARCH64_R (TLSLD_ADR_PREL21
), /* type */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 TRUE
, /* pc_relative */
1215 complain_overflow_signed
, /* complain_on_overflow */
1216 bfd_elf_generic_reloc
, /* special_function */
1217 AARCH64_R_STR (TLSLD_ADR_PREL21
), /* name */
1218 FALSE
, /* partial_inplace */
1219 0x1fffff, /* src_mask */
1220 0x1fffff, /* dst_mask */
1221 TRUE
), /* pcrel_offset */
1223 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1224 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12
), /* type */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 FALSE
, /* pc_relative */
1230 complain_overflow_unsigned
, /* complain_on_overflow */
1231 bfd_elf_generic_reloc
, /* special_function */
1232 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12
), /* name */
1233 FALSE
, /* partial_inplace */
1234 0x1ffc00, /* src_mask */
1235 0x1ffc00, /* dst_mask */
1236 FALSE
), /* pcrel_offset */
1238 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1239 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC
), /* type */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 FALSE
, /* pc_relative */
1245 complain_overflow_dont
, /* complain_on_overflow */
1246 bfd_elf_generic_reloc
, /* special_function */
1247 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC
), /* name */
1248 FALSE
, /* partial_inplace */
1249 0x1ffc00, /* src_mask */
1250 0x1ffc00, /* dst_mask */
1251 FALSE
), /* pcrel_offset */
1253 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1254 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12
), /* type */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 FALSE
, /* pc_relative */
1260 complain_overflow_unsigned
, /* complain_on_overflow */
1261 bfd_elf_generic_reloc
, /* special_function */
1262 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12
), /* name */
1263 FALSE
, /* partial_inplace */
1264 0x3ffc00, /* src_mask */
1265 0x3ffc00, /* dst_mask */
1266 FALSE
), /* pcrel_offset */
1268 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1269 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC
), /* type */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1273 FALSE
, /* pc_relative */
1275 complain_overflow_dont
, /* complain_on_overflow */
1276 bfd_elf_generic_reloc
, /* special_function */
1277 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC
), /* name */
1278 FALSE
, /* partial_inplace */
1279 0xffc00, /* src_mask */
1280 0xffc00, /* dst_mask */
1281 FALSE
), /* pcrel_offset */
1283 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1284 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12
), /* type */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 FALSE
, /* pc_relative */
1290 complain_overflow_unsigned
, /* complain_on_overflow */
1291 bfd_elf_generic_reloc
, /* special_function */
1292 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12
), /* name */
1293 FALSE
, /* partial_inplace */
1294 0x3ffc00, /* src_mask */
1295 0x3ffc00, /* dst_mask */
1296 FALSE
), /* pcrel_offset */
1298 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1299 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC
), /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE
, /* pc_relative */
1305 complain_overflow_dont
, /* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC
), /* name */
1308 FALSE
, /* partial_inplace */
1309 0x7fc00, /* src_mask */
1310 0x7fc00, /* dst_mask */
1311 FALSE
), /* pcrel_offset */
1313 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1314 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12
), /* type */
1316 2, /* size (0 = byte, 1 = short, 2 = long) */
1318 FALSE
, /* pc_relative */
1320 complain_overflow_unsigned
, /* complain_on_overflow */
1321 bfd_elf_generic_reloc
, /* special_function */
1322 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12
), /* name */
1323 FALSE
, /* partial_inplace */
1324 0x3ffc00, /* src_mask */
1325 0x3ffc00, /* dst_mask */
1326 FALSE
), /* pcrel_offset */
1328 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1329 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC
), /* type */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 FALSE
, /* pc_relative */
1335 complain_overflow_dont
, /* complain_on_overflow */
1336 bfd_elf_generic_reloc
, /* special_function */
1337 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC
), /* name */
1338 FALSE
, /* partial_inplace */
1339 0x3ffc00, /* src_mask */
1340 0x3ffc00, /* dst_mask */
1341 FALSE
), /* pcrel_offset */
1343 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1344 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0
), /* type */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 FALSE
, /* pc_relative */
1350 complain_overflow_unsigned
, /* complain_on_overflow */
1351 bfd_elf_generic_reloc
, /* special_function */
1352 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0
), /* name */
1353 FALSE
, /* partial_inplace */
1354 0xffff, /* src_mask */
1355 0xffff, /* dst_mask */
1356 FALSE
), /* pcrel_offset */
1358 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1359 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC
), /* type */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 FALSE
, /* pc_relative */
1365 complain_overflow_dont
, /* complain_on_overflow */
1366 bfd_elf_generic_reloc
, /* special_function */
1367 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC
), /* name */
1368 FALSE
, /* partial_inplace */
1369 0xffff, /* src_mask */
1370 0xffff, /* dst_mask */
1371 FALSE
), /* pcrel_offset */
1373 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1374 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1
), /* type */
1375 16, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1378 FALSE
, /* pc_relative */
1380 complain_overflow_unsigned
, /* complain_on_overflow */
1381 bfd_elf_generic_reloc
, /* special_function */
1382 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1
), /* name */
1383 FALSE
, /* partial_inplace */
1384 0xffff, /* src_mask */
1385 0xffff, /* dst_mask */
1386 FALSE
), /* pcrel_offset */
1388 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1389 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC
), /* type */
1390 16, /* rightshift */
1391 2, /* size (0 = byte, 1 = short, 2 = long) */
1393 FALSE
, /* pc_relative */
1395 complain_overflow_dont
, /* complain_on_overflow */
1396 bfd_elf_generic_reloc
, /* special_function */
1397 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC
), /* name */
1398 FALSE
, /* partial_inplace */
1399 0xffff, /* src_mask */
1400 0xffff, /* dst_mask */
1401 FALSE
), /* pcrel_offset */
1403 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1404 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2
), /* type */
1405 32, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1408 FALSE
, /* pc_relative */
1410 complain_overflow_unsigned
, /* complain_on_overflow */
1411 bfd_elf_generic_reloc
, /* special_function */
1412 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2
), /* name */
1413 FALSE
, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE
), /* pcrel_offset */
1418 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2
), /* type */
1419 32, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1422 FALSE
, /* pc_relative */
1424 complain_overflow_unsigned
, /* complain_on_overflow */
1425 bfd_elf_generic_reloc
, /* special_function */
1426 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2
), /* name */
1427 FALSE
, /* partial_inplace */
1428 0xffff, /* src_mask */
1429 0xffff, /* dst_mask */
1430 FALSE
), /* pcrel_offset */
1432 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1
), /* type */
1433 16, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1436 FALSE
, /* pc_relative */
1438 complain_overflow_dont
, /* complain_on_overflow */
1439 bfd_elf_generic_reloc
, /* special_function */
1440 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1
), /* name */
1441 FALSE
, /* partial_inplace */
1442 0xffff, /* src_mask */
1443 0xffff, /* dst_mask */
1444 FALSE
), /* pcrel_offset */
1446 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC
), /* type */
1447 16, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1450 FALSE
, /* pc_relative */
1452 complain_overflow_dont
, /* complain_on_overflow */
1453 bfd_elf_generic_reloc
, /* special_function */
1454 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC
), /* name */
1455 FALSE
, /* partial_inplace */
1456 0xffff, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE
), /* pcrel_offset */
1460 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0
), /* type */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1464 FALSE
, /* pc_relative */
1466 complain_overflow_dont
, /* complain_on_overflow */
1467 bfd_elf_generic_reloc
, /* special_function */
1468 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0
), /* name */
1469 FALSE
, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE
), /* pcrel_offset */
1474 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC
), /* type */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1478 FALSE
, /* pc_relative */
1480 complain_overflow_dont
, /* complain_on_overflow */
1481 bfd_elf_generic_reloc
, /* special_function */
1482 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC
), /* name */
1483 FALSE
, /* partial_inplace */
1484 0xffff, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE
), /* pcrel_offset */
1488 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12
), /* type */
1489 12, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 FALSE
, /* pc_relative */
1494 complain_overflow_unsigned
, /* complain_on_overflow */
1495 bfd_elf_generic_reloc
, /* special_function */
1496 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12
), /* name */
1497 FALSE
, /* partial_inplace */
1498 0xfff, /* src_mask */
1499 0xfff, /* dst_mask */
1500 FALSE
), /* pcrel_offset */
1502 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12
), /* type */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 FALSE
, /* pc_relative */
1508 complain_overflow_unsigned
, /* complain_on_overflow */
1509 bfd_elf_generic_reloc
, /* special_function */
1510 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12
), /* name */
1511 FALSE
, /* partial_inplace */
1512 0xfff, /* src_mask */
1513 0xfff, /* dst_mask */
1514 FALSE
), /* pcrel_offset */
1516 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC
), /* type */
1518 2, /* size (0 = byte, 1 = short, 2 = long) */
1520 FALSE
, /* pc_relative */
1522 complain_overflow_dont
, /* complain_on_overflow */
1523 bfd_elf_generic_reloc
, /* special_function */
1524 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC
), /* name */
1525 FALSE
, /* partial_inplace */
1526 0xfff, /* src_mask */
1527 0xfff, /* dst_mask */
1528 FALSE
), /* pcrel_offset */
1530 HOWTO (AARCH64_R (TLSDESC_LD_PREL19
), /* type */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1534 TRUE
, /* pc_relative */
1536 complain_overflow_dont
, /* complain_on_overflow */
1537 bfd_elf_generic_reloc
, /* special_function */
1538 AARCH64_R_STR (TLSDESC_LD_PREL19
), /* name */
1539 FALSE
, /* partial_inplace */
1540 0x0ffffe0, /* src_mask */
1541 0x0ffffe0, /* dst_mask */
1542 TRUE
), /* pcrel_offset */
1544 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21
), /* type */
1546 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 TRUE
, /* pc_relative */
1550 complain_overflow_dont
, /* complain_on_overflow */
1551 bfd_elf_generic_reloc
, /* special_function */
1552 AARCH64_R_STR (TLSDESC_ADR_PREL21
), /* name */
1553 FALSE
, /* partial_inplace */
1554 0x1fffff, /* src_mask */
1555 0x1fffff, /* dst_mask */
1556 TRUE
), /* pcrel_offset */
1558 /* Get to the page for the GOT entry for the symbol
1559 (G(S) - P) using an ADRP instruction. */
1560 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21
), /* type */
1561 12, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 TRUE
, /* pc_relative */
1566 complain_overflow_dont
, /* complain_on_overflow */
1567 bfd_elf_generic_reloc
, /* special_function */
1568 AARCH64_R_STR (TLSDESC_ADR_PAGE21
), /* name */
1569 FALSE
, /* partial_inplace */
1570 0x1fffff, /* src_mask */
1571 0x1fffff, /* dst_mask */
1572 TRUE
), /* pcrel_offset */
1574 /* LD64: GOT offset G(S) & 0xff8. */
1575 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12
), /* type */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 FALSE
, /* pc_relative */
1581 complain_overflow_dont
, /* complain_on_overflow */
1582 bfd_elf_generic_reloc
, /* special_function */
1583 AARCH64_R_STR (TLSDESC_LD64_LO12
), /* name */
1584 FALSE
, /* partial_inplace */
1585 0xff8, /* src_mask */
1586 0xff8, /* dst_mask */
1587 FALSE
), /* pcrel_offset */
1589 /* LD32: GOT offset G(S) & 0xffc. */
1590 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC
), /* type */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1594 FALSE
, /* pc_relative */
1596 complain_overflow_dont
, /* complain_on_overflow */
1597 bfd_elf_generic_reloc
, /* special_function */
1598 AARCH64_R_STR (TLSDESC_LD32_LO12_NC
), /* name */
1599 FALSE
, /* partial_inplace */
1600 0xffc, /* src_mask */
1601 0xffc, /* dst_mask */
1602 FALSE
), /* pcrel_offset */
1604 /* ADD: GOT offset G(S) & 0xfff. */
1605 HOWTO (AARCH64_R (TLSDESC_ADD_LO12
), /* type */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
1609 FALSE
, /* pc_relative */
1611 complain_overflow_dont
,/* complain_on_overflow */
1612 bfd_elf_generic_reloc
, /* special_function */
1613 AARCH64_R_STR (TLSDESC_ADD_LO12
), /* name */
1614 FALSE
, /* partial_inplace */
1615 0xfff, /* src_mask */
1616 0xfff, /* dst_mask */
1617 FALSE
), /* pcrel_offset */
1619 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1
), /* type */
1620 16, /* rightshift */
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1623 FALSE
, /* pc_relative */
1625 complain_overflow_unsigned
, /* complain_on_overflow */
1626 bfd_elf_generic_reloc
, /* special_function */
1627 AARCH64_R_STR (TLSDESC_OFF_G1
), /* name */
1628 FALSE
, /* partial_inplace */
1629 0xffff, /* src_mask */
1630 0xffff, /* dst_mask */
1631 FALSE
), /* pcrel_offset */
1633 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC
), /* type */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1637 FALSE
, /* pc_relative */
1639 complain_overflow_dont
, /* complain_on_overflow */
1640 bfd_elf_generic_reloc
, /* special_function */
1641 AARCH64_R_STR (TLSDESC_OFF_G0_NC
), /* name */
1642 FALSE
, /* partial_inplace */
1643 0xffff, /* src_mask */
1644 0xffff, /* dst_mask */
1645 FALSE
), /* pcrel_offset */
1647 HOWTO64 (AARCH64_R (TLSDESC_LDR
), /* type */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1651 FALSE
, /* pc_relative */
1653 complain_overflow_dont
, /* complain_on_overflow */
1654 bfd_elf_generic_reloc
, /* special_function */
1655 AARCH64_R_STR (TLSDESC_LDR
), /* name */
1656 FALSE
, /* partial_inplace */
1659 FALSE
), /* pcrel_offset */
1661 HOWTO64 (AARCH64_R (TLSDESC_ADD
), /* type */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1665 FALSE
, /* pc_relative */
1667 complain_overflow_dont
, /* complain_on_overflow */
1668 bfd_elf_generic_reloc
, /* special_function */
1669 AARCH64_R_STR (TLSDESC_ADD
), /* name */
1670 FALSE
, /* partial_inplace */
1673 FALSE
), /* pcrel_offset */
1675 HOWTO (AARCH64_R (TLSDESC_CALL
), /* type */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
1679 FALSE
, /* pc_relative */
1681 complain_overflow_dont
, /* complain_on_overflow */
1682 bfd_elf_generic_reloc
, /* special_function */
1683 AARCH64_R_STR (TLSDESC_CALL
), /* name */
1684 FALSE
, /* partial_inplace */
1687 FALSE
), /* pcrel_offset */
1689 HOWTO (AARCH64_R (COPY
), /* type */
1691 2, /* size (0 = byte, 1 = short, 2 = long) */
1693 FALSE
, /* pc_relative */
1695 complain_overflow_bitfield
, /* complain_on_overflow */
1696 bfd_elf_generic_reloc
, /* special_function */
1697 AARCH64_R_STR (COPY
), /* name */
1698 TRUE
, /* partial_inplace */
1699 0xffffffff, /* src_mask */
1700 0xffffffff, /* dst_mask */
1701 FALSE
), /* pcrel_offset */
1703 HOWTO (AARCH64_R (GLOB_DAT
), /* type */
1705 2, /* size (0 = byte, 1 = short, 2 = long) */
1707 FALSE
, /* pc_relative */
1709 complain_overflow_bitfield
, /* complain_on_overflow */
1710 bfd_elf_generic_reloc
, /* special_function */
1711 AARCH64_R_STR (GLOB_DAT
), /* name */
1712 TRUE
, /* partial_inplace */
1713 0xffffffff, /* src_mask */
1714 0xffffffff, /* dst_mask */
1715 FALSE
), /* pcrel_offset */
1717 HOWTO (AARCH64_R (JUMP_SLOT
), /* type */
1719 2, /* size (0 = byte, 1 = short, 2 = long) */
1721 FALSE
, /* pc_relative */
1723 complain_overflow_bitfield
, /* complain_on_overflow */
1724 bfd_elf_generic_reloc
, /* special_function */
1725 AARCH64_R_STR (JUMP_SLOT
), /* name */
1726 TRUE
, /* partial_inplace */
1727 0xffffffff, /* src_mask */
1728 0xffffffff, /* dst_mask */
1729 FALSE
), /* pcrel_offset */
1731 HOWTO (AARCH64_R (RELATIVE
), /* type */
1733 2, /* size (0 = byte, 1 = short, 2 = long) */
1735 FALSE
, /* pc_relative */
1737 complain_overflow_bitfield
, /* complain_on_overflow */
1738 bfd_elf_generic_reloc
, /* special_function */
1739 AARCH64_R_STR (RELATIVE
), /* name */
1740 TRUE
, /* partial_inplace */
1741 ALL_ONES
, /* src_mask */
1742 ALL_ONES
, /* dst_mask */
1743 FALSE
), /* pcrel_offset */
1745 HOWTO (AARCH64_R (TLS_DTPMOD
), /* type */
1747 2, /* size (0 = byte, 1 = short, 2 = long) */
1749 FALSE
, /* pc_relative */
1751 complain_overflow_dont
, /* complain_on_overflow */
1752 bfd_elf_generic_reloc
, /* special_function */
1754 AARCH64_R_STR (TLS_DTPMOD64
), /* name */
1756 AARCH64_R_STR (TLS_DTPMOD
), /* name */
1758 FALSE
, /* partial_inplace */
1760 ALL_ONES
, /* dst_mask */
1761 FALSE
), /* pc_reloffset */
1763 HOWTO (AARCH64_R (TLS_DTPREL
), /* type */
1765 2, /* size (0 = byte, 1 = short, 2 = long) */
1767 FALSE
, /* pc_relative */
1769 complain_overflow_dont
, /* complain_on_overflow */
1770 bfd_elf_generic_reloc
, /* special_function */
1772 AARCH64_R_STR (TLS_DTPREL64
), /* name */
1774 AARCH64_R_STR (TLS_DTPREL
), /* name */
1776 FALSE
, /* partial_inplace */
1778 ALL_ONES
, /* dst_mask */
1779 FALSE
), /* pcrel_offset */
1781 HOWTO (AARCH64_R (TLS_TPREL
), /* type */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1785 FALSE
, /* pc_relative */
1787 complain_overflow_dont
, /* complain_on_overflow */
1788 bfd_elf_generic_reloc
, /* special_function */
1790 AARCH64_R_STR (TLS_TPREL64
), /* name */
1792 AARCH64_R_STR (TLS_TPREL
), /* name */
1794 FALSE
, /* partial_inplace */
1796 ALL_ONES
, /* dst_mask */
1797 FALSE
), /* pcrel_offset */
1799 HOWTO (AARCH64_R (TLSDESC
), /* type */
1801 2, /* size (0 = byte, 1 = short, 2 = long) */
1803 FALSE
, /* pc_relative */
1805 complain_overflow_dont
, /* complain_on_overflow */
1806 bfd_elf_generic_reloc
, /* special_function */
1807 AARCH64_R_STR (TLSDESC
), /* name */
1808 FALSE
, /* partial_inplace */
1810 ALL_ONES
, /* dst_mask */
1811 FALSE
), /* pcrel_offset */
1813 HOWTO (AARCH64_R (IRELATIVE
), /* type */
1815 2, /* size (0 = byte, 1 = short, 2 = long) */
1817 FALSE
, /* pc_relative */
1819 complain_overflow_bitfield
, /* complain_on_overflow */
1820 bfd_elf_generic_reloc
, /* special_function */
1821 AARCH64_R_STR (IRELATIVE
), /* name */
1822 FALSE
, /* partial_inplace */
1824 ALL_ONES
, /* dst_mask */
1825 FALSE
), /* pcrel_offset */
1830 static reloc_howto_type elfNN_aarch64_howto_none
=
1831 HOWTO (R_AARCH64_NONE
, /* type */
1833 3, /* size (0 = byte, 1 = short, 2 = long) */
1835 FALSE
, /* pc_relative */
1837 complain_overflow_dont
,/* complain_on_overflow */
1838 bfd_elf_generic_reloc
, /* special_function */
1839 "R_AARCH64_NONE", /* name */
1840 FALSE
, /* partial_inplace */
1843 FALSE
); /* pcrel_offset */
1845 /* Given HOWTO, return the bfd internal relocation enumerator. */
1847 static bfd_reloc_code_real_type
1848 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type
*howto
)
1851 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table
);
1852 const ptrdiff_t offset
1853 = howto
- elfNN_aarch64_howto_table
;
1855 if (offset
> 0 && offset
< size
- 1)
1856 return BFD_RELOC_AARCH64_RELOC_START
+ offset
;
1858 if (howto
== &elfNN_aarch64_howto_none
)
1859 return BFD_RELOC_AARCH64_NONE
;
1861 return BFD_RELOC_AARCH64_RELOC_START
;
1864 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1866 static bfd_reloc_code_real_type
1867 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type
)
1869 static bfd_boolean initialized_p
= FALSE
;
1870 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1871 static unsigned int offsets
[R_AARCH64_end
];
1877 for (i
= 1; i
< ARRAY_SIZE (elfNN_aarch64_howto_table
) - 1; ++i
)
1878 if (elfNN_aarch64_howto_table
[i
].type
!= 0)
1879 offsets
[elfNN_aarch64_howto_table
[i
].type
] = i
;
1881 initialized_p
= TRUE
;
1884 if (r_type
== R_AARCH64_NONE
|| r_type
== R_AARCH64_NULL
)
1885 return BFD_RELOC_AARCH64_NONE
;
1887 /* PR 17512: file: b371e70a. */
1888 if (r_type
>= R_AARCH64_end
)
1890 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type
);
1891 bfd_set_error (bfd_error_bad_value
);
1892 return BFD_RELOC_AARCH64_NONE
;
1895 return BFD_RELOC_AARCH64_RELOC_START
+ offsets
[r_type
];
1898 struct elf_aarch64_reloc_map
1900 bfd_reloc_code_real_type from
;
1901 bfd_reloc_code_real_type to
;
1904 /* Map bfd generic reloc to AArch64-specific reloc. */
1905 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map
[] =
1907 {BFD_RELOC_NONE
, BFD_RELOC_AARCH64_NONE
},
1909 /* Basic data relocations. */
1910 {BFD_RELOC_CTOR
, BFD_RELOC_AARCH64_NN
},
1911 {BFD_RELOC_64
, BFD_RELOC_AARCH64_64
},
1912 {BFD_RELOC_32
, BFD_RELOC_AARCH64_32
},
1913 {BFD_RELOC_16
, BFD_RELOC_AARCH64_16
},
1914 {BFD_RELOC_64_PCREL
, BFD_RELOC_AARCH64_64_PCREL
},
1915 {BFD_RELOC_32_PCREL
, BFD_RELOC_AARCH64_32_PCREL
},
1916 {BFD_RELOC_16_PCREL
, BFD_RELOC_AARCH64_16_PCREL
},
1919 /* Given the bfd internal relocation enumerator in CODE, return the
1920 corresponding howto entry. */
1922 static reloc_howto_type
*
1923 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code
)
1927 /* Convert bfd generic reloc to AArch64-specific reloc. */
1928 if (code
< BFD_RELOC_AARCH64_RELOC_START
1929 || code
> BFD_RELOC_AARCH64_RELOC_END
)
1930 for (i
= 0; i
< ARRAY_SIZE (elf_aarch64_reloc_map
); i
++)
1931 if (elf_aarch64_reloc_map
[i
].from
== code
)
1933 code
= elf_aarch64_reloc_map
[i
].to
;
1937 if (code
> BFD_RELOC_AARCH64_RELOC_START
1938 && code
< BFD_RELOC_AARCH64_RELOC_END
)
1939 if (elfNN_aarch64_howto_table
[code
- BFD_RELOC_AARCH64_RELOC_START
].type
)
1940 return &elfNN_aarch64_howto_table
[code
- BFD_RELOC_AARCH64_RELOC_START
];
1942 if (code
== BFD_RELOC_AARCH64_NONE
)
1943 return &elfNN_aarch64_howto_none
;
1948 static reloc_howto_type
*
1949 elfNN_aarch64_howto_from_type (unsigned int r_type
)
1951 bfd_reloc_code_real_type val
;
1952 reloc_howto_type
*howto
;
1957 bfd_set_error (bfd_error_bad_value
);
1962 if (r_type
== R_AARCH64_NONE
)
1963 return &elfNN_aarch64_howto_none
;
1965 val
= elfNN_aarch64_bfd_reloc_from_type (r_type
);
1966 howto
= elfNN_aarch64_howto_from_bfd_reloc (val
);
1971 bfd_set_error (bfd_error_bad_value
);
1976 elfNN_aarch64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*bfd_reloc
,
1977 Elf_Internal_Rela
*elf_reloc
)
1979 unsigned int r_type
;
1981 r_type
= ELFNN_R_TYPE (elf_reloc
->r_info
);
1982 bfd_reloc
->howto
= elfNN_aarch64_howto_from_type (r_type
);
1985 static reloc_howto_type
*
1986 elfNN_aarch64_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1987 bfd_reloc_code_real_type code
)
1989 reloc_howto_type
*howto
= elfNN_aarch64_howto_from_bfd_reloc (code
);
1994 bfd_set_error (bfd_error_bad_value
);
1998 static reloc_howto_type
*
1999 elfNN_aarch64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
2004 for (i
= 1; i
< ARRAY_SIZE (elfNN_aarch64_howto_table
) - 1; ++i
)
2005 if (elfNN_aarch64_howto_table
[i
].name
!= NULL
2006 && strcasecmp (elfNN_aarch64_howto_table
[i
].name
, r_name
) == 0)
2007 return &elfNN_aarch64_howto_table
[i
];
2012 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2013 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2014 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2015 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2017 /* The linker script knows the section names for placement.
2018 The entry_names are used to do simple name mangling on the stubs.
2019 Given a function name, and its type, the stub can be found. The
2020 name can be changed. The only requirement is the %s be present. */
2021 #define STUB_ENTRY_NAME "__%s_veneer"
2023 /* The name of the dynamic interpreter. This is put in the .interp
2025 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2027 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2028 (((1 << 25) - 1) << 2)
2029 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2032 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2033 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2036 aarch64_valid_for_adrp_p (bfd_vma value
, bfd_vma place
)
2038 bfd_signed_vma offset
= (bfd_signed_vma
) (PG (value
) - PG (place
)) >> 12;
2039 return offset
<= AARCH64_MAX_ADRP_IMM
&& offset
>= AARCH64_MIN_ADRP_IMM
;
2043 aarch64_valid_branch_p (bfd_vma value
, bfd_vma place
)
2045 bfd_signed_vma offset
= (bfd_signed_vma
) (value
- place
);
2046 return (offset
<= AARCH64_MAX_FWD_BRANCH_OFFSET
2047 && offset
>= AARCH64_MAX_BWD_BRANCH_OFFSET
);
2050 static const uint32_t aarch64_adrp_branch_stub
[] =
2052 0x90000010, /* adrp ip0, X */
2053 /* R_AARCH64_ADR_HI21_PCREL(X) */
2054 0x91000210, /* add ip0, ip0, :lo12:X */
2055 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2056 0xd61f0200, /* br ip0 */
2059 static const uint32_t aarch64_long_branch_stub
[] =
2062 0x58000090, /* ldr ip0, 1f */
2064 0x18000090, /* ldr wip0, 1f */
2066 0x10000011, /* adr ip1, #0 */
2067 0x8b110210, /* add ip0, ip0, ip1 */
2068 0xd61f0200, /* br ip0 */
2069 0x00000000, /* 1: .xword or .word
2070 R_AARCH64_PRELNN(X) + 12
2075 static const uint32_t aarch64_erratum_835769_stub
[] =
2077 0x00000000, /* Placeholder for multiply accumulate. */
2078 0x14000000, /* b <label> */
2081 static const uint32_t aarch64_erratum_843419_stub
[] =
2083 0x00000000, /* Placeholder for LDR instruction. */
2084 0x14000000, /* b <label> */
2087 /* Section name for stubs is the associated section name plus this
2089 #define STUB_SUFFIX ".stub"
2091 enum elf_aarch64_stub_type
2094 aarch64_stub_adrp_branch
,
2095 aarch64_stub_long_branch
,
2096 aarch64_stub_erratum_835769_veneer
,
2097 aarch64_stub_erratum_843419_veneer
,
2100 struct elf_aarch64_stub_hash_entry
2102 /* Base hash table entry structure. */
2103 struct bfd_hash_entry root
;
2105 /* The stub section. */
2108 /* Offset within stub_sec of the beginning of this stub. */
2109 bfd_vma stub_offset
;
2111 /* Given the symbol's value and its section we can determine its final
2112 value when building the stubs (so the stub knows where to jump). */
2113 bfd_vma target_value
;
2114 asection
*target_section
;
2116 enum elf_aarch64_stub_type stub_type
;
2118 /* The symbol table entry, if any, that this was derived from. */
2119 struct elf_aarch64_link_hash_entry
*h
;
2121 /* Destination symbol type */
2122 unsigned char st_type
;
2124 /* Where this stub is being called from, or, in the case of combined
2125 stub sections, the first input section in the group. */
2128 /* The name for the local symbol at the start of this stub. The
2129 stub name in the hash table has to be unique; this does not, so
2130 it can be friendlier. */
2133 /* The instruction which caused this stub to be generated (only valid for
2134 erratum 835769 workaround stubs at present). */
2135 uint32_t veneered_insn
;
2137 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2138 bfd_vma adrp_offset
;
2141 /* Used to build a map of a section. This is required for mixed-endian
2144 typedef struct elf_elf_section_map
2149 elf_aarch64_section_map
;
2152 typedef struct _aarch64_elf_section_data
2154 struct bfd_elf_section_data elf
;
2155 unsigned int mapcount
;
2156 unsigned int mapsize
;
2157 elf_aarch64_section_map
*map
;
2159 _aarch64_elf_section_data
;
2161 #define elf_aarch64_section_data(sec) \
2162 ((_aarch64_elf_section_data *) elf_section_data (sec))
2164 /* The size of the thread control block which is defined to be two pointers. */
2165 #define TCB_SIZE (ARCH_SIZE/8)*2
2167 struct elf_aarch64_local_symbol
2169 unsigned int got_type
;
2170 bfd_signed_vma got_refcount
;
2173 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2174 offset is from the end of the jump table and reserved entries
2177 The magic value (bfd_vma) -1 indicates that an offset has not be
2179 bfd_vma tlsdesc_got_jump_table_offset
;
2182 struct elf_aarch64_obj_tdata
2184 struct elf_obj_tdata root
;
2186 /* local symbol descriptors */
2187 struct elf_aarch64_local_symbol
*locals
;
2189 /* Zero to warn when linking objects with incompatible enum sizes. */
2190 int no_enum_size_warning
;
2192 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2193 int no_wchar_size_warning
;
2196 #define elf_aarch64_tdata(bfd) \
2197 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2199 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2201 #define is_aarch64_elf(bfd) \
2202 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2203 && elf_tdata (bfd) != NULL \
2204 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2207 elfNN_aarch64_mkobject (bfd
*abfd
)
2209 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_aarch64_obj_tdata
),
2213 #define elf_aarch64_hash_entry(ent) \
2214 ((struct elf_aarch64_link_hash_entry *)(ent))
2216 #define GOT_UNKNOWN 0
2217 #define GOT_NORMAL 1
2218 #define GOT_TLS_GD 2
2219 #define GOT_TLS_IE 4
2220 #define GOT_TLSDESC_GD 8
2222 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2224 /* AArch64 ELF linker hash entry. */
2225 struct elf_aarch64_link_hash_entry
2227 struct elf_link_hash_entry root
;
2229 /* Track dynamic relocs copied for this symbol. */
2230 struct elf_dyn_relocs
*dyn_relocs
;
2232 /* Since PLT entries have variable size, we need to record the
2233 index into .got.plt instead of recomputing it from the PLT
2235 bfd_signed_vma plt_got_offset
;
2237 /* Bit mask representing the type of GOT entry(s) if any required by
2239 unsigned int got_type
;
2241 /* A pointer to the most recently used stub hash entry against this
2243 struct elf_aarch64_stub_hash_entry
*stub_cache
;
2245 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2246 is from the end of the jump table and reserved entries within the PLTGOT.
2248 The magic value (bfd_vma) -1 indicates that an offset has not
2250 bfd_vma tlsdesc_got_jump_table_offset
;
2254 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry
*h
,
2256 unsigned long r_symndx
)
2259 return elf_aarch64_hash_entry (h
)->got_type
;
2261 if (! elf_aarch64_locals (abfd
))
2264 return elf_aarch64_locals (abfd
)[r_symndx
].got_type
;
2267 /* Get the AArch64 elf linker hash table from a link_info structure. */
2268 #define elf_aarch64_hash_table(info) \
2269 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2271 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf_aarch64_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2275 /* AArch64 ELF linker hash table. */
2276 struct elf_aarch64_link_hash_table
2278 /* The main hash table. */
2279 struct elf_link_hash_table root
;
2281 /* Nonzero to force PIC branch veneers. */
2284 /* Fix erratum 835769. */
2285 int fix_erratum_835769
;
2287 /* Fix erratum 843419. */
2288 int fix_erratum_843419
;
2290 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2291 int fix_erratum_843419_adr
;
2293 /* Don't apply link-time values for dynamic relocations. */
2294 int no_apply_dynamic_relocs
;
2296 /* The number of bytes in the initial entry in the PLT. */
2297 bfd_size_type plt_header_size
;
2299 /* The number of bytes in the subsequent PLT etries. */
2300 bfd_size_type plt_entry_size
;
2302 /* Small local sym cache. */
2303 struct sym_cache sym_cache
;
2305 /* For convenience in allocate_dynrelocs. */
2308 /* The amount of space used by the reserved portion of the sgotplt
2309 section, plus whatever space is used by the jump slots. */
2310 bfd_vma sgotplt_jump_table_size
;
2312 /* The stub hash table. */
2313 struct bfd_hash_table stub_hash_table
;
2315 /* Linker stub bfd. */
2318 /* Linker call-backs. */
2319 asection
*(*add_stub_section
) (const char *, asection
*);
2320 void (*layout_sections_again
) (void);
2322 /* Array to keep track of which stub sections have been created, and
2323 information on stub grouping. */
2326 /* This is the section to which stubs in the group will be
2329 /* The stub section. */
2333 /* Assorted information used by elfNN_aarch64_size_stubs. */
2334 unsigned int bfd_count
;
2335 unsigned int top_index
;
2336 asection
**input_list
;
2338 /* The offset into splt of the PLT entry for the TLS descriptor
2339 resolver. Special values are 0, if not necessary (or not found
2340 to be necessary yet), and -1 if needed but not determined
2342 bfd_vma tlsdesc_plt
;
2344 /* The GOT offset for the lazy trampoline. Communicated to the
2345 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2346 indicates an offset is not allocated. */
2347 bfd_vma dt_tlsdesc_got
;
2349 /* Used by local STT_GNU_IFUNC symbols. */
2350 htab_t loc_hash_table
;
2351 void * loc_hash_memory
;
2354 /* Create an entry in an AArch64 ELF linker hash table. */
2356 static struct bfd_hash_entry
*
2357 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
2358 struct bfd_hash_table
*table
,
2361 struct elf_aarch64_link_hash_entry
*ret
=
2362 (struct elf_aarch64_link_hash_entry
*) entry
;
2364 /* Allocate the structure if it has not already been allocated by a
2367 ret
= bfd_hash_allocate (table
,
2368 sizeof (struct elf_aarch64_link_hash_entry
));
2370 return (struct bfd_hash_entry
*) ret
;
2372 /* Call the allocation method of the superclass. */
2373 ret
= ((struct elf_aarch64_link_hash_entry
*)
2374 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2378 ret
->dyn_relocs
= NULL
;
2379 ret
->got_type
= GOT_UNKNOWN
;
2380 ret
->plt_got_offset
= (bfd_vma
) - 1;
2381 ret
->stub_cache
= NULL
;
2382 ret
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
2385 return (struct bfd_hash_entry
*) ret
;
2388 /* Initialize an entry in the stub hash table. */
2390 static struct bfd_hash_entry
*
2391 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2392 struct bfd_hash_table
*table
, const char *string
)
2394 /* Allocate the structure if it has not already been allocated by a
2398 entry
= bfd_hash_allocate (table
,
2400 elf_aarch64_stub_hash_entry
));
2405 /* Call the allocation method of the superclass. */
2406 entry
= bfd_hash_newfunc (entry
, table
, string
);
2409 struct elf_aarch64_stub_hash_entry
*eh
;
2411 /* Initialize the local fields. */
2412 eh
= (struct elf_aarch64_stub_hash_entry
*) entry
;
2413 eh
->adrp_offset
= 0;
2414 eh
->stub_sec
= NULL
;
2415 eh
->stub_offset
= 0;
2416 eh
->target_value
= 0;
2417 eh
->target_section
= NULL
;
2418 eh
->stub_type
= aarch64_stub_none
;
2426 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2427 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2428 as global symbol. We reuse indx and dynstr_index for local symbol
2429 hash since they aren't used by global symbols in this backend. */
2432 elfNN_aarch64_local_htab_hash (const void *ptr
)
2434 struct elf_link_hash_entry
*h
2435 = (struct elf_link_hash_entry
*) ptr
;
2436 return ELF_LOCAL_SYMBOL_HASH (h
->indx
, h
->dynstr_index
);
2439 /* Compare local hash entries. */
2442 elfNN_aarch64_local_htab_eq (const void *ptr1
, const void *ptr2
)
2444 struct elf_link_hash_entry
*h1
2445 = (struct elf_link_hash_entry
*) ptr1
;
2446 struct elf_link_hash_entry
*h2
2447 = (struct elf_link_hash_entry
*) ptr2
;
2449 return h1
->indx
== h2
->indx
&& h1
->dynstr_index
== h2
->dynstr_index
;
2452 /* Find and/or create a hash entry for local symbol. */
2454 static struct elf_link_hash_entry
*
2455 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table
*htab
,
2456 bfd
*abfd
, const Elf_Internal_Rela
*rel
,
2459 struct elf_aarch64_link_hash_entry e
, *ret
;
2460 asection
*sec
= abfd
->sections
;
2461 hashval_t h
= ELF_LOCAL_SYMBOL_HASH (sec
->id
,
2462 ELFNN_R_SYM (rel
->r_info
));
2465 e
.root
.indx
= sec
->id
;
2466 e
.root
.dynstr_index
= ELFNN_R_SYM (rel
->r_info
);
2467 slot
= htab_find_slot_with_hash (htab
->loc_hash_table
, &e
, h
,
2468 create
? INSERT
: NO_INSERT
);
2475 ret
= (struct elf_aarch64_link_hash_entry
*) *slot
;
2479 ret
= (struct elf_aarch64_link_hash_entry
*)
2480 objalloc_alloc ((struct objalloc
*) htab
->loc_hash_memory
,
2481 sizeof (struct elf_aarch64_link_hash_entry
));
2484 memset (ret
, 0, sizeof (*ret
));
2485 ret
->root
.indx
= sec
->id
;
2486 ret
->root
.dynstr_index
= ELFNN_R_SYM (rel
->r_info
);
2487 ret
->root
.dynindx
= -1;
2493 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2496 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info
*info
,
2497 struct elf_link_hash_entry
*dir
,
2498 struct elf_link_hash_entry
*ind
)
2500 struct elf_aarch64_link_hash_entry
*edir
, *eind
;
2502 edir
= (struct elf_aarch64_link_hash_entry
*) dir
;
2503 eind
= (struct elf_aarch64_link_hash_entry
*) ind
;
2505 if (eind
->dyn_relocs
!= NULL
)
2507 if (edir
->dyn_relocs
!= NULL
)
2509 struct elf_dyn_relocs
**pp
;
2510 struct elf_dyn_relocs
*p
;
2512 /* Add reloc counts against the indirect sym to the direct sym
2513 list. Merge any entries against the same section. */
2514 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
;)
2516 struct elf_dyn_relocs
*q
;
2518 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
2519 if (q
->sec
== p
->sec
)
2521 q
->pc_count
+= p
->pc_count
;
2522 q
->count
+= p
->count
;
2529 *pp
= edir
->dyn_relocs
;
2532 edir
->dyn_relocs
= eind
->dyn_relocs
;
2533 eind
->dyn_relocs
= NULL
;
2536 if (ind
->root
.type
== bfd_link_hash_indirect
)
2538 /* Copy over PLT info. */
2539 if (dir
->got
.refcount
<= 0)
2541 edir
->got_type
= eind
->got_type
;
2542 eind
->got_type
= GOT_UNKNOWN
;
2546 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2549 /* Destroy an AArch64 elf linker hash table. */
2552 elfNN_aarch64_link_hash_table_free (bfd
*obfd
)
2554 struct elf_aarch64_link_hash_table
*ret
2555 = (struct elf_aarch64_link_hash_table
*) obfd
->link
.hash
;
2557 if (ret
->loc_hash_table
)
2558 htab_delete (ret
->loc_hash_table
);
2559 if (ret
->loc_hash_memory
)
2560 objalloc_free ((struct objalloc
*) ret
->loc_hash_memory
);
2562 bfd_hash_table_free (&ret
->stub_hash_table
);
2563 _bfd_elf_link_hash_table_free (obfd
);
2566 /* Create an AArch64 elf linker hash table. */
2568 static struct bfd_link_hash_table
*
2569 elfNN_aarch64_link_hash_table_create (bfd
*abfd
)
2571 struct elf_aarch64_link_hash_table
*ret
;
2572 bfd_size_type amt
= sizeof (struct elf_aarch64_link_hash_table
);
2574 ret
= bfd_zmalloc (amt
);
2578 if (!_bfd_elf_link_hash_table_init
2579 (&ret
->root
, abfd
, elfNN_aarch64_link_hash_newfunc
,
2580 sizeof (struct elf_aarch64_link_hash_entry
), AARCH64_ELF_DATA
))
2586 ret
->plt_header_size
= PLT_ENTRY_SIZE
;
2587 ret
->plt_entry_size
= PLT_SMALL_ENTRY_SIZE
;
2589 ret
->dt_tlsdesc_got
= (bfd_vma
) - 1;
2591 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2592 sizeof (struct elf_aarch64_stub_hash_entry
)))
2594 _bfd_elf_link_hash_table_free (abfd
);
2598 ret
->loc_hash_table
= htab_try_create (1024,
2599 elfNN_aarch64_local_htab_hash
,
2600 elfNN_aarch64_local_htab_eq
,
2602 ret
->loc_hash_memory
= objalloc_create ();
2603 if (!ret
->loc_hash_table
|| !ret
->loc_hash_memory
)
2605 elfNN_aarch64_link_hash_table_free (abfd
);
2608 ret
->root
.root
.hash_table_free
= elfNN_aarch64_link_hash_table_free
;
2610 return &ret
->root
.root
;
2613 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2616 aarch64_relocate (unsigned int r_type
, bfd
*input_bfd
, asection
*input_section
,
2617 bfd_vma offset
, bfd_vma value
)
2619 reloc_howto_type
*howto
;
2622 howto
= elfNN_aarch64_howto_from_type (r_type
);
2623 place
= (input_section
->output_section
->vma
+ input_section
->output_offset
2626 r_type
= elfNN_aarch64_bfd_reloc_from_type (r_type
);
2627 value
= _bfd_aarch64_elf_resolve_relocation (r_type
, place
, value
, 0, FALSE
);
2628 return _bfd_aarch64_elf_put_addend (input_bfd
,
2629 input_section
->contents
+ offset
, r_type
,
2630 howto
, value
) == bfd_reloc_ok
;
2633 static enum elf_aarch64_stub_type
2634 aarch64_select_branch_stub (bfd_vma value
, bfd_vma place
)
2636 if (aarch64_valid_for_adrp_p (value
, place
))
2637 return aarch64_stub_adrp_branch
;
2638 return aarch64_stub_long_branch
;
2641 /* Determine the type of stub needed, if any, for a call. */
2643 static enum elf_aarch64_stub_type
2644 aarch64_type_of_stub (asection
*input_sec
,
2645 const Elf_Internal_Rela
*rel
,
2647 unsigned char st_type
,
2648 bfd_vma destination
)
2651 bfd_signed_vma branch_offset
;
2652 unsigned int r_type
;
2653 enum elf_aarch64_stub_type stub_type
= aarch64_stub_none
;
2655 if (st_type
!= STT_FUNC
2656 && (sym_sec
== input_sec
))
2659 /* Determine where the call point is. */
2660 location
= (input_sec
->output_offset
2661 + input_sec
->output_section
->vma
+ rel
->r_offset
);
2663 branch_offset
= (bfd_signed_vma
) (destination
- location
);
2665 r_type
= ELFNN_R_TYPE (rel
->r_info
);
2667 /* We don't want to redirect any old unconditional jump in this way,
2668 only one which is being used for a sibcall, where it is
2669 acceptable for the IP0 and IP1 registers to be clobbered. */
2670 if ((r_type
== AARCH64_R (CALL26
) || r_type
== AARCH64_R (JUMP26
))
2671 && (branch_offset
> AARCH64_MAX_FWD_BRANCH_OFFSET
2672 || branch_offset
< AARCH64_MAX_BWD_BRANCH_OFFSET
))
2674 stub_type
= aarch64_stub_long_branch
;
2680 /* Build a name for an entry in the stub hash table. */
2683 elfNN_aarch64_stub_name (const asection
*input_section
,
2684 const asection
*sym_sec
,
2685 const struct elf_aarch64_link_hash_entry
*hash
,
2686 const Elf_Internal_Rela
*rel
)
2693 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 16 + 1;
2694 stub_name
= bfd_malloc (len
);
2695 if (stub_name
!= NULL
)
2696 snprintf (stub_name
, len
, "%08x_%s+%" BFD_VMA_FMT
"x",
2697 (unsigned int) input_section
->id
,
2698 hash
->root
.root
.root
.string
,
2703 len
= 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2704 stub_name
= bfd_malloc (len
);
2705 if (stub_name
!= NULL
)
2706 snprintf (stub_name
, len
, "%08x_%x:%x+%" BFD_VMA_FMT
"x",
2707 (unsigned int) input_section
->id
,
2708 (unsigned int) sym_sec
->id
,
2709 (unsigned int) ELFNN_R_SYM (rel
->r_info
),
2716 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2717 executable PLT slots where the executable never takes the address of those
2718 functions, the function symbols are not added to the hash table. */
2721 elf_aarch64_hash_symbol (struct elf_link_hash_entry
*h
)
2723 if (h
->plt
.offset
!= (bfd_vma
) -1
2725 && !h
->pointer_equality_needed
)
2728 return _bfd_elf_hash_symbol (h
);
2732 /* Look up an entry in the stub hash. Stub entries are cached because
2733 creating the stub name takes a bit of time. */
2735 static struct elf_aarch64_stub_hash_entry
*
2736 elfNN_aarch64_get_stub_entry (const asection
*input_section
,
2737 const asection
*sym_sec
,
2738 struct elf_link_hash_entry
*hash
,
2739 const Elf_Internal_Rela
*rel
,
2740 struct elf_aarch64_link_hash_table
*htab
)
2742 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2743 struct elf_aarch64_link_hash_entry
*h
=
2744 (struct elf_aarch64_link_hash_entry
*) hash
;
2745 const asection
*id_sec
;
2747 if ((input_section
->flags
& SEC_CODE
) == 0)
2750 /* If this input section is part of a group of sections sharing one
2751 stub section, then use the id of the first section in the group.
2752 Stub names need to include a section id, as there may well be
2753 more than one stub used to reach say, printf, and we need to
2754 distinguish between them. */
2755 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
2757 if (h
!= NULL
&& h
->stub_cache
!= NULL
2758 && h
->stub_cache
->h
== h
&& h
->stub_cache
->id_sec
== id_sec
)
2760 stub_entry
= h
->stub_cache
;
2766 stub_name
= elfNN_aarch64_stub_name (id_sec
, sym_sec
, h
, rel
);
2767 if (stub_name
== NULL
)
2770 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
2771 stub_name
, FALSE
, FALSE
);
2773 h
->stub_cache
= stub_entry
;
2782 /* Create a stub section. */
2785 _bfd_aarch64_create_stub_section (asection
*section
,
2786 struct elf_aarch64_link_hash_table
*htab
)
2792 namelen
= strlen (section
->name
);
2793 len
= namelen
+ sizeof (STUB_SUFFIX
);
2794 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
2798 memcpy (s_name
, section
->name
, namelen
);
2799 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
2800 return (*htab
->add_stub_section
) (s_name
, section
);
2804 /* Find or create a stub section for a link section.
2806 Fix or create the stub section used to collect stubs attached to
2807 the specified link section. */
2810 _bfd_aarch64_get_stub_for_link_section (asection
*link_section
,
2811 struct elf_aarch64_link_hash_table
*htab
)
2813 if (htab
->stub_group
[link_section
->id
].stub_sec
== NULL
)
2814 htab
->stub_group
[link_section
->id
].stub_sec
2815 = _bfd_aarch64_create_stub_section (link_section
, htab
);
2816 return htab
->stub_group
[link_section
->id
].stub_sec
;
2820 /* Find or create a stub section in the stub group for an input
2824 _bfd_aarch64_create_or_find_stub_sec (asection
*section
,
2825 struct elf_aarch64_link_hash_table
*htab
)
2827 asection
*link_sec
= htab
->stub_group
[section
->id
].link_sec
;
2828 return _bfd_aarch64_get_stub_for_link_section (link_sec
, htab
);
2832 /* Add a new stub entry in the stub group associated with an input
2833 section to the stub hash. Not all fields of the new stub entry are
2836 static struct elf_aarch64_stub_hash_entry
*
2837 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name
,
2839 struct elf_aarch64_link_hash_table
*htab
)
2843 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2845 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
2846 stub_sec
= _bfd_aarch64_create_or_find_stub_sec (section
, htab
);
2848 /* Enter this entry into the linker stub hash table. */
2849 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
2851 if (stub_entry
== NULL
)
2853 /* xgettext:c-format */
2854 _bfd_error_handler (_("%B: cannot create stub entry %s"),
2855 section
->owner
, stub_name
);
2859 stub_entry
->stub_sec
= stub_sec
;
2860 stub_entry
->stub_offset
= 0;
2861 stub_entry
->id_sec
= link_sec
;
2866 /* Add a new stub entry in the final stub section to the stub hash.
2867 Not all fields of the new stub entry are initialised. */
2869 static struct elf_aarch64_stub_hash_entry
*
2870 _bfd_aarch64_add_stub_entry_after (const char *stub_name
,
2871 asection
*link_section
,
2872 struct elf_aarch64_link_hash_table
*htab
)
2875 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2877 stub_sec
= _bfd_aarch64_get_stub_for_link_section (link_section
, htab
);
2878 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
2880 if (stub_entry
== NULL
)
2882 _bfd_error_handler (_("cannot create stub entry %s"), stub_name
);
2886 stub_entry
->stub_sec
= stub_sec
;
2887 stub_entry
->stub_offset
= 0;
2888 stub_entry
->id_sec
= link_section
;
2895 aarch64_build_one_stub (struct bfd_hash_entry
*gen_entry
,
2896 void *in_arg ATTRIBUTE_UNUSED
)
2898 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2903 bfd_vma veneered_insn_loc
;
2904 bfd_vma veneer_entry_loc
;
2905 bfd_signed_vma branch_offset
= 0;
2906 unsigned int template_size
;
2907 const uint32_t *template;
2910 /* Massage our args to the form they really have. */
2911 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
2913 stub_sec
= stub_entry
->stub_sec
;
2915 /* Make a note of the offset within the stubs for this entry. */
2916 stub_entry
->stub_offset
= stub_sec
->size
;
2917 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
2919 stub_bfd
= stub_sec
->owner
;
2921 /* This is the address of the stub destination. */
2922 sym_value
= (stub_entry
->target_value
2923 + stub_entry
->target_section
->output_offset
2924 + stub_entry
->target_section
->output_section
->vma
);
2926 if (stub_entry
->stub_type
== aarch64_stub_long_branch
)
2928 bfd_vma place
= (stub_entry
->stub_offset
+ stub_sec
->output_section
->vma
2929 + stub_sec
->output_offset
);
2931 /* See if we can relax the stub. */
2932 if (aarch64_valid_for_adrp_p (sym_value
, place
))
2933 stub_entry
->stub_type
= aarch64_select_branch_stub (sym_value
, place
);
2936 switch (stub_entry
->stub_type
)
2938 case aarch64_stub_adrp_branch
:
2939 template = aarch64_adrp_branch_stub
;
2940 template_size
= sizeof (aarch64_adrp_branch_stub
);
2942 case aarch64_stub_long_branch
:
2943 template = aarch64_long_branch_stub
;
2944 template_size
= sizeof (aarch64_long_branch_stub
);
2946 case aarch64_stub_erratum_835769_veneer
:
2947 template = aarch64_erratum_835769_stub
;
2948 template_size
= sizeof (aarch64_erratum_835769_stub
);
2950 case aarch64_stub_erratum_843419_veneer
:
2951 template = aarch64_erratum_843419_stub
;
2952 template_size
= sizeof (aarch64_erratum_843419_stub
);
2958 for (i
= 0; i
< (template_size
/ sizeof template[0]); i
++)
2960 bfd_putl32 (template[i
], loc
);
2964 template_size
= (template_size
+ 7) & ~7;
2965 stub_sec
->size
+= template_size
;
2967 switch (stub_entry
->stub_type
)
2969 case aarch64_stub_adrp_branch
:
2970 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21
), stub_bfd
, stub_sec
,
2971 stub_entry
->stub_offset
, sym_value
))
2972 /* The stub would not have been relaxed if the offset was out
2976 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC
), stub_bfd
, stub_sec
,
2977 stub_entry
->stub_offset
+ 4, sym_value
))
2981 case aarch64_stub_long_branch
:
2982 /* We want the value relative to the address 12 bytes back from the
2984 if (!aarch64_relocate (AARCH64_R (PRELNN
), stub_bfd
, stub_sec
,
2985 stub_entry
->stub_offset
+ 16, sym_value
+ 12))
2989 case aarch64_stub_erratum_835769_veneer
:
2990 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
2991 + stub_entry
->target_section
->output_offset
2992 + stub_entry
->target_value
;
2993 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
2994 + stub_entry
->stub_sec
->output_offset
2995 + stub_entry
->stub_offset
;
2996 branch_offset
= veneered_insn_loc
- veneer_entry_loc
;
2997 branch_offset
>>= 2;
2998 branch_offset
&= 0x3ffffff;
2999 bfd_putl32 (stub_entry
->veneered_insn
,
3000 stub_sec
->contents
+ stub_entry
->stub_offset
);
3001 bfd_putl32 (template[1] | branch_offset
,
3002 stub_sec
->contents
+ stub_entry
->stub_offset
+ 4);
3005 case aarch64_stub_erratum_843419_veneer
:
3006 if (!aarch64_relocate (AARCH64_R (JUMP26
), stub_bfd
, stub_sec
,
3007 stub_entry
->stub_offset
+ 4, sym_value
+ 4))
3018 /* As above, but don't actually build the stub. Just bump offset so
3019 we know stub section sizes. */
3022 aarch64_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3023 void *in_arg ATTRIBUTE_UNUSED
)
3025 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3028 /* Massage our args to the form they really have. */
3029 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
3031 switch (stub_entry
->stub_type
)
3033 case aarch64_stub_adrp_branch
:
3034 size
= sizeof (aarch64_adrp_branch_stub
);
3036 case aarch64_stub_long_branch
:
3037 size
= sizeof (aarch64_long_branch_stub
);
3039 case aarch64_stub_erratum_835769_veneer
:
3040 size
= sizeof (aarch64_erratum_835769_stub
);
3042 case aarch64_stub_erratum_843419_veneer
:
3043 size
= sizeof (aarch64_erratum_843419_stub
);
3049 size
= (size
+ 7) & ~7;
3050 stub_entry
->stub_sec
->size
+= size
;
3054 /* External entry points for sizing and building linker stubs. */
3056 /* Set up various things so that we can make a list of input sections
3057 for each output section included in the link. Returns -1 on error,
3058 0 when no stubs will be needed, and 1 on success. */
3061 elfNN_aarch64_setup_section_lists (bfd
*output_bfd
,
3062 struct bfd_link_info
*info
)
3065 unsigned int bfd_count
;
3066 unsigned int top_id
, top_index
;
3068 asection
**input_list
, **list
;
3070 struct elf_aarch64_link_hash_table
*htab
=
3071 elf_aarch64_hash_table (info
);
3073 if (!is_elf_hash_table (htab
))
3076 /* Count the number of input BFDs and find the top input section id. */
3077 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3078 input_bfd
!= NULL
; input_bfd
= input_bfd
->link
.next
)
3081 for (section
= input_bfd
->sections
;
3082 section
!= NULL
; section
= section
->next
)
3084 if (top_id
< section
->id
)
3085 top_id
= section
->id
;
3088 htab
->bfd_count
= bfd_count
;
3090 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3091 htab
->stub_group
= bfd_zmalloc (amt
);
3092 if (htab
->stub_group
== NULL
)
3095 /* We can't use output_bfd->section_count here to find the top output
3096 section index as some sections may have been removed, and
3097 _bfd_strip_section_from_output doesn't renumber the indices. */
3098 for (section
= output_bfd
->sections
, top_index
= 0;
3099 section
!= NULL
; section
= section
->next
)
3101 if (top_index
< section
->index
)
3102 top_index
= section
->index
;
3105 htab
->top_index
= top_index
;
3106 amt
= sizeof (asection
*) * (top_index
+ 1);
3107 input_list
= bfd_malloc (amt
);
3108 htab
->input_list
= input_list
;
3109 if (input_list
== NULL
)
3112 /* For sections we aren't interested in, mark their entries with a
3113 value we can check later. */
3114 list
= input_list
+ top_index
;
3116 *list
= bfd_abs_section_ptr
;
3117 while (list
-- != input_list
);
3119 for (section
= output_bfd
->sections
;
3120 section
!= NULL
; section
= section
->next
)
3122 if ((section
->flags
& SEC_CODE
) != 0)
3123 input_list
[section
->index
] = NULL
;
3129 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3130 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3132 /* The linker repeatedly calls this function for each input section,
3133 in the order that input sections are linked into output sections.
3134 Build lists of input sections to determine groupings between which
3135 we may insert linker stubs. */
3138 elfNN_aarch64_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
3140 struct elf_aarch64_link_hash_table
*htab
=
3141 elf_aarch64_hash_table (info
);
3143 if (isec
->output_section
->index
<= htab
->top_index
)
3145 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3147 if (*list
!= bfd_abs_section_ptr
)
3149 /* Steal the link_sec pointer for our list. */
3150 /* This happens to make the list in reverse order,
3151 which is what we want. */
3152 PREV_SEC (isec
) = *list
;
3158 /* See whether we can group stub sections together. Grouping stub
3159 sections may result in fewer stubs. More importantly, we need to
3160 put all .init* and .fini* stubs at the beginning of the .init or
3161 .fini output sections respectively, because glibc splits the
3162 _init and _fini functions into multiple parts. Putting a stub in
3163 the middle of a function is not a good idea. */
3166 group_sections (struct elf_aarch64_link_hash_table
*htab
,
3167 bfd_size_type stub_group_size
,
3168 bfd_boolean stubs_always_before_branch
)
3170 asection
**list
= htab
->input_list
+ htab
->top_index
;
3174 asection
*tail
= *list
;
3176 if (tail
== bfd_abs_section_ptr
)
3179 while (tail
!= NULL
)
3183 bfd_size_type total
;
3187 while ((prev
= PREV_SEC (curr
)) != NULL
3188 && ((total
+= curr
->output_offset
- prev
->output_offset
)
3192 /* OK, the size from the start of CURR to the end is less
3193 than stub_group_size and thus can be handled by one stub
3194 section. (Or the tail section is itself larger than
3195 stub_group_size, in which case we may be toast.)
3196 We should really be keeping track of the total size of
3197 stubs added here, as stubs contribute to the final output
3201 prev
= PREV_SEC (tail
);
3202 /* Set up this stub group. */
3203 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3205 while (tail
!= curr
&& (tail
= prev
) != NULL
);
3207 /* But wait, there's more! Input sections up to stub_group_size
3208 bytes before the stub section can be handled by it too. */
3209 if (!stubs_always_before_branch
)
3213 && ((total
+= tail
->output_offset
- prev
->output_offset
)
3217 prev
= PREV_SEC (tail
);
3218 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3224 while (list
-- != htab
->input_list
);
3226 free (htab
->input_list
);
3231 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3233 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3234 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3235 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3236 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3237 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3238 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3240 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3241 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3242 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3243 #define AARCH64_ZR 0x1f
3245 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3246 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3248 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3249 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3250 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3251 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3252 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3253 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3254 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3255 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3256 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3257 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3258 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3259 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3260 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3261 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3262 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3263 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3264 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3265 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3267 /* Classify an INSN if it is indeed a load/store.
3269 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3271 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3274 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3277 aarch64_mem_op_p (uint32_t insn
, unsigned int *rt
, unsigned int *rt2
,
3278 bfd_boolean
*pair
, bfd_boolean
*load
)
3286 /* Bail out quickly if INSN doesn't fall into the load-store
3288 if (!AARCH64_LDST (insn
))
3293 if (AARCH64_LDST_EX (insn
))
3295 *rt
= AARCH64_RT (insn
);
3297 if (AARCH64_BIT (insn
, 21) == 1)
3300 *rt2
= AARCH64_RT2 (insn
);
3302 *load
= AARCH64_LD (insn
);
3305 else if (AARCH64_LDST_NAP (insn
)
3306 || AARCH64_LDSTP_PI (insn
)
3307 || AARCH64_LDSTP_O (insn
)
3308 || AARCH64_LDSTP_PRE (insn
))
3311 *rt
= AARCH64_RT (insn
);
3312 *rt2
= AARCH64_RT2 (insn
);
3313 *load
= AARCH64_LD (insn
);
3316 else if (AARCH64_LDST_PCREL (insn
)
3317 || AARCH64_LDST_UI (insn
)
3318 || AARCH64_LDST_PIIMM (insn
)
3319 || AARCH64_LDST_U (insn
)
3320 || AARCH64_LDST_PREIMM (insn
)
3321 || AARCH64_LDST_RO (insn
)
3322 || AARCH64_LDST_UIMM (insn
))
3324 *rt
= AARCH64_RT (insn
);
3326 if (AARCH64_LDST_PCREL (insn
))
3328 opc
= AARCH64_BITS (insn
, 22, 2);
3329 v
= AARCH64_BIT (insn
, 26);
3330 opc_v
= opc
| (v
<< 2);
3331 *load
= (opc_v
== 1 || opc_v
== 2 || opc_v
== 3
3332 || opc_v
== 5 || opc_v
== 7);
3335 else if (AARCH64_LDST_SIMD_M (insn
)
3336 || AARCH64_LDST_SIMD_M_PI (insn
))
3338 *rt
= AARCH64_RT (insn
);
3339 *load
= AARCH64_BIT (insn
, 22);
3340 opcode
= (insn
>> 12) & 0xf;
3367 else if (AARCH64_LDST_SIMD_S (insn
)
3368 || AARCH64_LDST_SIMD_S_PI (insn
))
3370 *rt
= AARCH64_RT (insn
);
3371 r
= (insn
>> 21) & 1;
3372 *load
= AARCH64_BIT (insn
, 22);
3373 opcode
= (insn
>> 13) & 0x7;
3385 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
3393 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
3405 /* Return TRUE if INSN is multiply-accumulate. */
3408 aarch64_mlxl_p (uint32_t insn
)
3410 uint32_t op31
= AARCH64_OP31 (insn
);
3412 if (AARCH64_MAC (insn
)
3413 && (op31
== 0 || op31
== 1 || op31
== 5)
3414 /* Exclude MUL instructions which are encoded as a multiple accumulate
3416 && AARCH64_RA (insn
) != AARCH64_ZR
)
3422 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3423 it is possible for a 64-bit multiply-accumulate instruction to generate an
3424 incorrect result. The details are quite complex and hard to
3425 determine statically, since branches in the code may exist in some
3426 circumstances, but all cases end with a memory (load, store, or
3427 prefetch) instruction followed immediately by the multiply-accumulate
3428 operation. We employ a linker patching technique, by moving the potentially
3429 affected multiply-accumulate instruction into a patch region and replacing
3430 the original instruction with a branch to the patch. This function checks
3431 if INSN_1 is the memory operation followed by a multiply-accumulate
3432 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3433 if INSN_1 and INSN_2 are safe. */
3436 aarch64_erratum_sequence (uint32_t insn_1
, uint32_t insn_2
)
3446 if (aarch64_mlxl_p (insn_2
)
3447 && aarch64_mem_op_p (insn_1
, &rt
, &rt2
, &pair
, &load
))
3449 /* Any SIMD memory op is independent of the subsequent MLA
3450 by definition of the erratum. */
3451 if (AARCH64_BIT (insn_1
, 26))
3454 /* If not SIMD, check for integer memory ops and MLA relationship. */
3455 rn
= AARCH64_RN (insn_2
);
3456 ra
= AARCH64_RA (insn_2
);
3457 rm
= AARCH64_RM (insn_2
);
3459 /* If this is a load and there's a true(RAW) dependency, we are safe
3460 and this is not an erratum sequence. */
3462 (rt
== rn
|| rt
== rm
|| rt
== ra
3463 || (pair
&& (rt2
== rn
|| rt2
== rm
|| rt2
== ra
))))
3466 /* We conservatively put out stubs for all other cases (including
3474 /* Used to order a list of mapping symbols by address. */
3477 elf_aarch64_compare_mapping (const void *a
, const void *b
)
3479 const elf_aarch64_section_map
*amap
= (const elf_aarch64_section_map
*) a
;
3480 const elf_aarch64_section_map
*bmap
= (const elf_aarch64_section_map
*) b
;
3482 if (amap
->vma
> bmap
->vma
)
3484 else if (amap
->vma
< bmap
->vma
)
3486 else if (amap
->type
> bmap
->type
)
3487 /* Ensure results do not depend on the host qsort for objects with
3488 multiple mapping symbols at the same address by sorting on type
3491 else if (amap
->type
< bmap
->type
)
3499 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes
)
3501 char *stub_name
= (char *) bfd_malloc
3502 (strlen ("__erratum_835769_veneer_") + 16);
3503 sprintf (stub_name
,"__erratum_835769_veneer_%d", num_fixes
);
3507 /* Scan for Cortex-A53 erratum 835769 sequence.
3509 Return TRUE else FALSE on abnormal termination. */
3512 _bfd_aarch64_erratum_835769_scan (bfd
*input_bfd
,
3513 struct bfd_link_info
*info
,
3514 unsigned int *num_fixes_p
)
3517 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
3518 unsigned int num_fixes
= *num_fixes_p
;
3523 for (section
= input_bfd
->sections
;
3525 section
= section
->next
)
3527 bfd_byte
*contents
= NULL
;
3528 struct _aarch64_elf_section_data
*sec_data
;
3531 if (elf_section_type (section
) != SHT_PROGBITS
3532 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
3533 || (section
->flags
& SEC_EXCLUDE
) != 0
3534 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
3535 || (section
->output_section
== bfd_abs_section_ptr
))
3538 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
3539 contents
= elf_section_data (section
)->this_hdr
.contents
;
3540 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
3543 sec_data
= elf_aarch64_section_data (section
);
3545 qsort (sec_data
->map
, sec_data
->mapcount
,
3546 sizeof (elf_aarch64_section_map
), elf_aarch64_compare_mapping
);
3548 for (span
= 0; span
< sec_data
->mapcount
; span
++)
3550 unsigned int span_start
= sec_data
->map
[span
].vma
;
3551 unsigned int span_end
= ((span
== sec_data
->mapcount
- 1)
3552 ? sec_data
->map
[0].vma
+ section
->size
3553 : sec_data
->map
[span
+ 1].vma
);
3555 char span_type
= sec_data
->map
[span
].type
;
3557 if (span_type
== 'd')
3560 for (i
= span_start
; i
+ 4 < span_end
; i
+= 4)
3562 uint32_t insn_1
= bfd_getl32 (contents
+ i
);
3563 uint32_t insn_2
= bfd_getl32 (contents
+ i
+ 4);
3565 if (aarch64_erratum_sequence (insn_1
, insn_2
))
3567 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3568 char *stub_name
= _bfd_aarch64_erratum_835769_stub_name (num_fixes
);
3572 stub_entry
= _bfd_aarch64_add_stub_entry_in_group (stub_name
,
3578 stub_entry
->stub_type
= aarch64_stub_erratum_835769_veneer
;
3579 stub_entry
->target_section
= section
;
3580 stub_entry
->target_value
= i
+ 4;
3581 stub_entry
->veneered_insn
= insn_2
;
3582 stub_entry
->output_name
= stub_name
;
3587 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
3591 *num_fixes_p
= num_fixes
;
3597 /* Test if instruction INSN is ADRP. */
3600 _bfd_aarch64_adrp_p (uint32_t insn
)
3602 return ((insn
& 0x9f000000) == 0x90000000);
3606 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3609 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1
, uint32_t insn_2
,
3617 return (aarch64_mem_op_p (insn_2
, &rt
, &rt2
, &pair
, &load
)
3620 && AARCH64_LDST_UIMM (insn_3
)
3621 && AARCH64_RN (insn_3
) == AARCH64_RD (insn_1
));
3625 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3627 Return TRUE if section CONTENTS at offset I contains one of the
3628 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3629 seen set P_VENEER_I to the offset of the final LOAD/STORE
3630 instruction in the sequence.
3634 _bfd_aarch64_erratum_843419_p (bfd_byte
*contents
, bfd_vma vma
,
3635 bfd_vma i
, bfd_vma span_end
,
3636 bfd_vma
*p_veneer_i
)
3638 uint32_t insn_1
= bfd_getl32 (contents
+ i
);
3640 if (!_bfd_aarch64_adrp_p (insn_1
))
3643 if (span_end
< i
+ 12)
3646 uint32_t insn_2
= bfd_getl32 (contents
+ i
+ 4);
3647 uint32_t insn_3
= bfd_getl32 (contents
+ i
+ 8);
3649 if ((vma
& 0xfff) != 0xff8 && (vma
& 0xfff) != 0xffc)
3652 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1
, insn_2
, insn_3
))
3654 *p_veneer_i
= i
+ 8;
3658 if (span_end
< i
+ 16)
3661 uint32_t insn_4
= bfd_getl32 (contents
+ i
+ 12);
3663 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1
, insn_2
, insn_4
))
3665 *p_veneer_i
= i
+ 12;
3673 /* Resize all stub sections. */
3676 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table
*htab
)
3680 /* OK, we've added some stubs. Find out the new size of the
3682 for (section
= htab
->stub_bfd
->sections
;
3683 section
!= NULL
; section
= section
->next
)
3685 /* Ignore non-stub sections. */
3686 if (!strstr (section
->name
, STUB_SUFFIX
))
3691 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_size_one_stub
, htab
);
3693 for (section
= htab
->stub_bfd
->sections
;
3694 section
!= NULL
; section
= section
->next
)
3696 if (!strstr (section
->name
, STUB_SUFFIX
))
3702 /* Ensure all stub sections have a size which is a multiple of
3703 4096. This is important in order to ensure that the insertion
3704 of stub sections does not in itself move existing code around
3705 in such a way that new errata sequences are created. */
3706 if (htab
->fix_erratum_843419
)
3708 section
->size
= BFD_ALIGN (section
->size
, 0x1000);
3713 /* Construct an erratum 843419 workaround stub name.
3717 _bfd_aarch64_erratum_843419_stub_name (asection
*input_section
,
3720 const bfd_size_type len
= 8 + 4 + 1 + 8 + 1 + 16 + 1;
3721 char *stub_name
= bfd_malloc (len
);
3723 if (stub_name
!= NULL
)
3724 snprintf (stub_name
, len
, "e843419@%04x_%08x_%" BFD_VMA_FMT
"x",
3725 input_section
->owner
->id
,
3731 /* Build a stub_entry structure describing an 843419 fixup.
3733 The stub_entry constructed is populated with the bit pattern INSN
3734 of the instruction located at OFFSET within input SECTION.
3736 Returns TRUE on success. */
3739 _bfd_aarch64_erratum_843419_fixup (uint32_t insn
,
3740 bfd_vma adrp_offset
,
3741 bfd_vma ldst_offset
,
3743 struct bfd_link_info
*info
)
3745 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
3747 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3749 stub_name
= _bfd_aarch64_erratum_843419_stub_name (section
, ldst_offset
);
3750 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3758 /* We always place an 843419 workaround veneer in the stub section
3759 attached to the input section in which an erratum sequence has
3760 been found. This ensures that later in the link process (in
3761 elfNN_aarch64_write_section) when we copy the veneered
3762 instruction from the input section into the stub section the
3763 copied instruction will have had any relocations applied to it.
3764 If we placed workaround veneers in any other stub section then we
3765 could not assume that all relocations have been processed on the
3766 corresponding input section at the point we output the stub
3770 stub_entry
= _bfd_aarch64_add_stub_entry_after (stub_name
, section
, htab
);
3771 if (stub_entry
== NULL
)
3777 stub_entry
->adrp_offset
= adrp_offset
;
3778 stub_entry
->target_value
= ldst_offset
;
3779 stub_entry
->target_section
= section
;
3780 stub_entry
->stub_type
= aarch64_stub_erratum_843419_veneer
;
3781 stub_entry
->veneered_insn
= insn
;
3782 stub_entry
->output_name
= stub_name
;
3788 /* Scan an input section looking for the signature of erratum 843419.
3790 Scans input SECTION in INPUT_BFD looking for erratum 843419
3791 signatures, for each signature found a stub_entry is created
3792 describing the location of the erratum for subsequent fixup.
3794 Return TRUE on successful scan, FALSE on failure to scan.
3798 _bfd_aarch64_erratum_843419_scan (bfd
*input_bfd
, asection
*section
,
3799 struct bfd_link_info
*info
)
3801 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
3806 if (elf_section_type (section
) != SHT_PROGBITS
3807 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
3808 || (section
->flags
& SEC_EXCLUDE
) != 0
3809 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
3810 || (section
->output_section
== bfd_abs_section_ptr
))
3815 bfd_byte
*contents
= NULL
;
3816 struct _aarch64_elf_section_data
*sec_data
;
3819 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
3820 contents
= elf_section_data (section
)->this_hdr
.contents
;
3821 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
3824 sec_data
= elf_aarch64_section_data (section
);
3826 qsort (sec_data
->map
, sec_data
->mapcount
,
3827 sizeof (elf_aarch64_section_map
), elf_aarch64_compare_mapping
);
3829 for (span
= 0; span
< sec_data
->mapcount
; span
++)
3831 unsigned int span_start
= sec_data
->map
[span
].vma
;
3832 unsigned int span_end
= ((span
== sec_data
->mapcount
- 1)
3833 ? sec_data
->map
[0].vma
+ section
->size
3834 : sec_data
->map
[span
+ 1].vma
);
3836 char span_type
= sec_data
->map
[span
].type
;
3838 if (span_type
== 'd')
3841 for (i
= span_start
; i
+ 8 < span_end
; i
+= 4)
3843 bfd_vma vma
= (section
->output_section
->vma
3844 + section
->output_offset
3848 if (_bfd_aarch64_erratum_843419_p
3849 (contents
, vma
, i
, span_end
, &veneer_i
))
3851 uint32_t insn
= bfd_getl32 (contents
+ veneer_i
);
3853 if (!_bfd_aarch64_erratum_843419_fixup (insn
, i
, veneer_i
,
3860 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
3869 /* Determine and set the size of the stub section for a final link.
3871 The basic idea here is to examine all the relocations looking for
3872 PC-relative calls to a target that is unreachable with a "bl"
3876 elfNN_aarch64_size_stubs (bfd
*output_bfd
,
3878 struct bfd_link_info
*info
,
3879 bfd_signed_vma group_size
,
3880 asection
* (*add_stub_section
) (const char *,
3882 void (*layout_sections_again
) (void))
3884 bfd_size_type stub_group_size
;
3885 bfd_boolean stubs_always_before_branch
;
3886 bfd_boolean stub_changed
= FALSE
;
3887 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
3888 unsigned int num_erratum_835769_fixes
= 0;
3890 /* Propagate mach to stub bfd, because it may not have been
3891 finalized when we created stub_bfd. */
3892 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
3893 bfd_get_mach (output_bfd
));
3895 /* Stash our params away. */
3896 htab
->stub_bfd
= stub_bfd
;
3897 htab
->add_stub_section
= add_stub_section
;
3898 htab
->layout_sections_again
= layout_sections_again
;
3899 stubs_always_before_branch
= group_size
< 0;
3901 stub_group_size
= -group_size
;
3903 stub_group_size
= group_size
;
3905 if (stub_group_size
== 1)
3907 /* Default values. */
3908 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3909 stub_group_size
= 127 * 1024 * 1024;
3912 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
3914 (*htab
->layout_sections_again
) ();
3916 if (htab
->fix_erratum_835769
)
3920 for (input_bfd
= info
->input_bfds
;
3921 input_bfd
!= NULL
; input_bfd
= input_bfd
->link
.next
)
3922 if (!_bfd_aarch64_erratum_835769_scan (input_bfd
, info
,
3923 &num_erratum_835769_fixes
))
3926 _bfd_aarch64_resize_stubs (htab
);
3927 (*htab
->layout_sections_again
) ();
3930 if (htab
->fix_erratum_843419
)
3934 for (input_bfd
= info
->input_bfds
;
3936 input_bfd
= input_bfd
->link
.next
)
3940 for (section
= input_bfd
->sections
;
3942 section
= section
->next
)
3943 if (!_bfd_aarch64_erratum_843419_scan (input_bfd
, section
, info
))
3947 _bfd_aarch64_resize_stubs (htab
);
3948 (*htab
->layout_sections_again
) ();
3955 for (input_bfd
= info
->input_bfds
;
3956 input_bfd
!= NULL
; input_bfd
= input_bfd
->link
.next
)
3958 Elf_Internal_Shdr
*symtab_hdr
;
3960 Elf_Internal_Sym
*local_syms
= NULL
;
3962 /* We'll need the symbol table in a second. */
3963 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3964 if (symtab_hdr
->sh_info
== 0)
3967 /* Walk over each section attached to the input bfd. */
3968 for (section
= input_bfd
->sections
;
3969 section
!= NULL
; section
= section
->next
)
3971 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
3973 /* If there aren't any relocs, then there's nothing more
3975 if ((section
->flags
& SEC_RELOC
) == 0
3976 || section
->reloc_count
== 0
3977 || (section
->flags
& SEC_CODE
) == 0)
3980 /* If this section is a link-once section that will be
3981 discarded, then don't create any stubs. */
3982 if (section
->output_section
== NULL
3983 || section
->output_section
->owner
!= output_bfd
)
3986 /* Get the relocs. */
3988 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
3989 NULL
, info
->keep_memory
);
3990 if (internal_relocs
== NULL
)
3991 goto error_ret_free_local
;
3993 /* Now examine each relocation. */
3994 irela
= internal_relocs
;
3995 irelaend
= irela
+ section
->reloc_count
;
3996 for (; irela
< irelaend
; irela
++)
3998 unsigned int r_type
, r_indx
;
3999 enum elf_aarch64_stub_type stub_type
;
4000 struct elf_aarch64_stub_hash_entry
*stub_entry
;
4003 bfd_vma destination
;
4004 struct elf_aarch64_link_hash_entry
*hash
;
4005 const char *sym_name
;
4007 const asection
*id_sec
;
4008 unsigned char st_type
;
4011 r_type
= ELFNN_R_TYPE (irela
->r_info
);
4012 r_indx
= ELFNN_R_SYM (irela
->r_info
);
4014 if (r_type
>= (unsigned int) R_AARCH64_end
)
4016 bfd_set_error (bfd_error_bad_value
);
4017 error_ret_free_internal
:
4018 if (elf_section_data (section
)->relocs
== NULL
)
4019 free (internal_relocs
);
4020 goto error_ret_free_local
;
4023 /* Only look for stubs on unconditional branch and
4024 branch and link instructions. */
4025 if (r_type
!= (unsigned int) AARCH64_R (CALL26
)
4026 && r_type
!= (unsigned int) AARCH64_R (JUMP26
))
4029 /* Now determine the call target, its name, value,
4036 if (r_indx
< symtab_hdr
->sh_info
)
4038 /* It's a local symbol. */
4039 Elf_Internal_Sym
*sym
;
4040 Elf_Internal_Shdr
*hdr
;
4042 if (local_syms
== NULL
)
4045 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4046 if (local_syms
== NULL
)
4048 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4049 symtab_hdr
->sh_info
, 0,
4051 if (local_syms
== NULL
)
4052 goto error_ret_free_internal
;
4055 sym
= local_syms
+ r_indx
;
4056 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
4057 sym_sec
= hdr
->bfd_section
;
4059 /* This is an undefined symbol. It can never
4063 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4064 sym_value
= sym
->st_value
;
4065 destination
= (sym_value
+ irela
->r_addend
4066 + sym_sec
->output_offset
4067 + sym_sec
->output_section
->vma
);
4068 st_type
= ELF_ST_TYPE (sym
->st_info
);
4070 = bfd_elf_string_from_elf_section (input_bfd
,
4071 symtab_hdr
->sh_link
,
4078 e_indx
= r_indx
- symtab_hdr
->sh_info
;
4079 hash
= ((struct elf_aarch64_link_hash_entry
*)
4080 elf_sym_hashes (input_bfd
)[e_indx
]);
4082 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4083 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4084 hash
= ((struct elf_aarch64_link_hash_entry
*)
4085 hash
->root
.root
.u
.i
.link
);
4087 if (hash
->root
.root
.type
== bfd_link_hash_defined
4088 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4090 struct elf_aarch64_link_hash_table
*globals
=
4091 elf_aarch64_hash_table (info
);
4092 sym_sec
= hash
->root
.root
.u
.def
.section
;
4093 sym_value
= hash
->root
.root
.u
.def
.value
;
4094 /* For a destination in a shared library,
4095 use the PLT stub as target address to
4096 decide whether a branch stub is
4098 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
4099 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
4101 sym_sec
= globals
->root
.splt
;
4102 sym_value
= hash
->root
.plt
.offset
;
4103 if (sym_sec
->output_section
!= NULL
)
4104 destination
= (sym_value
4105 + sym_sec
->output_offset
4107 sym_sec
->output_section
->vma
);
4109 else if (sym_sec
->output_section
!= NULL
)
4110 destination
= (sym_value
+ irela
->r_addend
4111 + sym_sec
->output_offset
4112 + sym_sec
->output_section
->vma
);
4114 else if (hash
->root
.root
.type
== bfd_link_hash_undefined
4115 || (hash
->root
.root
.type
4116 == bfd_link_hash_undefweak
))
4118 /* For a shared library, use the PLT stub as
4119 target address to decide whether a long
4120 branch stub is needed.
4121 For absolute code, they cannot be handled. */
4122 struct elf_aarch64_link_hash_table
*globals
=
4123 elf_aarch64_hash_table (info
);
4125 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
4126 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
4128 sym_sec
= globals
->root
.splt
;
4129 sym_value
= hash
->root
.plt
.offset
;
4130 if (sym_sec
->output_section
!= NULL
)
4131 destination
= (sym_value
4132 + sym_sec
->output_offset
4134 sym_sec
->output_section
->vma
);
4141 bfd_set_error (bfd_error_bad_value
);
4142 goto error_ret_free_internal
;
4144 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4145 sym_name
= hash
->root
.root
.root
.string
;
4148 /* Determine what (if any) linker stub is needed. */
4149 stub_type
= aarch64_type_of_stub (section
, irela
, sym_sec
,
4150 st_type
, destination
);
4151 if (stub_type
== aarch64_stub_none
)
4154 /* Support for grouping stub sections. */
4155 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4157 /* Get the name of this stub. */
4158 stub_name
= elfNN_aarch64_stub_name (id_sec
, sym_sec
, hash
,
4161 goto error_ret_free_internal
;
4164 aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
4165 stub_name
, FALSE
, FALSE
);
4166 if (stub_entry
!= NULL
)
4168 /* The proper stub has already been created. */
4173 stub_entry
= _bfd_aarch64_add_stub_entry_in_group
4174 (stub_name
, section
, htab
);
4175 if (stub_entry
== NULL
)
4178 goto error_ret_free_internal
;
4181 stub_entry
->target_value
= sym_value
+ irela
->r_addend
;
4182 stub_entry
->target_section
= sym_sec
;
4183 stub_entry
->stub_type
= stub_type
;
4184 stub_entry
->h
= hash
;
4185 stub_entry
->st_type
= st_type
;
4187 if (sym_name
== NULL
)
4188 sym_name
= "unnamed";
4189 len
= sizeof (STUB_ENTRY_NAME
) + strlen (sym_name
);
4190 stub_entry
->output_name
= bfd_alloc (htab
->stub_bfd
, len
);
4191 if (stub_entry
->output_name
== NULL
)
4194 goto error_ret_free_internal
;
4197 snprintf (stub_entry
->output_name
, len
, STUB_ENTRY_NAME
,
4200 stub_changed
= TRUE
;
4203 /* We're done with the internal relocs, free them. */
4204 if (elf_section_data (section
)->relocs
== NULL
)
4205 free (internal_relocs
);
4212 _bfd_aarch64_resize_stubs (htab
);
4214 /* Ask the linker to do its stuff. */
4215 (*htab
->layout_sections_again
) ();
4216 stub_changed
= FALSE
;
4221 error_ret_free_local
:
4225 /* Build all the stubs associated with the current output file. The
4226 stubs are kept in a hash table attached to the main linker hash
4227 table. We also set up the .plt entries for statically linked PIC
4228 functions here. This function is called via aarch64_elf_finish in the
4232 elfNN_aarch64_build_stubs (struct bfd_link_info
*info
)
4235 struct bfd_hash_table
*table
;
4236 struct elf_aarch64_link_hash_table
*htab
;
4238 htab
= elf_aarch64_hash_table (info
);
4240 for (stub_sec
= htab
->stub_bfd
->sections
;
4241 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
4245 /* Ignore non-stub sections. */
4246 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4249 /* Allocate memory to hold the linker stubs. */
4250 size
= stub_sec
->size
;
4251 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
4252 if (stub_sec
->contents
== NULL
&& size
!= 0)
4256 bfd_putl32 (0x14000000 | (size
>> 2), stub_sec
->contents
);
4257 stub_sec
->size
+= 4;
4260 /* Build the stubs as directed by the stub hash table. */
4261 table
= &htab
->stub_hash_table
;
4262 bfd_hash_traverse (table
, aarch64_build_one_stub
, info
);
4268 /* Add an entry to the code/data map for section SEC. */
4271 elfNN_aarch64_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
4273 struct _aarch64_elf_section_data
*sec_data
=
4274 elf_aarch64_section_data (sec
);
4275 unsigned int newidx
;
4277 if (sec_data
->map
== NULL
)
4279 sec_data
->map
= bfd_malloc (sizeof (elf_aarch64_section_map
));
4280 sec_data
->mapcount
= 0;
4281 sec_data
->mapsize
= 1;
4284 newidx
= sec_data
->mapcount
++;
4286 if (sec_data
->mapcount
> sec_data
->mapsize
)
4288 sec_data
->mapsize
*= 2;
4289 sec_data
->map
= bfd_realloc_or_free
4290 (sec_data
->map
, sec_data
->mapsize
* sizeof (elf_aarch64_section_map
));
4295 sec_data
->map
[newidx
].vma
= vma
;
4296 sec_data
->map
[newidx
].type
= type
;
4301 /* Initialise maps of insn/data for input BFDs. */
4303 bfd_elfNN_aarch64_init_maps (bfd
*abfd
)
4305 Elf_Internal_Sym
*isymbuf
;
4306 Elf_Internal_Shdr
*hdr
;
4307 unsigned int i
, localsyms
;
4309 /* Make sure that we are dealing with an AArch64 elf binary. */
4310 if (!is_aarch64_elf (abfd
))
4313 if ((abfd
->flags
& DYNAMIC
) != 0)
4316 hdr
= &elf_symtab_hdr (abfd
);
4317 localsyms
= hdr
->sh_info
;
4319 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4320 should contain the number of local symbols, which should come before any
4321 global symbols. Mapping symbols are always local. */
4322 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
, NULL
);
4324 /* No internal symbols read? Skip this BFD. */
4325 if (isymbuf
== NULL
)
4328 for (i
= 0; i
< localsyms
; i
++)
4330 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
4331 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4334 if (sec
!= NULL
&& ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
4336 name
= bfd_elf_string_from_elf_section (abfd
,
4340 if (bfd_is_aarch64_special_symbol_name
4341 (name
, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP
))
4342 elfNN_aarch64_section_map_add (sec
, name
[1], isym
->st_value
);
4347 /* Set option values needed during linking. */
4349 bfd_elfNN_aarch64_set_options (struct bfd
*output_bfd
,
4350 struct bfd_link_info
*link_info
,
4352 int no_wchar_warn
, int pic_veneer
,
4353 int fix_erratum_835769
,
4354 int fix_erratum_843419
,
4355 int no_apply_dynamic_relocs
)
4357 struct elf_aarch64_link_hash_table
*globals
;
4359 globals
= elf_aarch64_hash_table (link_info
);
4360 globals
->pic_veneer
= pic_veneer
;
4361 globals
->fix_erratum_835769
= fix_erratum_835769
;
4362 globals
->fix_erratum_843419
= fix_erratum_843419
;
4363 globals
->fix_erratum_843419_adr
= TRUE
;
4364 globals
->no_apply_dynamic_relocs
= no_apply_dynamic_relocs
;
4366 BFD_ASSERT (is_aarch64_elf (output_bfd
));
4367 elf_aarch64_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
4368 elf_aarch64_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
4372 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry
*h
,
4373 struct elf_aarch64_link_hash_table
4374 *globals
, struct bfd_link_info
*info
,
4375 bfd_vma value
, bfd
*output_bfd
,
4376 bfd_boolean
*unresolved_reloc_p
)
4378 bfd_vma off
= (bfd_vma
) - 1;
4379 asection
*basegot
= globals
->root
.sgot
;
4380 bfd_boolean dyn
= globals
->root
.dynamic_sections_created
;
4384 BFD_ASSERT (basegot
!= NULL
);
4385 off
= h
->got
.offset
;
4386 BFD_ASSERT (off
!= (bfd_vma
) - 1);
4387 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
4388 || (bfd_link_pic (info
)
4389 && SYMBOL_REFERENCES_LOCAL (info
, h
))
4390 || (ELF_ST_VISIBILITY (h
->other
)
4391 && h
->root
.type
== bfd_link_hash_undefweak
))
4393 /* This is actually a static link, or it is a -Bsymbolic link
4394 and the symbol is defined locally. We must initialize this
4395 entry in the global offset table. Since the offset must
4396 always be a multiple of 8 (4 in the case of ILP32), we use
4397 the least significant bit to record whether we have
4398 initialized it already.
4399 When doing a dynamic link, we create a .rel(a).got relocation
4400 entry to initialize the value. This is done in the
4401 finish_dynamic_symbol routine. */
4406 bfd_put_NN (output_bfd
, value
, basegot
->contents
+ off
);
4411 *unresolved_reloc_p
= FALSE
;
4413 off
= off
+ basegot
->output_section
->vma
+ basegot
->output_offset
;
4419 /* Change R_TYPE to a more efficient access model where possible,
4420 return the new reloc type. */
4422 static bfd_reloc_code_real_type
4423 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type
,
4424 struct elf_link_hash_entry
*h
)
4426 bfd_boolean is_local
= h
== NULL
;
4430 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
4431 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
4433 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4434 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
);
4436 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
4438 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4441 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
4443 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4444 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
);
4446 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
4448 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4449 : BFD_RELOC_AARCH64_NONE
);
4451 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
4453 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4454 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
);
4456 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
4458 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4459 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
);
4461 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
4462 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
4464 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4465 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
);
4467 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4468 return is_local
? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
: r_type
;
4470 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
4471 return is_local
? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
: r_type
;
4473 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
4476 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
4478 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4479 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
);
4481 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
4482 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
4483 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
4484 /* Instructions with these relocations will become NOPs. */
4485 return BFD_RELOC_AARCH64_NONE
;
4487 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
4488 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
4489 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
4490 return is_local
? BFD_RELOC_AARCH64_NONE
: r_type
;
4493 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
4495 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4496 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
;
4498 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
4500 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4501 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
;
4512 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type
)
4516 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
4517 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
4518 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
4519 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
4520 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
4521 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
4522 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
4523 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
4524 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
4527 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
4528 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
4529 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
4530 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
4531 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
4532 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
4533 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
4534 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
4537 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
4538 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
4539 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
4540 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
4541 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
4542 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
4543 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
:
4544 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
4545 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
4546 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
4547 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
4548 return GOT_TLSDESC_GD
;
4550 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4551 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
4552 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
4553 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
4554 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
4555 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
4565 aarch64_can_relax_tls (bfd
*input_bfd
,
4566 struct bfd_link_info
*info
,
4567 bfd_reloc_code_real_type r_type
,
4568 struct elf_link_hash_entry
*h
,
4569 unsigned long r_symndx
)
4571 unsigned int symbol_got_type
;
4572 unsigned int reloc_got_type
;
4574 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type
))
4577 symbol_got_type
= elfNN_aarch64_symbol_got_type (h
, input_bfd
, r_symndx
);
4578 reloc_got_type
= aarch64_reloc_got_type (r_type
);
4580 if (symbol_got_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (reloc_got_type
))
4583 if (!bfd_link_executable (info
))
4586 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
4592 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4595 static bfd_reloc_code_real_type
4596 aarch64_tls_transition (bfd
*input_bfd
,
4597 struct bfd_link_info
*info
,
4598 unsigned int r_type
,
4599 struct elf_link_hash_entry
*h
,
4600 unsigned long r_symndx
)
4602 bfd_reloc_code_real_type bfd_r_type
4603 = elfNN_aarch64_bfd_reloc_from_type (r_type
);
4605 if (! aarch64_can_relax_tls (input_bfd
, info
, bfd_r_type
, h
, r_symndx
))
4608 return aarch64_tls_transition_without_check (bfd_r_type
, h
);
4611 /* Return the base VMA address which should be subtracted from real addresses
4612 when resolving R_AARCH64_TLS_DTPREL relocation. */
4615 dtpoff_base (struct bfd_link_info
*info
)
4617 /* If tls_sec is NULL, we should have signalled an error already. */
4618 BFD_ASSERT (elf_hash_table (info
)->tls_sec
!= NULL
);
4619 return elf_hash_table (info
)->tls_sec
->vma
;
4622 /* Return the base VMA address which should be subtracted from real addresses
4623 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4626 tpoff_base (struct bfd_link_info
*info
)
4628 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
4630 /* If tls_sec is NULL, we should have signalled an error already. */
4631 BFD_ASSERT (htab
->tls_sec
!= NULL
);
4633 bfd_vma base
= align_power ((bfd_vma
) TCB_SIZE
,
4634 htab
->tls_sec
->alignment_power
);
4635 return htab
->tls_sec
->vma
- base
;
4639 symbol_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
4640 unsigned long r_symndx
)
4642 /* Calculate the address of the GOT entry for symbol
4643 referred to in h. */
4645 return &h
->got
.offset
;
4649 struct elf_aarch64_local_symbol
*l
;
4651 l
= elf_aarch64_locals (input_bfd
);
4652 return &l
[r_symndx
].got_offset
;
4657 symbol_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
4658 unsigned long r_symndx
)
4661 p
= symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
4666 symbol_got_offset_mark_p (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
4667 unsigned long r_symndx
)
4670 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
4675 symbol_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
4676 unsigned long r_symndx
)
4679 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
4685 symbol_tlsdesc_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
4686 unsigned long r_symndx
)
4688 /* Calculate the address of the GOT entry for symbol
4689 referred to in h. */
4692 struct elf_aarch64_link_hash_entry
*eh
;
4693 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
4694 return &eh
->tlsdesc_got_jump_table_offset
;
4699 struct elf_aarch64_local_symbol
*l
;
4701 l
= elf_aarch64_locals (input_bfd
);
4702 return &l
[r_symndx
].tlsdesc_got_jump_table_offset
;
4707 symbol_tlsdesc_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
4708 unsigned long r_symndx
)
4711 p
= symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
4716 symbol_tlsdesc_got_offset_mark_p (bfd
*input_bfd
,
4717 struct elf_link_hash_entry
*h
,
4718 unsigned long r_symndx
)
4721 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
4726 symbol_tlsdesc_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
4727 unsigned long r_symndx
)
4730 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
4735 /* Data for make_branch_to_erratum_835769_stub(). */
4737 struct erratum_835769_branch_to_stub_data
4739 struct bfd_link_info
*info
;
4740 asection
*output_section
;
4744 /* Helper to insert branches to erratum 835769 stubs in the right
4745 places for a particular section. */
4748 make_branch_to_erratum_835769_stub (struct bfd_hash_entry
*gen_entry
,
4751 struct elf_aarch64_stub_hash_entry
*stub_entry
;
4752 struct erratum_835769_branch_to_stub_data
*data
;
4754 unsigned long branch_insn
= 0;
4755 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
4756 bfd_signed_vma branch_offset
;
4757 unsigned int target
;
4760 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
4761 data
= (struct erratum_835769_branch_to_stub_data
*) in_arg
;
4763 if (stub_entry
->target_section
!= data
->output_section
4764 || stub_entry
->stub_type
!= aarch64_stub_erratum_835769_veneer
)
4767 contents
= data
->contents
;
4768 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
4769 + stub_entry
->target_section
->output_offset
4770 + stub_entry
->target_value
;
4771 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
4772 + stub_entry
->stub_sec
->output_offset
4773 + stub_entry
->stub_offset
;
4774 branch_offset
= veneer_entry_loc
- veneered_insn_loc
;
4776 abfd
= stub_entry
->target_section
->owner
;
4777 if (!aarch64_valid_branch_p (veneer_entry_loc
, veneered_insn_loc
))
4779 (_("%B: error: Erratum 835769 stub out "
4780 "of range (input file too large)"), abfd
);
4782 target
= stub_entry
->target_value
;
4783 branch_insn
= 0x14000000;
4784 branch_offset
>>= 2;
4785 branch_offset
&= 0x3ffffff;
4786 branch_insn
|= branch_offset
;
4787 bfd_putl32 (branch_insn
, &contents
[target
]);
4794 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry
*gen_entry
,
4797 struct elf_aarch64_stub_hash_entry
*stub_entry
4798 = (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
4799 struct erratum_835769_branch_to_stub_data
*data
4800 = (struct erratum_835769_branch_to_stub_data
*) in_arg
;
4801 struct bfd_link_info
*info
;
4802 struct elf_aarch64_link_hash_table
*htab
;
4810 contents
= data
->contents
;
4811 section
= data
->output_section
;
4813 htab
= elf_aarch64_hash_table (info
);
4815 if (stub_entry
->target_section
!= section
4816 || stub_entry
->stub_type
!= aarch64_stub_erratum_843419_veneer
)
4819 insn
= bfd_getl32 (contents
+ stub_entry
->target_value
);
4821 stub_entry
->stub_sec
->contents
+ stub_entry
->stub_offset
);
4823 place
= (section
->output_section
->vma
+ section
->output_offset
4824 + stub_entry
->adrp_offset
);
4825 insn
= bfd_getl32 (contents
+ stub_entry
->adrp_offset
);
4827 if ((insn
& AARCH64_ADRP_OP_MASK
) != AARCH64_ADRP_OP
)
4830 bfd_signed_vma imm
=
4831 (_bfd_aarch64_sign_extend
4832 ((bfd_vma
) _bfd_aarch64_decode_adrp_imm (insn
) << 12, 33)
4835 if (htab
->fix_erratum_843419_adr
4836 && (imm
>= AARCH64_MIN_ADRP_IMM
&& imm
<= AARCH64_MAX_ADRP_IMM
))
4838 insn
= (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP
, imm
)
4839 | AARCH64_RT (insn
));
4840 bfd_putl32 (insn
, contents
+ stub_entry
->adrp_offset
);
4844 bfd_vma veneered_insn_loc
;
4845 bfd_vma veneer_entry_loc
;
4846 bfd_signed_vma branch_offset
;
4847 uint32_t branch_insn
;
4849 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
4850 + stub_entry
->target_section
->output_offset
4851 + stub_entry
->target_value
;
4852 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
4853 + stub_entry
->stub_sec
->output_offset
4854 + stub_entry
->stub_offset
;
4855 branch_offset
= veneer_entry_loc
- veneered_insn_loc
;
4857 abfd
= stub_entry
->target_section
->owner
;
4858 if (!aarch64_valid_branch_p (veneer_entry_loc
, veneered_insn_loc
))
4860 (_("%B: error: Erratum 843419 stub out "
4861 "of range (input file too large)"), abfd
);
4863 branch_insn
= 0x14000000;
4864 branch_offset
>>= 2;
4865 branch_offset
&= 0x3ffffff;
4866 branch_insn
|= branch_offset
;
4867 bfd_putl32 (branch_insn
, contents
+ stub_entry
->target_value
);
4874 elfNN_aarch64_write_section (bfd
*output_bfd ATTRIBUTE_UNUSED
,
4875 struct bfd_link_info
*link_info
,
4880 struct elf_aarch64_link_hash_table
*globals
=
4881 elf_aarch64_hash_table (link_info
);
4883 if (globals
== NULL
)
4886 /* Fix code to point to erratum 835769 stubs. */
4887 if (globals
->fix_erratum_835769
)
4889 struct erratum_835769_branch_to_stub_data data
;
4891 data
.info
= link_info
;
4892 data
.output_section
= sec
;
4893 data
.contents
= contents
;
4894 bfd_hash_traverse (&globals
->stub_hash_table
,
4895 make_branch_to_erratum_835769_stub
, &data
);
4898 if (globals
->fix_erratum_843419
)
4900 struct erratum_835769_branch_to_stub_data data
;
4902 data
.info
= link_info
;
4903 data
.output_section
= sec
;
4904 data
.contents
= contents
;
4905 bfd_hash_traverse (&globals
->stub_hash_table
,
4906 _bfd_aarch64_erratum_843419_branch_to_stub
, &data
);
4912 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
4915 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc
)
4917 return (reloc
== BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
4918 || reloc
== BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
4919 || reloc
== BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
4920 || reloc
== BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
4921 || reloc
== BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
);
4924 /* Perform a relocation as part of a final link. The input relocation type
4925 should be TLS relaxed. */
4927 static bfd_reloc_status_type
4928 elfNN_aarch64_final_link_relocate (reloc_howto_type
*howto
,
4931 asection
*input_section
,
4933 Elf_Internal_Rela
*rel
,
4935 struct bfd_link_info
*info
,
4937 struct elf_link_hash_entry
*h
,
4938 bfd_boolean
*unresolved_reloc_p
,
4939 bfd_boolean save_addend
,
4940 bfd_vma
*saved_addend
,
4941 Elf_Internal_Sym
*sym
)
4943 Elf_Internal_Shdr
*symtab_hdr
;
4944 unsigned int r_type
= howto
->type
;
4945 bfd_reloc_code_real_type bfd_r_type
4946 = elfNN_aarch64_bfd_reloc_from_howto (howto
);
4947 unsigned long r_symndx
;
4948 bfd_byte
*hit_data
= contents
+ rel
->r_offset
;
4949 bfd_vma place
, off
, got_entry_addr
= 0;
4950 bfd_signed_vma signed_addend
;
4951 struct elf_aarch64_link_hash_table
*globals
;
4952 bfd_boolean weak_undef_p
;
4953 bfd_boolean relative_reloc
;
4955 bfd_vma orig_value
= value
;
4956 bfd_boolean resolved_to_zero
;
4958 globals
= elf_aarch64_hash_table (info
);
4960 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
4962 BFD_ASSERT (is_aarch64_elf (input_bfd
));
4964 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
4966 place
= input_section
->output_section
->vma
4967 + input_section
->output_offset
+ rel
->r_offset
;
4969 /* Get addend, accumulating the addend for consecutive relocs
4970 which refer to the same offset. */
4971 signed_addend
= saved_addend
? *saved_addend
: 0;
4972 signed_addend
+= rel
->r_addend
;
4974 weak_undef_p
= (h
? h
->root
.type
== bfd_link_hash_undefweak
4975 : bfd_is_und_section (sym_sec
));
4977 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4978 it here if it is defined in a non-shared object. */
4980 && h
->type
== STT_GNU_IFUNC
4987 if ((input_section
->flags
& SEC_ALLOC
) == 0)
4989 /* Dynamic relocs are not propagated for SEC_DEBUGGING
4990 sections because such sections are not SEC_ALLOC and
4991 thus ld.so will not process them. */
4992 if ((input_section
->flags
& SEC_DEBUGGING
) != 0)
4993 return bfd_reloc_ok
;
4995 if (h
->root
.root
.string
)
4996 name
= h
->root
.root
.string
;
4998 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
, NULL
);
5000 /* xgettext:c-format */
5001 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
5002 input_bfd
, input_section
, rel
->r_offset
, howto
->name
, name
);
5003 bfd_set_error (bfd_error_bad_value
);
5004 return bfd_reloc_notsupported
;
5006 else if (h
->plt
.offset
== (bfd_vma
) -1)
5007 goto bad_ifunc_reloc
;
5009 /* STT_GNU_IFUNC symbol must go through PLT. */
5010 plt
= globals
->root
.splt
? globals
->root
.splt
: globals
->root
.iplt
;
5011 value
= (plt
->output_section
->vma
+ plt
->output_offset
+ h
->plt
.offset
);
5017 if (h
->root
.root
.string
)
5018 name
= h
->root
.root
.string
;
5020 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
,
5023 /* xgettext:c-format */
5024 (_("%B: relocation %s against STT_GNU_IFUNC "
5025 "symbol `%s' isn't handled by %s"), input_bfd
,
5026 howto
->name
, name
, __FUNCTION__
);
5027 bfd_set_error (bfd_error_bad_value
);
5028 return bfd_reloc_notsupported
;
5030 case BFD_RELOC_AARCH64_NN
:
5031 if (rel
->r_addend
!= 0)
5033 if (h
->root
.root
.string
)
5034 name
= h
->root
.root
.string
;
5036 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
5039 /* xgettext:c-format */
5040 (_("%B: relocation %s against STT_GNU_IFUNC "
5041 "symbol `%s' has non-zero addend: %Ld"),
5042 input_bfd
, howto
->name
, name
, rel
->r_addend
);
5043 bfd_set_error (bfd_error_bad_value
);
5044 return bfd_reloc_notsupported
;
5047 /* Generate dynamic relocation only when there is a
5048 non-GOT reference in a shared object. */
5049 if (bfd_link_pic (info
) && h
->non_got_ref
)
5051 Elf_Internal_Rela outrel
;
5054 /* Need a dynamic relocation to get the real function
5056 outrel
.r_offset
= _bfd_elf_section_offset (output_bfd
,
5060 if (outrel
.r_offset
== (bfd_vma
) -1
5061 || outrel
.r_offset
== (bfd_vma
) -2)
5064 outrel
.r_offset
+= (input_section
->output_section
->vma
5065 + input_section
->output_offset
);
5067 if (h
->dynindx
== -1
5069 || bfd_link_executable (info
))
5071 /* This symbol is resolved locally. */
5072 outrel
.r_info
= ELFNN_R_INFO (0, AARCH64_R (IRELATIVE
));
5073 outrel
.r_addend
= (h
->root
.u
.def
.value
5074 + h
->root
.u
.def
.section
->output_section
->vma
5075 + h
->root
.u
.def
.section
->output_offset
);
5079 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
5080 outrel
.r_addend
= 0;
5083 sreloc
= globals
->root
.irelifunc
;
5084 elf_append_rela (output_bfd
, sreloc
, &outrel
);
5086 /* If this reloc is against an external symbol, we
5087 do not want to fiddle with the addend. Otherwise,
5088 we need to include the symbol value so that it
5089 becomes an addend for the dynamic reloc. For an
5090 internal symbol, we have updated addend. */
5091 return bfd_reloc_ok
;
5094 case BFD_RELOC_AARCH64_CALL26
:
5095 case BFD_RELOC_AARCH64_JUMP26
:
5096 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5099 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
,
5101 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
5102 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
5103 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
5104 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
5105 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
5106 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
5107 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
5108 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
5109 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
5110 base_got
= globals
->root
.sgot
;
5111 off
= h
->got
.offset
;
5113 if (base_got
== NULL
)
5116 if (off
== (bfd_vma
) -1)
5120 /* We can't use h->got.offset here to save state, or
5121 even just remember the offset, as finish_dynamic_symbol
5122 would use that as offset into .got. */
5124 if (globals
->root
.splt
!= NULL
)
5126 plt_index
= ((h
->plt
.offset
- globals
->plt_header_size
) /
5127 globals
->plt_entry_size
);
5128 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
5129 base_got
= globals
->root
.sgotplt
;
5133 plt_index
= h
->plt
.offset
/ globals
->plt_entry_size
;
5134 off
= plt_index
* GOT_ENTRY_SIZE
;
5135 base_got
= globals
->root
.igotplt
;
5138 if (h
->dynindx
== -1
5142 /* This references the local definition. We must
5143 initialize this entry in the global offset table.
5144 Since the offset must always be a multiple of 8,
5145 we use the least significant bit to record
5146 whether we have initialized it already.
5148 When doing a dynamic link, we create a .rela.got
5149 relocation entry to initialize the value. This
5150 is done in the finish_dynamic_symbol routine. */
5155 bfd_put_NN (output_bfd
, value
,
5156 base_got
->contents
+ off
);
5157 /* Note that this is harmless as -1 | 1 still is -1. */
5161 value
= (base_got
->output_section
->vma
5162 + base_got
->output_offset
+ off
);
5165 value
= aarch64_calculate_got_entry_vma (h
, globals
, info
,
5167 unresolved_reloc_p
);
5169 if (aarch64_relocation_aginst_gp_p (bfd_r_type
))
5170 addend
= (globals
->root
.sgot
->output_section
->vma
5171 + globals
->root
.sgot
->output_offset
);
5173 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5174 addend
, weak_undef_p
);
5175 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
, howto
, value
);
5176 case BFD_RELOC_AARCH64_ADD_LO12
:
5177 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
5182 resolved_to_zero
= (h
!= NULL
5183 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
5187 case BFD_RELOC_AARCH64_NONE
:
5188 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
5189 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
5190 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
5191 *unresolved_reloc_p
= FALSE
;
5192 return bfd_reloc_ok
;
5194 case BFD_RELOC_AARCH64_NN
:
5196 /* When generating a shared object or relocatable executable, these
5197 relocations are copied into the output file to be resolved at
5199 if (((bfd_link_pic (info
)
5200 || globals
->root
.is_relocatable_executable
)
5201 && (input_section
->flags
& SEC_ALLOC
)
5203 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
5204 && !resolved_to_zero
)
5205 || h
->root
.type
!= bfd_link_hash_undefweak
))
5206 /* Or we are creating an executable, we may need to keep relocations
5207 for symbols satisfied by a dynamic library if we manage to avoid
5208 copy relocs for the symbol. */
5209 || (ELIMINATE_COPY_RELOCS
5210 && !bfd_link_pic (info
)
5212 && (input_section
->flags
& SEC_ALLOC
)
5217 || h
->root
.type
== bfd_link_hash_undefweak
5218 || h
->root
.type
== bfd_link_hash_undefined
)))
5220 Elf_Internal_Rela outrel
;
5222 bfd_boolean skip
, relocate
;
5225 *unresolved_reloc_p
= FALSE
;
5230 outrel
.r_addend
= signed_addend
;
5232 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
5234 if (outrel
.r_offset
== (bfd_vma
) - 1)
5236 else if (outrel
.r_offset
== (bfd_vma
) - 2)
5242 outrel
.r_offset
+= (input_section
->output_section
->vma
5243 + input_section
->output_offset
);
5246 memset (&outrel
, 0, sizeof outrel
);
5249 && (!bfd_link_pic (info
)
5250 || !(bfd_link_pie (info
)
5251 || SYMBOLIC_BIND (info
, h
))
5252 || !h
->def_regular
))
5253 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
5258 /* On SVR4-ish systems, the dynamic loader cannot
5259 relocate the text and data segments independently,
5260 so the symbol does not matter. */
5262 relocate
= globals
->no_apply_dynamic_relocs
? FALSE
: TRUE
;
5263 outrel
.r_info
= ELFNN_R_INFO (symbol
, AARCH64_R (RELATIVE
));
5264 outrel
.r_addend
+= value
;
5267 sreloc
= elf_section_data (input_section
)->sreloc
;
5268 if (sreloc
== NULL
|| sreloc
->contents
== NULL
)
5269 return bfd_reloc_notsupported
;
5271 loc
= sreloc
->contents
+ sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
5272 bfd_elfNN_swap_reloca_out (output_bfd
, &outrel
, loc
);
5274 if (sreloc
->reloc_count
* RELOC_SIZE (globals
) > sreloc
->size
)
5276 /* Sanity to check that we have previously allocated
5277 sufficient space in the relocation section for the
5278 number of relocations we actually want to emit. */
5282 /* If this reloc is against an external symbol, we do not want to
5283 fiddle with the addend. Otherwise, we need to include the symbol
5284 value so that it becomes an addend for the dynamic reloc. */
5286 return bfd_reloc_ok
;
5288 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
5289 contents
, rel
->r_offset
, value
,
5293 value
+= signed_addend
;
5296 case BFD_RELOC_AARCH64_CALL26
:
5297 case BFD_RELOC_AARCH64_JUMP26
:
5299 asection
*splt
= globals
->root
.splt
;
5300 bfd_boolean via_plt_p
=
5301 splt
!= NULL
&& h
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) - 1;
5303 /* A call to an undefined weak symbol is converted to a jump to
5304 the next instruction unless a PLT entry will be created.
5305 The jump to the next instruction is optimized as a NOP.
5306 Do the same for local undefined symbols. */
5307 if (weak_undef_p
&& ! via_plt_p
)
5309 bfd_putl32 (INSN_NOP
, hit_data
);
5310 return bfd_reloc_ok
;
5313 /* If the call goes through a PLT entry, make sure to
5314 check distance to the right destination address. */
5316 value
= (splt
->output_section
->vma
5317 + splt
->output_offset
+ h
->plt
.offset
);
5319 /* Check if a stub has to be inserted because the destination
5321 struct elf_aarch64_stub_hash_entry
*stub_entry
= NULL
;
5323 /* If the branch destination is directed to plt stub, "value" will be
5324 the final destination, otherwise we should plus signed_addend, it may
5325 contain non-zero value, for example call to local function symbol
5326 which are turned into "sec_sym + sec_off", and sec_off is kept in
5328 if (! aarch64_valid_branch_p (via_plt_p
? value
: value
+ signed_addend
,
5330 /* The target is out of reach, so redirect the branch to
5331 the local stub for this function. */
5332 stub_entry
= elfNN_aarch64_get_stub_entry (input_section
, sym_sec
, h
,
5334 if (stub_entry
!= NULL
)
5336 value
= (stub_entry
->stub_offset
5337 + stub_entry
->stub_sec
->output_offset
5338 + stub_entry
->stub_sec
->output_section
->vma
);
5340 /* We have redirected the destination to stub entry address,
5341 so ignore any addend record in the original rela entry. */
5345 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5346 signed_addend
, weak_undef_p
);
5347 *unresolved_reloc_p
= FALSE
;
5350 case BFD_RELOC_AARCH64_16_PCREL
:
5351 case BFD_RELOC_AARCH64_32_PCREL
:
5352 case BFD_RELOC_AARCH64_64_PCREL
:
5353 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
:
5354 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
5355 case BFD_RELOC_AARCH64_ADR_LO21_PCREL
:
5356 case BFD_RELOC_AARCH64_LD_LO19_PCREL
:
5357 if (bfd_link_pic (info
)
5358 && (input_section
->flags
& SEC_ALLOC
) != 0
5359 && (input_section
->flags
& SEC_READONLY
) != 0
5360 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
5362 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
5365 /* xgettext:c-format */
5366 (_("%B: relocation %s against symbol `%s' which may bind "
5367 "externally can not be used when making a shared object; "
5368 "recompile with -fPIC"),
5369 input_bfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
5370 h
->root
.root
.string
);
5371 bfd_set_error (bfd_error_bad_value
);
5372 return bfd_reloc_notsupported
;
5376 case BFD_RELOC_AARCH64_16
:
5378 case BFD_RELOC_AARCH64_32
:
5380 case BFD_RELOC_AARCH64_ADD_LO12
:
5381 case BFD_RELOC_AARCH64_BRANCH19
:
5382 case BFD_RELOC_AARCH64_LDST128_LO12
:
5383 case BFD_RELOC_AARCH64_LDST16_LO12
:
5384 case BFD_RELOC_AARCH64_LDST32_LO12
:
5385 case BFD_RELOC_AARCH64_LDST64_LO12
:
5386 case BFD_RELOC_AARCH64_LDST8_LO12
:
5387 case BFD_RELOC_AARCH64_MOVW_G0
:
5388 case BFD_RELOC_AARCH64_MOVW_G0_NC
:
5389 case BFD_RELOC_AARCH64_MOVW_G0_S
:
5390 case BFD_RELOC_AARCH64_MOVW_G1
:
5391 case BFD_RELOC_AARCH64_MOVW_G1_NC
:
5392 case BFD_RELOC_AARCH64_MOVW_G1_S
:
5393 case BFD_RELOC_AARCH64_MOVW_G2
:
5394 case BFD_RELOC_AARCH64_MOVW_G2_NC
:
5395 case BFD_RELOC_AARCH64_MOVW_G2_S
:
5396 case BFD_RELOC_AARCH64_MOVW_G3
:
5397 case BFD_RELOC_AARCH64_TSTBR14
:
5398 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5399 signed_addend
, weak_undef_p
);
5402 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
5403 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
5404 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
5405 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
5406 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
5407 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
5408 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
5409 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
5410 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
5411 if (globals
->root
.sgot
== NULL
)
5412 BFD_ASSERT (h
!= NULL
);
5414 relative_reloc
= FALSE
;
5419 /* If a symbol is not dynamic and is not undefined weak, bind it
5420 locally and generate a RELATIVE relocation under PIC mode.
5422 NOTE: one symbol may be referenced by several relocations, we
5423 should only generate one RELATIVE relocation for that symbol.
5424 Therefore, check GOT offset mark first. */
5425 if (h
->dynindx
== -1
5427 && h
->root
.type
!= bfd_link_hash_undefweak
5428 && bfd_link_pic (info
)
5429 && !symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
5430 relative_reloc
= TRUE
;
5432 value
= aarch64_calculate_got_entry_vma (h
, globals
, info
, value
,
5434 unresolved_reloc_p
);
5435 /* Record the GOT entry address which will be used when generating
5436 RELATIVE relocation. */
5438 got_entry_addr
= value
;
5440 if (aarch64_relocation_aginst_gp_p (bfd_r_type
))
5441 addend
= (globals
->root
.sgot
->output_section
->vma
5442 + globals
->root
.sgot
->output_offset
);
5443 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5444 addend
, weak_undef_p
);
5449 struct elf_aarch64_local_symbol
*locals
5450 = elf_aarch64_locals (input_bfd
);
5454 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
5456 /* xgettext:c-format */
5457 (_("%B: Local symbol descriptor table be NULL when applying "
5458 "relocation %s against local symbol"),
5459 input_bfd
, elfNN_aarch64_howto_table
[howto_index
].name
);
5463 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
5464 base_got
= globals
->root
.sgot
;
5465 got_entry_addr
= (base_got
->output_section
->vma
5466 + base_got
->output_offset
+ off
);
5468 if (!symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
5470 bfd_put_64 (output_bfd
, value
, base_got
->contents
+ off
);
5472 /* For local symbol, we have done absolute relocation in static
5473 linking stage. While for shared library, we need to update the
5474 content of GOT entry according to the shared object's runtime
5475 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5476 for dynamic linker. */
5477 if (bfd_link_pic (info
))
5478 relative_reloc
= TRUE
;
5480 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
5483 /* Update the relocation value to GOT entry addr as we have transformed
5484 the direct data access into indirect data access through GOT. */
5485 value
= got_entry_addr
;
5487 if (aarch64_relocation_aginst_gp_p (bfd_r_type
))
5488 addend
= base_got
->output_section
->vma
+ base_got
->output_offset
;
5490 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5491 addend
, weak_undef_p
);
5497 Elf_Internal_Rela outrel
;
5499 s
= globals
->root
.srelgot
;
5503 outrel
.r_offset
= got_entry_addr
;
5504 outrel
.r_info
= ELFNN_R_INFO (0, AARCH64_R (RELATIVE
));
5505 outrel
.r_addend
= orig_value
;
5506 elf_append_rela (output_bfd
, s
, &outrel
);
5510 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
5511 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
5512 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
5513 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5514 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
5515 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
5516 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
5517 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
5518 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
5519 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
5520 if (globals
->root
.sgot
== NULL
)
5521 return bfd_reloc_notsupported
;
5523 value
= (symbol_got_offset (input_bfd
, h
, r_symndx
)
5524 + globals
->root
.sgot
->output_section
->vma
5525 + globals
->root
.sgot
->output_offset
);
5527 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5529 *unresolved_reloc_p
= FALSE
;
5532 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
5533 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
5534 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
5535 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
5536 if (globals
->root
.sgot
== NULL
)
5537 return bfd_reloc_notsupported
;
5539 value
= symbol_got_offset (input_bfd
, h
, r_symndx
);
5540 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5542 *unresolved_reloc_p
= FALSE
;
5545 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12
:
5546 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12
:
5547 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
5548 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12
:
5549 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC
:
5550 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12
:
5551 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC
:
5552 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12
:
5553 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC
:
5554 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12
:
5555 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC
:
5556 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0
:
5557 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
5558 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1
:
5559 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC
:
5560 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2
:
5561 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5562 signed_addend
- dtpoff_base (info
),
5566 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
:
5567 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
:
5568 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
5569 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
:
5570 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
5571 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
5572 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
5573 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
5574 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5575 signed_addend
- tpoff_base (info
),
5577 *unresolved_reloc_p
= FALSE
;
5580 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
5581 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
5582 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
5583 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
5584 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
:
5585 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
5586 if (globals
->root
.sgot
== NULL
)
5587 return bfd_reloc_notsupported
;
5588 value
= (symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
)
5589 + globals
->root
.sgotplt
->output_section
->vma
5590 + globals
->root
.sgotplt
->output_offset
5591 + globals
->sgotplt_jump_table_size
);
5593 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5595 *unresolved_reloc_p
= FALSE
;
5598 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
5599 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
5600 if (globals
->root
.sgot
== NULL
)
5601 return bfd_reloc_notsupported
;
5603 value
= (symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
)
5604 + globals
->root
.sgotplt
->output_section
->vma
5605 + globals
->root
.sgotplt
->output_offset
5606 + globals
->sgotplt_jump_table_size
);
5608 value
-= (globals
->root
.sgot
->output_section
->vma
5609 + globals
->root
.sgot
->output_offset
);
5611 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
5613 *unresolved_reloc_p
= FALSE
;
5617 return bfd_reloc_notsupported
;
5621 *saved_addend
= value
;
5623 /* Only apply the final relocation in a sequence. */
5625 return bfd_reloc_continue
;
5627 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
,
5631 /* LP64 and ILP32 operates on x- and w-registers respectively.
5632 Next definitions take into account the difference between
5633 corresponding machine codes. R means x-register if the target
5634 arch is LP64, and w-register if the target is ILP32. */
5637 # define add_R0_R0 (0x91000000)
5638 # define add_R0_R0_R1 (0x8b000020)
5639 # define add_R0_R1 (0x91400020)
5640 # define ldr_R0 (0x58000000)
5641 # define ldr_R0_mask(i) (i & 0xffffffe0)
5642 # define ldr_R0_x0 (0xf9400000)
5643 # define ldr_hw_R0 (0xf2a00000)
5644 # define movk_R0 (0xf2800000)
5645 # define movz_R0 (0xd2a00000)
5646 # define movz_hw_R0 (0xd2c00000)
5647 #else /*ARCH_SIZE == 32 */
5648 # define add_R0_R0 (0x11000000)
5649 # define add_R0_R0_R1 (0x0b000020)
5650 # define add_R0_R1 (0x11400020)
5651 # define ldr_R0 (0x18000000)
5652 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5653 # define ldr_R0_x0 (0xb9400000)
5654 # define ldr_hw_R0 (0x72a00000)
5655 # define movk_R0 (0x72800000)
5656 # define movz_R0 (0x52a00000)
5657 # define movz_hw_R0 (0x52c00000)
5660 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5661 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5664 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5665 is to then call final_link_relocate. Return other values in the
5668 static bfd_reloc_status_type
5669 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table
*globals
,
5670 bfd
*input_bfd
, bfd_byte
*contents
,
5671 Elf_Internal_Rela
*rel
, struct elf_link_hash_entry
*h
)
5673 bfd_boolean is_local
= h
== NULL
;
5674 unsigned int r_type
= ELFNN_R_TYPE (rel
->r_info
);
5677 BFD_ASSERT (globals
&& input_bfd
&& contents
&& rel
);
5679 switch (elfNN_aarch64_bfd_reloc_from_type (r_type
))
5681 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
5682 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
5685 /* GD->LE relaxation:
5686 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
5688 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5690 Where R is x for LP64, and w for ILP32. */
5691 bfd_putl32 (movz_R0
, contents
+ rel
->r_offset
);
5692 return bfd_reloc_continue
;
5696 /* GD->IE relaxation:
5697 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5699 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5701 return bfd_reloc_continue
;
5704 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
5708 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
5711 /* Tiny TLSDESC->LE relaxation:
5712 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5713 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
5717 Where R is x for LP64, and w for ILP32. */
5718 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (TLSDESC_ADR_PREL21
));
5719 BFD_ASSERT (ELFNN_R_TYPE (rel
[2].r_info
) == AARCH64_R (TLSDESC_CALL
));
5721 rel
[1].r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
5722 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC
));
5723 rel
[2].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
5725 bfd_putl32 (movz_R0
, contents
+ rel
->r_offset
);
5726 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
+ 4);
5727 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 8);
5728 return bfd_reloc_continue
;
5732 /* Tiny TLSDESC->IE relaxation:
5733 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5734 adr x0, :tlsdesc:var => nop
5738 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (TLSDESC_ADR_PREL21
));
5739 BFD_ASSERT (ELFNN_R_TYPE (rel
[2].r_info
) == AARCH64_R (TLSDESC_CALL
));
5741 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
5742 rel
[2].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
5744 bfd_putl32 (ldr_R0
, contents
+ rel
->r_offset
);
5745 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 4);
5746 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 8);
5747 return bfd_reloc_continue
;
5750 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
5753 /* Tiny GD->LE relaxation:
5754 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5755 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
5756 nop => add R0, R0, #:tprel_lo12_nc:x
5758 Where R is x for LP64, and x for Ilp32. */
5760 /* First kill the tls_get_addr reloc on the bl instruction. */
5761 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
5763 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 0);
5764 bfd_putl32 (add_R0_R1
, contents
+ rel
->r_offset
+ 4);
5765 bfd_putl32 (add_R0_R0
, contents
+ rel
->r_offset
+ 8);
5767 rel
[1].r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
5768 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC
));
5769 rel
[1].r_offset
= rel
->r_offset
+ 8;
5771 /* Move the current relocation to the second instruction in
5774 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
5775 AARCH64_R (TLSLE_ADD_TPREL_HI12
));
5776 return bfd_reloc_continue
;
5780 /* Tiny GD->IE relaxation:
5781 adr x0, :tlsgd:var => ldr R0, :gottprel:var
5782 bl __tls_get_addr => mrs x1, tpidr_el0
5783 nop => add R0, R0, R1
5785 Where R is x for LP64, and w for Ilp32. */
5787 /* First kill the tls_get_addr reloc on the bl instruction. */
5788 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
5789 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
5791 bfd_putl32 (ldr_R0
, contents
+ rel
->r_offset
);
5792 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 4);
5793 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 8);
5794 return bfd_reloc_continue
;
5798 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
5799 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (TLSGD_MOVW_G0_NC
));
5800 BFD_ASSERT (rel
->r_offset
+ 12 == rel
[2].r_offset
);
5801 BFD_ASSERT (ELFNN_R_TYPE (rel
[2].r_info
) == AARCH64_R (CALL26
));
5805 /* Large GD->LE relaxation:
5806 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5807 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5808 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5809 bl __tls_get_addr => mrs x1, tpidr_el0
5810 nop => add x0, x0, x1
5812 rel
[2].r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
5813 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC
));
5814 rel
[2].r_offset
= rel
->r_offset
+ 8;
5816 bfd_putl32 (movz_hw_R0
, contents
+ rel
->r_offset
+ 0);
5817 bfd_putl32 (ldr_hw_R0
, contents
+ rel
->r_offset
+ 4);
5818 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
+ 8);
5819 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 12);
5820 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 16);
5824 /* Large GD->IE relaxation:
5825 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5826 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5827 add x0, gp, x0 => ldr x0, [gp, x0]
5828 bl __tls_get_addr => mrs x1, tpidr_el0
5829 nop => add x0, x0, x1
5831 rel
[2].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
5832 bfd_putl32 (0xd2a80000, contents
+ rel
->r_offset
+ 0);
5833 bfd_putl32 (ldr_R0
, contents
+ rel
->r_offset
+ 8);
5834 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 12);
5835 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 16);
5837 return bfd_reloc_continue
;
5839 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
5840 return bfd_reloc_continue
;
5843 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
5844 return bfd_reloc_continue
;
5846 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
5849 /* GD->LE relaxation:
5850 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5852 Where R is x for lp64 mode, and w for ILP32 mode. */
5853 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
);
5854 return bfd_reloc_continue
;
5858 /* GD->IE relaxation:
5859 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
5861 Where R is x for lp64 mode, and w for ILP32 mode. */
5862 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
5863 bfd_putl32 (ldr_R0_mask (insn
), contents
+ rel
->r_offset
);
5864 return bfd_reloc_continue
;
5867 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
5870 /* GD->LE relaxation
5871 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
5872 bl __tls_get_addr => mrs x1, tpidr_el0
5873 nop => add R0, R1, R0
5875 Where R is x for lp64 mode, and w for ILP32 mode. */
5877 /* First kill the tls_get_addr reloc on the bl instruction. */
5878 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
5879 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
5881 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
);
5882 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 4);
5883 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 8);
5884 return bfd_reloc_continue
;
5888 /* GD->IE relaxation
5889 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
5890 BL __tls_get_addr => mrs x1, tpidr_el0
5892 NOP => add R0, R1, R0
5894 Where R is x for lp64 mode, and w for ilp32 mode. */
5896 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (CALL26
));
5898 /* Remove the relocation on the BL instruction. */
5899 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
5901 /* We choose to fixup the BL and NOP instructions using the
5902 offset from the second relocation to allow flexibility in
5903 scheduling instructions between the ADD and BL. */
5904 bfd_putl32 (ldr_R0_x0
, contents
+ rel
->r_offset
);
5905 bfd_putl32 (0xd53bd041, contents
+ rel
[1].r_offset
);
5906 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
[1].r_offset
+ 4);
5907 return bfd_reloc_continue
;
5910 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
5911 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
5912 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
5913 /* GD->IE/LE relaxation:
5914 add x0, x0, #:tlsdesc_lo12:var => nop
5917 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
);
5918 return bfd_reloc_ok
;
5920 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
5923 /* GD->LE relaxation:
5924 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
5926 Where R is x for lp64 mode, and w for ILP32 mode. */
5927 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
);
5928 return bfd_reloc_continue
;
5932 /* GD->IE relaxation:
5933 ldr xd, [gp, xn] => ldr R0, [gp, xn]
5935 Where R is x for lp64 mode, and w for ILP32 mode. */
5936 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
5937 bfd_putl32 (ldr_R0_mask (insn
), contents
+ rel
->r_offset
);
5938 return bfd_reloc_ok
;
5941 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
5942 /* GD->LE relaxation:
5943 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
5945 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
5947 Where R is x for lp64 mode, and w for ILP32 mode. */
5949 bfd_putl32 (ldr_hw_R0
, contents
+ rel
->r_offset
);
5950 return bfd_reloc_continue
;
5952 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
5955 /* GD->LE relaxation:
5956 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
5958 Where R is x for lp64 mode, and w for ILP32 mode. */
5959 bfd_putl32 (movz_hw_R0
, contents
+ rel
->r_offset
);
5960 return bfd_reloc_continue
;
5964 /* GD->IE relaxation:
5965 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
5967 Where R is x for lp64 mode, and w for ILP32 mode. */
5968 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
5969 bfd_putl32 (movz_R0
| (insn
& 0x1f), contents
+ rel
->r_offset
);
5970 return bfd_reloc_continue
;
5973 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5974 /* IE->LE relaxation:
5975 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
5977 Where R is x for lp64 mode, and w for ILP32 mode. */
5980 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
5981 bfd_putl32 (movz_R0
| (insn
& 0x1f), contents
+ rel
->r_offset
);
5983 return bfd_reloc_continue
;
5985 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
5986 /* IE->LE relaxation:
5987 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
5989 Where R is x for lp64 mode, and w for ILP32 mode. */
5992 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
5993 bfd_putl32 (movk_R0
| (insn
& 0x1f), contents
+ rel
->r_offset
);
5995 return bfd_reloc_continue
;
5997 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
5998 /* LD->LE relaxation (tiny):
5999 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6000 bl __tls_get_addr => add R0, R0, TCB_SIZE
6002 Where R is x for lp64 mode, and w for ilp32 mode. */
6005 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
6006 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (CALL26
));
6007 /* No need of CALL26 relocation for tls_get_addr. */
6008 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6009 bfd_putl32 (0xd53bd040, contents
+ rel
->r_offset
+ 0);
6010 bfd_putl32 (add_R0_R0
| (TCB_SIZE
<< 10),
6011 contents
+ rel
->r_offset
+ 4);
6012 return bfd_reloc_ok
;
6014 return bfd_reloc_continue
;
6016 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
6017 /* LD->LE relaxation (small):
6018 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6022 bfd_putl32 (0xd53bd040, contents
+ rel
->r_offset
);
6023 return bfd_reloc_ok
;
6025 return bfd_reloc_continue
;
6027 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
6028 /* LD->LE relaxation (small):
6029 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6030 bl __tls_get_addr => nop
6032 Where R is x for lp64 mode, and w for ilp32 mode. */
6035 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
6036 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (CALL26
));
6037 /* No need of CALL26 relocation for tls_get_addr. */
6038 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6039 bfd_putl32 (add_R0_R0
| (TCB_SIZE
<< 10),
6040 contents
+ rel
->r_offset
+ 0);
6041 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 4);
6042 return bfd_reloc_ok
;
6044 return bfd_reloc_continue
;
6047 return bfd_reloc_continue
;
6050 return bfd_reloc_ok
;
6053 /* Relocate an AArch64 ELF section. */
6056 elfNN_aarch64_relocate_section (bfd
*output_bfd
,
6057 struct bfd_link_info
*info
,
6059 asection
*input_section
,
6061 Elf_Internal_Rela
*relocs
,
6062 Elf_Internal_Sym
*local_syms
,
6063 asection
**local_sections
)
6065 Elf_Internal_Shdr
*symtab_hdr
;
6066 struct elf_link_hash_entry
**sym_hashes
;
6067 Elf_Internal_Rela
*rel
;
6068 Elf_Internal_Rela
*relend
;
6070 struct elf_aarch64_link_hash_table
*globals
;
6071 bfd_boolean save_addend
= FALSE
;
6074 globals
= elf_aarch64_hash_table (info
);
6076 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
6077 sym_hashes
= elf_sym_hashes (input_bfd
);
6080 relend
= relocs
+ input_section
->reloc_count
;
6081 for (; rel
< relend
; rel
++)
6083 unsigned int r_type
;
6084 bfd_reloc_code_real_type bfd_r_type
;
6085 bfd_reloc_code_real_type relaxed_bfd_r_type
;
6086 reloc_howto_type
*howto
;
6087 unsigned long r_symndx
;
6088 Elf_Internal_Sym
*sym
;
6090 struct elf_link_hash_entry
*h
;
6092 bfd_reloc_status_type r
;
6095 bfd_boolean unresolved_reloc
= FALSE
;
6096 char *error_message
= NULL
;
6098 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
6099 r_type
= ELFNN_R_TYPE (rel
->r_info
);
6101 howto
= bfd_reloc
.howto
= elfNN_aarch64_howto_from_type (r_type
);
6104 return _bfd_unrecognized_reloc (input_bfd
, input_section
, r_type
);
6106 bfd_r_type
= elfNN_aarch64_bfd_reloc_from_howto (howto
);
6112 if (r_symndx
< symtab_hdr
->sh_info
)
6114 sym
= local_syms
+ r_symndx
;
6115 sym_type
= ELFNN_ST_TYPE (sym
->st_info
);
6116 sec
= local_sections
[r_symndx
];
6118 /* An object file might have a reference to a local
6119 undefined symbol. This is a daft object file, but we
6120 should at least do something about it. */
6121 if (r_type
!= R_AARCH64_NONE
&& r_type
!= R_AARCH64_NULL
6122 && bfd_is_und_section (sec
)
6123 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
6124 (*info
->callbacks
->undefined_symbol
)
6125 (info
, bfd_elf_string_from_elf_section
6126 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
6127 input_bfd
, input_section
, rel
->r_offset
, TRUE
);
6129 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
6131 /* Relocate against local STT_GNU_IFUNC symbol. */
6132 if (!bfd_link_relocatable (info
)
6133 && ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
6135 h
= elfNN_aarch64_get_local_sym_hash (globals
, input_bfd
,
6140 /* Set STT_GNU_IFUNC symbol value. */
6141 h
->root
.u
.def
.value
= sym
->st_value
;
6142 h
->root
.u
.def
.section
= sec
;
6147 bfd_boolean warned
, ignored
;
6149 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
6150 r_symndx
, symtab_hdr
, sym_hashes
,
6152 unresolved_reloc
, warned
, ignored
);
6157 if (sec
!= NULL
&& discarded_section (sec
))
6158 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
6159 rel
, 1, relend
, howto
, 0, contents
);
6161 if (bfd_link_relocatable (info
))
6165 name
= h
->root
.root
.string
;
6168 name
= (bfd_elf_string_from_elf_section
6169 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
6170 if (name
== NULL
|| *name
== '\0')
6171 name
= bfd_section_name (input_bfd
, sec
);
6175 && r_type
!= R_AARCH64_NONE
6176 && r_type
!= R_AARCH64_NULL
6178 || h
->root
.type
== bfd_link_hash_defined
6179 || h
->root
.type
== bfd_link_hash_defweak
)
6180 && IS_AARCH64_TLS_RELOC (bfd_r_type
) != (sym_type
== STT_TLS
))
6183 ((sym_type
== STT_TLS
6184 /* xgettext:c-format */
6185 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
6186 /* xgettext:c-format */
6187 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
6189 input_section
, rel
->r_offset
, howto
->name
, name
);
6192 /* We relax only if we can see that there can be a valid transition
6193 from a reloc type to another.
6194 We call elfNN_aarch64_final_link_relocate unless we're completely
6195 done, i.e., the relaxation produced the final output we want. */
6197 relaxed_bfd_r_type
= aarch64_tls_transition (input_bfd
, info
, r_type
,
6199 if (relaxed_bfd_r_type
!= bfd_r_type
)
6201 bfd_r_type
= relaxed_bfd_r_type
;
6202 howto
= elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type
);
6203 BFD_ASSERT (howto
!= NULL
);
6204 r_type
= howto
->type
;
6205 r
= elfNN_aarch64_tls_relax (globals
, input_bfd
, contents
, rel
, h
);
6206 unresolved_reloc
= 0;
6209 r
= bfd_reloc_continue
;
6211 /* There may be multiple consecutive relocations for the
6212 same offset. In that case we are supposed to treat the
6213 output of each relocation as the addend for the next. */
6214 if (rel
+ 1 < relend
6215 && rel
->r_offset
== rel
[1].r_offset
6216 && ELFNN_R_TYPE (rel
[1].r_info
) != R_AARCH64_NONE
6217 && ELFNN_R_TYPE (rel
[1].r_info
) != R_AARCH64_NULL
)
6220 save_addend
= FALSE
;
6222 if (r
== bfd_reloc_continue
)
6223 r
= elfNN_aarch64_final_link_relocate (howto
, input_bfd
, output_bfd
,
6224 input_section
, contents
, rel
,
6225 relocation
, info
, sec
,
6226 h
, &unresolved_reloc
,
6227 save_addend
, &addend
, sym
);
6229 switch (elfNN_aarch64_bfd_reloc_from_type (r_type
))
6231 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
6232 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
6233 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
6234 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
6235 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
6236 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
6237 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
6238 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
6239 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
6241 bfd_boolean need_relocs
= FALSE
;
6246 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
6247 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
6250 (!bfd_link_executable (info
) || indx
!= 0) &&
6252 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6253 || h
->root
.type
!= bfd_link_hash_undefweak
);
6255 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
6259 Elf_Internal_Rela rela
;
6260 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLS_DTPMOD
));
6262 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
6263 globals
->root
.sgot
->output_offset
+ off
;
6266 loc
= globals
->root
.srelgot
->contents
;
6267 loc
+= globals
->root
.srelgot
->reloc_count
++
6268 * RELOC_SIZE (htab
);
6269 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
6271 bfd_reloc_code_real_type real_type
=
6272 elfNN_aarch64_bfd_reloc_from_type (r_type
);
6274 if (real_type
== BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6275 || real_type
== BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6276 || real_type
== BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
)
6278 /* For local dynamic, don't generate DTPREL in any case.
6279 Initialize the DTPREL slot into zero, so we get module
6280 base address when invoke runtime TLS resolver. */
6281 bfd_put_NN (output_bfd
, 0,
6282 globals
->root
.sgot
->contents
+ off
6287 bfd_put_NN (output_bfd
,
6288 relocation
- dtpoff_base (info
),
6289 globals
->root
.sgot
->contents
+ off
6294 /* This TLS symbol is global. We emit a
6295 relocation to fixup the tls offset at load
6298 ELFNN_R_INFO (indx
, AARCH64_R (TLS_DTPREL
));
6301 (globals
->root
.sgot
->output_section
->vma
6302 + globals
->root
.sgot
->output_offset
+ off
6305 loc
= globals
->root
.srelgot
->contents
;
6306 loc
+= globals
->root
.srelgot
->reloc_count
++
6307 * RELOC_SIZE (globals
);
6308 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
6309 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
6310 globals
->root
.sgot
->contents
+ off
6316 bfd_put_NN (output_bfd
, (bfd_vma
) 1,
6317 globals
->root
.sgot
->contents
+ off
);
6318 bfd_put_NN (output_bfd
,
6319 relocation
- dtpoff_base (info
),
6320 globals
->root
.sgot
->contents
+ off
6324 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
6328 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
6329 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
6330 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
6331 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
6332 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
6333 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
6335 bfd_boolean need_relocs
= FALSE
;
6340 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
6342 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
6345 (!bfd_link_executable (info
) || indx
!= 0) &&
6347 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6348 || h
->root
.type
!= bfd_link_hash_undefweak
);
6350 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
6354 Elf_Internal_Rela rela
;
6357 rela
.r_addend
= relocation
- dtpoff_base (info
);
6361 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLS_TPREL
));
6362 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
6363 globals
->root
.sgot
->output_offset
+ off
;
6365 loc
= globals
->root
.srelgot
->contents
;
6366 loc
+= globals
->root
.srelgot
->reloc_count
++
6367 * RELOC_SIZE (htab
);
6369 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
6371 bfd_put_NN (output_bfd
, rela
.r_addend
,
6372 globals
->root
.sgot
->contents
+ off
);
6375 bfd_put_NN (output_bfd
, relocation
- tpoff_base (info
),
6376 globals
->root
.sgot
->contents
+ off
);
6378 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
6382 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
6383 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
6384 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
6385 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
6386 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
6387 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
6388 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
6389 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd
, h
, r_symndx
))
6391 bfd_boolean need_relocs
= FALSE
;
6392 int indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
6393 bfd_vma off
= symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
);
6395 need_relocs
= (h
== NULL
6396 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6397 || h
->root
.type
!= bfd_link_hash_undefweak
);
6399 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
6400 BFD_ASSERT (globals
->root
.sgot
!= NULL
);
6405 Elf_Internal_Rela rela
;
6406 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLSDESC
));
6409 rela
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
6410 + globals
->root
.sgotplt
->output_offset
6411 + off
+ globals
->sgotplt_jump_table_size
);
6414 rela
.r_addend
= relocation
- dtpoff_base (info
);
6416 /* Allocate the next available slot in the PLT reloc
6417 section to hold our R_AARCH64_TLSDESC, the next
6418 available slot is determined from reloc_count,
6419 which we step. But note, reloc_count was
6420 artifically moved down while allocating slots for
6421 real PLT relocs such that all of the PLT relocs
6422 will fit above the initial reloc_count and the
6423 extra stuff will fit below. */
6424 loc
= globals
->root
.srelplt
->contents
;
6425 loc
+= globals
->root
.srelplt
->reloc_count
++
6426 * RELOC_SIZE (globals
);
6428 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
6430 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
6431 globals
->root
.sgotplt
->contents
+ off
+
6432 globals
->sgotplt_jump_table_size
);
6433 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
6434 globals
->root
.sgotplt
->contents
+ off
+
6435 globals
->sgotplt_jump_table_size
+
6439 symbol_tlsdesc_got_offset_mark (input_bfd
, h
, r_symndx
);
6446 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6447 because such sections are not SEC_ALLOC and thus ld.so will
6448 not process them. */
6449 if (unresolved_reloc
6450 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
6452 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
6453 +rel
->r_offset
) != (bfd_vma
) - 1)
6456 /* xgettext:c-format */
6457 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
6458 input_bfd
, input_section
, rel
->r_offset
, howto
->name
,
6459 h
->root
.root
.string
);
6463 if (r
!= bfd_reloc_ok
&& r
!= bfd_reloc_continue
)
6465 bfd_reloc_code_real_type real_r_type
6466 = elfNN_aarch64_bfd_reloc_from_type (r_type
);
6470 case bfd_reloc_overflow
:
6471 (*info
->callbacks
->reloc_overflow
)
6472 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
, (bfd_vma
) 0,
6473 input_bfd
, input_section
, rel
->r_offset
);
6474 if (real_r_type
== BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6475 || real_r_type
== BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
)
6477 (*info
->callbacks
->warning
)
6479 _("Too many GOT entries for -fpic, "
6480 "please recompile with -fPIC"),
6481 name
, input_bfd
, input_section
, rel
->r_offset
);
6484 /* Overflow can occur when a variable is referenced with a type
6485 that has a larger alignment than the type with which it was
6487 file1.c: extern int foo; int a (void) { return foo; }
6488 file2.c: char bar, foo, baz;
6489 If the variable is placed into a data section at an offset
6490 that is incompatible with the larger alignment requirement
6491 overflow will occur. (Strictly speaking this is not overflow
6492 but rather an alignment problem, but the bfd_reloc_ error
6493 enum does not have a value to cover that situation).
6495 Try to catch this situation here and provide a more helpful
6496 error message to the user. */
6497 if (addend
& ((1 << howto
->rightshift
) - 1)
6498 /* FIXME: Are we testing all of the appropriate reloc
6500 && (real_r_type
== BFD_RELOC_AARCH64_LD_LO19_PCREL
6501 || real_r_type
== BFD_RELOC_AARCH64_LDST16_LO12
6502 || real_r_type
== BFD_RELOC_AARCH64_LDST32_LO12
6503 || real_r_type
== BFD_RELOC_AARCH64_LDST64_LO12
6504 || real_r_type
== BFD_RELOC_AARCH64_LDST128_LO12
))
6506 info
->callbacks
->warning
6507 (info
, _("One possible cause of this error is that the \
6508 symbol is being referenced in the indicated code as if it had a larger \
6509 alignment than was declared where it was defined."),
6510 name
, input_bfd
, input_section
, rel
->r_offset
);
6514 case bfd_reloc_undefined
:
6515 (*info
->callbacks
->undefined_symbol
)
6516 (info
, name
, input_bfd
, input_section
, rel
->r_offset
, TRUE
);
6519 case bfd_reloc_outofrange
:
6520 error_message
= _("out of range");
6523 case bfd_reloc_notsupported
:
6524 error_message
= _("unsupported relocation");
6527 case bfd_reloc_dangerous
:
6528 /* error_message should already be set. */
6532 error_message
= _("unknown error");
6536 BFD_ASSERT (error_message
!= NULL
);
6537 (*info
->callbacks
->reloc_dangerous
)
6538 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
6550 /* Set the right machine number. */
6553 elfNN_aarch64_object_p (bfd
*abfd
)
6556 bfd_default_set_arch_mach (abfd
, bfd_arch_aarch64
, bfd_mach_aarch64_ilp32
);
6558 bfd_default_set_arch_mach (abfd
, bfd_arch_aarch64
, bfd_mach_aarch64
);
6563 /* Function to keep AArch64 specific flags in the ELF header. */
6566 elfNN_aarch64_set_private_flags (bfd
*abfd
, flagword flags
)
6568 if (elf_flags_init (abfd
) && elf_elfheader (abfd
)->e_flags
!= flags
)
6573 elf_elfheader (abfd
)->e_flags
= flags
;
6574 elf_flags_init (abfd
) = TRUE
;
6580 /* Merge backend specific data from an object file to the output
6581 object file when linking. */
6584 elfNN_aarch64_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
6586 bfd
*obfd
= info
->output_bfd
;
6589 bfd_boolean flags_compatible
= TRUE
;
6592 /* Check if we have the same endianess. */
6593 if (!_bfd_generic_verify_endian_match (ibfd
, info
))
6596 if (!is_aarch64_elf (ibfd
) || !is_aarch64_elf (obfd
))
6599 /* The input BFD must have had its flags initialised. */
6600 /* The following seems bogus to me -- The flags are initialized in
6601 the assembler but I don't think an elf_flags_init field is
6602 written into the object. */
6603 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6605 in_flags
= elf_elfheader (ibfd
)->e_flags
;
6606 out_flags
= elf_elfheader (obfd
)->e_flags
;
6608 if (!elf_flags_init (obfd
))
6610 /* If the input is the default architecture and had the default
6611 flags then do not bother setting the flags for the output
6612 architecture, instead allow future merges to do this. If no
6613 future merges ever set these flags then they will retain their
6614 uninitialised values, which surprise surprise, correspond
6615 to the default values. */
6616 if (bfd_get_arch_info (ibfd
)->the_default
6617 && elf_elfheader (ibfd
)->e_flags
== 0)
6620 elf_flags_init (obfd
) = TRUE
;
6621 elf_elfheader (obfd
)->e_flags
= in_flags
;
6623 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
6624 && bfd_get_arch_info (obfd
)->the_default
)
6625 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
6626 bfd_get_mach (ibfd
));
6631 /* Identical flags must be compatible. */
6632 if (in_flags
== out_flags
)
6635 /* Check to see if the input BFD actually contains any sections. If
6636 not, its flags may not have been initialised either, but it
6637 cannot actually cause any incompatiblity. Do not short-circuit
6638 dynamic objects; their section list may be emptied by
6639 elf_link_add_object_symbols.
6641 Also check to see if there are no code sections in the input.
6642 In this case there is no need to check for code specific flags.
6643 XXX - do we need to worry about floating-point format compatability
6644 in data sections ? */
6645 if (!(ibfd
->flags
& DYNAMIC
))
6647 bfd_boolean null_input_bfd
= TRUE
;
6648 bfd_boolean only_data_sections
= TRUE
;
6650 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6652 if ((bfd_get_section_flags (ibfd
, sec
)
6653 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
6654 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
6655 only_data_sections
= FALSE
;
6657 null_input_bfd
= FALSE
;
6661 if (null_input_bfd
|| only_data_sections
)
6665 return flags_compatible
;
6668 /* Display the flags field. */
6671 elfNN_aarch64_print_private_bfd_data (bfd
*abfd
, void *ptr
)
6673 FILE *file
= (FILE *) ptr
;
6674 unsigned long flags
;
6676 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
6678 /* Print normal ELF private data. */
6679 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
6681 flags
= elf_elfheader (abfd
)->e_flags
;
6682 /* Ignore init flag - it may not be set, despite the flags field
6683 containing valid data. */
6685 /* xgettext:c-format */
6686 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
6689 fprintf (file
, _("<Unrecognised flag bits set>"));
6696 /* Find dynamic relocs for H that apply to read-only sections. */
6699 readonly_dynrelocs (struct elf_link_hash_entry
*h
)
6701 struct elf_dyn_relocs
*p
;
6703 for (p
= elf_aarch64_hash_entry (h
)->dyn_relocs
; p
!= NULL
; p
= p
->next
)
6705 asection
*s
= p
->sec
->output_section
;
6707 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
6713 /* Return true if we need copy relocation against EH. */
6716 need_copy_relocation_p (struct elf_aarch64_link_hash_entry
*eh
)
6718 struct elf_dyn_relocs
*p
;
6721 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
6723 /* If there is any pc-relative reference, we need to keep copy relocation
6724 to avoid propagating the relocation into runtime that current glibc
6725 does not support. */
6729 s
= p
->sec
->output_section
;
6730 /* Need copy relocation if it's against read-only section. */
6731 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
6738 /* Adjust a symbol defined by a dynamic object and referenced by a
6739 regular object. The current definition is in some section of the
6740 dynamic object, but we're not including those sections. We have to
6741 change the definition to something the rest of the link can
6745 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6746 struct elf_link_hash_entry
*h
)
6748 struct elf_aarch64_link_hash_table
*htab
;
6751 /* If this is a function, put it in the procedure linkage table. We
6752 will fill in the contents of the procedure linkage table later,
6753 when we know the address of the .got section. */
6754 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
6756 if (h
->plt
.refcount
<= 0
6757 || (h
->type
!= STT_GNU_IFUNC
6758 && (SYMBOL_CALLS_LOCAL (info
, h
)
6759 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
6760 && h
->root
.type
== bfd_link_hash_undefweak
))))
6762 /* This case can occur if we saw a CALL26 reloc in
6763 an input file, but the symbol wasn't referred to
6764 by a dynamic object or all references were
6765 garbage collected. In which case we can end up
6767 h
->plt
.offset
= (bfd_vma
) - 1;
6774 /* Otherwise, reset to -1. */
6775 h
->plt
.offset
= (bfd_vma
) - 1;
6778 /* If this is a weak symbol, and there is a real definition, the
6779 processor independent code will have arranged for us to see the
6780 real definition first, and we can just use the same value. */
6781 if (h
->is_weakalias
)
6783 struct elf_link_hash_entry
*def
= weakdef (h
);
6784 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
6785 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
6786 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
6787 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
6788 h
->non_got_ref
= def
->non_got_ref
;
6792 /* If we are creating a shared library, we must presume that the
6793 only references to the symbol are via the global offset table.
6794 For such cases we need not do anything here; the relocations will
6795 be handled correctly by relocate_section. */
6796 if (bfd_link_pic (info
))
6799 /* If there are no references to this symbol that do not use the
6800 GOT, we don't need to generate a copy reloc. */
6801 if (!h
->non_got_ref
)
6804 /* If -z nocopyreloc was given, we won't generate them either. */
6805 if (info
->nocopyreloc
)
6811 if (ELIMINATE_COPY_RELOCS
)
6813 struct elf_aarch64_link_hash_entry
*eh
;
6814 /* If we don't find any dynamic relocs in read-only sections, then
6815 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6816 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
6817 if (!need_copy_relocation_p (eh
))
6824 /* We must allocate the symbol in our .dynbss section, which will
6825 become part of the .bss section of the executable. There will be
6826 an entry for this symbol in the .dynsym section. The dynamic
6827 object will contain position independent code, so all references
6828 from the dynamic object to this symbol will go through the global
6829 offset table. The dynamic linker will use the .dynsym entry to
6830 determine the address it must put in the global offset table, so
6831 both the dynamic object and the regular object will refer to the
6832 same memory location for the variable. */
6834 htab
= elf_aarch64_hash_table (info
);
6836 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6837 to copy the initial value out of the dynamic object and into the
6838 runtime process image. */
6839 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
6841 s
= htab
->root
.sdynrelro
;
6842 srel
= htab
->root
.sreldynrelro
;
6846 s
= htab
->root
.sdynbss
;
6847 srel
= htab
->root
.srelbss
;
6849 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
6851 srel
->size
+= RELOC_SIZE (htab
);
6855 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
6860 elfNN_aarch64_allocate_local_symbols (bfd
*abfd
, unsigned number
)
6862 struct elf_aarch64_local_symbol
*locals
;
6863 locals
= elf_aarch64_locals (abfd
);
6866 locals
= (struct elf_aarch64_local_symbol
*)
6867 bfd_zalloc (abfd
, number
* sizeof (struct elf_aarch64_local_symbol
));
6870 elf_aarch64_locals (abfd
) = locals
;
6875 /* Create the .got section to hold the global offset table. */
6878 aarch64_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
6880 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6883 struct elf_link_hash_entry
*h
;
6884 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6886 /* This function may be called more than once. */
6887 if (htab
->sgot
!= NULL
)
6890 flags
= bed
->dynamic_sec_flags
;
6892 s
= bfd_make_section_anyway_with_flags (abfd
,
6893 (bed
->rela_plts_and_copies_p
6894 ? ".rela.got" : ".rel.got"),
6895 (bed
->dynamic_sec_flags
6898 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
6902 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
6904 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
6907 htab
->sgot
->size
+= GOT_ENTRY_SIZE
;
6909 if (bed
->want_got_sym
)
6911 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6912 (or .got.plt) section. We don't do this in the linker script
6913 because we don't want to define the symbol if we are not creating
6914 a global offset table. */
6915 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
6916 "_GLOBAL_OFFSET_TABLE_");
6917 elf_hash_table (info
)->hgot
= h
;
6922 if (bed
->want_got_plt
)
6924 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
6926 || !bfd_set_section_alignment (abfd
, s
,
6927 bed
->s
->log_file_align
))
6932 /* The first bit of the global offset table is the header. */
6933 s
->size
+= bed
->got_header_size
;
6938 /* Look through the relocs for a section during the first phase. */
6941 elfNN_aarch64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
6942 asection
*sec
, const Elf_Internal_Rela
*relocs
)
6944 Elf_Internal_Shdr
*symtab_hdr
;
6945 struct elf_link_hash_entry
**sym_hashes
;
6946 const Elf_Internal_Rela
*rel
;
6947 const Elf_Internal_Rela
*rel_end
;
6950 struct elf_aarch64_link_hash_table
*htab
;
6952 if (bfd_link_relocatable (info
))
6955 BFD_ASSERT (is_aarch64_elf (abfd
));
6957 htab
= elf_aarch64_hash_table (info
);
6960 symtab_hdr
= &elf_symtab_hdr (abfd
);
6961 sym_hashes
= elf_sym_hashes (abfd
);
6963 rel_end
= relocs
+ sec
->reloc_count
;
6964 for (rel
= relocs
; rel
< rel_end
; rel
++)
6966 struct elf_link_hash_entry
*h
;
6967 unsigned int r_symndx
;
6968 unsigned int r_type
;
6969 bfd_reloc_code_real_type bfd_r_type
;
6970 Elf_Internal_Sym
*isym
;
6972 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
6973 r_type
= ELFNN_R_TYPE (rel
->r_info
);
6975 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
6977 /* xgettext:c-format */
6978 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd
, r_symndx
);
6982 if (r_symndx
< symtab_hdr
->sh_info
)
6984 /* A local symbol. */
6985 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
6990 /* Check relocation against local STT_GNU_IFUNC symbol. */
6991 if (ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
6993 h
= elfNN_aarch64_get_local_sym_hash (htab
, abfd
, rel
,
6998 /* Fake a STT_GNU_IFUNC symbol. */
6999 h
->type
= STT_GNU_IFUNC
;
7002 h
->forced_local
= 1;
7003 h
->root
.type
= bfd_link_hash_defined
;
7010 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
7011 while (h
->root
.type
== bfd_link_hash_indirect
7012 || h
->root
.type
== bfd_link_hash_warning
)
7013 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7016 /* Could be done earlier, if h were already available. */
7017 bfd_r_type
= aarch64_tls_transition (abfd
, info
, r_type
, h
, r_symndx
);
7021 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7022 This shows up in particular in an R_AARCH64_PREL64 in large model
7023 when calculating the pc-relative address to .got section which is
7024 used to initialize the gp register. */
7025 if (h
->root
.root
.string
7026 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
7028 if (htab
->root
.dynobj
== NULL
)
7029 htab
->root
.dynobj
= abfd
;
7031 if (! aarch64_elf_create_got_section (htab
->root
.dynobj
, info
))
7034 BFD_ASSERT (h
== htab
->root
.hgot
);
7037 /* Create the ifunc sections for static executables. If we
7038 never see an indirect function symbol nor we are building
7039 a static executable, those sections will be empty and
7040 won't appear in output. */
7046 case BFD_RELOC_AARCH64_ADD_LO12
:
7047 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
7048 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
7049 case BFD_RELOC_AARCH64_CALL26
:
7050 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
7051 case BFD_RELOC_AARCH64_JUMP26
:
7052 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
7053 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
7054 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
7055 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
7056 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
7057 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
7058 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
7059 case BFD_RELOC_AARCH64_NN
:
7060 if (htab
->root
.dynobj
== NULL
)
7061 htab
->root
.dynobj
= abfd
;
7062 if (!_bfd_elf_create_ifunc_sections (htab
->root
.dynobj
, info
))
7067 /* It is referenced by a non-shared object. */
7073 case BFD_RELOC_AARCH64_16
:
7075 case BFD_RELOC_AARCH64_32
:
7077 if (bfd_link_pic (info
)
7078 && (sec
->flags
& SEC_ALLOC
) != 0
7079 && (sec
->flags
& SEC_READONLY
) != 0)
7081 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
7083 /* xgettext:c-format */
7084 (_("%B: relocation %s against `%s' can not be used when making "
7086 abfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
7087 (h
) ? h
->root
.root
.string
: "a local symbol");
7088 bfd_set_error (bfd_error_bad_value
);
7094 case BFD_RELOC_AARCH64_MOVW_G0_NC
:
7095 case BFD_RELOC_AARCH64_MOVW_G1_NC
:
7096 case BFD_RELOC_AARCH64_MOVW_G2_NC
:
7097 case BFD_RELOC_AARCH64_MOVW_G3
:
7098 if (bfd_link_pic (info
))
7100 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
7102 /* xgettext:c-format */
7103 (_("%B: relocation %s against `%s' can not be used when making "
7104 "a shared object; recompile with -fPIC"),
7105 abfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
7106 (h
) ? h
->root
.root
.string
: "a local symbol");
7107 bfd_set_error (bfd_error_bad_value
);
7112 case BFD_RELOC_AARCH64_16_PCREL
:
7113 case BFD_RELOC_AARCH64_32_PCREL
:
7114 case BFD_RELOC_AARCH64_64_PCREL
:
7115 case BFD_RELOC_AARCH64_ADD_LO12
:
7116 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
:
7117 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
7118 case BFD_RELOC_AARCH64_ADR_LO21_PCREL
:
7119 case BFD_RELOC_AARCH64_LDST128_LO12
:
7120 case BFD_RELOC_AARCH64_LDST16_LO12
:
7121 case BFD_RELOC_AARCH64_LDST32_LO12
:
7122 case BFD_RELOC_AARCH64_LDST64_LO12
:
7123 case BFD_RELOC_AARCH64_LDST8_LO12
:
7124 case BFD_RELOC_AARCH64_LD_LO19_PCREL
:
7125 if (h
== NULL
|| bfd_link_pic (info
))
7129 case BFD_RELOC_AARCH64_NN
:
7131 /* We don't need to handle relocs into sections not going into
7132 the "real" output. */
7133 if ((sec
->flags
& SEC_ALLOC
) == 0)
7138 if (!bfd_link_pic (info
))
7141 h
->plt
.refcount
+= 1;
7142 h
->pointer_equality_needed
= 1;
7145 /* No need to do anything if we're not creating a shared
7147 if (!(bfd_link_pic (info
)
7148 /* If on the other hand, we are creating an executable, we
7149 may need to keep relocations for symbols satisfied by a
7150 dynamic library if we manage to avoid copy relocs for the
7153 NOTE: Currently, there is no support of copy relocs
7154 elimination on pc-relative relocation types, because there is
7155 no dynamic relocation support for them in glibc. We still
7156 record the dynamic symbol reference for them. This is
7157 because one symbol may be referenced by both absolute
7158 relocation (for example, BFD_RELOC_AARCH64_NN) and
7159 pc-relative relocation. We need full symbol reference
7160 information to make correct decision later in
7161 elfNN_aarch64_adjust_dynamic_symbol. */
7162 || (ELIMINATE_COPY_RELOCS
7163 && !bfd_link_pic (info
)
7165 && (h
->root
.type
== bfd_link_hash_defweak
7166 || !h
->def_regular
))))
7170 struct elf_dyn_relocs
*p
;
7171 struct elf_dyn_relocs
**head
;
7172 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
7174 /* We must copy these reloc types into the output file.
7175 Create a reloc section in dynobj and make room for
7179 if (htab
->root
.dynobj
== NULL
)
7180 htab
->root
.dynobj
= abfd
;
7182 sreloc
= _bfd_elf_make_dynamic_reloc_section
7183 (sec
, htab
->root
.dynobj
, LOG_FILE_ALIGN
, abfd
, /*rela? */ TRUE
);
7189 /* If this is a global symbol, we count the number of
7190 relocations we need for this symbol. */
7193 struct elf_aarch64_link_hash_entry
*eh
;
7194 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
7195 head
= &eh
->dyn_relocs
;
7199 /* Track dynamic relocs needed for local syms too.
7200 We really need local syms available to do this
7206 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
7211 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
7215 /* Beware of type punned pointers vs strict aliasing
7217 vpp
= &(elf_section_data (s
)->local_dynrel
);
7218 head
= (struct elf_dyn_relocs
**) vpp
;
7222 if (p
== NULL
|| p
->sec
!= sec
)
7224 bfd_size_type amt
= sizeof *p
;
7225 p
= ((struct elf_dyn_relocs
*)
7226 bfd_zalloc (htab
->root
.dynobj
, amt
));
7236 if (elfNN_aarch64_howto_table
[howto_index
].pc_relative
)
7241 /* RR: We probably want to keep a consistency check that
7242 there are no dangling GOT_PAGE relocs. */
7243 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
7244 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
7245 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
7246 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
7247 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
7248 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
7249 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
7250 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
7251 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
7252 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
7253 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
7254 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
7255 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
7256 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
:
7257 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
7258 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
7259 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
7260 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
7261 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
7262 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
7263 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
7264 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
7265 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7266 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
7267 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
7268 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
7269 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
7270 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
7271 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
7272 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
7273 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
7274 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
7275 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
7276 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
7279 unsigned old_got_type
;
7281 got_type
= aarch64_reloc_got_type (bfd_r_type
);
7285 h
->got
.refcount
+= 1;
7286 old_got_type
= elf_aarch64_hash_entry (h
)->got_type
;
7290 struct elf_aarch64_local_symbol
*locals
;
7292 if (!elfNN_aarch64_allocate_local_symbols
7293 (abfd
, symtab_hdr
->sh_info
))
7296 locals
= elf_aarch64_locals (abfd
);
7297 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
7298 locals
[r_symndx
].got_refcount
+= 1;
7299 old_got_type
= locals
[r_symndx
].got_type
;
7302 /* If a variable is accessed with both general dynamic TLS
7303 methods, two slots may be created. */
7304 if (GOT_TLS_GD_ANY_P (old_got_type
) && GOT_TLS_GD_ANY_P (got_type
))
7305 got_type
|= old_got_type
;
7307 /* We will already have issued an error message if there
7308 is a TLS/non-TLS mismatch, based on the symbol type.
7309 So just combine any TLS types needed. */
7310 if (old_got_type
!= GOT_UNKNOWN
&& old_got_type
!= GOT_NORMAL
7311 && got_type
!= GOT_NORMAL
)
7312 got_type
|= old_got_type
;
7314 /* If the symbol is accessed by both IE and GD methods, we
7315 are able to relax. Turn off the GD flag, without
7316 messing up with any other kind of TLS types that may be
7318 if ((got_type
& GOT_TLS_IE
) && GOT_TLS_GD_ANY_P (got_type
))
7319 got_type
&= ~ (GOT_TLSDESC_GD
| GOT_TLS_GD
);
7321 if (old_got_type
!= got_type
)
7324 elf_aarch64_hash_entry (h
)->got_type
= got_type
;
7327 struct elf_aarch64_local_symbol
*locals
;
7328 locals
= elf_aarch64_locals (abfd
);
7329 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
7330 locals
[r_symndx
].got_type
= got_type
;
7334 if (htab
->root
.dynobj
== NULL
)
7335 htab
->root
.dynobj
= abfd
;
7336 if (! aarch64_elf_create_got_section (htab
->root
.dynobj
, info
))
7341 case BFD_RELOC_AARCH64_CALL26
:
7342 case BFD_RELOC_AARCH64_JUMP26
:
7343 /* If this is a local symbol then we resolve it
7344 directly without creating a PLT entry. */
7349 if (h
->plt
.refcount
<= 0)
7350 h
->plt
.refcount
= 1;
7352 h
->plt
.refcount
+= 1;
7363 /* Treat mapping symbols as special target symbols. */
7366 elfNN_aarch64_is_target_special_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
7369 return bfd_is_aarch64_special_symbol_name (sym
->name
,
7370 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
);
7373 /* This is a copy of elf_find_function () from elf.c except that
7374 AArch64 mapping symbols are ignored when looking for function names. */
7377 aarch64_elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7381 const char **filename_ptr
,
7382 const char **functionname_ptr
)
7384 const char *filename
= NULL
;
7385 asymbol
*func
= NULL
;
7386 bfd_vma low_func
= 0;
7389 for (p
= symbols
; *p
!= NULL
; p
++)
7393 q
= (elf_symbol_type
*) * p
;
7395 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7400 filename
= bfd_asymbol_name (&q
->symbol
);
7404 /* Skip mapping symbols. */
7405 if ((q
->symbol
.flags
& BSF_LOCAL
)
7406 && (bfd_is_aarch64_special_symbol_name
7407 (q
->symbol
.name
, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
)))
7410 if (bfd_get_section (&q
->symbol
) == section
7411 && q
->symbol
.value
>= low_func
&& q
->symbol
.value
<= offset
)
7413 func
= (asymbol
*) q
;
7414 low_func
= q
->symbol
.value
;
7424 *filename_ptr
= filename
;
7425 if (functionname_ptr
)
7426 *functionname_ptr
= bfd_asymbol_name (func
);
7432 /* Find the nearest line to a particular section and offset, for error
7433 reporting. This code is a duplicate of the code in elf.c, except
7434 that it uses aarch64_elf_find_function. */
7437 elfNN_aarch64_find_nearest_line (bfd
*abfd
,
7441 const char **filename_ptr
,
7442 const char **functionname_ptr
,
7443 unsigned int *line_ptr
,
7444 unsigned int *discriminator_ptr
)
7446 bfd_boolean found
= FALSE
;
7448 if (_bfd_dwarf2_find_nearest_line (abfd
, symbols
, NULL
, section
, offset
,
7449 filename_ptr
, functionname_ptr
,
7450 line_ptr
, discriminator_ptr
,
7451 dwarf_debug_sections
, 0,
7452 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7454 if (!*functionname_ptr
)
7455 aarch64_elf_find_function (abfd
, symbols
, section
, offset
,
7456 *filename_ptr
? NULL
: filename_ptr
,
7462 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7463 toolchain uses DWARF1. */
7465 if (!_bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7466 &found
, filename_ptr
,
7467 functionname_ptr
, line_ptr
,
7468 &elf_tdata (abfd
)->line_info
))
7471 if (found
&& (*functionname_ptr
|| *line_ptr
))
7474 if (symbols
== NULL
)
7477 if (!aarch64_elf_find_function (abfd
, symbols
, section
, offset
,
7478 filename_ptr
, functionname_ptr
))
7486 elfNN_aarch64_find_inliner_info (bfd
*abfd
,
7487 const char **filename_ptr
,
7488 const char **functionname_ptr
,
7489 unsigned int *line_ptr
)
7492 found
= _bfd_dwarf2_find_inliner_info
7493 (abfd
, filename_ptr
,
7494 functionname_ptr
, line_ptr
, &elf_tdata (abfd
)->dwarf2_find_line_info
);
7500 elfNN_aarch64_post_process_headers (bfd
*abfd
,
7501 struct bfd_link_info
*link_info
)
7503 Elf_Internal_Ehdr
*i_ehdrp
; /* ELF file header, internal form. */
7505 i_ehdrp
= elf_elfheader (abfd
);
7506 i_ehdrp
->e_ident
[EI_ABIVERSION
] = AARCH64_ELF_ABI_VERSION
;
7508 _bfd_elf_post_process_headers (abfd
, link_info
);
7511 static enum elf_reloc_type_class
7512 elfNN_aarch64_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7513 const asection
*rel_sec ATTRIBUTE_UNUSED
,
7514 const Elf_Internal_Rela
*rela
)
7516 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
7518 if (htab
->root
.dynsym
!= NULL
7519 && htab
->root
.dynsym
->contents
!= NULL
)
7521 /* Check relocation against STT_GNU_IFUNC symbol if there are
7523 bfd
*abfd
= info
->output_bfd
;
7524 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7525 unsigned long r_symndx
= ELFNN_R_SYM (rela
->r_info
);
7526 if (r_symndx
!= STN_UNDEF
)
7528 Elf_Internal_Sym sym
;
7529 if (!bed
->s
->swap_symbol_in (abfd
,
7530 (htab
->root
.dynsym
->contents
7531 + r_symndx
* bed
->s
->sizeof_sym
),
7534 /* xgettext:c-format */
7535 _bfd_error_handler (_("%B symbol number %lu references"
7536 " nonexistent SHT_SYMTAB_SHNDX section"),
7538 /* Ideally an error class should be returned here. */
7540 else if (ELF_ST_TYPE (sym
.st_info
) == STT_GNU_IFUNC
)
7541 return reloc_class_ifunc
;
7545 switch ((int) ELFNN_R_TYPE (rela
->r_info
))
7547 case AARCH64_R (IRELATIVE
):
7548 return reloc_class_ifunc
;
7549 case AARCH64_R (RELATIVE
):
7550 return reloc_class_relative
;
7551 case AARCH64_R (JUMP_SLOT
):
7552 return reloc_class_plt
;
7553 case AARCH64_R (COPY
):
7554 return reloc_class_copy
;
7556 return reloc_class_normal
;
7560 /* Handle an AArch64 specific section when reading an object file. This is
7561 called when bfd_section_from_shdr finds a section with an unknown
7565 elfNN_aarch64_section_from_shdr (bfd
*abfd
,
7566 Elf_Internal_Shdr
*hdr
,
7567 const char *name
, int shindex
)
7569 /* There ought to be a place to keep ELF backend specific flags, but
7570 at the moment there isn't one. We just keep track of the
7571 sections by their name, instead. Fortunately, the ABI gives
7572 names for all the AArch64 specific sections, so we will probably get
7574 switch (hdr
->sh_type
)
7576 case SHT_AARCH64_ATTRIBUTES
:
7583 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
7589 /* A structure used to record a list of sections, independently
7590 of the next and prev fields in the asection structure. */
7591 typedef struct section_list
7594 struct section_list
*next
;
7595 struct section_list
*prev
;
7599 /* Unfortunately we need to keep a list of sections for which
7600 an _aarch64_elf_section_data structure has been allocated. This
7601 is because it is possible for functions like elfNN_aarch64_write_section
7602 to be called on a section which has had an elf_data_structure
7603 allocated for it (and so the used_by_bfd field is valid) but
7604 for which the AArch64 extended version of this structure - the
7605 _aarch64_elf_section_data structure - has not been allocated. */
7606 static section_list
*sections_with_aarch64_elf_section_data
= NULL
;
7609 record_section_with_aarch64_elf_section_data (asection
*sec
)
7611 struct section_list
*entry
;
7613 entry
= bfd_malloc (sizeof (*entry
));
7617 entry
->next
= sections_with_aarch64_elf_section_data
;
7619 if (entry
->next
!= NULL
)
7620 entry
->next
->prev
= entry
;
7621 sections_with_aarch64_elf_section_data
= entry
;
7624 static struct section_list
*
7625 find_aarch64_elf_section_entry (asection
*sec
)
7627 struct section_list
*entry
;
7628 static struct section_list
*last_entry
= NULL
;
7630 /* This is a short cut for the typical case where the sections are added
7631 to the sections_with_aarch64_elf_section_data list in forward order and
7632 then looked up here in backwards order. This makes a real difference
7633 to the ld-srec/sec64k.exp linker test. */
7634 entry
= sections_with_aarch64_elf_section_data
;
7635 if (last_entry
!= NULL
)
7637 if (last_entry
->sec
== sec
)
7639 else if (last_entry
->next
!= NULL
&& last_entry
->next
->sec
== sec
)
7640 entry
= last_entry
->next
;
7643 for (; entry
; entry
= entry
->next
)
7644 if (entry
->sec
== sec
)
7648 /* Record the entry prior to this one - it is the entry we are
7649 most likely to want to locate next time. Also this way if we
7650 have been called from
7651 unrecord_section_with_aarch64_elf_section_data () we will not
7652 be caching a pointer that is about to be freed. */
7653 last_entry
= entry
->prev
;
7659 unrecord_section_with_aarch64_elf_section_data (asection
*sec
)
7661 struct section_list
*entry
;
7663 entry
= find_aarch64_elf_section_entry (sec
);
7667 if (entry
->prev
!= NULL
)
7668 entry
->prev
->next
= entry
->next
;
7669 if (entry
->next
!= NULL
)
7670 entry
->next
->prev
= entry
->prev
;
7671 if (entry
== sections_with_aarch64_elf_section_data
)
7672 sections_with_aarch64_elf_section_data
= entry
->next
;
7681 struct bfd_link_info
*info
;
7684 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
7685 asection
*, struct elf_link_hash_entry
*);
7686 } output_arch_syminfo
;
7688 enum map_symbol_type
7695 /* Output a single mapping symbol. */
7698 elfNN_aarch64_output_map_sym (output_arch_syminfo
*osi
,
7699 enum map_symbol_type type
, bfd_vma offset
)
7701 static const char *names
[2] = { "$x", "$d" };
7702 Elf_Internal_Sym sym
;
7704 sym
.st_value
= (osi
->sec
->output_section
->vma
7705 + osi
->sec
->output_offset
+ offset
);
7708 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
7709 sym
.st_shndx
= osi
->sec_shndx
;
7710 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
7713 /* Output a single local symbol for a generated stub. */
7716 elfNN_aarch64_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
7717 bfd_vma offset
, bfd_vma size
)
7719 Elf_Internal_Sym sym
;
7721 sym
.st_value
= (osi
->sec
->output_section
->vma
7722 + osi
->sec
->output_offset
+ offset
);
7725 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7726 sym
.st_shndx
= osi
->sec_shndx
;
7727 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
7731 aarch64_map_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
7733 struct elf_aarch64_stub_hash_entry
*stub_entry
;
7737 output_arch_syminfo
*osi
;
7739 /* Massage our args to the form they really have. */
7740 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
7741 osi
= (output_arch_syminfo
*) in_arg
;
7743 stub_sec
= stub_entry
->stub_sec
;
7745 /* Ensure this stub is attached to the current section being
7747 if (stub_sec
!= osi
->sec
)
7750 addr
= (bfd_vma
) stub_entry
->stub_offset
;
7752 stub_name
= stub_entry
->output_name
;
7754 switch (stub_entry
->stub_type
)
7756 case aarch64_stub_adrp_branch
:
7757 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
7758 sizeof (aarch64_adrp_branch_stub
)))
7760 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
7763 case aarch64_stub_long_branch
:
7764 if (!elfNN_aarch64_output_stub_sym
7765 (osi
, stub_name
, addr
, sizeof (aarch64_long_branch_stub
)))
7767 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
7769 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_DATA
, addr
+ 16))
7772 case aarch64_stub_erratum_835769_veneer
:
7773 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
7774 sizeof (aarch64_erratum_835769_stub
)))
7776 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
7779 case aarch64_stub_erratum_843419_veneer
:
7780 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
7781 sizeof (aarch64_erratum_843419_stub
)))
7783 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
7794 /* Output mapping symbols for linker generated sections. */
7797 elfNN_aarch64_output_arch_local_syms (bfd
*output_bfd
,
7798 struct bfd_link_info
*info
,
7800 int (*func
) (void *, const char *,
7803 struct elf_link_hash_entry
7806 output_arch_syminfo osi
;
7807 struct elf_aarch64_link_hash_table
*htab
;
7809 htab
= elf_aarch64_hash_table (info
);
7815 /* Long calls stubs. */
7816 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
7820 for (stub_sec
= htab
->stub_bfd
->sections
;
7821 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
7823 /* Ignore non-stub sections. */
7824 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
7829 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
7830 (output_bfd
, osi
.sec
->output_section
);
7832 /* The first instruction in a stub is always a branch. */
7833 if (!elfNN_aarch64_output_map_sym (&osi
, AARCH64_MAP_INSN
, 0))
7836 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_map_one_stub
,
7841 /* Finally, output mapping symbols for the PLT. */
7842 if (!htab
->root
.splt
|| htab
->root
.splt
->size
== 0)
7845 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
7846 (output_bfd
, htab
->root
.splt
->output_section
);
7847 osi
.sec
= htab
->root
.splt
;
7849 elfNN_aarch64_output_map_sym (&osi
, AARCH64_MAP_INSN
, 0);
7855 /* Allocate target specific section data. */
7858 elfNN_aarch64_new_section_hook (bfd
*abfd
, asection
*sec
)
7860 if (!sec
->used_by_bfd
)
7862 _aarch64_elf_section_data
*sdata
;
7863 bfd_size_type amt
= sizeof (*sdata
);
7865 sdata
= bfd_zalloc (abfd
, amt
);
7868 sec
->used_by_bfd
= sdata
;
7871 record_section_with_aarch64_elf_section_data (sec
);
7873 return _bfd_elf_new_section_hook (abfd
, sec
);
7878 unrecord_section_via_map_over_sections (bfd
*abfd ATTRIBUTE_UNUSED
,
7880 void *ignore ATTRIBUTE_UNUSED
)
7882 unrecord_section_with_aarch64_elf_section_data (sec
);
7886 elfNN_aarch64_close_and_cleanup (bfd
*abfd
)
7889 bfd_map_over_sections (abfd
,
7890 unrecord_section_via_map_over_sections
, NULL
);
7892 return _bfd_elf_close_and_cleanup (abfd
);
7896 elfNN_aarch64_bfd_free_cached_info (bfd
*abfd
)
7899 bfd_map_over_sections (abfd
,
7900 unrecord_section_via_map_over_sections
, NULL
);
7902 return _bfd_free_cached_info (abfd
);
7905 /* Create dynamic sections. This is different from the ARM backend in that
7906 the got, plt, gotplt and their relocation sections are all created in the
7907 standard part of the bfd elf backend. */
7910 elfNN_aarch64_create_dynamic_sections (bfd
*dynobj
,
7911 struct bfd_link_info
*info
)
7913 /* We need to create .got section. */
7914 if (!aarch64_elf_create_got_section (dynobj
, info
))
7917 return _bfd_elf_create_dynamic_sections (dynobj
, info
);
7921 /* Allocate space in .plt, .got and associated reloc sections for
7925 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
7927 struct bfd_link_info
*info
;
7928 struct elf_aarch64_link_hash_table
*htab
;
7929 struct elf_aarch64_link_hash_entry
*eh
;
7930 struct elf_dyn_relocs
*p
;
7932 /* An example of a bfd_link_hash_indirect symbol is versioned
7933 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7934 -> __gxx_personality_v0(bfd_link_hash_defined)
7936 There is no need to process bfd_link_hash_indirect symbols here
7937 because we will also be presented with the concrete instance of
7938 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7939 called to copy all relevant data from the generic to the concrete
7941 if (h
->root
.type
== bfd_link_hash_indirect
)
7944 if (h
->root
.type
== bfd_link_hash_warning
)
7945 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7947 info
= (struct bfd_link_info
*) inf
;
7948 htab
= elf_aarch64_hash_table (info
);
7950 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7951 here if it is defined and referenced in a non-shared object. */
7952 if (h
->type
== STT_GNU_IFUNC
7955 else if (htab
->root
.dynamic_sections_created
&& h
->plt
.refcount
> 0)
7957 /* Make sure this symbol is output as a dynamic symbol.
7958 Undefined weak syms won't yet be marked as dynamic. */
7959 if (h
->dynindx
== -1 && !h
->forced_local
7960 && h
->root
.type
== bfd_link_hash_undefweak
)
7962 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
7966 if (bfd_link_pic (info
) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
7968 asection
*s
= htab
->root
.splt
;
7970 /* If this is the first .plt entry, make room for the special
7973 s
->size
+= htab
->plt_header_size
;
7975 h
->plt
.offset
= s
->size
;
7977 /* If this symbol is not defined in a regular file, and we are
7978 not generating a shared library, then set the symbol to this
7979 location in the .plt. This is required to make function
7980 pointers compare as equal between the normal executable and
7981 the shared library. */
7982 if (!bfd_link_pic (info
) && !h
->def_regular
)
7984 h
->root
.u
.def
.section
= s
;
7985 h
->root
.u
.def
.value
= h
->plt
.offset
;
7988 /* Make room for this entry. For now we only create the
7989 small model PLT entries. We later need to find a way
7990 of relaxing into these from the large model PLT entries. */
7991 s
->size
+= PLT_SMALL_ENTRY_SIZE
;
7993 /* We also need to make an entry in the .got.plt section, which
7994 will be placed in the .got section by the linker script. */
7995 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
7997 /* We also need to make an entry in the .rela.plt section. */
7998 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
8000 /* We need to ensure that all GOT entries that serve the PLT
8001 are consecutive with the special GOT slots [0] [1] and
8002 [2]. Any addtional relocations, such as
8003 R_AARCH64_TLSDESC, must be placed after the PLT related
8004 entries. We abuse the reloc_count such that during
8005 sizing we adjust reloc_count to indicate the number of
8006 PLT related reserved entries. In subsequent phases when
8007 filling in the contents of the reloc entries, PLT related
8008 entries are placed by computing their PLT index (0
8009 .. reloc_count). While other none PLT relocs are placed
8010 at the slot indicated by reloc_count and reloc_count is
8013 htab
->root
.srelplt
->reloc_count
++;
8017 h
->plt
.offset
= (bfd_vma
) - 1;
8023 h
->plt
.offset
= (bfd_vma
) - 1;
8027 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
8028 eh
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
8030 if (h
->got
.refcount
> 0)
8033 unsigned got_type
= elf_aarch64_hash_entry (h
)->got_type
;
8035 h
->got
.offset
= (bfd_vma
) - 1;
8037 dyn
= htab
->root
.dynamic_sections_created
;
8039 /* Make sure this symbol is output as a dynamic symbol.
8040 Undefined weak syms won't yet be marked as dynamic. */
8041 if (dyn
&& h
->dynindx
== -1 && !h
->forced_local
8042 && h
->root
.type
== bfd_link_hash_undefweak
)
8044 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
8048 if (got_type
== GOT_UNKNOWN
)
8051 else if (got_type
== GOT_NORMAL
)
8053 h
->got
.offset
= htab
->root
.sgot
->size
;
8054 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
8055 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8056 || h
->root
.type
!= bfd_link_hash_undefweak
)
8057 && (bfd_link_pic (info
)
8058 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
))
8059 /* Undefined weak symbol in static PIE resolves to 0 without
8060 any dynamic relocations. */
8061 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8063 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
8069 if (got_type
& GOT_TLSDESC_GD
)
8071 eh
->tlsdesc_got_jump_table_offset
=
8072 (htab
->root
.sgotplt
->size
8073 - aarch64_compute_jump_table_size (htab
));
8074 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
8075 h
->got
.offset
= (bfd_vma
) - 2;
8078 if (got_type
& GOT_TLS_GD
)
8080 h
->got
.offset
= htab
->root
.sgot
->size
;
8081 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
8084 if (got_type
& GOT_TLS_IE
)
8086 h
->got
.offset
= htab
->root
.sgot
->size
;
8087 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
8090 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
8091 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8092 || h
->root
.type
!= bfd_link_hash_undefweak
)
8093 && (!bfd_link_executable (info
)
8095 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
8097 if (got_type
& GOT_TLSDESC_GD
)
8099 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
8100 /* Note reloc_count not incremented here! We have
8101 already adjusted reloc_count for this relocation
8104 /* TLSDESC PLT is now needed, but not yet determined. */
8105 htab
->tlsdesc_plt
= (bfd_vma
) - 1;
8108 if (got_type
& GOT_TLS_GD
)
8109 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
8111 if (got_type
& GOT_TLS_IE
)
8112 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
8118 h
->got
.offset
= (bfd_vma
) - 1;
8121 if (eh
->dyn_relocs
== NULL
)
8124 /* In the shared -Bsymbolic case, discard space allocated for
8125 dynamic pc-relative relocs against symbols which turn out to be
8126 defined in regular objects. For the normal shared case, discard
8127 space for pc-relative relocs that have become local due to symbol
8128 visibility changes. */
8130 if (bfd_link_pic (info
))
8132 /* Relocs that use pc_count are those that appear on a call
8133 insn, or certain REL relocs that can generated via assembly.
8134 We want calls to protected symbols to resolve directly to the
8135 function rather than going via the plt. If people want
8136 function pointer comparisons to work as expected then they
8137 should avoid writing weird assembly. */
8138 if (SYMBOL_CALLS_LOCAL (info
, h
))
8140 struct elf_dyn_relocs
**pp
;
8142 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
;)
8144 p
->count
-= p
->pc_count
;
8153 /* Also discard relocs on undefined weak syms with non-default
8155 if (eh
->dyn_relocs
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
)
8157 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
8158 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8159 eh
->dyn_relocs
= NULL
;
8161 /* Make sure undefined weak symbols are output as a dynamic
8163 else if (h
->dynindx
== -1
8165 && h
->root
.type
== bfd_link_hash_undefweak
8166 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
8171 else if (ELIMINATE_COPY_RELOCS
)
8173 /* For the non-shared case, discard space for relocs against
8174 symbols which turn out to need copy relocs or are not
8180 || (htab
->root
.dynamic_sections_created
8181 && (h
->root
.type
== bfd_link_hash_undefweak
8182 || h
->root
.type
== bfd_link_hash_undefined
))))
8184 /* Make sure this symbol is output as a dynamic symbol.
8185 Undefined weak syms won't yet be marked as dynamic. */
8186 if (h
->dynindx
== -1
8188 && h
->root
.type
== bfd_link_hash_undefweak
8189 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
8192 /* If that succeeded, we know we'll be keeping all the
8194 if (h
->dynindx
!= -1)
8198 eh
->dyn_relocs
= NULL
;
8203 /* Finally, allocate space. */
8204 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
8208 sreloc
= elf_section_data (p
->sec
)->sreloc
;
8210 BFD_ASSERT (sreloc
!= NULL
);
8212 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
8218 /* Allocate space in .plt, .got and associated reloc sections for
8219 ifunc dynamic relocs. */
8222 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry
*h
,
8225 struct bfd_link_info
*info
;
8226 struct elf_aarch64_link_hash_table
*htab
;
8227 struct elf_aarch64_link_hash_entry
*eh
;
8229 /* An example of a bfd_link_hash_indirect symbol is versioned
8230 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8231 -> __gxx_personality_v0(bfd_link_hash_defined)
8233 There is no need to process bfd_link_hash_indirect symbols here
8234 because we will also be presented with the concrete instance of
8235 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8236 called to copy all relevant data from the generic to the concrete
8238 if (h
->root
.type
== bfd_link_hash_indirect
)
8241 if (h
->root
.type
== bfd_link_hash_warning
)
8242 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8244 info
= (struct bfd_link_info
*) inf
;
8245 htab
= elf_aarch64_hash_table (info
);
8247 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
8249 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8250 here if it is defined and referenced in a non-shared object. */
8251 if (h
->type
== STT_GNU_IFUNC
8253 return _bfd_elf_allocate_ifunc_dyn_relocs (info
, h
,
8256 htab
->plt_entry_size
,
8257 htab
->plt_header_size
,
8263 /* Allocate space in .plt, .got and associated reloc sections for
8264 local dynamic relocs. */
8267 elfNN_aarch64_allocate_local_dynrelocs (void **slot
, void *inf
)
8269 struct elf_link_hash_entry
*h
8270 = (struct elf_link_hash_entry
*) *slot
;
8272 if (h
->type
!= STT_GNU_IFUNC
8276 || h
->root
.type
!= bfd_link_hash_defined
)
8279 return elfNN_aarch64_allocate_dynrelocs (h
, inf
);
8282 /* Allocate space in .plt, .got and associated reloc sections for
8283 local ifunc dynamic relocs. */
8286 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot
, void *inf
)
8288 struct elf_link_hash_entry
*h
8289 = (struct elf_link_hash_entry
*) *slot
;
8291 if (h
->type
!= STT_GNU_IFUNC
8295 || h
->root
.type
!= bfd_link_hash_defined
)
8298 return elfNN_aarch64_allocate_ifunc_dynrelocs (h
, inf
);
8301 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8302 read-only sections. */
8305 maybe_set_textrel (struct elf_link_hash_entry
*h
, void *info_p
)
8309 if (h
->root
.type
== bfd_link_hash_indirect
)
8312 sec
= readonly_dynrelocs (h
);
8315 struct bfd_link_info
*info
= (struct bfd_link_info
*) info_p
;
8317 info
->flags
|= DF_TEXTREL
;
8318 info
->callbacks
->minfo
8319 (_("%B: dynamic relocation against `%T' in read-only section `%A'\n"),
8320 sec
->owner
, h
->root
.root
.string
, sec
);
8322 /* Not an error, just cut short the traversal. */
8328 /* This is the most important function of all . Innocuosly named
8332 elfNN_aarch64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
8333 struct bfd_link_info
*info
)
8335 struct elf_aarch64_link_hash_table
*htab
;
8341 htab
= elf_aarch64_hash_table ((info
));
8342 dynobj
= htab
->root
.dynobj
;
8344 BFD_ASSERT (dynobj
!= NULL
);
8346 if (htab
->root
.dynamic_sections_created
)
8348 if (bfd_link_executable (info
) && !info
->nointerp
)
8350 s
= bfd_get_linker_section (dynobj
, ".interp");
8353 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
8354 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
8358 /* Set up .got offsets for local syms, and space for local dynamic
8360 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
8362 struct elf_aarch64_local_symbol
*locals
= NULL
;
8363 Elf_Internal_Shdr
*symtab_hdr
;
8367 if (!is_aarch64_elf (ibfd
))
8370 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
8372 struct elf_dyn_relocs
*p
;
8374 for (p
= (struct elf_dyn_relocs
*)
8375 (elf_section_data (s
)->local_dynrel
); p
!= NULL
; p
= p
->next
)
8377 if (!bfd_is_abs_section (p
->sec
)
8378 && bfd_is_abs_section (p
->sec
->output_section
))
8380 /* Input section has been discarded, either because
8381 it is a copy of a linkonce section or due to
8382 linker script /DISCARD/, so we'll be discarding
8385 else if (p
->count
!= 0)
8387 srel
= elf_section_data (p
->sec
)->sreloc
;
8388 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
8389 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
8390 info
->flags
|= DF_TEXTREL
;
8395 locals
= elf_aarch64_locals (ibfd
);
8399 symtab_hdr
= &elf_symtab_hdr (ibfd
);
8400 srel
= htab
->root
.srelgot
;
8401 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
8403 locals
[i
].got_offset
= (bfd_vma
) - 1;
8404 locals
[i
].tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
8405 if (locals
[i
].got_refcount
> 0)
8407 unsigned got_type
= locals
[i
].got_type
;
8408 if (got_type
& GOT_TLSDESC_GD
)
8410 locals
[i
].tlsdesc_got_jump_table_offset
=
8411 (htab
->root
.sgotplt
->size
8412 - aarch64_compute_jump_table_size (htab
));
8413 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
8414 locals
[i
].got_offset
= (bfd_vma
) - 2;
8417 if (got_type
& GOT_TLS_GD
)
8419 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
8420 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
8423 if (got_type
& GOT_TLS_IE
8424 || got_type
& GOT_NORMAL
)
8426 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
8427 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
8430 if (got_type
== GOT_UNKNOWN
)
8434 if (bfd_link_pic (info
))
8436 if (got_type
& GOT_TLSDESC_GD
)
8438 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
8439 /* Note RELOC_COUNT not incremented here! */
8440 htab
->tlsdesc_plt
= (bfd_vma
) - 1;
8443 if (got_type
& GOT_TLS_GD
)
8444 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
8446 if (got_type
& GOT_TLS_IE
8447 || got_type
& GOT_NORMAL
)
8448 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
8453 locals
[i
].got_refcount
= (bfd_vma
) - 1;
8459 /* Allocate global sym .plt and .got entries, and space for global
8460 sym dynamic relocs. */
8461 elf_link_hash_traverse (&htab
->root
, elfNN_aarch64_allocate_dynrelocs
,
8464 /* Allocate global ifunc sym .plt and .got entries, and space for global
8465 ifunc sym dynamic relocs. */
8466 elf_link_hash_traverse (&htab
->root
, elfNN_aarch64_allocate_ifunc_dynrelocs
,
8469 /* Allocate .plt and .got entries, and space for local symbols. */
8470 htab_traverse (htab
->loc_hash_table
,
8471 elfNN_aarch64_allocate_local_dynrelocs
,
8474 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8475 htab_traverse (htab
->loc_hash_table
,
8476 elfNN_aarch64_allocate_local_ifunc_dynrelocs
,
8479 /* For every jump slot reserved in the sgotplt, reloc_count is
8480 incremented. However, when we reserve space for TLS descriptors,
8481 it's not incremented, so in order to compute the space reserved
8482 for them, it suffices to multiply the reloc count by the jump
8485 if (htab
->root
.srelplt
)
8486 htab
->sgotplt_jump_table_size
= aarch64_compute_jump_table_size (htab
);
8488 if (htab
->tlsdesc_plt
)
8490 if (htab
->root
.splt
->size
== 0)
8491 htab
->root
.splt
->size
+= PLT_ENTRY_SIZE
;
8493 htab
->tlsdesc_plt
= htab
->root
.splt
->size
;
8494 htab
->root
.splt
->size
+= PLT_TLSDESC_ENTRY_SIZE
;
8496 /* If we're not using lazy TLS relocations, don't generate the
8497 GOT entry required. */
8498 if (!(info
->flags
& DF_BIND_NOW
))
8500 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
8501 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
8505 /* Init mapping symbols information to use later to distingush between
8506 code and data while scanning for errata. */
8507 if (htab
->fix_erratum_835769
|| htab
->fix_erratum_843419
)
8508 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
8510 if (!is_aarch64_elf (ibfd
))
8512 bfd_elfNN_aarch64_init_maps (ibfd
);
8515 /* We now have determined the sizes of the various dynamic sections.
8516 Allocate memory for them. */
8518 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8520 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8523 if (s
== htab
->root
.splt
8524 || s
== htab
->root
.sgot
8525 || s
== htab
->root
.sgotplt
8526 || s
== htab
->root
.iplt
8527 || s
== htab
->root
.igotplt
8528 || s
== htab
->root
.sdynbss
8529 || s
== htab
->root
.sdynrelro
)
8531 /* Strip this section if we don't need it; see the
8534 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
8536 if (s
->size
!= 0 && s
!= htab
->root
.srelplt
)
8539 /* We use the reloc_count field as a counter if we need
8540 to copy relocs into the output file. */
8541 if (s
!= htab
->root
.srelplt
)
8546 /* It's not one of our sections, so don't allocate space. */
8552 /* If we don't need this section, strip it from the
8553 output file. This is mostly to handle .rela.bss and
8554 .rela.plt. We must create both sections in
8555 create_dynamic_sections, because they must be created
8556 before the linker maps input sections to output
8557 sections. The linker does that before
8558 adjust_dynamic_symbol is called, and it is that
8559 function which decides whether anything needs to go
8560 into these sections. */
8561 s
->flags
|= SEC_EXCLUDE
;
8565 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
8568 /* Allocate memory for the section contents. We use bfd_zalloc
8569 here in case unused entries are not reclaimed before the
8570 section's contents are written out. This should not happen,
8571 but this way if it does, we get a R_AARCH64_NONE reloc instead
8573 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
8574 if (s
->contents
== NULL
)
8578 if (htab
->root
.dynamic_sections_created
)
8580 /* Add some entries to the .dynamic section. We fill in the
8581 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8582 must add the entries now so that we get the correct size for
8583 the .dynamic section. The DT_DEBUG entry is filled in by the
8584 dynamic linker and used by the debugger. */
8585 #define add_dynamic_entry(TAG, VAL) \
8586 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8588 if (bfd_link_executable (info
))
8590 if (!add_dynamic_entry (DT_DEBUG
, 0))
8594 if (htab
->root
.splt
->size
!= 0)
8596 if (!add_dynamic_entry (DT_PLTGOT
, 0)
8597 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
8598 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
8599 || !add_dynamic_entry (DT_JMPREL
, 0))
8602 if (htab
->tlsdesc_plt
8603 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
8604 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
8610 if (!add_dynamic_entry (DT_RELA
, 0)
8611 || !add_dynamic_entry (DT_RELASZ
, 0)
8612 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
8615 /* If any dynamic relocs apply to a read-only section,
8616 then we need a DT_TEXTREL entry. */
8617 if ((info
->flags
& DF_TEXTREL
) == 0)
8618 elf_link_hash_traverse (&htab
->root
, maybe_set_textrel
, info
);
8620 if ((info
->flags
& DF_TEXTREL
) != 0)
8622 if (!add_dynamic_entry (DT_TEXTREL
, 0))
8627 #undef add_dynamic_entry
8633 elf_aarch64_update_plt_entry (bfd
*output_bfd
,
8634 bfd_reloc_code_real_type r_type
,
8635 bfd_byte
*plt_entry
, bfd_vma value
)
8637 reloc_howto_type
*howto
= elfNN_aarch64_howto_from_bfd_reloc (r_type
);
8639 /* FIXME: We should check the return value from this function call. */
8640 (void) _bfd_aarch64_elf_put_addend (output_bfd
, plt_entry
, r_type
, howto
, value
);
8644 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry
*h
,
8645 struct elf_aarch64_link_hash_table
8646 *htab
, bfd
*output_bfd
,
8647 struct bfd_link_info
*info
)
8649 bfd_byte
*plt_entry
;
8652 bfd_vma gotplt_entry_address
;
8653 bfd_vma plt_entry_address
;
8654 Elf_Internal_Rela rela
;
8656 asection
*plt
, *gotplt
, *relplt
;
8658 /* When building a static executable, use .iplt, .igot.plt and
8659 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8660 if (htab
->root
.splt
!= NULL
)
8662 plt
= htab
->root
.splt
;
8663 gotplt
= htab
->root
.sgotplt
;
8664 relplt
= htab
->root
.srelplt
;
8668 plt
= htab
->root
.iplt
;
8669 gotplt
= htab
->root
.igotplt
;
8670 relplt
= htab
->root
.irelplt
;
8673 /* Get the index in the procedure linkage table which
8674 corresponds to this symbol. This is the index of this symbol
8675 in all the symbols for which we are making plt entries. The
8676 first entry in the procedure linkage table is reserved.
8678 Get the offset into the .got table of the entry that
8679 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8680 bytes. The first three are reserved for the dynamic linker.
8682 For static executables, we don't reserve anything. */
8684 if (plt
== htab
->root
.splt
)
8686 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
8687 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
8691 plt_index
= h
->plt
.offset
/ htab
->plt_entry_size
;
8692 got_offset
= plt_index
* GOT_ENTRY_SIZE
;
8695 plt_entry
= plt
->contents
+ h
->plt
.offset
;
8696 plt_entry_address
= plt
->output_section
->vma
8697 + plt
->output_offset
+ h
->plt
.offset
;
8698 gotplt_entry_address
= gotplt
->output_section
->vma
+
8699 gotplt
->output_offset
+ got_offset
;
8701 /* Copy in the boiler-plate for the PLTn entry. */
8702 memcpy (plt_entry
, elfNN_aarch64_small_plt_entry
, PLT_SMALL_ENTRY_SIZE
);
8704 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8705 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8706 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
8708 PG (gotplt_entry_address
) -
8709 PG (plt_entry_address
));
8711 /* Fill in the lo12 bits for the load from the pltgot. */
8712 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_LDSTNN_LO12
,
8714 PG_OFFSET (gotplt_entry_address
));
8716 /* Fill in the lo12 bits for the add from the pltgot entry. */
8717 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADD_LO12
,
8719 PG_OFFSET (gotplt_entry_address
));
8721 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8722 bfd_put_NN (output_bfd
,
8723 plt
->output_section
->vma
+ plt
->output_offset
,
8724 gotplt
->contents
+ got_offset
);
8726 rela
.r_offset
= gotplt_entry_address
;
8728 if (h
->dynindx
== -1
8729 || ((bfd_link_executable (info
)
8730 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
8732 && h
->type
== STT_GNU_IFUNC
))
8734 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8735 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8736 rela
.r_info
= ELFNN_R_INFO (0, AARCH64_R (IRELATIVE
));
8737 rela
.r_addend
= (h
->root
.u
.def
.value
8738 + h
->root
.u
.def
.section
->output_section
->vma
8739 + h
->root
.u
.def
.section
->output_offset
);
8743 /* Fill in the entry in the .rela.plt section. */
8744 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (JUMP_SLOT
));
8748 /* Compute the relocation entry to used based on PLT index and do
8749 not adjust reloc_count. The reloc_count has already been adjusted
8750 to account for this entry. */
8751 loc
= relplt
->contents
+ plt_index
* RELOC_SIZE (htab
);
8752 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
8755 /* Size sections even though they're not dynamic. We use it to setup
8756 _TLS_MODULE_BASE_, if needed. */
8759 elfNN_aarch64_always_size_sections (bfd
*output_bfd
,
8760 struct bfd_link_info
*info
)
8764 if (bfd_link_relocatable (info
))
8767 tls_sec
= elf_hash_table (info
)->tls_sec
;
8771 struct elf_link_hash_entry
*tlsbase
;
8773 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
8774 "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
8778 struct bfd_link_hash_entry
*h
= NULL
;
8779 const struct elf_backend_data
*bed
=
8780 get_elf_backend_data (output_bfd
);
8782 if (!(_bfd_generic_link_add_one_symbol
8783 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
8784 tls_sec
, 0, NULL
, FALSE
, bed
->collect
, &h
)))
8787 tlsbase
->type
= STT_TLS
;
8788 tlsbase
= (struct elf_link_hash_entry
*) h
;
8789 tlsbase
->def_regular
= 1;
8790 tlsbase
->other
= STV_HIDDEN
;
8791 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
8798 /* Finish up dynamic symbol handling. We set the contents of various
8799 dynamic sections here. */
8802 elfNN_aarch64_finish_dynamic_symbol (bfd
*output_bfd
,
8803 struct bfd_link_info
*info
,
8804 struct elf_link_hash_entry
*h
,
8805 Elf_Internal_Sym
*sym
)
8807 struct elf_aarch64_link_hash_table
*htab
;
8808 htab
= elf_aarch64_hash_table (info
);
8810 if (h
->plt
.offset
!= (bfd_vma
) - 1)
8812 asection
*plt
, *gotplt
, *relplt
;
8814 /* This symbol has an entry in the procedure linkage table. Set
8817 /* When building a static executable, use .iplt, .igot.plt and
8818 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8819 if (htab
->root
.splt
!= NULL
)
8821 plt
= htab
->root
.splt
;
8822 gotplt
= htab
->root
.sgotplt
;
8823 relplt
= htab
->root
.srelplt
;
8827 plt
= htab
->root
.iplt
;
8828 gotplt
= htab
->root
.igotplt
;
8829 relplt
= htab
->root
.irelplt
;
8832 /* This symbol has an entry in the procedure linkage table. Set
8834 if ((h
->dynindx
== -1
8835 && !((h
->forced_local
|| bfd_link_executable (info
))
8837 && h
->type
== STT_GNU_IFUNC
))
8843 elfNN_aarch64_create_small_pltn_entry (h
, htab
, output_bfd
, info
);
8844 if (!h
->def_regular
)
8846 /* Mark the symbol as undefined, rather than as defined in
8847 the .plt section. */
8848 sym
->st_shndx
= SHN_UNDEF
;
8849 /* If the symbol is weak we need to clear the value.
8850 Otherwise, the PLT entry would provide a definition for
8851 the symbol even if the symbol wasn't defined anywhere,
8852 and so the symbol would never be NULL. Leave the value if
8853 there were any relocations where pointer equality matters
8854 (this is a clue for the dynamic linker, to make function
8855 pointer comparisons work between an application and shared
8857 if (!h
->ref_regular_nonweak
|| !h
->pointer_equality_needed
)
8862 if (h
->got
.offset
!= (bfd_vma
) - 1
8863 && elf_aarch64_hash_entry (h
)->got_type
== GOT_NORMAL
8864 /* Undefined weak symbol in static PIE resolves to 0 without
8865 any dynamic relocations. */
8866 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8868 Elf_Internal_Rela rela
;
8871 /* This symbol has an entry in the global offset table. Set it
8873 if (htab
->root
.sgot
== NULL
|| htab
->root
.srelgot
== NULL
)
8876 rela
.r_offset
= (htab
->root
.sgot
->output_section
->vma
8877 + htab
->root
.sgot
->output_offset
8878 + (h
->got
.offset
& ~(bfd_vma
) 1));
8881 && h
->type
== STT_GNU_IFUNC
)
8883 if (bfd_link_pic (info
))
8885 /* Generate R_AARCH64_GLOB_DAT. */
8892 if (!h
->pointer_equality_needed
)
8895 /* For non-shared object, we can't use .got.plt, which
8896 contains the real function address if we need pointer
8897 equality. We load the GOT entry with the PLT entry. */
8898 plt
= htab
->root
.splt
? htab
->root
.splt
: htab
->root
.iplt
;
8899 bfd_put_NN (output_bfd
, (plt
->output_section
->vma
8900 + plt
->output_offset
8902 htab
->root
.sgot
->contents
8903 + (h
->got
.offset
& ~(bfd_vma
) 1));
8907 else if (bfd_link_pic (info
) && SYMBOL_REFERENCES_LOCAL (info
, h
))
8909 if (!(h
->def_regular
|| ELF_COMMON_DEF_P (h
)))
8912 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
8913 rela
.r_info
= ELFNN_R_INFO (0, AARCH64_R (RELATIVE
));
8914 rela
.r_addend
= (h
->root
.u
.def
.value
8915 + h
->root
.u
.def
.section
->output_section
->vma
8916 + h
->root
.u
.def
.section
->output_offset
);
8921 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
8922 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
8923 htab
->root
.sgot
->contents
+ h
->got
.offset
);
8924 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (GLOB_DAT
));
8928 loc
= htab
->root
.srelgot
->contents
;
8929 loc
+= htab
->root
.srelgot
->reloc_count
++ * RELOC_SIZE (htab
);
8930 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
8935 Elf_Internal_Rela rela
;
8939 /* This symbol needs a copy reloc. Set it up. */
8940 if (h
->dynindx
== -1
8941 || (h
->root
.type
!= bfd_link_hash_defined
8942 && h
->root
.type
!= bfd_link_hash_defweak
)
8943 || htab
->root
.srelbss
== NULL
)
8946 rela
.r_offset
= (h
->root
.u
.def
.value
8947 + h
->root
.u
.def
.section
->output_section
->vma
8948 + h
->root
.u
.def
.section
->output_offset
);
8949 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (COPY
));
8951 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
8952 s
= htab
->root
.sreldynrelro
;
8954 s
= htab
->root
.srelbss
;
8955 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
8956 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
8959 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8960 be NULL for local symbols. */
8962 && (h
== elf_hash_table (info
)->hdynamic
8963 || h
== elf_hash_table (info
)->hgot
))
8964 sym
->st_shndx
= SHN_ABS
;
8969 /* Finish up local dynamic symbol handling. We set the contents of
8970 various dynamic sections here. */
8973 elfNN_aarch64_finish_local_dynamic_symbol (void **slot
, void *inf
)
8975 struct elf_link_hash_entry
*h
8976 = (struct elf_link_hash_entry
*) *slot
;
8977 struct bfd_link_info
*info
8978 = (struct bfd_link_info
*) inf
;
8980 return elfNN_aarch64_finish_dynamic_symbol (info
->output_bfd
,
8985 elfNN_aarch64_init_small_plt0_entry (bfd
*output_bfd ATTRIBUTE_UNUSED
,
8986 struct elf_aarch64_link_hash_table
8989 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8990 small and large plts and at the minute just generates
8993 /* PLT0 of the small PLT looks like this in ELF64 -
8994 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8995 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8996 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8998 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8999 // GOTPLT entry for this.
9001 PLT0 will be slightly different in ELF32 due to different got entry
9003 bfd_vma plt_got_2nd_ent
; /* Address of GOT[2]. */
9007 memcpy (htab
->root
.splt
->contents
, elfNN_aarch64_small_plt0_entry
,
9009 elf_section_data (htab
->root
.splt
->output_section
)->this_hdr
.sh_entsize
=
9012 plt_got_2nd_ent
= (htab
->root
.sgotplt
->output_section
->vma
9013 + htab
->root
.sgotplt
->output_offset
9014 + GOT_ENTRY_SIZE
* 2);
9016 plt_base
= htab
->root
.splt
->output_section
->vma
+
9017 htab
->root
.splt
->output_offset
;
9019 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9020 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9021 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
9022 htab
->root
.splt
->contents
+ 4,
9023 PG (plt_got_2nd_ent
) - PG (plt_base
+ 4));
9025 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_LDSTNN_LO12
,
9026 htab
->root
.splt
->contents
+ 8,
9027 PG_OFFSET (plt_got_2nd_ent
));
9029 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADD_LO12
,
9030 htab
->root
.splt
->contents
+ 12,
9031 PG_OFFSET (plt_got_2nd_ent
));
9035 elfNN_aarch64_finish_dynamic_sections (bfd
*output_bfd
,
9036 struct bfd_link_info
*info
)
9038 struct elf_aarch64_link_hash_table
*htab
;
9042 htab
= elf_aarch64_hash_table (info
);
9043 dynobj
= htab
->root
.dynobj
;
9044 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
9046 if (htab
->root
.dynamic_sections_created
)
9048 ElfNN_External_Dyn
*dyncon
, *dynconend
;
9050 if (sdyn
== NULL
|| htab
->root
.sgot
== NULL
)
9053 dyncon
= (ElfNN_External_Dyn
*) sdyn
->contents
;
9054 dynconend
= (ElfNN_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
9055 for (; dyncon
< dynconend
; dyncon
++)
9057 Elf_Internal_Dyn dyn
;
9060 bfd_elfNN_swap_dyn_in (dynobj
, dyncon
, &dyn
);
9068 s
= htab
->root
.sgotplt
;
9069 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
9073 s
= htab
->root
.srelplt
;
9074 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
9078 s
= htab
->root
.srelplt
;
9079 dyn
.d_un
.d_val
= s
->size
;
9082 case DT_TLSDESC_PLT
:
9083 s
= htab
->root
.splt
;
9084 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
9085 + htab
->tlsdesc_plt
;
9088 case DT_TLSDESC_GOT
:
9089 s
= htab
->root
.sgot
;
9090 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
9091 + htab
->dt_tlsdesc_got
;
9095 bfd_elfNN_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
9100 /* Fill in the special first entry in the procedure linkage table. */
9101 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
9103 elfNN_aarch64_init_small_plt0_entry (output_bfd
, htab
);
9105 elf_section_data (htab
->root
.splt
->output_section
)->
9106 this_hdr
.sh_entsize
= htab
->plt_entry_size
;
9109 if (htab
->tlsdesc_plt
)
9111 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
9112 htab
->root
.sgot
->contents
+ htab
->dt_tlsdesc_got
);
9114 memcpy (htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
,
9115 elfNN_aarch64_tlsdesc_small_plt_entry
,
9116 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry
));
9119 bfd_vma adrp1_addr
=
9120 htab
->root
.splt
->output_section
->vma
9121 + htab
->root
.splt
->output_offset
+ htab
->tlsdesc_plt
+ 4;
9123 bfd_vma adrp2_addr
= adrp1_addr
+ 4;
9126 htab
->root
.sgot
->output_section
->vma
9127 + htab
->root
.sgot
->output_offset
;
9129 bfd_vma pltgot_addr
=
9130 htab
->root
.sgotplt
->output_section
->vma
9131 + htab
->root
.sgotplt
->output_offset
;
9133 bfd_vma dt_tlsdesc_got
= got_addr
+ htab
->dt_tlsdesc_got
;
9135 bfd_byte
*plt_entry
=
9136 htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
;
9138 /* adrp x2, DT_TLSDESC_GOT */
9139 elf_aarch64_update_plt_entry (output_bfd
,
9140 BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
9142 (PG (dt_tlsdesc_got
)
9143 - PG (adrp1_addr
)));
9146 elf_aarch64_update_plt_entry (output_bfd
,
9147 BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
9150 - PG (adrp2_addr
)));
9152 /* ldr x2, [x2, #0] */
9153 elf_aarch64_update_plt_entry (output_bfd
,
9154 BFD_RELOC_AARCH64_LDSTNN_LO12
,
9156 PG_OFFSET (dt_tlsdesc_got
));
9159 elf_aarch64_update_plt_entry (output_bfd
,
9160 BFD_RELOC_AARCH64_ADD_LO12
,
9162 PG_OFFSET (pltgot_addr
));
9167 if (htab
->root
.sgotplt
)
9169 if (bfd_is_abs_section (htab
->root
.sgotplt
->output_section
))
9172 (_("discarded output section: `%A'"), htab
->root
.sgotplt
);
9176 /* Fill in the first three entries in the global offset table. */
9177 if (htab
->root
.sgotplt
->size
> 0)
9179 bfd_put_NN (output_bfd
, (bfd_vma
) 0, htab
->root
.sgotplt
->contents
);
9181 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9182 bfd_put_NN (output_bfd
,
9184 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
9185 bfd_put_NN (output_bfd
,
9187 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
* 2);
9190 if (htab
->root
.sgot
)
9192 if (htab
->root
.sgot
->size
> 0)
9195 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0;
9196 bfd_put_NN (output_bfd
, addr
, htab
->root
.sgot
->contents
);
9200 elf_section_data (htab
->root
.sgotplt
->output_section
)->
9201 this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
9204 if (htab
->root
.sgot
&& htab
->root
.sgot
->size
> 0)
9205 elf_section_data (htab
->root
.sgot
->output_section
)->this_hdr
.sh_entsize
9208 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9209 htab_traverse (htab
->loc_hash_table
,
9210 elfNN_aarch64_finish_local_dynamic_symbol
,
9216 /* Return address for Ith PLT stub in section PLT, for relocation REL
9217 or (bfd_vma) -1 if it should not be included. */
9220 elfNN_aarch64_plt_sym_val (bfd_vma i
, const asection
*plt
,
9221 const arelent
*rel ATTRIBUTE_UNUSED
)
9223 return plt
->vma
+ PLT_ENTRY_SIZE
+ i
* PLT_SMALL_ENTRY_SIZE
;
9226 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9227 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9228 It also allows a period initiated suffix to be added to the symbol, ie:
9229 "$[adtx]\.[:sym_char]+". */
9232 is_aarch64_mapping_symbol (const char * name
)
9234 return name
!= NULL
/* Paranoia. */
9235 && name
[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9236 the mapping symbols could have acquired a prefix.
9237 We do not support this here, since such symbols no
9238 longer conform to the ARM ELF ABI. */
9239 && (name
[1] == 'd' || name
[1] == 'x')
9240 && (name
[2] == 0 || name
[2] == '.');
9241 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9242 any characters that follow the period are legal characters for the body
9243 of a symbol's name. For now we just assume that this is the case. */
9246 /* Make sure that mapping symbols in object files are not removed via the
9247 "strip --strip-unneeded" tool. These symbols might needed in order to
9248 correctly generate linked files. Once an object file has been linked,
9249 it should be safe to remove them. */
9252 elfNN_aarch64_backend_symbol_processing (bfd
*abfd
, asymbol
*sym
)
9254 if (((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
9255 && sym
->section
!= bfd_abs_section_ptr
9256 && is_aarch64_mapping_symbol (sym
->name
))
9257 sym
->flags
|= BSF_KEEP
;
9261 /* We use this so we can override certain functions
9262 (though currently we don't). */
9264 const struct elf_size_info elfNN_aarch64_size_info
=
9266 sizeof (ElfNN_External_Ehdr
),
9267 sizeof (ElfNN_External_Phdr
),
9268 sizeof (ElfNN_External_Shdr
),
9269 sizeof (ElfNN_External_Rel
),
9270 sizeof (ElfNN_External_Rela
),
9271 sizeof (ElfNN_External_Sym
),
9272 sizeof (ElfNN_External_Dyn
),
9273 sizeof (Elf_External_Note
),
9274 4, /* Hash table entry size. */
9275 1, /* Internal relocs per external relocs. */
9276 ARCH_SIZE
, /* Arch size. */
9277 LOG_FILE_ALIGN
, /* Log_file_align. */
9278 ELFCLASSNN
, EV_CURRENT
,
9279 bfd_elfNN_write_out_phdrs
,
9280 bfd_elfNN_write_shdrs_and_ehdr
,
9281 bfd_elfNN_checksum_contents
,
9282 bfd_elfNN_write_relocs
,
9283 bfd_elfNN_swap_symbol_in
,
9284 bfd_elfNN_swap_symbol_out
,
9285 bfd_elfNN_slurp_reloc_table
,
9286 bfd_elfNN_slurp_symbol_table
,
9287 bfd_elfNN_swap_dyn_in
,
9288 bfd_elfNN_swap_dyn_out
,
9289 bfd_elfNN_swap_reloc_in
,
9290 bfd_elfNN_swap_reloc_out
,
9291 bfd_elfNN_swap_reloca_in
,
9292 bfd_elfNN_swap_reloca_out
9295 #define ELF_ARCH bfd_arch_aarch64
9296 #define ELF_MACHINE_CODE EM_AARCH64
9297 #define ELF_MAXPAGESIZE 0x10000
9298 #define ELF_MINPAGESIZE 0x1000
9299 #define ELF_COMMONPAGESIZE 0x1000
9301 #define bfd_elfNN_close_and_cleanup \
9302 elfNN_aarch64_close_and_cleanup
9304 #define bfd_elfNN_bfd_free_cached_info \
9305 elfNN_aarch64_bfd_free_cached_info
9307 #define bfd_elfNN_bfd_is_target_special_symbol \
9308 elfNN_aarch64_is_target_special_symbol
9310 #define bfd_elfNN_bfd_link_hash_table_create \
9311 elfNN_aarch64_link_hash_table_create
9313 #define bfd_elfNN_bfd_merge_private_bfd_data \
9314 elfNN_aarch64_merge_private_bfd_data
9316 #define bfd_elfNN_bfd_print_private_bfd_data \
9317 elfNN_aarch64_print_private_bfd_data
9319 #define bfd_elfNN_bfd_reloc_type_lookup \
9320 elfNN_aarch64_reloc_type_lookup
9322 #define bfd_elfNN_bfd_reloc_name_lookup \
9323 elfNN_aarch64_reloc_name_lookup
9325 #define bfd_elfNN_bfd_set_private_flags \
9326 elfNN_aarch64_set_private_flags
9328 #define bfd_elfNN_find_inliner_info \
9329 elfNN_aarch64_find_inliner_info
9331 #define bfd_elfNN_find_nearest_line \
9332 elfNN_aarch64_find_nearest_line
9334 #define bfd_elfNN_mkobject \
9335 elfNN_aarch64_mkobject
9337 #define bfd_elfNN_new_section_hook \
9338 elfNN_aarch64_new_section_hook
9340 #define elf_backend_adjust_dynamic_symbol \
9341 elfNN_aarch64_adjust_dynamic_symbol
9343 #define elf_backend_always_size_sections \
9344 elfNN_aarch64_always_size_sections
9346 #define elf_backend_check_relocs \
9347 elfNN_aarch64_check_relocs
9349 #define elf_backend_copy_indirect_symbol \
9350 elfNN_aarch64_copy_indirect_symbol
9352 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9353 to them in our hash. */
9354 #define elf_backend_create_dynamic_sections \
9355 elfNN_aarch64_create_dynamic_sections
9357 #define elf_backend_init_index_section \
9358 _bfd_elf_init_2_index_sections
9360 #define elf_backend_finish_dynamic_sections \
9361 elfNN_aarch64_finish_dynamic_sections
9363 #define elf_backend_finish_dynamic_symbol \
9364 elfNN_aarch64_finish_dynamic_symbol
9366 #define elf_backend_object_p \
9367 elfNN_aarch64_object_p
9369 #define elf_backend_output_arch_local_syms \
9370 elfNN_aarch64_output_arch_local_syms
9372 #define elf_backend_plt_sym_val \
9373 elfNN_aarch64_plt_sym_val
9375 #define elf_backend_post_process_headers \
9376 elfNN_aarch64_post_process_headers
9378 #define elf_backend_relocate_section \
9379 elfNN_aarch64_relocate_section
9381 #define elf_backend_reloc_type_class \
9382 elfNN_aarch64_reloc_type_class
9384 #define elf_backend_section_from_shdr \
9385 elfNN_aarch64_section_from_shdr
9387 #define elf_backend_size_dynamic_sections \
9388 elfNN_aarch64_size_dynamic_sections
9390 #define elf_backend_size_info \
9391 elfNN_aarch64_size_info
9393 #define elf_backend_write_section \
9394 elfNN_aarch64_write_section
9396 #define elf_backend_symbol_processing \
9397 elfNN_aarch64_backend_symbol_processing
9399 #define elf_backend_can_refcount 1
9400 #define elf_backend_can_gc_sections 1
9401 #define elf_backend_plt_readonly 1
9402 #define elf_backend_want_got_plt 1
9403 #define elf_backend_want_plt_sym 0
9404 #define elf_backend_want_dynrelro 1
9405 #define elf_backend_may_use_rel_p 0
9406 #define elf_backend_may_use_rela_p 1
9407 #define elf_backend_default_use_rela_p 1
9408 #define elf_backend_rela_normal 1
9409 #define elf_backend_dtrel_excludes_plt 1
9410 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9411 #define elf_backend_default_execstack 0
9412 #define elf_backend_extern_protected_data 1
9413 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9415 #undef elf_backend_obj_attrs_section
9416 #define elf_backend_obj_attrs_section ".ARM.attributes"
9418 #include "elfNN-target.h"
9420 /* CloudABI support. */
9422 #undef TARGET_LITTLE_SYM
9423 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9424 #undef TARGET_LITTLE_NAME
9425 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9426 #undef TARGET_BIG_SYM
9427 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9428 #undef TARGET_BIG_NAME
9429 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9432 #define ELF_OSABI ELFOSABI_CLOUDABI
9435 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9437 #include "elfNN-target.h"