1 /* An expandable hash tables datatype.
2 Copyright (C) 1999-2022 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19 Boston, MA 02110-1301, USA. */
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
24 Elements in the table are generic pointers.
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
38 #include <sys/types.h>
52 #ifdef HAVE_INTTYPES_H
61 #include "libiberty.h"
69 static unsigned int higher_prime_index (unsigned long);
70 static hashval_t
htab_mod_1 (hashval_t
, hashval_t
, hashval_t
, int);
71 static hashval_t
htab_mod (hashval_t
, htab_t
);
72 static hashval_t
htab_mod_m2 (hashval_t
, htab_t
);
73 static hashval_t
hash_pointer (const void *);
74 static int eq_pointer (const void *, const void *);
75 static int htab_expand (htab_t
);
76 static PTR
*find_empty_slot_for_expand (htab_t
, hashval_t
);
78 /* At some point, we could make these be NULL, and modify the
79 hash-table routines to handle NULL specially; that would avoid
80 function-call overhead for the common case of hashing pointers. */
81 htab_hash htab_hash_pointer
= hash_pointer
;
82 htab_eq htab_eq_pointer
= eq_pointer
;
84 /* Table of primes and multiplicative inverses.
86 Note that these are not minimally reduced inverses. Unlike when generating
87 code to divide by a constant, we want to be able to use the same algorithm
88 all the time. All of these inverses (are implied to) have bit 32 set.
90 For the record, here's the function that computed the table; it's a
91 vastly simplified version of the function of the same name from gcc. */
95 ceil_log2 (unsigned int x
)
98 for (i
= 31; i
>= 0 ; --i
)
105 choose_multiplier (unsigned int d
, unsigned int *mlp
, unsigned char *shiftp
)
107 unsigned long long mhigh
;
109 int lgup
, post_shift
;
111 int n
= 32, precision
= 32;
113 lgup
= ceil_log2 (d
);
115 pow2
= n
+ lgup
- precision
;
117 nx
= ldexp (1.0, pow
) + ldexp (1.0, pow2
);
130 hashval_t inv_m2
; /* inverse of prime-2 */
134 static struct prime_ent
const prime_tab
[] = {
135 { 7, 0x24924925, 0x9999999b, 2 },
136 { 13, 0x3b13b13c, 0x745d1747, 3 },
137 { 31, 0x08421085, 0x1a7b9612, 4 },
138 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
139 { 127, 0x02040811, 0x0624dd30, 6 },
140 { 251, 0x05197f7e, 0x073260a5, 7 },
141 { 509, 0x01824366, 0x02864fc8, 8 },
142 { 1021, 0x00c0906d, 0x014191f7, 9 },
143 { 2039, 0x0121456f, 0x0161e69e, 10 },
144 { 4093, 0x00300902, 0x00501908, 11 },
145 { 8191, 0x00080041, 0x00180241, 12 },
146 { 16381, 0x000c0091, 0x00140191, 13 },
147 { 32749, 0x002605a5, 0x002a06e6, 14 },
148 { 65521, 0x000f00e2, 0x00110122, 15 },
149 { 131071, 0x00008001, 0x00018003, 16 },
150 { 262139, 0x00014002, 0x0001c004, 17 },
151 { 524287, 0x00002001, 0x00006001, 18 },
152 { 1048573, 0x00003001, 0x00005001, 19 },
153 { 2097143, 0x00004801, 0x00005801, 20 },
154 { 4194301, 0x00000c01, 0x00001401, 21 },
155 { 8388593, 0x00001e01, 0x00002201, 22 },
156 { 16777213, 0x00000301, 0x00000501, 23 },
157 { 33554393, 0x00001381, 0x00001481, 24 },
158 { 67108859, 0x00000141, 0x000001c1, 25 },
159 { 134217689, 0x000004e1, 0x00000521, 26 },
160 { 268435399, 0x00000391, 0x000003b1, 27 },
161 { 536870909, 0x00000019, 0x00000029, 28 },
162 { 1073741789, 0x0000008d, 0x00000095, 29 },
163 { 2147483647, 0x00000003, 0x00000007, 30 },
164 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
165 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
168 /* The following function returns an index into the above table of the
169 nearest prime number which is greater than N, and near a power of two. */
172 higher_prime_index (unsigned long n
)
174 unsigned int low
= 0;
175 unsigned int high
= sizeof(prime_tab
) / sizeof(prime_tab
[0]);
179 unsigned int mid
= low
+ (high
- low
) / 2;
180 if (n
> prime_tab
[mid
].prime
)
186 /* If we've run out of primes, abort. */
187 if (n
> prime_tab
[low
].prime
)
189 fprintf (stderr
, "Cannot find prime bigger than %lu\n", n
);
196 /* Returns non-zero if P1 and P2 are equal. */
199 eq_pointer (const PTR p1
, const PTR p2
)
205 /* The parens around the function names in the next two definitions
206 are essential in order to prevent macro expansions of the name.
207 The bodies, however, are expanded as expected, so they are not
208 recursive definitions. */
210 /* Return the current size of given hash table. */
212 #define htab_size(htab) ((htab)->size)
215 (htab_size
) (htab_t htab
)
217 return htab_size (htab
);
220 /* Return the current number of elements in given hash table. */
222 #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
225 (htab_elements
) (htab_t htab
)
227 return htab_elements (htab
);
232 static inline hashval_t
233 htab_mod_1 (hashval_t x
, hashval_t y
, hashval_t inv
, int shift
)
235 /* The multiplicative inverses computed above are for 32-bit types, and
236 requires that we be able to compute a highpart multiply. */
237 #ifdef UNSIGNED_64BIT_TYPE
238 __extension__
typedef UNSIGNED_64BIT_TYPE ull
;
239 if (sizeof (hashval_t
) * CHAR_BIT
<= 32)
241 hashval_t t1
, t2
, t3
, t4
, q
, r
;
243 t1
= ((ull
)x
* inv
) >> 32;
254 /* Otherwise just use the native division routines. */
258 /* Compute the primary hash for HASH given HTAB's current size. */
260 static inline hashval_t
261 htab_mod (hashval_t hash
, htab_t htab
)
263 const struct prime_ent
*p
= &prime_tab
[htab
->size_prime_index
];
264 return htab_mod_1 (hash
, p
->prime
, p
->inv
, p
->shift
);
267 /* Compute the secondary hash for HASH given HTAB's current size. */
269 static inline hashval_t
270 htab_mod_m2 (hashval_t hash
, htab_t htab
)
272 const struct prime_ent
*p
= &prime_tab
[htab
->size_prime_index
];
273 return 1 + htab_mod_1 (hash
, p
->prime
- 2, p
->inv_m2
, p
->shift
);
276 /* This function creates table with length slightly longer than given
277 source length. Created hash table is initiated as empty (all the
278 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
279 created hash table, or NULL if memory allocation fails. */
282 htab_create_alloc (size_t size
, htab_hash hash_f
, htab_eq eq_f
,
283 htab_del del_f
, htab_alloc alloc_f
, htab_free free_f
)
285 return htab_create_typed_alloc (size
, hash_f
, eq_f
, del_f
, alloc_f
, alloc_f
,
289 /* As above, but uses the variants of ALLOC_F and FREE_F which accept
290 an extra argument. */
293 htab_create_alloc_ex (size_t size
, htab_hash hash_f
, htab_eq eq_f
,
294 htab_del del_f
, void *alloc_arg
,
295 htab_alloc_with_arg alloc_f
,
296 htab_free_with_arg free_f
)
299 unsigned int size_prime_index
;
301 size_prime_index
= higher_prime_index (size
);
302 size
= prime_tab
[size_prime_index
].prime
;
304 result
= (htab_t
) (*alloc_f
) (alloc_arg
, 1, sizeof (struct htab
));
307 result
->entries
= (PTR
*) (*alloc_f
) (alloc_arg
, size
, sizeof (PTR
));
308 if (result
->entries
== NULL
)
311 (*free_f
) (alloc_arg
, result
);
315 result
->size_prime_index
= size_prime_index
;
316 result
->hash_f
= hash_f
;
318 result
->del_f
= del_f
;
319 result
->alloc_arg
= alloc_arg
;
320 result
->alloc_with_arg_f
= alloc_f
;
321 result
->free_with_arg_f
= free_f
;
327 @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
328 htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
329 htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
330 htab_free @var{free_f})
332 This function creates a hash table that uses two different allocators
333 @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
334 and its entries respectively. This is useful when variables of different
335 types need to be allocated with different allocators.
337 The created hash table is slightly larger than @var{size} and it is
338 initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
339 The function returns the created hash table, or @code{NULL} if memory
347 htab_create_typed_alloc (size_t size
, htab_hash hash_f
, htab_eq eq_f
,
348 htab_del del_f
, htab_alloc alloc_tab_f
,
349 htab_alloc alloc_f
, htab_free free_f
)
352 unsigned int size_prime_index
;
354 size_prime_index
= higher_prime_index (size
);
355 size
= prime_tab
[size_prime_index
].prime
;
357 result
= (htab_t
) (*alloc_tab_f
) (1, sizeof (struct htab
));
360 result
->entries
= (PTR
*) (*alloc_f
) (size
, sizeof (PTR
));
361 if (result
->entries
== NULL
)
368 result
->size_prime_index
= size_prime_index
;
369 result
->hash_f
= hash_f
;
371 result
->del_f
= del_f
;
372 result
->alloc_f
= alloc_f
;
373 result
->free_f
= free_f
;
378 /* Update the function pointers and allocation parameter in the htab_t. */
381 htab_set_functions_ex (htab_t htab
, htab_hash hash_f
, htab_eq eq_f
,
382 htab_del del_f
, PTR alloc_arg
,
383 htab_alloc_with_arg alloc_f
, htab_free_with_arg free_f
)
385 htab
->hash_f
= hash_f
;
388 htab
->alloc_arg
= alloc_arg
;
389 htab
->alloc_with_arg_f
= alloc_f
;
390 htab
->free_with_arg_f
= free_f
;
393 /* These functions exist solely for backward compatibility. */
397 htab_create (size_t size
, htab_hash hash_f
, htab_eq eq_f
, htab_del del_f
)
399 return htab_create_alloc (size
, hash_f
, eq_f
, del_f
, xcalloc
, free
);
403 htab_try_create (size_t size
, htab_hash hash_f
, htab_eq eq_f
, htab_del del_f
)
405 return htab_create_alloc (size
, hash_f
, eq_f
, del_f
, calloc
, free
);
408 /* This function frees all memory allocated for given hash table.
409 Naturally the hash table must already exist. */
412 htab_delete (htab_t htab
)
414 size_t size
= htab_size (htab
);
415 PTR
*entries
= htab
->entries
;
419 for (i
= size
- 1; i
>= 0; i
--)
420 if (entries
[i
] != HTAB_EMPTY_ENTRY
&& entries
[i
] != HTAB_DELETED_ENTRY
)
421 (*htab
->del_f
) (entries
[i
]);
423 if (htab
->free_f
!= NULL
)
425 (*htab
->free_f
) (entries
);
426 (*htab
->free_f
) (htab
);
428 else if (htab
->free_with_arg_f
!= NULL
)
430 (*htab
->free_with_arg_f
) (htab
->alloc_arg
, entries
);
431 (*htab
->free_with_arg_f
) (htab
->alloc_arg
, htab
);
435 /* This function clears all entries in the given hash table. */
438 htab_empty (htab_t htab
)
440 size_t size
= htab_size (htab
);
441 PTR
*entries
= htab
->entries
;
445 for (i
= size
- 1; i
>= 0; i
--)
446 if (entries
[i
] != HTAB_EMPTY_ENTRY
&& entries
[i
] != HTAB_DELETED_ENTRY
)
447 (*htab
->del_f
) (entries
[i
]);
449 /* Instead of clearing megabyte, downsize the table. */
450 if (size
> 1024*1024 / sizeof (PTR
))
452 int nindex
= higher_prime_index (1024 / sizeof (PTR
));
453 int nsize
= prime_tab
[nindex
].prime
;
455 if (htab
->free_f
!= NULL
)
456 (*htab
->free_f
) (htab
->entries
);
457 else if (htab
->free_with_arg_f
!= NULL
)
458 (*htab
->free_with_arg_f
) (htab
->alloc_arg
, htab
->entries
);
459 if (htab
->alloc_with_arg_f
!= NULL
)
460 htab
->entries
= (PTR
*) (*htab
->alloc_with_arg_f
) (htab
->alloc_arg
, nsize
,
463 htab
->entries
= (PTR
*) (*htab
->alloc_f
) (nsize
, sizeof (PTR
*));
465 htab
->size_prime_index
= nindex
;
468 memset (entries
, 0, size
* sizeof (PTR
));
470 htab
->n_elements
= 0;
473 /* Similar to htab_find_slot, but without several unwanted side effects:
474 - Does not call htab->eq_f when it finds an existing entry.
475 - Does not change the count of elements/searches/collisions in the
477 This function also assumes there are no deleted entries in the table.
478 HASH is the hash value for the element to be inserted. */
481 find_empty_slot_for_expand (htab_t htab
, hashval_t hash
)
483 hashval_t index
= htab_mod (hash
, htab
);
484 size_t size
= htab_size (htab
);
485 PTR
*slot
= htab
->entries
+ index
;
488 if (*slot
== HTAB_EMPTY_ENTRY
)
490 else if (*slot
== HTAB_DELETED_ENTRY
)
493 hash2
= htab_mod_m2 (hash
, htab
);
500 slot
= htab
->entries
+ index
;
501 if (*slot
== HTAB_EMPTY_ENTRY
)
503 else if (*slot
== HTAB_DELETED_ENTRY
)
508 /* The following function changes size of memory allocated for the
509 entries and repeatedly inserts the table elements. The occupancy
510 of the table after the call will be about 50%. Naturally the hash
511 table must already exist. Remember also that the place of the
512 table entries is changed. If memory allocation failures are allowed,
513 this function will return zero, indicating that the table could not be
514 expanded. If all goes well, it will return a non-zero value. */
517 htab_expand (htab_t htab
)
523 size_t nsize
, osize
, elts
;
524 unsigned int oindex
, nindex
;
526 oentries
= htab
->entries
;
527 oindex
= htab
->size_prime_index
;
529 olimit
= oentries
+ osize
;
530 elts
= htab_elements (htab
);
532 /* Resize only when table after removal of unused elements is either
533 too full or too empty. */
534 if (elts
* 2 > osize
|| (elts
* 8 < osize
&& osize
> 32))
536 nindex
= higher_prime_index (elts
* 2);
537 nsize
= prime_tab
[nindex
].prime
;
545 if (htab
->alloc_with_arg_f
!= NULL
)
546 nentries
= (PTR
*) (*htab
->alloc_with_arg_f
) (htab
->alloc_arg
, nsize
,
549 nentries
= (PTR
*) (*htab
->alloc_f
) (nsize
, sizeof (PTR
*));
550 if (nentries
== NULL
)
552 htab
->entries
= nentries
;
554 htab
->size_prime_index
= nindex
;
555 htab
->n_elements
-= htab
->n_deleted
;
563 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
565 PTR
*q
= find_empty_slot_for_expand (htab
, (*htab
->hash_f
) (x
));
574 if (htab
->free_f
!= NULL
)
575 (*htab
->free_f
) (oentries
);
576 else if (htab
->free_with_arg_f
!= NULL
)
577 (*htab
->free_with_arg_f
) (htab
->alloc_arg
, oentries
);
581 /* This function searches for a hash table entry equal to the given
582 element. It cannot be used to insert or delete an element. */
585 htab_find_with_hash (htab_t htab
, const PTR element
, hashval_t hash
)
587 hashval_t index
, hash2
;
592 size
= htab_size (htab
);
593 index
= htab_mod (hash
, htab
);
595 entry
= htab
->entries
[index
];
596 if (entry
== HTAB_EMPTY_ENTRY
597 || (entry
!= HTAB_DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
600 hash2
= htab_mod_m2 (hash
, htab
);
608 entry
= htab
->entries
[index
];
609 if (entry
== HTAB_EMPTY_ENTRY
610 || (entry
!= HTAB_DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
615 /* Like htab_find_slot_with_hash, but compute the hash value from the
619 htab_find (htab_t htab
, const PTR element
)
621 return htab_find_with_hash (htab
, element
, (*htab
->hash_f
) (element
));
624 /* This function searches for a hash table slot containing an entry
625 equal to the given element. To delete an entry, call this with
626 insert=NO_INSERT, then call htab_clear_slot on the slot returned
627 (possibly after doing some checks). To insert an entry, call this
628 with insert=INSERT, then write the value you want into the returned
629 slot. When inserting an entry, NULL may be returned if memory
633 htab_find_slot_with_hash (htab_t htab
, const PTR element
,
634 hashval_t hash
, enum insert_option insert
)
636 PTR
*first_deleted_slot
;
637 hashval_t index
, hash2
;
641 size
= htab_size (htab
);
642 if (insert
== INSERT
&& size
* 3 <= htab
->n_elements
* 4)
644 if (htab_expand (htab
) == 0)
646 size
= htab_size (htab
);
649 index
= htab_mod (hash
, htab
);
652 first_deleted_slot
= NULL
;
654 entry
= htab
->entries
[index
];
655 if (entry
== HTAB_EMPTY_ENTRY
)
657 else if (entry
== HTAB_DELETED_ENTRY
)
658 first_deleted_slot
= &htab
->entries
[index
];
659 else if ((*htab
->eq_f
) (entry
, element
))
660 return &htab
->entries
[index
];
662 hash2
= htab_mod_m2 (hash
, htab
);
670 entry
= htab
->entries
[index
];
671 if (entry
== HTAB_EMPTY_ENTRY
)
673 else if (entry
== HTAB_DELETED_ENTRY
)
675 if (!first_deleted_slot
)
676 first_deleted_slot
= &htab
->entries
[index
];
678 else if ((*htab
->eq_f
) (entry
, element
))
679 return &htab
->entries
[index
];
683 if (insert
== NO_INSERT
)
686 if (first_deleted_slot
)
689 *first_deleted_slot
= HTAB_EMPTY_ENTRY
;
690 return first_deleted_slot
;
694 return &htab
->entries
[index
];
697 /* Like htab_find_slot_with_hash, but compute the hash value from the
701 htab_find_slot (htab_t htab
, const PTR element
, enum insert_option insert
)
703 return htab_find_slot_with_hash (htab
, element
, (*htab
->hash_f
) (element
),
707 /* This function deletes an element with the given value from hash
708 table (the hash is computed from the element). If there is no matching
709 element in the hash table, this function does nothing. */
712 htab_remove_elt (htab_t htab
, const PTR element
)
714 htab_remove_elt_with_hash (htab
, element
, (*htab
->hash_f
) (element
));
718 /* This function deletes an element with the given value from hash
719 table. If there is no matching element in the hash table, this
720 function does nothing. */
723 htab_remove_elt_with_hash (htab_t htab
, const PTR element
, hashval_t hash
)
727 slot
= htab_find_slot_with_hash (htab
, element
, hash
, NO_INSERT
);
732 (*htab
->del_f
) (*slot
);
734 *slot
= HTAB_DELETED_ENTRY
;
738 /* This function clears a specified slot in a hash table. It is
739 useful when you've already done the lookup and don't want to do it
743 htab_clear_slot (htab_t htab
, PTR
*slot
)
745 if (slot
< htab
->entries
|| slot
>= htab
->entries
+ htab_size (htab
)
746 || *slot
== HTAB_EMPTY_ENTRY
|| *slot
== HTAB_DELETED_ENTRY
)
750 (*htab
->del_f
) (*slot
);
752 *slot
= HTAB_DELETED_ENTRY
;
756 /* This function scans over the entire hash table calling
757 CALLBACK for each live entry. If CALLBACK returns false,
758 the iteration stops. INFO is passed as CALLBACK's second
762 htab_traverse_noresize (htab_t htab
, htab_trav callback
, PTR info
)
767 slot
= htab
->entries
;
768 limit
= slot
+ htab_size (htab
);
774 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
775 if (!(*callback
) (slot
, info
))
778 while (++slot
< limit
);
781 /* Like htab_traverse_noresize, but does resize the table when it is
782 too empty to improve effectivity of subsequent calls. */
785 htab_traverse (htab_t htab
, htab_trav callback
, PTR info
)
787 size_t size
= htab_size (htab
);
788 if (htab_elements (htab
) * 8 < size
&& size
> 32)
791 htab_traverse_noresize (htab
, callback
, info
);
794 /* Return the fraction of fixed collisions during all work with given
798 htab_collisions (htab_t htab
)
800 if (htab
->searches
== 0)
803 return (double) htab
->collisions
/ (double) htab
->searches
;
806 /* Hash P as a null-terminated string.
808 Copied from gcc/hashtable.c. Zack had the following to say with respect
809 to applicability, though note that unlike hashtable.c, this hash table
810 implementation re-hashes rather than chain buckets.
812 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
813 From: Zack Weinberg <zackw@panix.com>
814 Date: Fri, 17 Aug 2001 02:15:56 -0400
816 I got it by extracting all the identifiers from all the source code
817 I had lying around in mid-1999, and testing many recurrences of
818 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
819 prime numbers or the appropriate identity. This was the best one.
820 I don't remember exactly what constituted "best", except I was
821 looking at bucket-length distributions mostly.
823 So it should be very good at hashing identifiers, but might not be
824 as good at arbitrary strings.
826 I'll add that it thoroughly trounces the hash functions recommended
827 for this use at http://burtleburtle.net/bob/hash/index.html, both
828 on speed and bucket distribution. I haven't tried it against the
829 function they just started using for Perl's hashes. */
832 htab_hash_string (const PTR p
)
834 const unsigned char *str
= (const unsigned char *) p
;
838 while ((c
= *str
++) != 0)
839 r
= r
* 67 + c
- 113;
844 /* An equality function for null-terminated strings. */
846 htab_eq_string (const void *a
, const void *b
)
848 return strcmp ((const char *) a
, (const char *) b
) == 0;
852 --------------------------------------------------------------------
853 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
854 hash(), hash2(), hash3, and mix() are externally useful functions.
855 Routines to test the hash are included if SELF_TEST is defined.
856 You can use this free for any purpose. It has no warranty.
857 --------------------------------------------------------------------
861 --------------------------------------------------------------------
862 mix -- mix 3 32-bit values reversibly.
863 For every delta with one or two bit set, and the deltas of all three
864 high bits or all three low bits, whether the original value of a,b,c
865 is almost all zero or is uniformly distributed,
866 * If mix() is run forward or backward, at least 32 bits in a,b,c
867 have at least 1/4 probability of changing.
868 * If mix() is run forward, every bit of c will change between 1/3 and
869 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
870 mix() was built out of 36 single-cycle latency instructions in a
871 structure that could supported 2x parallelism, like so:
879 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
880 of that parallelism. They've also turned some of those single-cycle
881 latency instructions into multi-cycle latency instructions. Still,
882 this is the fastest good hash I could find. There were about 2^^68
883 to choose from. I only looked at a billion or so.
884 --------------------------------------------------------------------
886 /* same, but slower, works on systems that might have 8 byte hashval_t's */
889 a -= b; a -= c; a ^= (c>>13); \
890 b -= c; b -= a; b ^= (a<< 8); \
891 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
892 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
893 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
894 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
895 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
896 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
897 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
901 --------------------------------------------------------------------
902 hash() -- hash a variable-length key into a 32-bit value
903 k : the key (the unaligned variable-length array of bytes)
904 len : the length of the key, counting by bytes
905 level : can be any 4-byte value
906 Returns a 32-bit value. Every bit of the key affects every bit of
907 the return value. Every 1-bit and 2-bit delta achieves avalanche.
908 About 36+6len instructions.
910 The best hash table sizes are powers of 2. There is no need to do
911 mod a prime (mod is sooo slow!). If you need less than 32 bits,
912 use a bitmask. For example, if you need only 10 bits, do
913 h = (h & hashmask(10));
914 In which case, the hash table should have hashsize(10) elements.
916 If you are hashing n strings (ub1 **)k, do it like this:
917 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
919 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
920 code any way you wish, private, educational, or commercial. It's free.
922 See http://burtleburtle.net/bob/hash/evahash.html
923 Use for hash table lookup, or anything where one collision in 2^32 is
924 acceptable. Do NOT use for cryptographic purposes.
925 --------------------------------------------------------------------
929 iterative_hash (const PTR k_in
/* the key */,
930 register size_t length
/* the length of the key */,
931 register hashval_t initval
/* the previous hash, or
932 an arbitrary value */)
934 register const unsigned char *k
= (const unsigned char *)k_in
;
935 register hashval_t a
,b
,c
,len
;
937 /* Set up the internal state */
939 a
= b
= 0x9e3779b9; /* the golden ratio; an arbitrary value */
940 c
= initval
; /* the previous hash value */
942 /*---------------------------------------- handle most of the key */
943 #ifndef WORDS_BIGENDIAN
944 /* On a little-endian machine, if the data is 4-byte aligned we can hash
945 by word for better speed. This gives nondeterministic results on
946 big-endian machines. */
947 if (sizeof (hashval_t
) == 4 && (((size_t)k
)&3) == 0)
948 while (len
>= 12) /* aligned */
950 a
+= *(hashval_t
*)(k
+0);
951 b
+= *(hashval_t
*)(k
+4);
952 c
+= *(hashval_t
*)(k
+8);
960 a
+= (k
[0] +((hashval_t
)k
[1]<<8) +((hashval_t
)k
[2]<<16) +((hashval_t
)k
[3]<<24));
961 b
+= (k
[4] +((hashval_t
)k
[5]<<8) +((hashval_t
)k
[6]<<16) +((hashval_t
)k
[7]<<24));
962 c
+= (k
[8] +((hashval_t
)k
[9]<<8) +((hashval_t
)k
[10]<<16)+((hashval_t
)k
[11]<<24));
967 /*------------------------------------- handle the last 11 bytes */
969 switch(len
) /* all the case statements fall through */
971 case 11: c
+=((hashval_t
)k
[10]<<24); /* fall through */
972 case 10: c
+=((hashval_t
)k
[9]<<16); /* fall through */
973 case 9 : c
+=((hashval_t
)k
[8]<<8); /* fall through */
974 /* the first byte of c is reserved for the length */
975 case 8 : b
+=((hashval_t
)k
[7]<<24); /* fall through */
976 case 7 : b
+=((hashval_t
)k
[6]<<16); /* fall through */
977 case 6 : b
+=((hashval_t
)k
[5]<<8); /* fall through */
978 case 5 : b
+=k
[4]; /* fall through */
979 case 4 : a
+=((hashval_t
)k
[3]<<24); /* fall through */
980 case 3 : a
+=((hashval_t
)k
[2]<<16); /* fall through */
981 case 2 : a
+=((hashval_t
)k
[1]<<8); /* fall through */
983 /* case 0: nothing left to add */
986 /*-------------------------------------------- report the result */
990 /* Returns a hash code for pointer P. Simplified version of evahash */
993 hash_pointer (const PTR p
)
995 intptr_t v
= (intptr_t) p
;
999 a
+= v
>> (sizeof (intptr_t) * CHAR_BIT
/ 2);
1000 b
+= v
& (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT
/ 2)) - 1);