2 * inertia.c: Game involving navigating round a grid picking up
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
18 /* Used in the game_state */
25 /* Used in the game IDs */
28 /* Used in the game generation */
31 /* Used only in the game_drawstate*/
35 #define DP1 (DIRECTIONS+1)
36 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
37 #define DY(dir) ( DX((dir)+6) )
40 * Lvalue macro which expects x and y to be in range.
42 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
45 * Rvalue macro which can cope with x and y being out of range.
47 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
48 WALL : LV_AT(w, h, grid, x, y) )
86 static game_params
*default_params(void)
88 game_params
*ret
= snew(game_params
);
91 #ifdef PORTRAIT_SCREEN
99 static void free_params(game_params
*params
)
104 static game_params
*dup_params(const game_params
*params
)
106 game_params
*ret
= snew(game_params
);
107 *ret
= *params
; /* structure copy */
111 static const struct game_params inertia_presets
[] = {
112 #ifdef PORTRAIT_SCREEN
123 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
129 if (i
< 0 || i
>= lenof(inertia_presets
))
132 p
= inertia_presets
[i
];
133 ret
= dup_params(&p
);
134 sprintf(namebuf
, "%dx%d", ret
->w
, ret
->h
);
135 retname
= dupstr(namebuf
);
142 static void decode_params(game_params
*params
, char const *string
)
144 params
->w
= params
->h
= atoi(string
);
145 while (*string
&& isdigit((unsigned char)*string
)) string
++;
146 if (*string
== 'x') {
148 params
->h
= atoi(string
);
152 static char *encode_params(const game_params
*params
, int full
)
156 sprintf(data
, "%dx%d", params
->w
, params
->h
);
161 static config_item
*game_configure(const game_params
*params
)
166 ret
= snewn(3, config_item
);
168 ret
[0].name
= "Width";
169 ret
[0].type
= C_STRING
;
170 sprintf(buf
, "%d", params
->w
);
171 ret
[0].sval
= dupstr(buf
);
174 ret
[1].name
= "Height";
175 ret
[1].type
= C_STRING
;
176 sprintf(buf
, "%d", params
->h
);
177 ret
[1].sval
= dupstr(buf
);
188 static game_params
*custom_params(const config_item
*cfg
)
190 game_params
*ret
= snew(game_params
);
192 ret
->w
= atoi(cfg
[0].sval
);
193 ret
->h
= atoi(cfg
[1].sval
);
198 static char *validate_params(const game_params
*params
, int full
)
201 * Avoid completely degenerate cases which only have one
202 * row/column. We probably could generate completable puzzles
203 * of that shape, but they'd be forced to be extremely boring
204 * and at large sizes would take a while to happen upon at
207 if (params
->w
< 2 || params
->h
< 2)
208 return "Width and height must both be at least two";
211 * The grid construction algorithm creates 1/5 as many gems as
212 * grid squares, and must create at least one gem to have an
213 * actual puzzle. However, an area-five grid is ruled out by
214 * the above constraint, so the practical minimum is six.
216 if (params
->w
* params
->h
< 6)
217 return "Grid area must be at least six squares";
222 /* ----------------------------------------------------------------------
223 * Solver used by grid generator.
226 struct solver_scratch
{
227 unsigned char *reachable_from
, *reachable_to
;
231 static struct solver_scratch
*new_scratch(int w
, int h
)
233 struct solver_scratch
*sc
= snew(struct solver_scratch
);
235 sc
->reachable_from
= snewn(w
* h
* DIRECTIONS
, unsigned char);
236 sc
->reachable_to
= snewn(w
* h
* DIRECTIONS
, unsigned char);
237 sc
->positions
= snewn(w
* h
* DIRECTIONS
, int);
242 static void free_scratch(struct solver_scratch
*sc
)
244 sfree(sc
->reachable_from
);
245 sfree(sc
->reachable_to
);
246 sfree(sc
->positions
);
250 static int can_go(int w
, int h
, char *grid
,
251 int x1
, int y1
, int dir1
, int x2
, int y2
, int dir2
)
254 * Returns TRUE if we can transition directly from (x1,y1)
255 * going in direction dir1, to (x2,y2) going in direction dir2.
259 * If we're actually in the middle of an unoccupyable square,
260 * we cannot make any move.
262 if (AT(w
, h
, grid
, x1
, y1
) == WALL
||
263 AT(w
, h
, grid
, x1
, y1
) == MINE
)
267 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
268 * the same coordinate as x1,y1, then we can make the
269 * transition (by stopping and changing direction).
271 * For this to be the case, we have to either have a wall
272 * beyond x1,y1,dir1, or have a stop on x1,y1.
274 if (x2
== x1
&& y2
== y1
&&
275 (AT(w
, h
, grid
, x1
, y1
) == STOP
||
276 AT(w
, h
, grid
, x1
, y1
) == START
||
277 AT(w
, h
, grid
, x1
+DX(dir1
), y1
+DY(dir1
)) == WALL
))
281 * If a move is capable of continuing here, then x1,y1,dir1 can
282 * move one space further on.
284 if (x2
== x1
+DX(dir1
) && y2
== y1
+DY(dir1
) && dir1
== dir2
&&
285 (AT(w
, h
, grid
, x2
, y2
) == BLANK
||
286 AT(w
, h
, grid
, x2
, y2
) == GEM
||
287 AT(w
, h
, grid
, x2
, y2
) == STOP
||
288 AT(w
, h
, grid
, x2
, y2
) == START
))
297 static int find_gem_candidates(int w
, int h
, char *grid
,
298 struct solver_scratch
*sc
)
302 int sx
, sy
, gx
, gy
, gd
, pass
, possgems
;
305 * This function finds all the candidate gem squares, which are
306 * precisely those squares which can be picked up on a loop
307 * from the starting point back to the starting point. Doing
308 * this may involve passing through such a square in the middle
309 * of a move; so simple breadth-first search over the _squares_
310 * of the grid isn't quite adequate, because it might be that
311 * we can only reach a gem from the start by moving over it in
312 * one direction, but can only return to the start if we were
313 * moving over it in another direction.
315 * Instead, we BFS over a space which mentions each grid square
316 * eight times - once for each direction. We also BFS twice:
317 * once to find out what square+direction pairs we can reach
318 * _from_ the start point, and once to find out what pairs we
319 * can reach the start point from. Then a square is reachable
320 * if any of the eight directions for that square has both
324 memset(sc
->reachable_from
, 0, wh
* DIRECTIONS
);
325 memset(sc
->reachable_to
, 0, wh
* DIRECTIONS
);
328 * Find the starting square.
330 sx
= -1; /* placate optimiser */
331 for (sy
= 0; sy
< h
; sy
++) {
332 for (sx
= 0; sx
< w
; sx
++)
333 if (AT(w
, h
, grid
, sx
, sy
) == START
)
340 for (pass
= 0; pass
< 2; pass
++) {
341 unsigned char *reachable
= (pass
== 0 ? sc
->reachable_from
:
343 int sign
= (pass
== 0 ? +1 : -1);
346 #ifdef SOLVER_DIAGNOSTICS
347 printf("starting pass %d\n", pass
);
351 * `head' and `tail' are indices within sc->positions which
352 * track the list of board positions left to process.
355 for (dir
= 0; dir
< DIRECTIONS
; dir
++) {
356 int index
= (sy
*w
+sx
)*DIRECTIONS
+dir
;
357 sc
->positions
[tail
++] = index
;
358 reachable
[index
] = TRUE
;
359 #ifdef SOLVER_DIAGNOSTICS
360 printf("starting point %d,%d,%d\n", sx
, sy
, dir
);
365 * Now repeatedly pick an element off the list and process
368 while (head
< tail
) {
369 int index
= sc
->positions
[head
++];
370 int dir
= index
% DIRECTIONS
;
371 int x
= (index
/ DIRECTIONS
) % w
;
372 int y
= index
/ (w
* DIRECTIONS
);
373 int n
, x2
, y2
, d2
, i2
;
375 #ifdef SOLVER_DIAGNOSTICS
376 printf("processing point %d,%d,%d\n", x
, y
, dir
);
379 * The places we attempt to switch to here are:
380 * - each possible direction change (all the other
381 * directions in this square)
382 * - one step further in the direction we're going (or
383 * one step back, if we're in the reachable_to pass).
385 for (n
= -1; n
< DIRECTIONS
; n
++) {
387 x2
= x
+ sign
* DX(dir
);
388 y2
= y
+ sign
* DY(dir
);
395 i2
= (y2
*w
+x2
)*DIRECTIONS
+d2
;
396 if (x2
>= 0 && x2
< w
&&
400 #ifdef SOLVER_DIAGNOSTICS
401 printf(" trying point %d,%d,%d", x2
, y2
, d2
);
404 ok
= can_go(w
, h
, grid
, x
, y
, dir
, x2
, y2
, d2
);
406 ok
= can_go(w
, h
, grid
, x2
, y2
, d2
, x
, y
, dir
);
407 #ifdef SOLVER_DIAGNOSTICS
408 printf(" - %sok\n", ok
? "" : "not ");
411 sc
->positions
[tail
++] = i2
;
412 reachable
[i2
] = TRUE
;
420 * And that should be it. Now all we have to do is find the
421 * squares for which there exists _some_ direction such that
422 * the square plus that direction form a tuple which is both
423 * reachable from the start and reachable to the start.
426 for (gy
= 0; gy
< h
; gy
++)
427 for (gx
= 0; gx
< w
; gx
++)
428 if (AT(w
, h
, grid
, gx
, gy
) == BLANK
) {
429 for (gd
= 0; gd
< DIRECTIONS
; gd
++) {
430 int index
= (gy
*w
+gx
)*DIRECTIONS
+gd
;
431 if (sc
->reachable_from
[index
] && sc
->reachable_to
[index
]) {
432 #ifdef SOLVER_DIAGNOSTICS
433 printf("space at %d,%d is reachable via"
434 " direction %d\n", gx
, gy
, gd
);
436 LV_AT(w
, h
, grid
, gx
, gy
) = POSSGEM
;
446 /* ----------------------------------------------------------------------
447 * Grid generation code.
450 static char *gengrid(int w
, int h
, random_state
*rs
)
453 char *grid
= snewn(wh
+1, char);
454 struct solver_scratch
*sc
= new_scratch(w
, h
);
455 int maxdist_threshold
, tries
;
457 maxdist_threshold
= 2;
463 int *dist
, *list
, head
, tail
, maxdist
;
466 * We're going to fill the grid with the five basic piece
467 * types in about 1/5 proportion. For the moment, though,
468 * we leave out the gems, because we'll put those in
469 * _after_ we run the solver to tell us where the viable
473 for (j
= 0; j
< wh
/5; j
++)
475 for (j
= 0; j
< wh
/5; j
++)
477 for (j
= 0; j
< wh
/5; j
++)
483 shuffle(grid
, wh
, sizeof(*grid
), rs
);
486 * Find the viable gem locations, and immediately give up
487 * and try again if there aren't enough of them.
489 possgems
= find_gem_candidates(w
, h
, grid
, sc
);
494 * We _could_ now select wh/5 of the POSSGEMs and set them
495 * to GEM, and have a viable level. However, there's a
496 * chance that a large chunk of the level will turn out to
497 * be unreachable, so first we test for that.
499 * We do this by finding the largest distance from any
500 * square to the nearest POSSGEM, by breadth-first search.
501 * If this is above a critical threshold, we abort and try
504 * (This search is purely geometric, without regard to
505 * walls and long ways round.)
507 dist
= sc
->positions
;
508 list
= sc
->positions
+ wh
;
509 for (i
= 0; i
< wh
; i
++)
512 for (i
= 0; i
< wh
; i
++)
513 if (grid
[i
] == POSSGEM
) {
518 while (head
< tail
) {
522 if (maxdist
< dist
[pos
])
528 for (d
= 0; d
< DIRECTIONS
; d
++) {
534 if (x2
>= 0 && x2
< w
&& y2
>= 0 && y2
< h
) {
537 dist
[p2
] = dist
[pos
] + 1;
543 assert(head
== wh
&& tail
== wh
);
546 * Now abandon this grid and go round again if maxdist is
547 * above the required threshold.
549 * We can safely start the threshold as low as 2. As we
550 * accumulate failed generation attempts, we gradually
551 * raise it as we get more desperate.
553 if (maxdist
> maxdist_threshold
) {
563 * Now our reachable squares are plausibly evenly
564 * distributed over the grid. I'm not actually going to
565 * _enforce_ that I place the gems in such a way as not to
566 * increase that maxdist value; I'm now just going to trust
567 * to the RNG to pick a sensible subset of the POSSGEMs.
570 for (i
= 0; i
< wh
; i
++)
571 if (grid
[i
] == POSSGEM
)
573 shuffle(list
, j
, sizeof(*list
), rs
);
574 for (i
= 0; i
< j
; i
++)
575 grid
[list
[i
]] = (i
< wh
/5 ? GEM
: BLANK
);
586 static char *new_game_desc(const game_params
*params
, random_state
*rs
,
587 char **aux
, int interactive
)
589 return gengrid(params
->w
, params
->h
, rs
);
592 static char *validate_desc(const game_params
*params
, const char *desc
)
594 int w
= params
->w
, h
= params
->h
, wh
= w
*h
;
595 int starts
= 0, gems
= 0, i
;
597 for (i
= 0; i
< wh
; i
++) {
599 return "Not enough data to fill grid";
600 if (desc
[i
] != WALL
&& desc
[i
] != START
&& desc
[i
] != STOP
&&
601 desc
[i
] != GEM
&& desc
[i
] != MINE
&& desc
[i
] != BLANK
)
602 return "Unrecognised character in game description";
603 if (desc
[i
] == START
)
609 return "Too much data to fill grid";
611 return "No starting square specified";
613 return "More than one starting square specified";
615 return "No gems specified";
620 static game_state
*new_game(midend
*me
, const game_params
*params
,
623 int w
= params
->w
, h
= params
->h
, wh
= w
*h
;
625 game_state
*state
= snew(game_state
);
627 state
->p
= *params
; /* structure copy */
629 state
->grid
= snewn(wh
, char);
630 assert(strlen(desc
) == wh
);
631 memcpy(state
->grid
, desc
, wh
);
633 state
->px
= state
->py
= -1;
635 for (i
= 0; i
< wh
; i
++) {
636 if (state
->grid
[i
] == START
) {
637 state
->grid
[i
] = STOP
;
640 } else if (state
->grid
[i
] == GEM
) {
645 assert(state
->gems
> 0);
646 assert(state
->px
>= 0 && state
->py
>= 0);
648 state
->distance_moved
= 0;
651 state
->cheated
= FALSE
;
658 static game_state
*dup_game(const game_state
*state
)
660 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
661 game_state
*ret
= snew(game_state
);
666 ret
->gems
= state
->gems
;
667 ret
->grid
= snewn(wh
, char);
668 ret
->distance_moved
= state
->distance_moved
;
670 memcpy(ret
->grid
, state
->grid
, wh
);
671 ret
->cheated
= state
->cheated
;
672 ret
->soln
= state
->soln
;
674 ret
->soln
->refcount
++;
675 ret
->solnpos
= state
->solnpos
;
680 static void free_game(game_state
*state
)
682 if (state
->soln
&& --state
->soln
->refcount
== 0) {
683 sfree(state
->soln
->list
);
691 * Internal function used by solver.
693 static int move_goes_to(int w
, int h
, char *grid
, int x
, int y
, int d
)
698 * See where we'd get to if we made this move.
700 dr
= -1; /* placate optimiser */
702 if (AT(w
, h
, grid
, x
+DX(d
), y
+DY(d
)) == WALL
) {
703 dr
= DIRECTIONS
; /* hit a wall, so end up stationary */
708 if (AT(w
, h
, grid
, x
, y
) == STOP
) {
709 dr
= DIRECTIONS
; /* hit a stop, so end up stationary */
712 if (AT(w
, h
, grid
, x
, y
) == GEM
) {
713 dr
= d
; /* hit a gem, so we're still moving */
716 if (AT(w
, h
, grid
, x
, y
) == MINE
)
717 return -1; /* hit a mine, so move is invalid */
720 return (y
*w
+x
)*DP1
+dr
;
723 static int compare_integers(const void *av
, const void *bv
)
725 const int *a
= (const int *)av
;
726 const int *b
= (const int *)bv
;
735 static char *solve_game(const game_state
*state
, const game_state
*currstate
,
736 const char *aux
, char **error
)
738 int w
= currstate
->p
.w
, h
= currstate
->p
.h
, wh
= w
*h
;
739 int *nodes
, *nodeindex
, *edges
, *backedges
, *edgei
, *backedgei
, *circuit
;
741 int *dist
, *dist2
, *list
;
743 int circuitlen
, circuitsize
;
744 int head
, tail
, pass
, i
, j
, n
, x
, y
, d
, dd
;
745 char *err
, *soln
, *p
;
748 * Before anything else, deal with the special case in which
749 * all the gems are already collected.
751 for (i
= 0; i
< wh
; i
++)
752 if (currstate
->grid
[i
] == GEM
)
755 *error
= "Game is already solved";
760 * Solving Inertia is a question of first building up the graph
761 * of where you can get to from where, and secondly finding a
762 * tour of the graph which takes in every gem.
764 * This is of course a close cousin of the travelling salesman
765 * problem, which is NP-complete; so I rather doubt that any
766 * _optimal_ tour can be found in plausible time. Hence I'll
767 * restrict myself to merely finding a not-too-bad one.
769 * First construct the graph, by bfsing out move by move from
770 * the current player position. Graph vertices will be
771 * - every endpoint of a move (place the ball can be
773 * - every gem (place the ball can go through in motion).
774 * Vertices of this type have an associated direction, since
775 * if a gem can be collected by sliding through it in two
776 * different directions it doesn't follow that you can
777 * change direction at it.
779 * I'm going to refer to a non-directional vertex as
780 * (y*w+x)*DP1+DIRECTIONS, and a directional one as
785 * nodeindex[] maps node codes as shown above to numeric
786 * indices in the nodes[] array.
788 nodeindex
= snewn(DP1
*wh
, int);
789 for (i
= 0; i
< DP1
*wh
; i
++)
793 * Do the bfs to find all the interesting graph nodes.
795 nodes
= snewn(DP1
*wh
, int);
798 nodes
[tail
] = (currstate
->py
* w
+ currstate
->px
) * DP1
+ DIRECTIONS
;
799 nodeindex
[nodes
[0]] = tail
;
802 while (head
< tail
) {
803 int nc
= nodes
[head
++], nnc
;
808 * Plot all possible moves from this node. If the node is
809 * directed, there's only one.
811 for (dd
= 0; dd
< DIRECTIONS
; dd
++) {
816 if (d
< DIRECTIONS
&& d
!= dd
)
819 nnc
= move_goes_to(w
, h
, currstate
->grid
, x
, y
, dd
);
820 if (nnc
>= 0 && nnc
!= nc
) {
821 if (nodeindex
[nnc
] < 0) {
823 nodeindex
[nnc
] = tail
;
832 * Now we know how many nodes we have, allocate the edge array
833 * and go through setting up the edges.
835 edges
= snewn(DIRECTIONS
*n
, int);
836 edgei
= snewn(n
+1, int);
839 for (i
= 0; i
< n
; i
++) {
849 for (dd
= 0; dd
< DIRECTIONS
; dd
++) {
852 if (d
>= DIRECTIONS
|| d
== dd
) {
853 nnc
= move_goes_to(w
, h
, currstate
->grid
, x
, y
, dd
);
855 if (nnc
>= 0 && nnc
!= nc
)
856 edges
[nedges
++] = nodeindex
[nnc
];
863 * Now set up the backedges array.
865 backedges
= snewn(nedges
, int);
866 backedgei
= snewn(n
+1, int);
867 for (i
= j
= 0; i
< nedges
; i
++) {
868 while (j
+1 < n
&& i
>= edgei
[j
+1])
870 backedges
[i
] = edges
[i
] * n
+ j
;
872 qsort(backedges
, nedges
, sizeof(int), compare_integers
);
874 for (i
= j
= 0; i
< nedges
; i
++) {
875 int k
= backedges
[i
] / n
;
880 backedgei
[n
] = nedges
;
883 * Set up the initial tour. At all times, our tour is a circuit
884 * of graph vertices (which may, and probably will often,
885 * repeat vertices). To begin with, it's got exactly one vertex
886 * in it, which is the player's current starting point.
889 circuit
= snewn(circuitsize
, int);
891 circuit
[circuitlen
++] = 0; /* node index 0 is the starting posn */
894 * Track which gems are as yet unvisited.
896 unvisited
= snewn(wh
, int);
897 for (i
= 0; i
< wh
; i
++)
898 unvisited
[i
] = FALSE
;
899 for (i
= 0; i
< wh
; i
++)
900 if (currstate
->grid
[i
] == GEM
)
904 * Allocate space for doing bfses inside the main loop.
906 dist
= snewn(n
, int);
907 dist2
= snewn(n
, int);
908 list
= snewn(n
, int);
914 * Now enter the main loop, in each iteration of which we
915 * extend the tour to take in an as yet uncollected gem.
918 int target
, n1
, n2
, bestdist
, extralen
, targetpos
;
920 #ifdef TSP_DIAGNOSTICS
921 printf("circuit is");
922 for (i
= 0; i
< circuitlen
; i
++) {
923 int nc
= nodes
[circuit
[i
]];
924 printf(" (%d,%d,%d)", nc
/DP1
%w
, nc
/(DP1
*w
), nc
%DP1
);
927 printf("moves are ");
928 x
= nodes
[circuit
[0]] / DP1
% w
;
929 y
= nodes
[circuit
[0]] / DP1
/ w
;
930 for (i
= 1; i
< circuitlen
; i
++) {
932 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
934 x2
= nodes
[circuit
[i
]] / DP1
% w
;
935 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
936 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
937 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
938 for (d
= 0; d
< DIRECTIONS
; d
++)
939 if (DX(d
) == dx
&& DY(d
) == dy
)
940 printf("%c", "89632147"[d
]);
948 * First, start a pair of bfses at _every_ vertex currently
949 * in the tour, and extend them outwards to find the
950 * nearest as yet unreached gem vertex.
952 * This is largely a heuristic: we could pick _any_ doubly
953 * reachable node here and still get a valid tour as
954 * output. I hope that picking a nearby one will result in
955 * generally good tours.
957 for (pass
= 0; pass
< 2; pass
++) {
958 int *ep
= (pass
== 0 ? edges
: backedges
);
959 int *ei
= (pass
== 0 ? edgei
: backedgei
);
960 int *dp
= (pass
== 0 ? dist
: dist2
);
962 for (i
= 0; i
< n
; i
++)
964 for (i
= 0; i
< circuitlen
; i
++) {
971 while (head
< tail
) {
972 int ni
= list
[head
++];
973 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
975 if (ti
>= 0 && dp
[ti
] < 0) {
982 /* Now find the nearest unvisited gem. */
985 for (i
= 0; i
< n
; i
++) {
986 if (unvisited
[nodes
[i
] / DP1
] &&
987 dist
[i
] >= 0 && dist2
[i
] >= 0) {
988 int thisdist
= dist
[i
] + dist2
[i
];
989 if (bestdist
< 0 || bestdist
> thisdist
) {
998 * If we get to here, we haven't found a gem we can get
999 * at all, which means we terminate this loop.
1005 * Now we have a graph vertex at list[tail-1] which is an
1006 * unvisited gem. We want to add that vertex to our tour.
1007 * So we run two more breadth-first searches: one starting
1008 * from that vertex and following forward edges, and
1009 * another starting from the same vertex and following
1010 * backward edges. This allows us to determine, for each
1011 * node on the current tour, how quickly we can get both to
1012 * and from the target vertex from that node.
1014 #ifdef TSP_DIAGNOSTICS
1015 printf("target node is %d (%d,%d,%d)\n", target
, nodes
[target
]/DP1
%w
,
1016 nodes
[target
]/DP1
/w
, nodes
[target
]%DP1
);
1019 for (pass
= 0; pass
< 2; pass
++) {
1020 int *ep
= (pass
== 0 ? edges
: backedges
);
1021 int *ei
= (pass
== 0 ? edgei
: backedgei
);
1022 int *dp
= (pass
== 0 ? dist
: dist2
);
1024 for (i
= 0; i
< n
; i
++)
1029 list
[tail
++] = target
;
1031 while (head
< tail
) {
1032 int ni
= list
[head
++];
1033 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
1035 if (ti
>= 0 && dp
[ti
] < 0) {
1036 dp
[ti
] = dp
[ni
] + 1;
1037 /*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
1045 * Now for every node n, dist[n] gives the length of the
1046 * shortest path from the target vertex to n, and dist2[n]
1047 * gives the length of the shortest path from n to the
1050 * Our next step is to search linearly along the tour to
1051 * find the optimum place to insert a trip to the target
1052 * vertex and back. Our two options are either
1053 * (a) to find two adjacent vertices A,B in the tour and
1054 * replace the edge A->B with the path A->target->B
1055 * (b) to find a single vertex X in the tour and replace
1056 * it with the complete round trip X->target->X.
1057 * We do whichever takes the fewest moves.
1061 for (i
= 0; i
< circuitlen
; i
++) {
1065 * Try a round trip from vertex i.
1067 if (dist
[circuit
[i
]] >= 0 &&
1068 dist2
[circuit
[i
]] >= 0) {
1069 thisdist
= dist
[circuit
[i
]] + dist2
[circuit
[i
]];
1070 if (bestdist
< 0 || thisdist
< bestdist
) {
1071 bestdist
= thisdist
;
1077 * Try a trip from vertex i via target to vertex i+1.
1079 if (i
+1 < circuitlen
&&
1080 dist2
[circuit
[i
]] >= 0 &&
1081 dist
[circuit
[i
+1]] >= 0) {
1082 thisdist
= dist2
[circuit
[i
]] + dist
[circuit
[i
+1]];
1083 if (bestdist
< 0 || thisdist
< bestdist
) {
1084 bestdist
= thisdist
;
1092 * We couldn't find a round trip taking in this gem _at
1095 err
= "Unable to find a solution from this starting point";
1098 #ifdef TSP_DIAGNOSTICS
1099 printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1
, n2
, bestdist
);
1102 #ifdef TSP_DIAGNOSTICS
1103 printf("circuit before lengthening is");
1104 for (i
= 0; i
< circuitlen
; i
++) {
1105 printf(" %d", circuit
[i
]);
1111 * Now actually lengthen the tour to take in this round
1114 extralen
= dist2
[circuit
[n1
]] + dist
[circuit
[n2
]];
1117 circuitlen
+= extralen
;
1118 if (circuitlen
>= circuitsize
) {
1119 circuitsize
= circuitlen
+ 256;
1120 circuit
= sresize(circuit
, circuitsize
, int);
1122 memmove(circuit
+ n2
+ extralen
, circuit
+ n2
,
1123 (circuitlen
- n2
- extralen
) * sizeof(int));
1126 #ifdef TSP_DIAGNOSTICS
1127 printf("circuit in middle of lengthening is");
1128 for (i
= 0; i
< circuitlen
; i
++) {
1129 printf(" %d", circuit
[i
]);
1135 * Find the shortest-path routes to and from the target,
1136 * and write them into the circuit.
1138 targetpos
= n1
+ dist2
[circuit
[n1
]];
1139 assert(targetpos
- dist2
[circuit
[n1
]] == n1
);
1140 assert(targetpos
+ dist
[circuit
[n2
]] == n2
);
1141 for (pass
= 0; pass
< 2; pass
++) {
1142 int dir
= (pass
== 0 ? -1 : +1);
1143 int *ep
= (pass
== 0 ? backedges
: edges
);
1144 int *ei
= (pass
== 0 ? backedgei
: edgei
);
1145 int *dp
= (pass
== 0 ? dist
: dist2
);
1146 int nn
= (pass
== 0 ? n2
: n1
);
1147 int ni
= circuit
[nn
], ti
, dest
= nn
;
1155 /*printf("pass %d: looking at vertex %d\n", pass, ni);*/
1156 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
1158 if (ti
>= 0 && dp
[ti
] == dp
[ni
] - 1)
1161 assert(i
< ei
[ni
+1] && ti
>= 0);
1166 #ifdef TSP_DIAGNOSTICS
1167 printf("circuit after lengthening is");
1168 for (i
= 0; i
< circuitlen
; i
++) {
1169 printf(" %d", circuit
[i
]);
1175 * Finally, mark all gems that the new piece of circuit
1176 * passes through as visited.
1178 for (i
= n1
; i
<= n2
; i
++) {
1179 int pos
= nodes
[circuit
[i
]] / DP1
;
1180 assert(pos
>= 0 && pos
< wh
);
1181 unvisited
[pos
] = FALSE
;
1185 #ifdef TSP_DIAGNOSTICS
1186 printf("before reduction, moves are ");
1187 x
= nodes
[circuit
[0]] / DP1
% w
;
1188 y
= nodes
[circuit
[0]] / DP1
/ w
;
1189 for (i
= 1; i
< circuitlen
; i
++) {
1191 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1193 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1194 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1195 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1196 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1197 for (d
= 0; d
< DIRECTIONS
; d
++)
1198 if (DX(d
) == dx
&& DY(d
) == dy
)
1199 printf("%c", "89632147"[d
]);
1207 * That's got a basic solution. Now optimise it by removing
1208 * redundant sections of the circuit: it's entirely possible
1209 * that a piece of circuit we carefully inserted at one stage
1210 * to collect a gem has become pointless because the steps
1211 * required to collect some _later_ gem necessarily passed
1212 * through the same one.
1214 * So first we go through and work out how many times each gem
1215 * is collected. Then we look for maximal sections of circuit
1216 * which are redundant in the sense that their removal would
1217 * not reduce any gem's collection count to zero, and replace
1218 * each one with a bfs-derived fastest path between their
1222 int oldlen
= circuitlen
;
1225 for (dir
= +1; dir
>= -1; dir
-= 2) {
1227 for (i
= 0; i
< wh
; i
++)
1229 for (i
= 0; i
< circuitlen
; i
++) {
1230 int xy
= nodes
[circuit
[i
]] / DP1
;
1231 if (currstate
->grid
[xy
] == GEM
)
1236 * If there's any gem we didn't end up visiting at all,
1239 for (i
= 0; i
< wh
; i
++) {
1240 if (currstate
->grid
[i
] == GEM
&& unvisited
[i
] == 0) {
1241 err
= "Unable to find a solution from this starting point";
1248 for (i
= j
= (dir
> 0 ? 0 : circuitlen
-1);
1249 i
< circuitlen
&& i
>= 0;
1251 int xy
= nodes
[circuit
[i
]] / DP1
;
1252 if (currstate
->grid
[xy
] == GEM
&& unvisited
[xy
] > 1) {
1254 } else if (currstate
->grid
[xy
] == GEM
|| i
== circuitlen
-1) {
1256 * circuit[i] collects a gem for the only time,
1257 * or is the last node in the circuit.
1258 * Therefore it cannot be removed; so we now
1259 * want to replace the path from circuit[j] to
1260 * circuit[i] with a bfs-shortest path.
1262 int p
, q
, k
, dest
, ni
, ti
, thisdist
;
1265 * Set up the upper and lower bounds of the
1271 #ifdef TSP_DIAGNOSTICS
1272 printf("optimising section from %d - %d\n", p
, q
);
1275 for (k
= 0; k
< n
; k
++)
1279 dist
[circuit
[p
]] = 0;
1280 list
[tail
++] = circuit
[p
];
1282 while (head
< tail
&& dist
[circuit
[q
]] < 0) {
1283 int ni
= list
[head
++];
1284 for (k
= edgei
[ni
]; k
< edgei
[ni
+1]; k
++) {
1286 if (ti
>= 0 && dist
[ti
] < 0) {
1287 dist
[ti
] = dist
[ni
] + 1;
1293 thisdist
= dist
[circuit
[q
]];
1294 assert(thisdist
>= 0 && thisdist
<= q
-p
);
1296 memmove(circuit
+p
+thisdist
, circuit
+q
,
1297 (circuitlen
- q
) * sizeof(int));
1303 i
= q
; /* resume loop from the right place */
1305 #ifdef TSP_DIAGNOSTICS
1306 printf("new section runs from %d - %d\n", p
, q
);
1314 /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
1320 for (k
= backedgei
[ni
]; k
< backedgei
[ni
+1]; k
++) {
1322 if (ti
>= 0 && dist
[ti
] == dist
[ni
] - 1)
1325 assert(k
< backedgei
[ni
+1] && ti
>= 0);
1330 * Now re-increment the visit counts for the
1334 int xy
= nodes
[circuit
[p
]] / DP1
;
1335 if (currstate
->grid
[xy
] == GEM
)
1341 #ifdef TSP_DIAGNOSTICS
1342 printf("during reduction, circuit is");
1343 for (k
= 0; k
< circuitlen
; k
++) {
1344 int nc
= nodes
[circuit
[k
]];
1345 printf(" (%d,%d,%d)", nc
/DP1
%w
, nc
/(DP1
*w
), nc
%DP1
);
1348 printf("moves are ");
1349 x
= nodes
[circuit
[0]] / DP1
% w
;
1350 y
= nodes
[circuit
[0]] / DP1
/ w
;
1351 for (k
= 1; k
< circuitlen
; k
++) {
1353 if (nodes
[circuit
[k
]] % DP1
!= DIRECTIONS
)
1355 x2
= nodes
[circuit
[k
]] / DP1
% w
;
1356 y2
= nodes
[circuit
[k
]] / DP1
/ w
;
1357 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1358 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1359 for (d
= 0; d
< DIRECTIONS
; d
++)
1360 if (DX(d
) == dx
&& DY(d
) == dy
)
1361 printf("%c", "89632147"[d
]);
1370 #ifdef TSP_DIAGNOSTICS
1371 printf("after reduction, moves are ");
1372 x
= nodes
[circuit
[0]] / DP1
% w
;
1373 y
= nodes
[circuit
[0]] / DP1
/ w
;
1374 for (i
= 1; i
< circuitlen
; i
++) {
1376 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1378 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1379 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1380 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1381 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1382 for (d
= 0; d
< DIRECTIONS
; d
++)
1383 if (DX(d
) == dx
&& DY(d
) == dy
)
1384 printf("%c", "89632147"[d
]);
1393 * If we've managed an entire reduction pass in each
1394 * direction and not made the solution any shorter, we're
1397 if (circuitlen
== oldlen
)
1402 * Encode the solution as a move string.
1405 soln
= snewn(circuitlen
+2, char);
1408 x
= nodes
[circuit
[0]] / DP1
% w
;
1409 y
= nodes
[circuit
[0]] / DP1
/ w
;
1410 for (i
= 1; i
< circuitlen
; i
++) {
1412 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1414 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1415 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1416 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1417 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1418 for (d
= 0; d
< DIRECTIONS
; d
++)
1419 if (DX(d
) == dx
&& DY(d
) == dy
) {
1423 assert(d
< DIRECTIONS
);
1428 assert(p
- soln
< circuitlen
+2);
1449 static int game_can_format_as_text_now(const game_params
*params
)
1454 static char *game_text_format(const game_state
*state
)
1456 int w
= state
->p
.w
, h
= state
->p
.h
, r
, c
;
1457 int cw
= 4, ch
= 2, gw
= cw
*w
+ 2, gh
= ch
* h
+ 1, len
= gw
* gh
;
1458 char *board
= snewn(len
+ 1, char);
1460 sprintf(board
, "%*s+\n", len
- 2, "");
1462 for (r
= 0; r
< h
; ++r
) {
1463 for (c
= 0; c
< w
; ++c
) {
1464 int cell
= r
*ch
*gw
+ cw
*c
, center
= cell
+ gw
*ch
/2 + cw
/2;
1466 switch (state
->grid
[i
]) {
1468 case GEM
: board
[center
] = 'o'; break;
1469 case MINE
: board
[center
] = 'M'; break;
1470 case STOP
: board
[center
-1] = '('; board
[center
+1] = ')'; break;
1471 case WALL
: memset(board
+ center
- 1, 'X', 3);
1474 if (r
== state
->py
&& c
== state
->px
) {
1475 if (!state
->dead
) board
[center
] = '@';
1476 else memcpy(board
+ center
- 1, ":-(", 3);
1479 memset(board
+ cell
+ 1, '-', cw
- 1);
1480 for (i
= 1; i
< ch
; ++i
) board
[cell
+ i
*gw
] = '|';
1482 for (c
= 0; c
< ch
; ++c
) {
1483 board
[(r
*ch
+c
)*gw
+ gw
- 2] = "|+"[!c
];
1484 board
[(r
*ch
+c
)*gw
+ gw
- 1] = '\n';
1487 memset(board
+ len
- gw
, '-', gw
- 2);
1488 for (c
= 0; c
< w
; ++c
) board
[len
- gw
+ cw
*c
] = '+';
1501 static game_ui
*new_ui(const game_state
*state
)
1503 game_ui
*ui
= snew(game_ui
);
1504 ui
->anim_length
= 0.0F
;
1507 ui
->just_made_move
= FALSE
;
1508 ui
->just_died
= FALSE
;
1512 static void free_ui(game_ui
*ui
)
1517 static char *encode_ui(const game_ui
*ui
)
1521 * The deaths counter needs preserving across a serialisation.
1523 sprintf(buf
, "D%d", ui
->deaths
);
1527 static void decode_ui(game_ui
*ui
, const char *encoding
)
1530 sscanf(encoding
, "D%d%n", &ui
->deaths
, &p
);
1533 static void game_changed_state(game_ui
*ui
, const game_state
*oldstate
,
1534 const game_state
*newstate
)
1537 * Increment the deaths counter. We only do this if
1538 * ui->just_made_move is set (redoing a suicide move doesn't
1539 * kill you _again_), and also we only do it if the game wasn't
1540 * already completed (once you're finished, you can play).
1542 if (!oldstate
->dead
&& newstate
->dead
&& ui
->just_made_move
&&
1545 ui
->just_died
= TRUE
;
1547 ui
->just_died
= FALSE
;
1549 ui
->just_made_move
= FALSE
;
1552 struct game_drawstate
{
1556 unsigned short *grid
;
1557 blitter
*player_background
;
1558 int player_bg_saved
, pbgx
, pbgy
;
1561 #define PREFERRED_TILESIZE 32
1562 #define TILESIZE (ds->tilesize)
1564 #define BORDER (TILESIZE / 4)
1566 #define BORDER (TILESIZE)
1568 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
1569 #define COORD(x) ( (x) * TILESIZE + BORDER )
1570 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1572 static char *interpret_move(const game_state
*state
, game_ui
*ui
,
1573 const game_drawstate
*ds
,
1574 int x
, int y
, int button
)
1576 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1582 if (button
== LEFT_BUTTON
) {
1584 * Mouse-clicking near the target point (or, more
1585 * accurately, in the appropriate octant) is an alternative
1586 * way to input moves.
1589 if (FROMCOORD(x
) != state
->px
|| FROMCOORD(y
) != state
->py
) {
1593 dx
= FROMCOORD(x
) - state
->px
;
1594 dy
= FROMCOORD(y
) - state
->py
;
1595 /* I pass dx,dy rather than dy,dx so that the octants
1596 * end up the right way round. */
1597 angle
= atan2(dx
, -dy
);
1599 angle
= (angle
+ (PI
/8)) / (PI
/4);
1600 assert(angle
> -16.0F
);
1601 dir
= (int)(angle
+ 16.0F
) & 7;
1603 } else if (button
== CURSOR_UP
|| button
== (MOD_NUM_KEYPAD
| '8'))
1605 else if (button
== CURSOR_DOWN
|| button
== (MOD_NUM_KEYPAD
| '2'))
1607 else if (button
== CURSOR_LEFT
|| button
== (MOD_NUM_KEYPAD
| '4'))
1609 else if (button
== CURSOR_RIGHT
|| button
== (MOD_NUM_KEYPAD
| '6'))
1611 else if (button
== (MOD_NUM_KEYPAD
| '7'))
1613 else if (button
== (MOD_NUM_KEYPAD
| '1'))
1615 else if (button
== (MOD_NUM_KEYPAD
| '9'))
1617 else if (button
== (MOD_NUM_KEYPAD
| '3'))
1619 else if (IS_CURSOR_SELECT(button
) &&
1620 state
->soln
&& state
->solnpos
< state
->soln
->len
)
1621 dir
= state
->soln
->list
[state
->solnpos
];
1627 * Reject the move if we can't make it at all due to a wall
1630 if (AT(w
, h
, state
->grid
, state
->px
+DX(dir
), state
->py
+DY(dir
)) == WALL
)
1634 * Reject the move if we're dead!
1640 * Otherwise, we can make the move. All we need to specify is
1643 ui
->just_made_move
= TRUE
;
1644 sprintf(buf
, "%d", dir
);
1648 static void install_new_solution(game_state
*ret
, const char *move
)
1652 assert (*move
== 'S');
1656 sol
->len
= strlen(move
);
1657 sol
->list
= snewn(sol
->len
, unsigned char);
1658 for (i
= 0; i
< sol
->len
; ++i
) sol
->list
[i
] = move
[i
] - '0';
1660 if (ret
->soln
&& --ret
->soln
->refcount
== 0) {
1661 sfree(ret
->soln
->list
);
1668 ret
->cheated
= TRUE
;
1672 static void discard_solution(game_state
*ret
)
1674 --ret
->soln
->refcount
;
1675 assert(ret
->soln
->refcount
> 0); /* ret has a soln-pointing dup */
1680 static game_state
*execute_move(const game_state
*state
, const char *move
)
1682 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1688 * This is a solve move, so we don't actually _change_ the
1689 * grid but merely set up a stored solution path.
1691 ret
= dup_game(state
);
1692 install_new_solution(ret
, move
);
1697 if (dir
< 0 || dir
>= DIRECTIONS
)
1698 return NULL
; /* huh? */
1703 if (AT(w
, h
, state
->grid
, state
->px
+DX(dir
), state
->py
+DY(dir
)) == WALL
)
1704 return NULL
; /* wall in the way! */
1707 * Now make the move.
1709 ret
= dup_game(state
);
1710 ret
->distance_moved
= 0;
1714 ret
->distance_moved
++;
1716 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == GEM
) {
1717 LV_AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) = BLANK
;
1721 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == MINE
) {
1726 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == STOP
||
1727 AT(w
, h
, ret
->grid
, ret
->px
+DX(dir
),
1728 ret
->py
+DY(dir
)) == WALL
)
1733 if (ret
->dead
|| ret
->gems
== 0)
1734 discard_solution(ret
);
1735 else if (ret
->soln
->list
[ret
->solnpos
] == dir
) {
1737 assert(ret
->solnpos
< ret
->soln
->len
); /* or gems == 0 */
1738 assert(!ret
->dead
); /* or not a solution */
1740 char *error
= NULL
, *soln
= solve_game(NULL
, ret
, NULL
, &error
);
1742 install_new_solution(ret
, soln
);
1744 } else discard_solution(ret
);
1751 /* ----------------------------------------------------------------------
1755 static void game_compute_size(const game_params
*params
, int tilesize
,
1758 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1759 struct { int tilesize
; } ads
, *ds
= &ads
;
1760 ads
.tilesize
= tilesize
;
1762 *x
= 2 * BORDER
+ 1 + params
->w
* TILESIZE
;
1763 *y
= 2 * BORDER
+ 1 + params
->h
* TILESIZE
;
1766 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
1767 const game_params
*params
, int tilesize
)
1769 ds
->tilesize
= tilesize
;
1771 assert(!ds
->player_background
); /* set_size is never called twice */
1772 assert(!ds
->player_bg_saved
);
1774 ds
->player_background
= blitter_new(dr
, TILESIZE
, TILESIZE
);
1777 static float *game_colours(frontend
*fe
, int *ncolours
)
1779 float *ret
= snewn(3 * NCOLOURS
, float);
1782 game_mkhighlight(fe
, ret
, COL_BACKGROUND
, COL_HIGHLIGHT
, COL_LOWLIGHT
);
1784 ret
[COL_OUTLINE
* 3 + 0] = 0.0F
;
1785 ret
[COL_OUTLINE
* 3 + 1] = 0.0F
;
1786 ret
[COL_OUTLINE
* 3 + 2] = 0.0F
;
1788 ret
[COL_PLAYER
* 3 + 0] = 0.0F
;
1789 ret
[COL_PLAYER
* 3 + 1] = 1.0F
;
1790 ret
[COL_PLAYER
* 3 + 2] = 0.0F
;
1792 ret
[COL_DEAD_PLAYER
* 3 + 0] = 1.0F
;
1793 ret
[COL_DEAD_PLAYER
* 3 + 1] = 0.0F
;
1794 ret
[COL_DEAD_PLAYER
* 3 + 2] = 0.0F
;
1796 ret
[COL_MINE
* 3 + 0] = 0.0F
;
1797 ret
[COL_MINE
* 3 + 1] = 0.0F
;
1798 ret
[COL_MINE
* 3 + 2] = 0.0F
;
1800 ret
[COL_GEM
* 3 + 0] = 0.6F
;
1801 ret
[COL_GEM
* 3 + 1] = 1.0F
;
1802 ret
[COL_GEM
* 3 + 2] = 1.0F
;
1804 for (i
= 0; i
< 3; i
++) {
1805 ret
[COL_WALL
* 3 + i
] = (3 * ret
[COL_BACKGROUND
* 3 + i
] +
1806 1 * ret
[COL_HIGHLIGHT
* 3 + i
]) / 4;
1809 ret
[COL_HINT
* 3 + 0] = 1.0F
;
1810 ret
[COL_HINT
* 3 + 1] = 1.0F
;
1811 ret
[COL_HINT
* 3 + 2] = 0.0F
;
1813 *ncolours
= NCOLOURS
;
1817 static game_drawstate
*game_new_drawstate(drawing
*dr
, const game_state
*state
)
1819 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
1820 struct game_drawstate
*ds
= snew(struct game_drawstate
);
1825 /* We can't allocate the blitter rectangle for the player background
1826 * until we know what size to make it. */
1827 ds
->player_background
= NULL
;
1828 ds
->player_bg_saved
= FALSE
;
1829 ds
->pbgx
= ds
->pbgy
= -1;
1831 ds
->p
= state
->p
; /* structure copy */
1832 ds
->started
= FALSE
;
1833 ds
->grid
= snewn(wh
, unsigned short);
1834 for (i
= 0; i
< wh
; i
++)
1835 ds
->grid
[i
] = UNDRAWN
;
1840 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
1842 if (ds
->player_background
)
1843 blitter_free(dr
, ds
->player_background
);
1848 static void draw_player(drawing
*dr
, game_drawstate
*ds
, int x
, int y
,
1849 int dead
, int hintdir
)
1852 int coords
[DIRECTIONS
*4];
1855 for (d
= 0; d
< DIRECTIONS
; d
++) {
1856 float x1
, y1
, x2
, y2
, x3
, y3
, len
;
1860 len
= sqrt(x1
*x1
+y1
*y1
); x1
/= len
; y1
/= len
;
1864 len
= sqrt(x3
*x3
+y3
*y3
); x3
/= len
; y3
/= len
;
1869 coords
[d
*4+0] = x
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * x1
);
1870 coords
[d
*4+1] = y
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * y1
);
1871 coords
[d
*4+2] = x
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * x2
);
1872 coords
[d
*4+3] = y
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * y2
);
1874 draw_polygon(dr
, coords
, DIRECTIONS
*2, COL_DEAD_PLAYER
, COL_OUTLINE
);
1876 draw_circle(dr
, x
+ TILESIZE
/2, y
+ TILESIZE
/2,
1877 TILESIZE
/3, COL_PLAYER
, COL_OUTLINE
);
1880 if (!dead
&& hintdir
>= 0) {
1881 float scale
= (DX(hintdir
) && DY(hintdir
) ? 0.8F
: 1.0F
);
1882 int ax
= (TILESIZE
*2/5) * scale
* DX(hintdir
);
1883 int ay
= (TILESIZE
*2/5) * scale
* DY(hintdir
);
1884 int px
= -ay
, py
= ax
;
1885 int ox
= x
+ TILESIZE
/2, oy
= y
+ TILESIZE
/2;
1891 *c
++ = ox
+ px
/9 + ax
*2/3;
1892 *c
++ = oy
+ py
/9 + ay
*2/3;
1893 *c
++ = ox
+ px
/3 + ax
*2/3;
1894 *c
++ = oy
+ py
/3 + ay
*2/3;
1897 *c
++ = ox
- px
/3 + ax
*2/3;
1898 *c
++ = oy
- py
/3 + ay
*2/3;
1899 *c
++ = ox
- px
/9 + ax
*2/3;
1900 *c
++ = oy
- py
/9 + ay
*2/3;
1903 draw_polygon(dr
, coords
, 7, COL_HINT
, COL_OUTLINE
);
1906 draw_update(dr
, x
, y
, TILESIZE
, TILESIZE
);
1909 #define FLASH_DEAD 0x100
1910 #define FLASH_WIN 0x200
1911 #define FLASH_MASK 0x300
1913 static void draw_tile(drawing
*dr
, game_drawstate
*ds
, int x
, int y
, int v
)
1915 int tx
= COORD(x
), ty
= COORD(y
);
1916 int bg
= (v
& FLASH_DEAD
? COL_DEAD_PLAYER
:
1917 v
& FLASH_WIN
? COL_HIGHLIGHT
: COL_BACKGROUND
);
1921 clip(dr
, tx
+1, ty
+1, TILESIZE
-1, TILESIZE
-1);
1922 draw_rect(dr
, tx
+1, ty
+1, TILESIZE
-1, TILESIZE
-1, bg
);
1927 coords
[0] = tx
+ TILESIZE
;
1928 coords
[1] = ty
+ TILESIZE
;
1929 coords
[2] = tx
+ TILESIZE
;
1932 coords
[5] = ty
+ TILESIZE
;
1933 draw_polygon(dr
, coords
, 3, COL_LOWLIGHT
, COL_LOWLIGHT
);
1937 draw_polygon(dr
, coords
, 3, COL_HIGHLIGHT
, COL_HIGHLIGHT
);
1939 draw_rect(dr
, tx
+ 1 + HIGHLIGHT_WIDTH
, ty
+ 1 + HIGHLIGHT_WIDTH
,
1940 TILESIZE
- 2*HIGHLIGHT_WIDTH
,
1941 TILESIZE
- 2*HIGHLIGHT_WIDTH
, COL_WALL
);
1942 } else if (v
== MINE
) {
1943 int cx
= tx
+ TILESIZE
/ 2;
1944 int cy
= ty
+ TILESIZE
/ 2;
1945 int r
= TILESIZE
/ 2 - 3;
1947 draw_circle(dr
, cx
, cy
, 5*r
/6, COL_MINE
, COL_MINE
);
1948 draw_rect(dr
, cx
- r
/6, cy
- r
, 2*(r
/6)+1, 2*r
+1, COL_MINE
);
1949 draw_rect(dr
, cx
- r
, cy
- r
/6, 2*r
+1, 2*(r
/6)+1, COL_MINE
);
1950 draw_rect(dr
, cx
-r
/3, cy
-r
/3, r
/3, r
/4, COL_HIGHLIGHT
);
1951 } else if (v
== STOP
) {
1952 draw_circle(dr
, tx
+ TILESIZE
/2, ty
+ TILESIZE
/2,
1953 TILESIZE
*3/7, -1, COL_OUTLINE
);
1954 draw_rect(dr
, tx
+ TILESIZE
*3/7, ty
+1,
1955 TILESIZE
- 2*(TILESIZE
*3/7) + 1, TILESIZE
-1, bg
);
1956 draw_rect(dr
, tx
+1, ty
+ TILESIZE
*3/7,
1957 TILESIZE
-1, TILESIZE
- 2*(TILESIZE
*3/7) + 1, bg
);
1958 } else if (v
== GEM
) {
1961 coords
[0] = tx
+TILESIZE
/2;
1962 coords
[1] = ty
+TILESIZE
/2-TILESIZE
*5/14;
1963 coords
[2] = tx
+TILESIZE
/2-TILESIZE
*5/14;
1964 coords
[3] = ty
+TILESIZE
/2;
1965 coords
[4] = tx
+TILESIZE
/2;
1966 coords
[5] = ty
+TILESIZE
/2+TILESIZE
*5/14;
1967 coords
[6] = tx
+TILESIZE
/2+TILESIZE
*5/14;
1968 coords
[7] = ty
+TILESIZE
/2;
1970 draw_polygon(dr
, coords
, 4, COL_GEM
, COL_OUTLINE
);
1974 draw_update(dr
, tx
, ty
, TILESIZE
, TILESIZE
);
1977 #define BASE_ANIM_LENGTH 0.1F
1978 #define FLASH_LENGTH 0.3F
1980 static void game_redraw(drawing
*dr
, game_drawstate
*ds
,
1981 const game_state
*oldstate
, const game_state
*state
,
1982 int dir
, const game_ui
*ui
,
1983 float animtime
, float flashtime
)
1985 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1994 !((int)(flashtime
* 3 / FLASH_LENGTH
) % 2))
1995 flashtype
= ui
->flashtype
;
2000 * Erase the player sprite.
2002 if (ds
->player_bg_saved
) {
2003 assert(ds
->player_background
);
2004 blitter_load(dr
, ds
->player_background
, ds
->pbgx
, ds
->pbgy
);
2005 draw_update(dr
, ds
->pbgx
, ds
->pbgy
, TILESIZE
, TILESIZE
);
2006 ds
->player_bg_saved
= FALSE
;
2010 * Initialise a fresh drawstate.
2016 * Blank out the window initially.
2018 game_compute_size(&ds
->p
, TILESIZE
, &wid
, &ht
);
2019 draw_rect(dr
, 0, 0, wid
, ht
, COL_BACKGROUND
);
2020 draw_update(dr
, 0, 0, wid
, ht
);
2023 * Draw the grid lines.
2025 for (y
= 0; y
<= h
; y
++)
2026 draw_line(dr
, COORD(0), COORD(y
), COORD(w
), COORD(y
),
2028 for (x
= 0; x
<= w
; x
++)
2029 draw_line(dr
, COORD(x
), COORD(0), COORD(x
), COORD(h
),
2036 * If we're in the process of animating a move, let's start by
2037 * working out how far the player has moved from their _older_
2041 ap
= animtime
/ ui
->anim_length
;
2042 player_dist
= ap
* (dir
> 0 ? state
: oldstate
)->distance_moved
;
2049 * Draw the grid contents.
2051 * We count the gems as we go round this loop, for the purposes
2052 * of the status bar. Of course we have a gems counter in the
2053 * game_state already, but if we do the counting in this loop
2054 * then it tracks gems being picked up in a sliding move, and
2055 * updates one by one.
2058 for (y
= 0; y
< h
; y
++)
2059 for (x
= 0; x
< w
; x
++) {
2060 unsigned short v
= (unsigned char)state
->grid
[y
*w
+x
];
2063 * Special case: if the player is in the process of
2064 * moving over a gem, we draw the gem iff they haven't
2067 if (oldstate
&& oldstate
->grid
[y
*w
+x
] != state
->grid
[y
*w
+x
]) {
2069 * Compute the distance from this square to the
2070 * original player position.
2072 int dist
= max(abs(x
- oldstate
->px
), abs(y
- oldstate
->py
));
2075 * If the player has reached here, use the new grid
2076 * element. Otherwise use the old one.
2078 if (player_dist
< dist
)
2079 v
= oldstate
->grid
[y
*w
+x
];
2081 v
= state
->grid
[y
*w
+x
];
2085 * Special case: erase the mine the dead player is
2086 * sitting on. Only at the end of the move.
2088 if (v
== MINE
&& !oldstate
&& state
->dead
&&
2089 x
== state
->px
&& y
== state
->py
)
2097 if (ds
->grid
[y
*w
+x
] != v
) {
2098 draw_tile(dr
, ds
, x
, y
, v
);
2099 ds
->grid
[y
*w
+x
] = v
;
2104 * Gem counter in the status bar. We replace it with
2105 * `COMPLETED!' when it reaches zero ... or rather, when the
2106 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
2107 * shown between the collection of the last gem and the
2108 * completion of the move animation that did it.)
2110 if (state
->dead
&& (!oldstate
|| oldstate
->dead
)) {
2111 sprintf(status
, "DEAD!");
2112 } else if (state
->gems
|| (oldstate
&& oldstate
->gems
)) {
2114 sprintf(status
, "Auto-solver used. ");
2117 sprintf(status
+ strlen(status
), "Gems: %d", gems
);
2118 } else if (state
->cheated
) {
2119 sprintf(status
, "Auto-solved.");
2121 sprintf(status
, "COMPLETED!");
2123 /* We subtract one from the visible death counter if we're still
2124 * animating the move at the end of which the death took place. */
2125 deaths
= ui
->deaths
;
2126 if (oldstate
&& ui
->just_died
) {
2131 sprintf(status
+ strlen(status
), " Deaths: %d", deaths
);
2132 status_bar(dr
, status
);
2135 * Draw the player sprite.
2137 assert(!ds
->player_bg_saved
);
2138 assert(ds
->player_background
);
2141 nx
= COORD(state
->px
);
2142 ny
= COORD(state
->py
);
2144 ox
= COORD(oldstate
->px
);
2145 oy
= COORD(oldstate
->py
);
2150 ds
->pbgx
= ox
+ ap
* (nx
- ox
);
2151 ds
->pbgy
= oy
+ ap
* (ny
- oy
);
2153 blitter_save(dr
, ds
->player_background
, ds
->pbgx
, ds
->pbgy
);
2154 draw_player(dr
, ds
, ds
->pbgx
, ds
->pbgy
,
2155 (state
->dead
&& !oldstate
),
2156 (!oldstate
&& state
->soln
?
2157 state
->soln
->list
[state
->solnpos
] : -1));
2158 ds
->player_bg_saved
= TRUE
;
2161 static float game_anim_length(const game_state
*oldstate
,
2162 const game_state
*newstate
, int dir
, game_ui
*ui
)
2166 dist
= newstate
->distance_moved
;
2168 dist
= oldstate
->distance_moved
;
2169 ui
->anim_length
= sqrt(dist
) * BASE_ANIM_LENGTH
;
2170 return ui
->anim_length
;
2173 static float game_flash_length(const game_state
*oldstate
,
2174 const game_state
*newstate
, int dir
, game_ui
*ui
)
2176 if (!oldstate
->dead
&& newstate
->dead
) {
2177 ui
->flashtype
= FLASH_DEAD
;
2178 return FLASH_LENGTH
;
2179 } else if (oldstate
->gems
&& !newstate
->gems
) {
2180 ui
->flashtype
= FLASH_WIN
;
2181 return FLASH_LENGTH
;
2186 static int game_status(const game_state
*state
)
2189 * We never report the game as lost, on the grounds that if the
2190 * player has died they're quite likely to want to undo and carry
2193 return state
->gems
== 0 ? +1 : 0;
2196 static int game_timing_state(const game_state
*state
, game_ui
*ui
)
2201 static void game_print_size(const game_params
*params
, float *x
, float *y
)
2205 static void game_print(drawing
*dr
, const game_state
*state
, int tilesize
)
2210 #define thegame inertia
2213 const struct game thegame
= {
2214 "Inertia", "games.inertia", "inertia",
2216 game_fetch_preset
, NULL
,
2221 TRUE
, game_configure
, custom_params
,
2229 TRUE
, game_can_format_as_text_now
, game_text_format
,
2237 PREFERRED_TILESIZE
, game_compute_size
, game_set_size
,
2240 game_free_drawstate
,
2245 FALSE
, FALSE
, game_print_size
, game_print
,
2246 TRUE
, /* wants_statusbar */
2247 FALSE
, game_timing_state
,