Prepare to release sgt-puzzles (20170606.272beef-1).
[sgt-puzzles.git] / untangle.c
blobac40418efc705c3b0e62c6e8915c3556c68a0ee4
1 /*
2 * untangle.c: Game about planar graphs. You are given a graph
3 * represented by points and straight lines, with some lines
4 * crossing; your task is to drag the points into a configuration
5 * where none of the lines cross.
6 *
7 * Cloned from a Flash game called `Planarity', by John Tantalo.
8 * <http://home.cwru.edu/~jnt5/Planarity> at the time of writing
9 * this. The Flash game had a fixed set of levels; my added value,
10 * as usual, is automatic generation of random games to order.
14 * TODO:
16 * - This puzzle, perhaps uniquely among the collection, could use
17 * support for non-aspect-ratio-preserving resizes. This would
18 * require some sort of fairly large redesign, unfortunately (since
19 * it would invalidate the basic assumption that puzzles' size
20 * requirements are adequately expressed by a single scalar tile
21 * size), and probably complicate the rest of the puzzles' API as a
22 * result. So I'm not sure I really want to do it.
24 * - It would be nice if we could somehow auto-detect a real `long
25 * long' type on the host platform and use it in place of my
26 * hand-hacked int64s. It'd be faster and more reliable.
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <assert.h>
33 #include <ctype.h>
34 #include <math.h>
36 #include "puzzles.h"
37 #include "tree234.h"
39 #define CIRCLE_RADIUS 6
40 #define DRAG_THRESHOLD (CIRCLE_RADIUS * 2)
41 #define PREFERRED_TILESIZE 64
43 #define FLASH_TIME 0.30F
44 #define ANIM_TIME 0.13F
45 #define SOLVEANIM_TIME 0.50F
47 enum {
48 COL_SYSBACKGROUND,
49 COL_BACKGROUND,
50 COL_LINE,
51 #ifdef SHOW_CROSSINGS
52 COL_CROSSEDLINE,
53 #endif
54 COL_OUTLINE,
55 COL_POINT,
56 COL_DRAGPOINT,
57 COL_NEIGHBOUR,
58 COL_FLASH1,
59 COL_FLASH2,
60 NCOLOURS
63 typedef struct point {
65 * Points are stored using rational coordinates, with the same
66 * denominator for both coordinates.
68 long x, y, d;
69 } point;
71 typedef struct edge {
73 * This structure is implicitly associated with a particular
74 * point set, so all it has to do is to store two point
75 * indices. It is required to store them in the order (lower,
76 * higher), i.e. a < b always.
78 int a, b;
79 } edge;
81 struct game_params {
82 int n; /* number of points */
85 struct graph {
86 int refcount; /* for deallocation */
87 tree234 *edges; /* stores `edge' structures */
90 struct game_state {
91 game_params params;
92 int w, h; /* extent of coordinate system only */
93 point *pts;
94 #ifdef SHOW_CROSSINGS
95 int *crosses; /* mark edges which are crossed */
96 #endif
97 struct graph *graph;
98 int completed, cheated, just_solved;
101 static int edgecmpC(const void *av, const void *bv)
103 const edge *a = (const edge *)av;
104 const edge *b = (const edge *)bv;
106 if (a->a < b->a)
107 return -1;
108 else if (a->a > b->a)
109 return +1;
110 else if (a->b < b->b)
111 return -1;
112 else if (a->b > b->b)
113 return +1;
114 return 0;
117 static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); }
119 static game_params *default_params(void)
121 game_params *ret = snew(game_params);
123 ret->n = 10;
125 return ret;
128 static int game_fetch_preset(int i, char **name, game_params **params)
130 game_params *ret;
131 int n;
132 char buf[80];
134 switch (i) {
135 case 0: n = 6; break;
136 case 1: n = 10; break;
137 case 2: n = 15; break;
138 case 3: n = 20; break;
139 case 4: n = 25; break;
140 default: return FALSE;
143 sprintf(buf, "%d points", n);
144 *name = dupstr(buf);
146 *params = ret = snew(game_params);
147 ret->n = n;
149 return TRUE;
152 static void free_params(game_params *params)
154 sfree(params);
157 static game_params *dup_params(const game_params *params)
159 game_params *ret = snew(game_params);
160 *ret = *params; /* structure copy */
161 return ret;
164 static void decode_params(game_params *params, char const *string)
166 params->n = atoi(string);
169 static char *encode_params(const game_params *params, int full)
171 char buf[80];
173 sprintf(buf, "%d", params->n);
175 return dupstr(buf);
178 static config_item *game_configure(const game_params *params)
180 config_item *ret;
181 char buf[80];
183 ret = snewn(3, config_item);
185 ret[0].name = "Number of points";
186 ret[0].type = C_STRING;
187 sprintf(buf, "%d", params->n);
188 ret[0].sval = dupstr(buf);
189 ret[0].ival = 0;
191 ret[1].name = NULL;
192 ret[1].type = C_END;
193 ret[1].sval = NULL;
194 ret[1].ival = 0;
196 return ret;
199 static game_params *custom_params(const config_item *cfg)
201 game_params *ret = snew(game_params);
203 ret->n = atoi(cfg[0].sval);
205 return ret;
208 static char *validate_params(const game_params *params, int full)
210 if (params->n < 4)
211 return "Number of points must be at least four";
212 return NULL;
215 /* ----------------------------------------------------------------------
216 * Small number of 64-bit integer arithmetic operations, to prevent
217 * integer overflow at the very core of cross().
220 typedef struct {
221 long hi;
222 unsigned long lo;
223 } int64;
225 #define greater64(i,j) ( (i).hi>(j).hi || ((i).hi==(j).hi && (i).lo>(j).lo))
226 #define sign64(i) ((i).hi < 0 ? -1 : (i).hi==0 && (i).lo==0 ? 0 : +1)
228 static int64 mulu32to64(unsigned long x, unsigned long y)
230 unsigned long a, b, c, d, t;
231 int64 ret;
233 a = (x & 0xFFFF) * (y & 0xFFFF);
234 b = (x & 0xFFFF) * (y >> 16);
235 c = (x >> 16) * (y & 0xFFFF);
236 d = (x >> 16) * (y >> 16);
238 ret.lo = a;
239 ret.hi = d + (b >> 16) + (c >> 16);
240 t = (b & 0xFFFF) << 16;
241 ret.lo += t;
242 if (ret.lo < t)
243 ret.hi++;
244 t = (c & 0xFFFF) << 16;
245 ret.lo += t;
246 if (ret.lo < t)
247 ret.hi++;
249 #ifdef DIAGNOSTIC_VIA_LONGLONG
250 assert(((unsigned long long)ret.hi << 32) + ret.lo ==
251 (unsigned long long)x * y);
252 #endif
254 return ret;
257 static int64 mul32to64(long x, long y)
259 int sign = +1;
260 int64 ret;
261 #ifdef DIAGNOSTIC_VIA_LONGLONG
262 long long realret = (long long)x * y;
263 #endif
265 if (x < 0)
266 x = -x, sign = -sign;
267 if (y < 0)
268 y = -y, sign = -sign;
270 ret = mulu32to64(x, y);
272 if (sign < 0) {
273 ret.hi = -ret.hi;
274 ret.lo = -ret.lo;
275 if (ret.lo)
276 ret.hi--;
279 #ifdef DIAGNOSTIC_VIA_LONGLONG
280 assert(((unsigned long long)ret.hi << 32) + ret.lo == realret);
281 #endif
283 return ret;
286 static int64 dotprod64(long a, long b, long p, long q)
288 int64 ab, pq;
290 ab = mul32to64(a, b);
291 pq = mul32to64(p, q);
292 ab.hi += pq.hi;
293 ab.lo += pq.lo;
294 if (ab.lo < pq.lo)
295 ab.hi++;
296 return ab;
300 * Determine whether the line segments between a1 and a2, and
301 * between b1 and b2, intersect. We count it as an intersection if
302 * any of the endpoints lies _on_ the other line.
304 static int cross(point a1, point a2, point b1, point b2)
306 long b1x, b1y, b2x, b2y, px, py;
307 int64 d1, d2, d3;
310 * The condition for crossing is that b1 and b2 are on opposite
311 * sides of the line a1-a2, and vice versa. We determine this
312 * by taking the dot product of b1-a1 with a vector
313 * perpendicular to a2-a1, and similarly with b2-a1, and seeing
314 * if they have different signs.
318 * Construct the vector b1-a1. We don't have to worry too much
319 * about the denominator, because we're only going to check the
320 * sign of this vector; we just need to get the numerator
321 * right.
323 b1x = b1.x * a1.d - a1.x * b1.d;
324 b1y = b1.y * a1.d - a1.y * b1.d;
325 /* Now construct b2-a1, and a vector perpendicular to a2-a1,
326 * in the same way. */
327 b2x = b2.x * a1.d - a1.x * b2.d;
328 b2y = b2.y * a1.d - a1.y * b2.d;
329 px = a1.y * a2.d - a2.y * a1.d;
330 py = a2.x * a1.d - a1.x * a2.d;
331 /* Take the dot products. Here we resort to 64-bit arithmetic. */
332 d1 = dotprod64(b1x, px, b1y, py);
333 d2 = dotprod64(b2x, px, b2y, py);
334 /* If they have the same non-zero sign, the lines do not cross. */
335 if ((sign64(d1) > 0 && sign64(d2) > 0) ||
336 (sign64(d1) < 0 && sign64(d2) < 0))
337 return FALSE;
340 * If the dot products are both exactly zero, then the two line
341 * segments are collinear. At this point the intersection
342 * condition becomes whether or not they overlap within their
343 * line.
345 if (sign64(d1) == 0 && sign64(d2) == 0) {
346 /* Construct the vector a2-a1. */
347 px = a2.x * a1.d - a1.x * a2.d;
348 py = a2.y * a1.d - a1.y * a2.d;
349 /* Determine the dot products of b1-a1 and b2-a1 with this. */
350 d1 = dotprod64(b1x, px, b1y, py);
351 d2 = dotprod64(b2x, px, b2y, py);
352 /* If they're both strictly negative, the lines do not cross. */
353 if (sign64(d1) < 0 && sign64(d2) < 0)
354 return FALSE;
355 /* Otherwise, take the dot product of a2-a1 with itself. If
356 * the other two dot products both exceed this, the lines do
357 * not cross. */
358 d3 = dotprod64(px, px, py, py);
359 if (greater64(d1, d3) && greater64(d2, d3))
360 return FALSE;
364 * We've eliminated the only important special case, and we
365 * have determined that b1 and b2 are on opposite sides of the
366 * line a1-a2. Now do the same thing the other way round and
367 * we're done.
369 b1x = a1.x * b1.d - b1.x * a1.d;
370 b1y = a1.y * b1.d - b1.y * a1.d;
371 b2x = a2.x * b1.d - b1.x * a2.d;
372 b2y = a2.y * b1.d - b1.y * a2.d;
373 px = b1.y * b2.d - b2.y * b1.d;
374 py = b2.x * b1.d - b1.x * b2.d;
375 d1 = dotprod64(b1x, px, b1y, py);
376 d2 = dotprod64(b2x, px, b2y, py);
377 if ((sign64(d1) > 0 && sign64(d2) > 0) ||
378 (sign64(d1) < 0 && sign64(d2) < 0))
379 return FALSE;
382 * The lines must cross.
384 return TRUE;
387 static unsigned long squarert(unsigned long n) {
388 unsigned long d, a, b, di;
390 d = n;
391 a = 0;
392 b = 1L << 30; /* largest available power of 4 */
393 do {
394 a >>= 1;
395 di = 2*a + b;
396 if (di <= d) {
397 d -= di;
398 a += b;
400 b >>= 2;
401 } while (b);
403 return a;
407 * Our solutions are arranged on a square grid big enough that n
408 * points occupy about 1/POINTDENSITY of the grid.
410 #define POINTDENSITY 3
411 #define MAXDEGREE 4
412 #define COORDLIMIT(n) squarert((n) * POINTDENSITY)
414 static void addedge(tree234 *edges, int a, int b)
416 edge *e = snew(edge);
418 assert(a != b);
420 e->a = min(a, b);
421 e->b = max(a, b);
423 add234(edges, e);
426 static int isedge(tree234 *edges, int a, int b)
428 edge e;
430 assert(a != b);
432 e.a = min(a, b);
433 e.b = max(a, b);
435 return find234(edges, &e, NULL) != NULL;
438 typedef struct vertex {
439 int param;
440 int vindex;
441 } vertex;
443 static int vertcmpC(const void *av, const void *bv)
445 const vertex *a = (vertex *)av;
446 const vertex *b = (vertex *)bv;
448 if (a->param < b->param)
449 return -1;
450 else if (a->param > b->param)
451 return +1;
452 else if (a->vindex < b->vindex)
453 return -1;
454 else if (a->vindex > b->vindex)
455 return +1;
456 return 0;
458 static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
461 * Construct point coordinates for n points arranged in a circle,
462 * within the bounding box (0,0) to (w,w).
464 static void make_circle(point *pts, int n, int w)
466 long d, r, c, i;
469 * First, decide on a denominator. Although in principle it
470 * would be nice to set this really high so as to finely
471 * distinguish all the points on the circle, I'm going to set
472 * it at a fixed size to prevent integer overflow problems.
474 d = PREFERRED_TILESIZE;
477 * Leave a little space outside the circle.
479 c = d * w / 2;
480 r = d * w * 3 / 7;
483 * Place the points.
485 for (i = 0; i < n; i++) {
486 double angle = i * 2 * PI / n;
487 double x = r * sin(angle), y = - r * cos(angle);
488 pts[i].x = (long)(c + x + 0.5);
489 pts[i].y = (long)(c + y + 0.5);
490 pts[i].d = d;
494 static char *new_game_desc(const game_params *params, random_state *rs,
495 char **aux, int interactive)
497 int n = params->n, i;
498 long w, h, j, k, m;
499 point *pts, *pts2;
500 long *tmp;
501 tree234 *edges, *vertices;
502 edge *e, *e2;
503 vertex *v, *vs, *vlist;
504 char *ret;
506 w = h = COORDLIMIT(n);
509 * Choose n points from this grid.
511 pts = snewn(n, point);
512 tmp = snewn(w*h, long);
513 for (i = 0; i < w*h; i++)
514 tmp[i] = i;
515 shuffle(tmp, w*h, sizeof(*tmp), rs);
516 for (i = 0; i < n; i++) {
517 pts[i].x = tmp[i] % w;
518 pts[i].y = tmp[i] / w;
519 pts[i].d = 1;
521 sfree(tmp);
524 * Now start adding edges between the points.
526 * At all times, we attempt to add an edge to the lowest-degree
527 * vertex we currently have, and we try the other vertices as
528 * candidate second endpoints in order of distance from this
529 * one. We stop as soon as we find an edge which
531 * (a) does not increase any vertex's degree beyond MAXDEGREE
532 * (b) does not cross any existing edges
533 * (c) does not intersect any actual point.
535 vs = snewn(n, vertex);
536 vertices = newtree234(vertcmp);
537 for (i = 0; i < n; i++) {
538 v = vs + i;
539 v->param = 0; /* in this tree, param is the degree */
540 v->vindex = i;
541 add234(vertices, v);
543 edges = newtree234(edgecmp);
544 vlist = snewn(n, vertex);
545 while (1) {
546 int added = FALSE;
548 for (i = 0; i < n; i++) {
549 v = index234(vertices, i);
550 j = v->vindex;
552 if (v->param >= MAXDEGREE)
553 break; /* nothing left to add! */
556 * Sort the other vertices into order of their distance
557 * from this one. Don't bother looking below i, because
558 * we've already tried those edges the other way round.
559 * Also here we rule out target vertices with too high
560 * a degree, and (of course) ones to which we already
561 * have an edge.
563 m = 0;
564 for (k = i+1; k < n; k++) {
565 vertex *kv = index234(vertices, k);
566 int ki = kv->vindex;
567 int dx, dy;
569 if (kv->param >= MAXDEGREE || isedge(edges, ki, j))
570 continue;
572 vlist[m].vindex = ki;
573 dx = pts[ki].x - pts[j].x;
574 dy = pts[ki].y - pts[j].y;
575 vlist[m].param = dx*dx + dy*dy;
576 m++;
579 qsort(vlist, m, sizeof(*vlist), vertcmpC);
581 for (k = 0; k < m; k++) {
582 int p;
583 int ki = vlist[k].vindex;
586 * Check to see whether this edge intersects any
587 * existing edge or point.
589 for (p = 0; p < n; p++)
590 if (p != ki && p != j && cross(pts[ki], pts[j],
591 pts[p], pts[p]))
592 break;
593 if (p < n)
594 continue;
595 for (p = 0; (e = index234(edges, p)) != NULL; p++)
596 if (e->a != ki && e->a != j &&
597 e->b != ki && e->b != j &&
598 cross(pts[ki], pts[j], pts[e->a], pts[e->b]))
599 break;
600 if (e)
601 continue;
604 * We're done! Add this edge, modify the degrees of
605 * the two vertices involved, and break.
607 addedge(edges, j, ki);
608 added = TRUE;
609 del234(vertices, vs+j);
610 vs[j].param++;
611 add234(vertices, vs+j);
612 del234(vertices, vs+ki);
613 vs[ki].param++;
614 add234(vertices, vs+ki);
615 break;
618 if (k < m)
619 break;
622 if (!added)
623 break; /* we're done. */
627 * That's our graph. Now shuffle the points, making sure that
628 * they come out with at least one crossed line when arranged
629 * in a circle (so that the puzzle isn't immediately solved!).
631 tmp = snewn(n, long);
632 for (i = 0; i < n; i++)
633 tmp[i] = i;
634 pts2 = snewn(n, point);
635 make_circle(pts2, n, w);
636 while (1) {
637 shuffle(tmp, n, sizeof(*tmp), rs);
638 for (i = 0; (e = index234(edges, i)) != NULL; i++) {
639 for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) {
640 if (e2->a == e->a || e2->a == e->b ||
641 e2->b == e->a || e2->b == e->b)
642 continue;
643 if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]],
644 pts2[tmp[e->a]], pts2[tmp[e->b]]))
645 break;
647 if (e2)
648 break;
650 if (e)
651 break; /* we've found a crossing */
655 * We're done. Now encode the graph in a string format. Let's
656 * use a comma-separated list of dash-separated vertex number
657 * pairs, numbered from zero. We'll sort the list to prevent
658 * side channels.
660 ret = NULL;
662 char *sep;
663 char buf[80];
664 int retlen;
665 edge *ea;
667 retlen = 0;
668 m = count234(edges);
669 ea = snewn(m, edge);
670 for (i = 0; (e = index234(edges, i)) != NULL; i++) {
671 assert(i < m);
672 ea[i].a = min(tmp[e->a], tmp[e->b]);
673 ea[i].b = max(tmp[e->a], tmp[e->b]);
674 retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b);
676 assert(i == m);
677 qsort(ea, m, sizeof(*ea), edgecmpC);
679 ret = snewn(retlen, char);
680 sep = "";
681 k = 0;
683 for (i = 0; i < m; i++) {
684 k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b);
685 sep = ",";
687 assert(k < retlen);
689 sfree(ea);
693 * Encode the solution we started with as an aux_info string.
696 char buf[80];
697 char *auxstr;
698 int auxlen;
700 auxlen = 2; /* leading 'S' and trailing '\0' */
701 for (i = 0; i < n; i++) {
702 j = tmp[i];
703 pts2[j] = pts[i];
704 if (pts2[j].d & 1) {
705 pts2[j].x *= 2;
706 pts2[j].y *= 2;
707 pts2[j].d *= 2;
709 pts2[j].x += pts2[j].d / 2;
710 pts2[j].y += pts2[j].d / 2;
711 auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i,
712 pts2[j].x, pts2[j].y, pts2[j].d);
714 k = 0;
715 auxstr = snewn(auxlen, char);
716 auxstr[k++] = 'S';
717 for (i = 0; i < n; i++)
718 k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i,
719 pts2[i].x, pts2[i].y, pts2[i].d);
720 assert(k < auxlen);
721 *aux = auxstr;
723 sfree(pts2);
725 sfree(tmp);
726 sfree(vlist);
727 freetree234(vertices);
728 sfree(vs);
729 while ((e = delpos234(edges, 0)) != NULL)
730 sfree(e);
731 freetree234(edges);
732 sfree(pts);
734 return ret;
737 static char *validate_desc(const game_params *params, const char *desc)
739 int a, b;
741 while (*desc) {
742 a = atoi(desc);
743 if (a < 0 || a >= params->n)
744 return "Number out of range in game description";
745 while (*desc && isdigit((unsigned char)*desc)) desc++;
746 if (*desc != '-')
747 return "Expected '-' after number in game description";
748 desc++; /* eat dash */
749 b = atoi(desc);
750 if (b < 0 || b >= params->n)
751 return "Number out of range in game description";
752 while (*desc && isdigit((unsigned char)*desc)) desc++;
753 if (*desc) {
754 if (*desc != ',')
755 return "Expected ',' after number in game description";
756 desc++; /* eat comma */
760 return NULL;
763 static void mark_crossings(game_state *state)
765 int ok = TRUE;
766 int i, j;
767 edge *e, *e2;
769 #ifdef SHOW_CROSSINGS
770 for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++)
771 state->crosses[i] = FALSE;
772 #endif
775 * Check correctness: for every pair of edges, see whether they
776 * cross.
778 for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
779 for (j = i+1; (e2 = index234(state->graph->edges, j)) != NULL; j++) {
780 if (e2->a == e->a || e2->a == e->b ||
781 e2->b == e->a || e2->b == e->b)
782 continue;
783 if (cross(state->pts[e2->a], state->pts[e2->b],
784 state->pts[e->a], state->pts[e->b])) {
785 ok = FALSE;
786 #ifdef SHOW_CROSSINGS
787 state->crosses[i] = state->crosses[j] = TRUE;
788 #else
789 goto done; /* multi-level break - sorry */
790 #endif
796 * e == NULL if we've gone through all the edge pairs
797 * without finding a crossing.
799 #ifndef SHOW_CROSSINGS
800 done:
801 #endif
802 if (ok)
803 state->completed = TRUE;
806 static game_state *new_game(midend *me, const game_params *params,
807 const char *desc)
809 int n = params->n;
810 game_state *state = snew(game_state);
811 int a, b;
813 state->params = *params;
814 state->w = state->h = COORDLIMIT(n);
815 state->pts = snewn(n, point);
816 make_circle(state->pts, n, state->w);
817 state->graph = snew(struct graph);
818 state->graph->refcount = 1;
819 state->graph->edges = newtree234(edgecmp);
820 state->completed = state->cheated = state->just_solved = FALSE;
822 while (*desc) {
823 a = atoi(desc);
824 assert(a >= 0 && a < params->n);
825 while (*desc && isdigit((unsigned char)*desc)) desc++;
826 assert(*desc == '-');
827 desc++; /* eat dash */
828 b = atoi(desc);
829 assert(b >= 0 && b < params->n);
830 while (*desc && isdigit((unsigned char)*desc)) desc++;
831 if (*desc) {
832 assert(*desc == ',');
833 desc++; /* eat comma */
835 addedge(state->graph->edges, a, b);
838 #ifdef SHOW_CROSSINGS
839 state->crosses = snewn(count234(state->graph->edges), int);
840 mark_crossings(state); /* sets up `crosses' and `completed' */
841 #endif
843 return state;
846 static game_state *dup_game(const game_state *state)
848 int n = state->params.n;
849 game_state *ret = snew(game_state);
851 ret->params = state->params;
852 ret->w = state->w;
853 ret->h = state->h;
854 ret->pts = snewn(n, point);
855 memcpy(ret->pts, state->pts, n * sizeof(point));
856 ret->graph = state->graph;
857 ret->graph->refcount++;
858 ret->completed = state->completed;
859 ret->cheated = state->cheated;
860 ret->just_solved = state->just_solved;
861 #ifdef SHOW_CROSSINGS
862 ret->crosses = snewn(count234(ret->graph->edges), int);
863 memcpy(ret->crosses, state->crosses,
864 count234(ret->graph->edges) * sizeof(int));
865 #endif
867 return ret;
870 static void free_game(game_state *state)
872 if (--state->graph->refcount <= 0) {
873 edge *e;
874 while ((e = delpos234(state->graph->edges, 0)) != NULL)
875 sfree(e);
876 freetree234(state->graph->edges);
877 sfree(state->graph);
879 sfree(state->pts);
880 sfree(state);
883 static char *solve_game(const game_state *state, const game_state *currstate,
884 const char *aux, char **error)
886 int n = state->params.n;
887 int matrix[4];
888 point *pts;
889 int i, j, besti;
890 float bestd;
891 char buf[80], *ret;
892 int retlen, retsize;
894 if (!aux) {
895 *error = "Solution not known for this puzzle";
896 return NULL;
900 * Decode the aux_info to get the original point positions.
902 pts = snewn(n, point);
903 aux++; /* eat 'S' */
904 for (i = 0; i < n; i++) {
905 int p, k;
906 long x, y, d;
907 int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k);
908 if (ret != 4 || p != i) {
909 *error = "Internal error: aux_info badly formatted";
910 sfree(pts);
911 return NULL;
913 pts[i].x = x;
914 pts[i].y = y;
915 pts[i].d = d;
916 aux += k;
920 * Now go through eight possible symmetries of the point set.
921 * For each one, work out the sum of the Euclidean distances
922 * between the points' current positions and their new ones.
924 * We're squaring distances here, which means we're at risk of
925 * integer overflow. Fortunately, there's no real need to be
926 * massively careful about rounding errors, since this is a
927 * non-essential bit of the code; so I'll just work in floats
928 * internally.
930 besti = -1;
931 bestd = 0.0F;
933 for (i = 0; i < 8; i++) {
934 float d;
936 matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
937 matrix[i & 1] = (i & 2) ? +1 : -1;
938 matrix[3-(i&1)] = (i & 4) ? +1 : -1;
940 d = 0.0F;
941 for (j = 0; j < n; j++) {
942 float px = (float)pts[j].x / pts[j].d;
943 float py = (float)pts[j].y / pts[j].d;
944 float sx = (float)currstate->pts[j].x / currstate->pts[j].d;
945 float sy = (float)currstate->pts[j].y / currstate->pts[j].d;
946 float cx = (float)currstate->w / 2;
947 float cy = (float)currstate->h / 2;
948 float ox, oy, dx, dy;
950 px -= cx;
951 py -= cy;
953 ox = matrix[0] * px + matrix[1] * py;
954 oy = matrix[2] * px + matrix[3] * py;
956 ox += cx;
957 oy += cy;
959 dx = ox - sx;
960 dy = oy - sy;
962 d += dx*dx + dy*dy;
965 if (besti < 0 || bestd > d) {
966 besti = i;
967 bestd = d;
971 assert(besti >= 0);
974 * Now we know which symmetry is closest to the points' current
975 * positions. Use it.
977 matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
978 matrix[besti & 1] = (besti & 2) ? +1 : -1;
979 matrix[3-(besti&1)] = (besti & 4) ? +1 : -1;
981 retsize = 256;
982 ret = snewn(retsize, char);
983 retlen = 0;
984 ret[retlen++] = 'S';
985 ret[retlen] = '\0';
987 for (i = 0; i < n; i++) {
988 float px = (float)pts[i].x / pts[i].d;
989 float py = (float)pts[i].y / pts[i].d;
990 float cx = (float)currstate->w / 2;
991 float cy = (float)currstate->h / 2;
992 float ox, oy;
993 int extra;
995 px -= cx;
996 py -= cy;
998 ox = matrix[0] * px + matrix[1] * py;
999 oy = matrix[2] * px + matrix[3] * py;
1001 ox += cx;
1002 oy += cy;
1005 * Use a fixed denominator of 2, because we know the
1006 * original points were on an integer grid offset by 1/2.
1008 pts[i].d = 2;
1009 ox *= pts[i].d;
1010 oy *= pts[i].d;
1011 pts[i].x = (long)(ox + 0.5F);
1012 pts[i].y = (long)(oy + 0.5F);
1014 extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i,
1015 pts[i].x, pts[i].y, pts[i].d);
1016 if (retlen + extra >= retsize) {
1017 retsize = retlen + extra + 256;
1018 ret = sresize(ret, retsize, char);
1020 strcpy(ret + retlen, buf);
1021 retlen += extra;
1024 sfree(pts);
1026 return ret;
1029 static int game_can_format_as_text_now(const game_params *params)
1031 return TRUE;
1034 static char *game_text_format(const game_state *state)
1036 return NULL;
1039 struct game_ui {
1040 int dragpoint; /* point being dragged; -1 if none */
1041 point newpoint; /* where it's been dragged to so far */
1042 int just_dragged; /* reset in game_changed_state */
1043 int just_moved; /* _set_ in game_changed_state */
1044 float anim_length;
1047 static game_ui *new_ui(const game_state *state)
1049 game_ui *ui = snew(game_ui);
1050 ui->dragpoint = -1;
1051 ui->just_moved = ui->just_dragged = FALSE;
1052 return ui;
1055 static void free_ui(game_ui *ui)
1057 sfree(ui);
1060 static char *encode_ui(const game_ui *ui)
1062 return NULL;
1065 static void decode_ui(game_ui *ui, const char *encoding)
1069 static void game_changed_state(game_ui *ui, const game_state *oldstate,
1070 const game_state *newstate)
1072 ui->dragpoint = -1;
1073 ui->just_moved = ui->just_dragged;
1074 ui->just_dragged = FALSE;
1077 struct game_drawstate {
1078 long tilesize;
1079 int bg, dragpoint;
1080 long *x, *y;
1083 static char *interpret_move(const game_state *state, game_ui *ui,
1084 const game_drawstate *ds,
1085 int x, int y, int button)
1087 int n = state->params.n;
1089 if (IS_MOUSE_DOWN(button)) {
1090 int i, best;
1091 long bestd;
1094 * Begin drag. We drag the vertex _nearest_ to the pointer,
1095 * just in case one is nearly on top of another and we want
1096 * to drag the latter. However, we drag nothing at all if
1097 * the nearest vertex is outside DRAG_THRESHOLD.
1099 best = -1;
1100 bestd = 0;
1102 for (i = 0; i < n; i++) {
1103 long px = state->pts[i].x * ds->tilesize / state->pts[i].d;
1104 long py = state->pts[i].y * ds->tilesize / state->pts[i].d;
1105 long dx = px - x;
1106 long dy = py - y;
1107 long d = dx*dx + dy*dy;
1109 if (best == -1 || bestd > d) {
1110 best = i;
1111 bestd = d;
1115 if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) {
1116 ui->dragpoint = best;
1117 ui->newpoint.x = x;
1118 ui->newpoint.y = y;
1119 ui->newpoint.d = ds->tilesize;
1120 return "";
1123 } else if (IS_MOUSE_DRAG(button) && ui->dragpoint >= 0) {
1124 ui->newpoint.x = x;
1125 ui->newpoint.y = y;
1126 ui->newpoint.d = ds->tilesize;
1127 return "";
1128 } else if (IS_MOUSE_RELEASE(button) && ui->dragpoint >= 0) {
1129 int p = ui->dragpoint;
1130 char buf[80];
1132 ui->dragpoint = -1; /* terminate drag, no matter what */
1135 * First, see if we're within range. The user can cancel a
1136 * drag by dragging the point right off the window.
1138 if (ui->newpoint.x < 0 ||
1139 ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
1140 ui->newpoint.y < 0 ||
1141 ui->newpoint.y >= (long)state->h*ui->newpoint.d)
1142 return "";
1145 * We aren't cancelling the drag. Construct a move string
1146 * indicating where this point is going to.
1148 sprintf(buf, "P%d:%ld,%ld/%ld", p,
1149 ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
1150 ui->just_dragged = TRUE;
1151 return dupstr(buf);
1154 return NULL;
1157 static game_state *execute_move(const game_state *state, const char *move)
1159 int n = state->params.n;
1160 int p, k;
1161 long x, y, d;
1162 game_state *ret = dup_game(state);
1164 ret->just_solved = FALSE;
1166 while (*move) {
1167 if (*move == 'S') {
1168 move++;
1169 if (*move == ';') move++;
1170 ret->cheated = ret->just_solved = TRUE;
1172 if (*move == 'P' &&
1173 sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 &&
1174 p >= 0 && p < n && d > 0) {
1175 ret->pts[p].x = x;
1176 ret->pts[p].y = y;
1177 ret->pts[p].d = d;
1179 move += k+1;
1180 if (*move == ';') move++;
1181 } else {
1182 free_game(ret);
1183 return NULL;
1187 mark_crossings(ret);
1189 return ret;
1192 /* ----------------------------------------------------------------------
1193 * Drawing routines.
1196 static void game_compute_size(const game_params *params, int tilesize,
1197 int *x, int *y)
1199 *x = *y = COORDLIMIT(params->n) * tilesize;
1202 static void game_set_size(drawing *dr, game_drawstate *ds,
1203 const game_params *params, int tilesize)
1205 ds->tilesize = tilesize;
1208 static float *game_colours(frontend *fe, int *ncolours)
1210 float *ret = snewn(3 * NCOLOURS, float);
1213 * COL_BACKGROUND is what we use as the normal background colour.
1214 * Unusually, though, it isn't colour #0: COL_SYSBACKGROUND, a bit
1215 * darker, takes that place. This means that if the user resizes
1216 * an Untangle window so as to change its aspect ratio, the
1217 * still-square playable area will be distinguished from the dead
1218 * space around it.
1220 game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_SYSBACKGROUND);
1222 ret[COL_LINE * 3 + 0] = 0.0F;
1223 ret[COL_LINE * 3 + 1] = 0.0F;
1224 ret[COL_LINE * 3 + 2] = 0.0F;
1226 #ifdef SHOW_CROSSINGS
1227 ret[COL_CROSSEDLINE * 3 + 0] = 1.0F;
1228 ret[COL_CROSSEDLINE * 3 + 1] = 0.0F;
1229 ret[COL_CROSSEDLINE * 3 + 2] = 0.0F;
1230 #endif
1232 ret[COL_OUTLINE * 3 + 0] = 0.0F;
1233 ret[COL_OUTLINE * 3 + 1] = 0.0F;
1234 ret[COL_OUTLINE * 3 + 2] = 0.0F;
1236 ret[COL_POINT * 3 + 0] = 0.0F;
1237 ret[COL_POINT * 3 + 1] = 0.0F;
1238 ret[COL_POINT * 3 + 2] = 1.0F;
1240 ret[COL_DRAGPOINT * 3 + 0] = 1.0F;
1241 ret[COL_DRAGPOINT * 3 + 1] = 1.0F;
1242 ret[COL_DRAGPOINT * 3 + 2] = 1.0F;
1244 ret[COL_NEIGHBOUR * 3 + 0] = 1.0F;
1245 ret[COL_NEIGHBOUR * 3 + 1] = 0.0F;
1246 ret[COL_NEIGHBOUR * 3 + 2] = 0.0F;
1248 ret[COL_FLASH1 * 3 + 0] = 0.5F;
1249 ret[COL_FLASH1 * 3 + 1] = 0.5F;
1250 ret[COL_FLASH1 * 3 + 2] = 0.5F;
1252 ret[COL_FLASH2 * 3 + 0] = 1.0F;
1253 ret[COL_FLASH2 * 3 + 1] = 1.0F;
1254 ret[COL_FLASH2 * 3 + 2] = 1.0F;
1256 *ncolours = NCOLOURS;
1257 return ret;
1260 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1262 struct game_drawstate *ds = snew(struct game_drawstate);
1263 int i;
1265 ds->tilesize = 0;
1266 ds->x = snewn(state->params.n, long);
1267 ds->y = snewn(state->params.n, long);
1268 for (i = 0; i < state->params.n; i++)
1269 ds->x[i] = ds->y[i] = -1;
1270 ds->bg = -1;
1271 ds->dragpoint = -1;
1273 return ds;
1276 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1278 sfree(ds->y);
1279 sfree(ds->x);
1280 sfree(ds);
1283 static point mix(point a, point b, float distance)
1285 point ret;
1287 ret.d = a.d * b.d;
1288 ret.x = (long)(a.x * b.d + distance * (b.x * a.d - a.x * b.d));
1289 ret.y = (long)(a.y * b.d + distance * (b.y * a.d - a.y * b.d));
1291 return ret;
1294 static void game_redraw(drawing *dr, game_drawstate *ds,
1295 const game_state *oldstate, const game_state *state,
1296 int dir, const game_ui *ui,
1297 float animtime, float flashtime)
1299 int w, h;
1300 edge *e;
1301 int i, j;
1302 int bg, points_moved;
1305 * There's no terribly sensible way to do partial redraws of
1306 * this game, so I'm going to have to resort to redrawing the
1307 * whole thing every time.
1310 if (flashtime == 0)
1311 bg = COL_BACKGROUND;
1312 else if ((int)(flashtime * 4 / FLASH_TIME) % 2 == 0)
1313 bg = COL_FLASH1;
1314 else
1315 bg = COL_FLASH2;
1318 * To prevent excessive spinning on redraw during a completion
1319 * flash, we first check to see if _either_ the flash
1320 * background colour has changed _or_ at least one point has
1321 * moved _or_ a drag has begun or ended, and abandon the redraw
1322 * if neither is the case.
1324 * Also in this loop we work out the coordinates of all the
1325 * points for this redraw.
1327 points_moved = FALSE;
1328 for (i = 0; i < state->params.n; i++) {
1329 point p = state->pts[i];
1330 long x, y;
1332 if (ui->dragpoint == i)
1333 p = ui->newpoint;
1335 if (oldstate)
1336 p = mix(oldstate->pts[i], p, animtime / ui->anim_length);
1338 x = p.x * ds->tilesize / p.d;
1339 y = p.y * ds->tilesize / p.d;
1341 if (ds->x[i] != x || ds->y[i] != y)
1342 points_moved = TRUE;
1344 ds->x[i] = x;
1345 ds->y[i] = y;
1348 if (ds->bg == bg && ds->dragpoint == ui->dragpoint && !points_moved)
1349 return; /* nothing to do */
1351 ds->dragpoint = ui->dragpoint;
1352 ds->bg = bg;
1354 game_compute_size(&state->params, ds->tilesize, &w, &h);
1355 draw_rect(dr, 0, 0, w, h, bg);
1358 * Draw the edges.
1361 for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
1362 draw_line(dr, ds->x[e->a], ds->y[e->a], ds->x[e->b], ds->y[e->b],
1363 #ifdef SHOW_CROSSINGS
1364 (oldstate?oldstate:state)->crosses[i] ?
1365 COL_CROSSEDLINE :
1366 #endif
1367 COL_LINE);
1371 * Draw the points.
1373 * When dragging, we should not only vary the colours, but
1374 * leave the point being dragged until last.
1376 for (j = 0; j < 3; j++) {
1377 int thisc = (j == 0 ? COL_POINT :
1378 j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT);
1379 for (i = 0; i < state->params.n; i++) {
1380 int c;
1382 if (ui->dragpoint == i) {
1383 c = COL_DRAGPOINT;
1384 } else if (ui->dragpoint >= 0 &&
1385 isedge(state->graph->edges, ui->dragpoint, i)) {
1386 c = COL_NEIGHBOUR;
1387 } else {
1388 c = COL_POINT;
1391 if (c == thisc) {
1392 #ifdef VERTEX_NUMBERS
1393 draw_circle(dr, ds->x[i], ds->y[i], DRAG_THRESHOLD, bg, bg);
1395 char buf[80];
1396 sprintf(buf, "%d", i);
1397 draw_text(dr, ds->x[i], ds->y[i], FONT_VARIABLE,
1398 DRAG_THRESHOLD*3/2,
1399 ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf);
1401 #else
1402 draw_circle(dr, ds->x[i], ds->y[i], CIRCLE_RADIUS,
1403 c, COL_OUTLINE);
1404 #endif
1409 draw_update(dr, 0, 0, w, h);
1412 static float game_anim_length(const game_state *oldstate,
1413 const game_state *newstate, int dir, game_ui *ui)
1415 if (ui->just_moved)
1416 return 0.0F;
1417 if ((dir < 0 ? oldstate : newstate)->just_solved)
1418 ui->anim_length = SOLVEANIM_TIME;
1419 else
1420 ui->anim_length = ANIM_TIME;
1421 return ui->anim_length;
1424 static float game_flash_length(const game_state *oldstate,
1425 const game_state *newstate, int dir, game_ui *ui)
1427 if (!oldstate->completed && newstate->completed &&
1428 !oldstate->cheated && !newstate->cheated)
1429 return FLASH_TIME;
1430 return 0.0F;
1433 static int game_status(const game_state *state)
1435 return state->completed ? +1 : 0;
1438 static int game_timing_state(const game_state *state, game_ui *ui)
1440 return TRUE;
1443 static void game_print_size(const game_params *params, float *x, float *y)
1447 static void game_print(drawing *dr, const game_state *state, int tilesize)
1451 #ifdef COMBINED
1452 #define thegame untangle
1453 #endif
1455 const struct game thegame = {
1456 "Untangle", "games.untangle", "untangle",
1457 default_params,
1458 game_fetch_preset, NULL,
1459 decode_params,
1460 encode_params,
1461 free_params,
1462 dup_params,
1463 TRUE, game_configure, custom_params,
1464 validate_params,
1465 new_game_desc,
1466 validate_desc,
1467 new_game,
1468 dup_game,
1469 free_game,
1470 TRUE, solve_game,
1471 FALSE, game_can_format_as_text_now, game_text_format,
1472 new_ui,
1473 free_ui,
1474 encode_ui,
1475 decode_ui,
1476 game_changed_state,
1477 interpret_move,
1478 execute_move,
1479 PREFERRED_TILESIZE, game_compute_size, game_set_size,
1480 game_colours,
1481 game_new_drawstate,
1482 game_free_drawstate,
1483 game_redraw,
1484 game_anim_length,
1485 game_flash_length,
1486 game_status,
1487 FALSE, FALSE, game_print_size, game_print,
1488 FALSE, /* wants_statusbar */
1489 FALSE, game_timing_state,
1490 SOLVE_ANIMATES, /* flags */