A user asked for the < signs in Unequal to be bolder.
[sgt-puzzles/ydirson.git] / rect.c
blob82256f7d1b610634e4422abb5caa637d088b0f4e
1 /*
2 * rect.c: Puzzle from nikoli.co.jp. You have a square grid with
3 * numbers in some squares; you must divide the square grid up into
4 * variously sized rectangles, such that every rectangle contains
5 * exactly one numbered square and the area of each rectangle is
6 * equal to the number contained in it.
7 */
9 /*
10 * TODO:
12 * - Improve singleton removal.
13 * + It would be nice to limit the size of the generated
14 * rectangles in accordance with existing constraints such as
15 * the maximum rectangle size and the one about not
16 * generating a rectangle the full width or height of the
17 * grid.
18 * + This could be achieved by making a less random choice
19 * about which of the available options to use.
20 * + Alternatively, we could create our rectangle and then
21 * split it up.
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <assert.h>
28 #include <ctype.h>
29 #include <math.h>
31 #include "puzzles.h"
33 enum {
34 COL_BACKGROUND,
35 COL_CORRECT,
36 COL_LINE,
37 COL_TEXT,
38 COL_GRID,
39 COL_DRAG, COL_DRAGERASE,
40 COL_CURSOR,
41 NCOLOURS
44 struct game_params {
45 int w, h;
46 float expandfactor;
47 int unique;
50 #define INDEX(state, x, y) (((y) * (state)->w) + (x))
51 #define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
52 #define grid(state,x,y) index(state, (state)->grid, x, y)
53 #define vedge(state,x,y) index(state, (state)->vedge, x, y)
54 #define hedge(state,x,y) index(state, (state)->hedge, x, y)
56 #define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
57 (y) >= dy && (y) < (state)->h )
58 #define RANGE(state,x,y) CRANGE(state,x,y,0,0)
59 #define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
60 #define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
62 #define PREFERRED_TILE_SIZE 24
63 #define TILE_SIZE (ds->tilesize)
64 #ifdef SMALL_SCREEN
65 #define BORDER (2)
66 #else
67 #define BORDER (TILE_SIZE * 3 / 4)
68 #endif
70 #define CORNER_TOLERANCE 0.15F
71 #define CENTRE_TOLERANCE 0.15F
73 #define FLASH_TIME 0.13F
75 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
76 #define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
78 struct game_state {
79 int w, h;
80 int *grid; /* contains the numbers */
81 unsigned char *vedge; /* (w+1) x h */
82 unsigned char *hedge; /* w x (h+1) */
83 int completed, cheated;
84 unsigned char *correct;
87 static game_params *default_params(void)
89 game_params *ret = snew(game_params);
91 ret->w = ret->h = 7;
92 ret->expandfactor = 0.0F;
93 ret->unique = TRUE;
95 return ret;
98 static int game_fetch_preset(int i, char **name, game_params **params)
100 game_params *ret;
101 int w, h;
102 char buf[80];
104 switch (i) {
105 case 0: w = 7, h = 7; break;
106 case 1: w = 9, h = 9; break;
107 case 2: w = 11, h = 11; break;
108 case 3: w = 13, h = 13; break;
109 case 4: w = 15, h = 15; break;
110 #ifndef SMALL_SCREEN
111 case 5: w = 17, h = 17; break;
112 case 6: w = 19, h = 19; break;
113 #endif
114 default: return FALSE;
117 sprintf(buf, "%dx%d", w, h);
118 *name = dupstr(buf);
119 *params = ret = snew(game_params);
120 ret->w = w;
121 ret->h = h;
122 ret->expandfactor = 0.0F;
123 ret->unique = TRUE;
124 return TRUE;
127 static void free_params(game_params *params)
129 sfree(params);
132 static game_params *dup_params(game_params *params)
134 game_params *ret = snew(game_params);
135 *ret = *params; /* structure copy */
136 return ret;
139 static void decode_params(game_params *ret, char const *string)
141 ret->w = ret->h = atoi(string);
142 while (*string && isdigit((unsigned char)*string)) string++;
143 if (*string == 'x') {
144 string++;
145 ret->h = atoi(string);
146 while (*string && isdigit((unsigned char)*string)) string++;
148 if (*string == 'e') {
149 string++;
150 ret->expandfactor = (float)atof(string);
151 while (*string &&
152 (*string == '.' || isdigit((unsigned char)*string))) string++;
154 if (*string == 'a') {
155 string++;
156 ret->unique = FALSE;
160 static char *encode_params(game_params *params, int full)
162 char data[256];
164 sprintf(data, "%dx%d", params->w, params->h);
165 if (full && params->expandfactor)
166 sprintf(data + strlen(data), "e%g", params->expandfactor);
167 if (full && !params->unique)
168 strcat(data, "a");
170 return dupstr(data);
173 static config_item *game_configure(game_params *params)
175 config_item *ret;
176 char buf[80];
178 ret = snewn(5, config_item);
180 ret[0].name = "Width";
181 ret[0].type = C_STRING;
182 sprintf(buf, "%d", params->w);
183 ret[0].sval = dupstr(buf);
184 ret[0].ival = 0;
186 ret[1].name = "Height";
187 ret[1].type = C_STRING;
188 sprintf(buf, "%d", params->h);
189 ret[1].sval = dupstr(buf);
190 ret[1].ival = 0;
192 ret[2].name = "Expansion factor";
193 ret[2].type = C_STRING;
194 sprintf(buf, "%g", params->expandfactor);
195 ret[2].sval = dupstr(buf);
196 ret[2].ival = 0;
198 ret[3].name = "Ensure unique solution";
199 ret[3].type = C_BOOLEAN;
200 ret[3].sval = NULL;
201 ret[3].ival = params->unique;
203 ret[4].name = NULL;
204 ret[4].type = C_END;
205 ret[4].sval = NULL;
206 ret[4].ival = 0;
208 return ret;
211 static game_params *custom_params(config_item *cfg)
213 game_params *ret = snew(game_params);
215 ret->w = atoi(cfg[0].sval);
216 ret->h = atoi(cfg[1].sval);
217 ret->expandfactor = (float)atof(cfg[2].sval);
218 ret->unique = cfg[3].ival;
220 return ret;
223 static char *validate_params(game_params *params, int full)
225 if (params->w <= 0 || params->h <= 0)
226 return "Width and height must both be greater than zero";
227 if (params->w*params->h < 2)
228 return "Grid area must be greater than one";
229 if (params->expandfactor < 0.0F)
230 return "Expansion factor may not be negative";
231 return NULL;
234 struct point {
235 int x, y;
238 struct rect {
239 int x, y;
240 int w, h;
243 struct rectlist {
244 struct rect *rects;
245 int n;
248 struct numberdata {
249 int area;
250 int npoints;
251 struct point *points;
254 /* ----------------------------------------------------------------------
255 * Solver for Rectangles games.
257 * This solver is souped up beyond the needs of actually _solving_
258 * a puzzle. It is also designed to cope with uncertainty about
259 * where the numbers have been placed. This is because I run it on
260 * my generated grids _before_ placing the numbers, and have it
261 * tell me where I need to place the numbers to ensure a unique
262 * solution.
265 static void remove_rect_placement(int w, int h,
266 struct rectlist *rectpositions,
267 int *overlaps,
268 int rectnum, int placement)
270 int x, y, xx, yy;
272 #ifdef SOLVER_DIAGNOSTICS
273 printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
274 rectpositions[rectnum].rects[placement].x,
275 rectpositions[rectnum].rects[placement].y,
276 rectpositions[rectnum].rects[placement].w,
277 rectpositions[rectnum].rects[placement].h);
278 #endif
281 * Decrement each entry in the overlaps array to reflect the
282 * removal of this rectangle placement.
284 for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
285 y = yy + rectpositions[rectnum].rects[placement].y;
286 for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
287 x = xx + rectpositions[rectnum].rects[placement].x;
289 assert(overlaps[(rectnum * h + y) * w + x] != 0);
291 if (overlaps[(rectnum * h + y) * w + x] > 0)
292 overlaps[(rectnum * h + y) * w + x]--;
297 * Remove the placement from the list of positions for that
298 * rectangle, by interchanging it with the one on the end.
300 if (placement < rectpositions[rectnum].n - 1) {
301 struct rect t;
303 t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
304 rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
305 rectpositions[rectnum].rects[placement];
306 rectpositions[rectnum].rects[placement] = t;
308 rectpositions[rectnum].n--;
311 static void remove_number_placement(int w, int h, struct numberdata *number,
312 int index, int *rectbyplace)
315 * Remove the entry from the rectbyplace array.
317 rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
320 * Remove the placement from the list of candidates for that
321 * number, by interchanging it with the one on the end.
323 if (index < number->npoints - 1) {
324 struct point t;
326 t = number->points[number->npoints - 1];
327 number->points[number->npoints - 1] = number->points[index];
328 number->points[index] = t;
330 number->npoints--;
334 * Returns 0 for failure to solve due to inconsistency; 1 for
335 * success; 2 for failure to complete a solution due to either
336 * ambiguity or it being too difficult.
338 static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
339 unsigned char *hedge, unsigned char *vedge,
340 random_state *rs)
342 struct rectlist *rectpositions;
343 int *overlaps, *rectbyplace, *workspace;
344 int i, ret;
347 * Start by setting up a list of candidate positions for each
348 * rectangle.
350 rectpositions = snewn(nrects, struct rectlist);
351 for (i = 0; i < nrects; i++) {
352 int rw, rh, area = numbers[i].area;
353 int j, minx, miny, maxx, maxy;
354 struct rect *rlist;
355 int rlistn, rlistsize;
358 * For each rectangle, begin by finding the bounding
359 * rectangle of its candidate number placements.
361 maxx = maxy = -1;
362 minx = w;
363 miny = h;
364 for (j = 0; j < numbers[i].npoints; j++) {
365 if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
366 if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
367 if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
368 if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
372 * Now loop over all possible rectangle placements
373 * overlapping a point within that bounding rectangle;
374 * ensure each one actually contains a candidate number
375 * placement, and add it to the list.
377 rlist = NULL;
378 rlistn = rlistsize = 0;
380 for (rw = 1; rw <= area && rw <= w; rw++) {
381 int x, y;
383 if (area % rw)
384 continue;
385 rh = area / rw;
386 if (rh > h)
387 continue;
389 for (y = miny - rh + 1; y <= maxy; y++) {
390 if (y < 0 || y+rh > h)
391 continue;
393 for (x = minx - rw + 1; x <= maxx; x++) {
394 if (x < 0 || x+rw > w)
395 continue;
398 * See if we can find a candidate number
399 * placement within this rectangle.
401 for (j = 0; j < numbers[i].npoints; j++)
402 if (numbers[i].points[j].x >= x &&
403 numbers[i].points[j].x < x+rw &&
404 numbers[i].points[j].y >= y &&
405 numbers[i].points[j].y < y+rh)
406 break;
408 if (j < numbers[i].npoints) {
410 * Add this to the list of candidate
411 * placements for this rectangle.
413 if (rlistn >= rlistsize) {
414 rlistsize = rlistn + 32;
415 rlist = sresize(rlist, rlistsize, struct rect);
417 rlist[rlistn].x = x;
418 rlist[rlistn].y = y;
419 rlist[rlistn].w = rw;
420 rlist[rlistn].h = rh;
421 #ifdef SOLVER_DIAGNOSTICS
422 printf("rect %d [area %d]: candidate position at"
423 " %d,%d w=%d h=%d\n",
424 i, area, x, y, rw, rh);
425 #endif
426 rlistn++;
432 rectpositions[i].rects = rlist;
433 rectpositions[i].n = rlistn;
437 * Next, construct a multidimensional array tracking how many
438 * candidate positions for each rectangle overlap each square.
440 * Indexing of this array is by the formula
442 * overlaps[(rectindex * h + y) * w + x]
444 * A positive or zero value indicates what it sounds as if it
445 * should; -1 indicates that this square _cannot_ be part of
446 * this rectangle; and -2 indicates that it _definitely_ is
447 * (which is distinct from 1, because one might very well know
448 * that _if_ square S is part of rectangle R then it must be
449 * because R is placed in a certain position without knowing
450 * that it definitely _is_).
452 overlaps = snewn(nrects * w * h, int);
453 memset(overlaps, 0, nrects * w * h * sizeof(int));
454 for (i = 0; i < nrects; i++) {
455 int j;
457 for (j = 0; j < rectpositions[i].n; j++) {
458 int xx, yy;
460 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
461 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
462 overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
463 xx+rectpositions[i].rects[j].x]++;
468 * Also we want an array covering the grid once, to make it
469 * easy to figure out which squares are candidate number
470 * placements for which rectangles. (The existence of this
471 * single array assumes that no square starts off as a
472 * candidate number placement for more than one rectangle. This
473 * assumption is justified, because this solver is _either_
474 * used to solve real problems - in which case there is a
475 * single placement for every number - _or_ used to decide on
476 * number placements for a new puzzle, in which case each
477 * number's placements are confined to the intended position of
478 * the rectangle containing that number.)
480 rectbyplace = snewn(w * h, int);
481 for (i = 0; i < w*h; i++)
482 rectbyplace[i] = -1;
484 for (i = 0; i < nrects; i++) {
485 int j;
487 for (j = 0; j < numbers[i].npoints; j++) {
488 int x = numbers[i].points[j].x;
489 int y = numbers[i].points[j].y;
491 assert(rectbyplace[y * w + x] == -1);
492 rectbyplace[y * w + x] = i;
496 workspace = snewn(nrects, int);
499 * Now run the actual deduction loop.
501 while (1) {
502 int done_something = FALSE;
504 #ifdef SOLVER_DIAGNOSTICS
505 printf("starting deduction loop\n");
507 for (i = 0; i < nrects; i++) {
508 printf("rect %d overlaps:\n", i);
510 int x, y;
511 for (y = 0; y < h; y++) {
512 for (x = 0; x < w; x++) {
513 printf("%3d", overlaps[(i * h + y) * w + x]);
515 printf("\n");
519 printf("rectbyplace:\n");
521 int x, y;
522 for (y = 0; y < h; y++) {
523 for (x = 0; x < w; x++) {
524 printf("%3d", rectbyplace[y * w + x]);
526 printf("\n");
529 #endif
532 * Housekeeping. Look for rectangles whose number has only
533 * one candidate position left, and mark that square as
534 * known if it isn't already.
536 for (i = 0; i < nrects; i++) {
537 if (numbers[i].npoints == 1) {
538 int x = numbers[i].points[0].x;
539 int y = numbers[i].points[0].y;
540 if (overlaps[(i * h + y) * w + x] >= -1) {
541 int j;
543 if (overlaps[(i * h + y) * w + x] <= 0) {
544 ret = 0; /* inconsistency */
545 goto cleanup;
547 #ifdef SOLVER_DIAGNOSTICS
548 printf("marking %d,%d as known for rect %d"
549 " (sole remaining number position)\n", x, y, i);
550 #endif
552 for (j = 0; j < nrects; j++)
553 overlaps[(j * h + y) * w + x] = -1;
555 overlaps[(i * h + y) * w + x] = -2;
561 * Now look at the intersection of all possible placements
562 * for each rectangle, and mark all squares in that
563 * intersection as known for that rectangle if they aren't
564 * already.
566 for (i = 0; i < nrects; i++) {
567 int minx, miny, maxx, maxy, xx, yy, j;
569 minx = miny = 0;
570 maxx = w;
571 maxy = h;
573 for (j = 0; j < rectpositions[i].n; j++) {
574 int x = rectpositions[i].rects[j].x;
575 int y = rectpositions[i].rects[j].y;
576 int w = rectpositions[i].rects[j].w;
577 int h = rectpositions[i].rects[j].h;
579 if (minx < x) minx = x;
580 if (miny < y) miny = y;
581 if (maxx > x+w) maxx = x+w;
582 if (maxy > y+h) maxy = y+h;
585 for (yy = miny; yy < maxy; yy++)
586 for (xx = minx; xx < maxx; xx++)
587 if (overlaps[(i * h + yy) * w + xx] >= -1) {
588 if (overlaps[(i * h + yy) * w + xx] <= 0) {
589 ret = 0; /* inconsistency */
590 goto cleanup;
592 #ifdef SOLVER_DIAGNOSTICS
593 printf("marking %d,%d as known for rect %d"
594 " (intersection of all placements)\n",
595 xx, yy, i);
596 #endif
598 for (j = 0; j < nrects; j++)
599 overlaps[(j * h + yy) * w + xx] = -1;
601 overlaps[(i * h + yy) * w + xx] = -2;
606 * Rectangle-focused deduction. Look at each rectangle in
607 * turn and try to rule out some of its candidate
608 * placements.
610 for (i = 0; i < nrects; i++) {
611 int j;
613 for (j = 0; j < rectpositions[i].n; j++) {
614 int xx, yy, k;
615 int del = FALSE;
617 for (k = 0; k < nrects; k++)
618 workspace[k] = 0;
620 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
621 int y = yy + rectpositions[i].rects[j].y;
622 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
623 int x = xx + rectpositions[i].rects[j].x;
625 if (overlaps[(i * h + y) * w + x] == -1) {
627 * This placement overlaps a square
628 * which is _known_ to be part of
629 * another rectangle. Therefore we must
630 * rule it out.
632 #ifdef SOLVER_DIAGNOSTICS
633 printf("rect %d placement at %d,%d w=%d h=%d "
634 "contains %d,%d which is known-other\n", i,
635 rectpositions[i].rects[j].x,
636 rectpositions[i].rects[j].y,
637 rectpositions[i].rects[j].w,
638 rectpositions[i].rects[j].h,
639 x, y);
640 #endif
641 del = TRUE;
644 if (rectbyplace[y * w + x] != -1) {
646 * This placement overlaps one of the
647 * candidate number placements for some
648 * rectangle. Count it.
650 workspace[rectbyplace[y * w + x]]++;
655 if (!del) {
657 * If we haven't ruled this placement out
658 * already, see if it overlaps _all_ of the
659 * candidate number placements for any
660 * rectangle. If so, we can rule it out.
662 for (k = 0; k < nrects; k++)
663 if (k != i && workspace[k] == numbers[k].npoints) {
664 #ifdef SOLVER_DIAGNOSTICS
665 printf("rect %d placement at %d,%d w=%d h=%d "
666 "contains all number points for rect %d\n",
668 rectpositions[i].rects[j].x,
669 rectpositions[i].rects[j].y,
670 rectpositions[i].rects[j].w,
671 rectpositions[i].rects[j].h,
673 #endif
674 del = TRUE;
675 break;
679 * Failing that, see if it overlaps at least
680 * one of the candidate number placements for
681 * itself! (This might not be the case if one
682 * of those number placements has been removed
683 * recently.).
685 if (!del && workspace[i] == 0) {
686 #ifdef SOLVER_DIAGNOSTICS
687 printf("rect %d placement at %d,%d w=%d h=%d "
688 "contains none of its own number points\n",
690 rectpositions[i].rects[j].x,
691 rectpositions[i].rects[j].y,
692 rectpositions[i].rects[j].w,
693 rectpositions[i].rects[j].h);
694 #endif
695 del = TRUE;
699 if (del) {
700 remove_rect_placement(w, h, rectpositions, overlaps, i, j);
702 j--; /* don't skip over next placement */
704 done_something = TRUE;
710 * Square-focused deduction. Look at each square not marked
711 * as known, and see if there are any which can only be
712 * part of a single rectangle.
715 int x, y, n, index;
716 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
717 /* Known squares are marked as <0 everywhere, so we only need
718 * to check the overlaps entry for rect 0. */
719 if (overlaps[y * w + x] < 0)
720 continue; /* known already */
722 n = 0;
723 index = -1;
724 for (i = 0; i < nrects; i++)
725 if (overlaps[(i * h + y) * w + x] > 0)
726 n++, index = i;
728 if (n == 1) {
729 int j;
732 * Now we can rule out all placements for
733 * rectangle `index' which _don't_ contain
734 * square x,y.
736 #ifdef SOLVER_DIAGNOSTICS
737 printf("square %d,%d can only be in rectangle %d\n",
738 x, y, index);
739 #endif
740 for (j = 0; j < rectpositions[index].n; j++) {
741 struct rect *r = &rectpositions[index].rects[j];
742 if (x >= r->x && x < r->x + r->w &&
743 y >= r->y && y < r->y + r->h)
744 continue; /* this one is OK */
745 remove_rect_placement(w, h, rectpositions, overlaps,
746 index, j);
747 j--; /* don't skip over next placement */
748 done_something = TRUE;
755 * If we've managed to deduce anything by normal means,
756 * loop round again and see if there's more to be done.
757 * Only if normal deduction has completely failed us should
758 * we now move on to narrowing down the possible number
759 * placements.
761 if (done_something)
762 continue;
765 * Now we have done everything we can with the current set
766 * of number placements. So we need to winnow the number
767 * placements so as to narrow down the possibilities. We do
768 * this by searching for a candidate placement (of _any_
769 * rectangle) which overlaps a candidate placement of the
770 * number for some other rectangle.
772 if (rs) {
773 struct rpn {
774 int rect;
775 int placement;
776 int number;
777 } *rpns = NULL;
778 size_t nrpns = 0, rpnsize = 0;
779 int j;
781 for (i = 0; i < nrects; i++) {
782 for (j = 0; j < rectpositions[i].n; j++) {
783 int xx, yy;
785 for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
786 int y = yy + rectpositions[i].rects[j].y;
787 for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
788 int x = xx + rectpositions[i].rects[j].x;
790 if (rectbyplace[y * w + x] >= 0 &&
791 rectbyplace[y * w + x] != i) {
793 * Add this to the list of
794 * winnowing possibilities.
796 if (nrpns >= rpnsize) {
797 rpnsize = rpnsize * 3 / 2 + 32;
798 rpns = sresize(rpns, rpnsize, struct rpn);
800 rpns[nrpns].rect = i;
801 rpns[nrpns].placement = j;
802 rpns[nrpns].number = rectbyplace[y * w + x];
803 nrpns++;
811 #ifdef SOLVER_DIAGNOSTICS
812 printf("%d candidate rect placements we could eliminate\n", nrpns);
813 #endif
814 if (nrpns > 0) {
816 * Now choose one of these unwanted rectangle
817 * placements, and eliminate it.
819 int index = random_upto(rs, nrpns);
820 int k, m;
821 struct rpn rpn = rpns[index];
822 struct rect r;
823 sfree(rpns);
825 i = rpn.rect;
826 j = rpn.placement;
827 k = rpn.number;
828 r = rectpositions[i].rects[j];
831 * We rule out placement j of rectangle i by means
832 * of removing all of rectangle k's candidate
833 * number placements which do _not_ overlap it.
834 * This will ensure that it is eliminated during
835 * the next pass of rectangle-focused deduction.
837 #ifdef SOLVER_DIAGNOSTICS
838 printf("ensuring number for rect %d is within"
839 " rect %d's placement at %d,%d w=%d h=%d\n",
840 k, i, r.x, r.y, r.w, r.h);
841 #endif
843 for (m = 0; m < numbers[k].npoints; m++) {
844 int x = numbers[k].points[m].x;
845 int y = numbers[k].points[m].y;
847 if (x < r.x || x >= r.x + r.w ||
848 y < r.y || y >= r.y + r.h) {
849 #ifdef SOLVER_DIAGNOSTICS
850 printf("eliminating number for rect %d at %d,%d\n",
851 k, x, y);
852 #endif
853 remove_number_placement(w, h, &numbers[k],
854 m, rectbyplace);
855 m--; /* don't skip the next one */
856 done_something = TRUE;
862 if (!done_something) {
863 #ifdef SOLVER_DIAGNOSTICS
864 printf("terminating deduction loop\n");
865 #endif
866 break;
870 cleanup:
871 ret = 1;
872 for (i = 0; i < nrects; i++) {
873 #ifdef SOLVER_DIAGNOSTICS
874 printf("rect %d has %d possible placements\n",
875 i, rectpositions[i].n);
876 #endif
877 if (rectpositions[i].n <= 0) {
878 ret = 0; /* inconsistency */
879 } else if (rectpositions[i].n > 1) {
880 ret = 2; /* remaining uncertainty */
881 } else if (hedge && vedge) {
883 * Place the rectangle in its only possible position.
885 int x, y;
886 struct rect *r = &rectpositions[i].rects[0];
888 for (y = 0; y < r->h; y++) {
889 if (r->x > 0)
890 vedge[(r->y+y) * w + r->x] = 1;
891 if (r->x+r->w < w)
892 vedge[(r->y+y) * w + r->x+r->w] = 1;
894 for (x = 0; x < r->w; x++) {
895 if (r->y > 0)
896 hedge[r->y * w + r->x+x] = 1;
897 if (r->y+r->h < h)
898 hedge[(r->y+r->h) * w + r->x+x] = 1;
904 * Free up all allocated storage.
906 sfree(workspace);
907 sfree(rectbyplace);
908 sfree(overlaps);
909 for (i = 0; i < nrects; i++)
910 sfree(rectpositions[i].rects);
911 sfree(rectpositions);
913 return ret;
916 /* ----------------------------------------------------------------------
917 * Grid generation code.
921 * This function does one of two things. If passed r==NULL, it
922 * counts the number of possible rectangles which cover the given
923 * square, and returns it in *n. If passed r!=NULL then it _reads_
924 * *n to find an index, counts the possible rectangles until it
925 * reaches the nth, and writes it into r.
927 * `scratch' is expected to point to an array of 2 * params->w
928 * ints, used internally as scratch space (and passed in like this
929 * to avoid re-allocating and re-freeing it every time round a
930 * tight loop).
932 static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
933 int sx, int sy, int *scratch)
935 int rw, rh, mw, mh;
936 int x, y, dx, dy;
937 int maxarea, realmaxarea;
938 int index = 0;
939 int *top, *bottom;
942 * Maximum rectangle area is 1/6 of total grid size, unless
943 * this means we can't place any rectangles at all in which
944 * case we set it to 2 at minimum.
946 maxarea = params->w * params->h / 6;
947 if (maxarea < 2)
948 maxarea = 2;
951 * Scan the grid to find the limits of the region within which
952 * any rectangle containing this point must fall. This will
953 * save us trawling the inside of every rectangle later on to
954 * see if it contains any used squares.
956 top = scratch;
957 bottom = scratch + params->w;
958 for (dy = -1; dy <= +1; dy += 2) {
959 int *array = (dy == -1 ? top : bottom);
960 for (dx = -1; dx <= +1; dx += 2) {
961 for (x = sx; x >= 0 && x < params->w; x += dx) {
962 array[x] = -2 * params->h * dy;
963 for (y = sy; y >= 0 && y < params->h; y += dy) {
964 if (index(params, grid, x, y) == -1 &&
965 (x == sx || dy*y <= dy*array[x-dx]))
966 array[x] = y;
967 else
968 break;
975 * Now scan again to work out the largest rectangles we can fit
976 * in the grid, so that we can terminate the following loops
977 * early once we get down to not having much space left in the
978 * grid.
980 realmaxarea = 0;
981 for (x = 0; x < params->w; x++) {
982 int x2;
984 rh = bottom[x] - top[x] + 1;
985 if (rh <= 0)
986 continue; /* no rectangles can start here */
988 dx = (x > sx ? -1 : +1);
989 for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
990 if (bottom[x2] < bottom[x] || top[x2] > top[x])
991 break;
993 rw = abs(x2 - x);
994 if (realmaxarea < rw * rh)
995 realmaxarea = rw * rh;
998 if (realmaxarea > maxarea)
999 realmaxarea = maxarea;
1002 * Rectangles which go right the way across the grid are
1003 * boring, although they can't be helped in the case of
1004 * extremely small grids. (Also they might be generated later
1005 * on by the singleton-removal process; we can't help that.)
1007 mw = params->w - 1;
1008 if (mw < 3) mw++;
1009 mh = params->h - 1;
1010 if (mh < 3) mh++;
1012 for (rw = 1; rw <= mw; rw++)
1013 for (rh = 1; rh <= mh; rh++) {
1014 if (rw * rh > realmaxarea)
1015 continue;
1016 if (rw * rh == 1)
1017 continue;
1018 for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
1019 for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
1020 y++) {
1022 * Check this rectangle against the region we
1023 * defined above.
1025 if (top[x] <= y && top[x+rw-1] <= y &&
1026 bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
1027 if (r && index == *n) {
1028 r->x = x;
1029 r->y = y;
1030 r->w = rw;
1031 r->h = rh;
1032 return;
1034 index++;
1039 assert(!r);
1040 *n = index;
1043 static void place_rect(game_params *params, int *grid, struct rect r)
1045 int idx = INDEX(params, r.x, r.y);
1046 int x, y;
1048 for (x = r.x; x < r.x+r.w; x++)
1049 for (y = r.y; y < r.y+r.h; y++) {
1050 index(params, grid, x, y) = idx;
1052 #ifdef GENERATION_DIAGNOSTICS
1053 printf(" placing rectangle at (%d,%d) size %d x %d\n",
1054 r.x, r.y, r.w, r.h);
1055 #endif
1058 static struct rect find_rect(game_params *params, int *grid, int x, int y)
1060 int idx, w, h;
1061 struct rect r;
1064 * Find the top left of the rectangle.
1066 idx = index(params, grid, x, y);
1068 if (idx < 0) {
1069 r.x = x;
1070 r.y = y;
1071 r.w = r.h = 1;
1072 return r; /* 1x1 singleton here */
1075 y = idx / params->w;
1076 x = idx % params->w;
1079 * Find the width and height of the rectangle.
1081 for (w = 1;
1082 (x+w < params->w && index(params,grid,x+w,y)==idx);
1083 w++);
1084 for (h = 1;
1085 (y+h < params->h && index(params,grid,x,y+h)==idx);
1086 h++);
1088 r.x = x;
1089 r.y = y;
1090 r.w = w;
1091 r.h = h;
1093 return r;
1096 #ifdef GENERATION_DIAGNOSTICS
1097 static void display_grid(game_params *params, int *grid, int *numbers, int all)
1099 unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
1100 unsigned char);
1101 int x, y;
1102 int r = (params->w*2+3);
1104 memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
1106 for (x = 0; x < params->w; x++)
1107 for (y = 0; y < params->h; y++) {
1108 int i = index(params, grid, x, y);
1109 if (x == 0 || index(params, grid, x-1, y) != i)
1110 egrid[(2*y+2) * r + (2*x+1)] = 1;
1111 if (x == params->w-1 || index(params, grid, x+1, y) != i)
1112 egrid[(2*y+2) * r + (2*x+3)] = 1;
1113 if (y == 0 || index(params, grid, x, y-1) != i)
1114 egrid[(2*y+1) * r + (2*x+2)] = 1;
1115 if (y == params->h-1 || index(params, grid, x, y+1) != i)
1116 egrid[(2*y+3) * r + (2*x+2)] = 1;
1119 for (y = 1; y < 2*params->h+2; y++) {
1120 for (x = 1; x < 2*params->w+2; x++) {
1121 if (!((y|x)&1)) {
1122 int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
1123 if (k || (all && numbers)) printf("%2d", k); else printf(" ");
1124 } else if (!((y&x)&1)) {
1125 int v = egrid[y*r+x];
1126 if ((y&1) && v) v = '-';
1127 if ((x&1) && v) v = '|';
1128 if (!v) v = ' ';
1129 putchar(v);
1130 if (!(x&1)) putchar(v);
1131 } else {
1132 int c, d = 0;
1133 if (egrid[y*r+(x+1)]) d |= 1;
1134 if (egrid[(y-1)*r+x]) d |= 2;
1135 if (egrid[y*r+(x-1)]) d |= 4;
1136 if (egrid[(y+1)*r+x]) d |= 8;
1137 c = " ??+?-++?+|+++++"[d];
1138 putchar(c);
1139 if (!(x&1)) putchar(c);
1142 putchar('\n');
1145 sfree(egrid);
1147 #endif
1149 static char *new_game_desc(game_params *params, random_state *rs,
1150 char **aux, int interactive)
1152 int *grid, *numbers = NULL;
1153 int x, y, y2, y2last, yx, run, i, nsquares;
1154 char *desc, *p;
1155 int *enum_rects_scratch;
1156 game_params params2real, *params2 = &params2real;
1158 while (1) {
1160 * Set up the smaller width and height which we will use to
1161 * generate the base grid.
1163 params2->w = (int)((float)params->w / (1.0F + params->expandfactor));
1164 if (params2->w < 2 && params->w >= 2) params2->w = 2;
1165 params2->h = (int)((float)params->h / (1.0F + params->expandfactor));
1166 if (params2->h < 2 && params->h >= 2) params2->h = 2;
1168 grid = snewn(params2->w * params2->h, int);
1170 enum_rects_scratch = snewn(2 * params2->w, int);
1172 nsquares = 0;
1173 for (y = 0; y < params2->h; y++)
1174 for (x = 0; x < params2->w; x++) {
1175 index(params2, grid, x, y) = -1;
1176 nsquares++;
1180 * Place rectangles until we can't any more. We do this by
1181 * finding a square we haven't yet covered, and randomly
1182 * choosing a rectangle to cover it.
1185 while (nsquares > 0) {
1186 int square = random_upto(rs, nsquares);
1187 int n;
1188 struct rect r;
1190 x = params2->w;
1191 y = params2->h;
1192 for (y = 0; y < params2->h; y++) {
1193 for (x = 0; x < params2->w; x++) {
1194 if (index(params2, grid, x, y) == -1 && square-- == 0)
1195 break;
1197 if (x < params2->w)
1198 break;
1200 assert(x < params2->w && y < params2->h);
1203 * Now see how many rectangles fit around this one.
1205 enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
1207 if (!n) {
1209 * There are no possible rectangles covering this
1210 * square, meaning it must be a singleton. Mark it
1211 * -2 so we know not to keep trying.
1213 index(params2, grid, x, y) = -2;
1214 nsquares--;
1215 } else {
1217 * Pick one at random.
1219 n = random_upto(rs, n);
1220 enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
1223 * Place it.
1225 place_rect(params2, grid, r);
1226 nsquares -= r.w * r.h;
1230 sfree(enum_rects_scratch);
1233 * Deal with singleton spaces remaining in the grid, one by
1234 * one.
1236 * We do this by making a local change to the layout. There are
1237 * several possibilities:
1239 * +-----+-----+ Here, we can remove the singleton by
1240 * | | | extending the 1x2 rectangle below it
1241 * +--+--+-----+ into a 1x3.
1242 * | | | |
1243 * | +--+ |
1244 * | | | |
1245 * | | | |
1246 * | | | |
1247 * +--+--+-----+
1249 * +--+--+--+ Here, that trick doesn't work: there's no
1250 * | | | 1 x n rectangle with the singleton at one
1251 * | | | end. Instead, we extend a 1 x n rectangle
1252 * | | | _out_ from the singleton, shaving a layer
1253 * +--+--+ | off the end of another rectangle. So if we
1254 * | | | | extended up, we'd make our singleton part
1255 * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
1256 * | | | used to be; or we could extend right into
1257 * +--+-----+ a 2x1, turning the 1x3 into a 1x2.
1259 * +-----+--+ Here, we can't even do _that_, since any
1260 * | | | direction we choose to extend the singleton
1261 * +--+--+ | will produce a new singleton as a result of
1262 * | | | | truncating one of the size-2 rectangles.
1263 * | +--+--+ Fortunately, this case can _only_ occur when
1264 * | | | a singleton is surrounded by four size-2s
1265 * +--+-----+ in this fashion; so instead we can simply
1266 * replace the whole section with a single 3x3.
1268 for (x = 0; x < params2->w; x++) {
1269 for (y = 0; y < params2->h; y++) {
1270 if (index(params2, grid, x, y) < 0) {
1271 int dirs[4], ndirs;
1273 #ifdef GENERATION_DIAGNOSTICS
1274 display_grid(params2, grid, NULL, FALSE);
1275 printf("singleton at %d,%d\n", x, y);
1276 #endif
1279 * Check in which directions we can feasibly extend
1280 * the singleton. We can extend in a particular
1281 * direction iff either:
1283 * - the rectangle on that side of the singleton
1284 * is not 2x1, and we are at one end of the edge
1285 * of it we are touching
1287 * - it is 2x1 but we are on its short side.
1289 * FIXME: we could plausibly choose between these
1290 * based on the sizes of the rectangles they would
1291 * create?
1293 ndirs = 0;
1294 if (x < params2->w-1) {
1295 struct rect r = find_rect(params2, grid, x+1, y);
1296 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1297 dirs[ndirs++] = 1; /* right */
1299 if (y > 0) {
1300 struct rect r = find_rect(params2, grid, x, y-1);
1301 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1302 dirs[ndirs++] = 2; /* up */
1304 if (x > 0) {
1305 struct rect r = find_rect(params2, grid, x-1, y);
1306 if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
1307 dirs[ndirs++] = 4; /* left */
1309 if (y < params2->h-1) {
1310 struct rect r = find_rect(params2, grid, x, y+1);
1311 if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
1312 dirs[ndirs++] = 8; /* down */
1315 if (ndirs > 0) {
1316 int which, dir;
1317 struct rect r1, r2;
1319 which = random_upto(rs, ndirs);
1320 dir = dirs[which];
1322 switch (dir) {
1323 case 1: /* right */
1324 assert(x < params2->w+1);
1325 #ifdef GENERATION_DIAGNOSTICS
1326 printf("extending right\n");
1327 #endif
1328 r1 = find_rect(params2, grid, x+1, y);
1329 r2.x = x;
1330 r2.y = y;
1331 r2.w = 1 + r1.w;
1332 r2.h = 1;
1333 if (r1.y == y)
1334 r1.y++;
1335 r1.h--;
1336 break;
1337 case 2: /* up */
1338 assert(y > 0);
1339 #ifdef GENERATION_DIAGNOSTICS
1340 printf("extending up\n");
1341 #endif
1342 r1 = find_rect(params2, grid, x, y-1);
1343 r2.x = x;
1344 r2.y = r1.y;
1345 r2.w = 1;
1346 r2.h = 1 + r1.h;
1347 if (r1.x == x)
1348 r1.x++;
1349 r1.w--;
1350 break;
1351 case 4: /* left */
1352 assert(x > 0);
1353 #ifdef GENERATION_DIAGNOSTICS
1354 printf("extending left\n");
1355 #endif
1356 r1 = find_rect(params2, grid, x-1, y);
1357 r2.x = r1.x;
1358 r2.y = y;
1359 r2.w = 1 + r1.w;
1360 r2.h = 1;
1361 if (r1.y == y)
1362 r1.y++;
1363 r1.h--;
1364 break;
1365 case 8: /* down */
1366 assert(y < params2->h+1);
1367 #ifdef GENERATION_DIAGNOSTICS
1368 printf("extending down\n");
1369 #endif
1370 r1 = find_rect(params2, grid, x, y+1);
1371 r2.x = x;
1372 r2.y = y;
1373 r2.w = 1;
1374 r2.h = 1 + r1.h;
1375 if (r1.x == x)
1376 r1.x++;
1377 r1.w--;
1378 break;
1379 default: /* should never happen */
1380 assert(!"invalid direction");
1382 if (r1.h > 0 && r1.w > 0)
1383 place_rect(params2, grid, r1);
1384 place_rect(params2, grid, r2);
1385 } else {
1386 #ifndef NDEBUG
1388 * Sanity-check that there really is a 3x3
1389 * rectangle surrounding this singleton and it
1390 * contains absolutely everything we could
1391 * possibly need.
1394 int xx, yy;
1395 assert(x > 0 && x < params2->w-1);
1396 assert(y > 0 && y < params2->h-1);
1398 for (xx = x-1; xx <= x+1; xx++)
1399 for (yy = y-1; yy <= y+1; yy++) {
1400 struct rect r = find_rect(params2,grid,xx,yy);
1401 assert(r.x >= x-1);
1402 assert(r.y >= y-1);
1403 assert(r.x+r.w-1 <= x+1);
1404 assert(r.y+r.h-1 <= y+1);
1407 #endif
1409 #ifdef GENERATION_DIAGNOSTICS
1410 printf("need the 3x3 trick\n");
1411 #endif
1414 * FIXME: If the maximum rectangle area for
1415 * this grid is less than 9, we ought to
1416 * subdivide the 3x3 in some fashion. There are
1417 * five other possibilities:
1419 * - a 6 and a 3
1420 * - a 4, a 3 and a 2
1421 * - three 3s
1422 * - a 3 and three 2s (two different arrangements).
1426 struct rect r;
1427 r.x = x-1;
1428 r.y = y-1;
1429 r.w = r.h = 3;
1430 place_rect(params2, grid, r);
1438 * We have now constructed a grid of the size specified in
1439 * params2. Now we extend it into a grid of the size specified
1440 * in params. We do this in two passes: we extend it vertically
1441 * until it's the right height, then we transpose it, then
1442 * extend it vertically again (getting it effectively the right
1443 * width), then finally transpose again.
1445 for (i = 0; i < 2; i++) {
1446 int *grid2, *expand, *where;
1447 game_params params3real, *params3 = &params3real;
1449 #ifdef GENERATION_DIAGNOSTICS
1450 printf("before expansion:\n");
1451 display_grid(params2, grid, NULL, TRUE);
1452 #endif
1455 * Set up the new grid.
1457 grid2 = snewn(params2->w * params->h, int);
1458 expand = snewn(params2->h-1, int);
1459 where = snewn(params2->w, int);
1460 params3->w = params2->w;
1461 params3->h = params->h;
1464 * Decide which horizontal edges are going to get expanded,
1465 * and by how much.
1467 for (y = 0; y < params2->h-1; y++)
1468 expand[y] = 0;
1469 for (y = params2->h; y < params->h; y++) {
1470 x = random_upto(rs, params2->h-1);
1471 expand[x]++;
1474 #ifdef GENERATION_DIAGNOSTICS
1475 printf("expand[] = {");
1476 for (y = 0; y < params2->h-1; y++)
1477 printf(" %d", expand[y]);
1478 printf(" }\n");
1479 #endif
1482 * Perform the expansion. The way this works is that we
1483 * alternately:
1485 * - copy a row from grid into grid2
1487 * - invent some number of additional rows in grid2 where
1488 * there was previously only a horizontal line between
1489 * rows in grid, and make random decisions about where
1490 * among these to place each rectangle edge that ran
1491 * along this line.
1493 for (y = y2 = y2last = 0; y < params2->h; y++) {
1495 * Copy a single line from row y of grid into row y2 of
1496 * grid2.
1498 for (x = 0; x < params2->w; x++) {
1499 int val = index(params2, grid, x, y);
1500 if (val / params2->w == y && /* rect starts on this line */
1501 (y2 == 0 || /* we're at the very top, or... */
1502 index(params3, grid2, x, y2-1) / params3->w < y2last
1503 /* this rect isn't already started */))
1504 index(params3, grid2, x, y2) =
1505 INDEX(params3, val % params2->w, y2);
1506 else
1507 index(params3, grid2, x, y2) =
1508 index(params3, grid2, x, y2-1);
1512 * If that was the last line, terminate the loop early.
1514 if (++y2 == params3->h)
1515 break;
1517 y2last = y2;
1520 * Invent some number of additional lines. First walk
1521 * along this line working out where to put all the
1522 * edges that coincide with it.
1524 yx = -1;
1525 for (x = 0; x < params2->w; x++) {
1526 if (index(params2, grid, x, y) !=
1527 index(params2, grid, x, y+1)) {
1529 * This is a horizontal edge, so it needs
1530 * placing.
1532 if (x == 0 ||
1533 (index(params2, grid, x-1, y) !=
1534 index(params2, grid, x, y) &&
1535 index(params2, grid, x-1, y+1) !=
1536 index(params2, grid, x, y+1))) {
1538 * Here we have the chance to make a new
1539 * decision.
1541 yx = random_upto(rs, expand[y]+1);
1542 } else {
1544 * Here we just reuse the previous value of
1545 * yx.
1548 } else
1549 yx = -1;
1550 where[x] = yx;
1553 for (yx = 0; yx < expand[y]; yx++) {
1555 * Invent a single row. For each square in the row,
1556 * we copy the grid entry from the square above it,
1557 * unless we're starting the new rectangle here.
1559 for (x = 0; x < params2->w; x++) {
1560 if (yx == where[x]) {
1561 int val = index(params2, grid, x, y+1);
1562 val %= params2->w;
1563 val = INDEX(params3, val, y2);
1564 index(params3, grid2, x, y2) = val;
1565 } else
1566 index(params3, grid2, x, y2) =
1567 index(params3, grid2, x, y2-1);
1570 y2++;
1574 sfree(expand);
1575 sfree(where);
1577 #ifdef GENERATION_DIAGNOSTICS
1578 printf("after expansion:\n");
1579 display_grid(params3, grid2, NULL, TRUE);
1580 #endif
1582 * Transpose.
1584 params2->w = params3->h;
1585 params2->h = params3->w;
1586 sfree(grid);
1587 grid = snewn(params2->w * params2->h, int);
1588 for (x = 0; x < params2->w; x++)
1589 for (y = 0; y < params2->h; y++) {
1590 int idx1 = INDEX(params2, x, y);
1591 int idx2 = INDEX(params3, y, x);
1592 int tmp;
1594 tmp = grid2[idx2];
1595 tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
1596 grid[idx1] = tmp;
1599 sfree(grid2);
1602 int tmp;
1603 tmp = params->w;
1604 params->w = params->h;
1605 params->h = tmp;
1608 #ifdef GENERATION_DIAGNOSTICS
1609 printf("after transposition:\n");
1610 display_grid(params2, grid, NULL, TRUE);
1611 #endif
1615 * Run the solver to narrow down the possible number
1616 * placements.
1619 struct numberdata *nd;
1620 int nnumbers, i, ret;
1622 /* Count the rectangles. */
1623 nnumbers = 0;
1624 for (y = 0; y < params->h; y++) {
1625 for (x = 0; x < params->w; x++) {
1626 int idx = INDEX(params, x, y);
1627 if (index(params, grid, x, y) == idx)
1628 nnumbers++;
1632 nd = snewn(nnumbers, struct numberdata);
1634 /* Now set up each number's candidate position list. */
1635 i = 0;
1636 for (y = 0; y < params->h; y++) {
1637 for (x = 0; x < params->w; x++) {
1638 int idx = INDEX(params, x, y);
1639 if (index(params, grid, x, y) == idx) {
1640 struct rect r = find_rect(params, grid, x, y);
1641 int j, k, m;
1643 nd[i].area = r.w * r.h;
1644 nd[i].npoints = nd[i].area;
1645 nd[i].points = snewn(nd[i].npoints, struct point);
1646 m = 0;
1647 for (j = 0; j < r.h; j++)
1648 for (k = 0; k < r.w; k++) {
1649 nd[i].points[m].x = k + r.x;
1650 nd[i].points[m].y = j + r.y;
1651 m++;
1653 assert(m == nd[i].npoints);
1655 i++;
1660 if (params->unique)
1661 ret = rect_solver(params->w, params->h, nnumbers, nd,
1662 NULL, NULL, rs);
1663 else
1664 ret = 1; /* allow any number placement at all */
1666 if (ret == 1) {
1668 * Now place the numbers according to the solver's
1669 * recommendations.
1671 numbers = snewn(params->w * params->h, int);
1673 for (y = 0; y < params->h; y++)
1674 for (x = 0; x < params->w; x++) {
1675 index(params, numbers, x, y) = 0;
1678 for (i = 0; i < nnumbers; i++) {
1679 int idx = random_upto(rs, nd[i].npoints);
1680 int x = nd[i].points[idx].x;
1681 int y = nd[i].points[idx].y;
1682 index(params,numbers,x,y) = nd[i].area;
1687 * Clean up.
1689 for (i = 0; i < nnumbers; i++)
1690 sfree(nd[i].points);
1691 sfree(nd);
1694 * If we've succeeded, then terminate the loop.
1696 if (ret == 1)
1697 break;
1701 * Give up and go round again.
1703 sfree(grid);
1707 * Store the solution in aux.
1710 char *ai;
1711 int len;
1713 len = 2 + (params->w-1)*params->h + (params->h-1)*params->w;
1714 ai = snewn(len, char);
1716 ai[0] = 'S';
1718 p = ai+1;
1720 for (y = 0; y < params->h; y++)
1721 for (x = 1; x < params->w; x++)
1722 *p++ = (index(params, grid, x, y) !=
1723 index(params, grid, x-1, y) ? '1' : '0');
1725 for (y = 1; y < params->h; y++)
1726 for (x = 0; x < params->w; x++)
1727 *p++ = (index(params, grid, x, y) !=
1728 index(params, grid, x, y-1) ? '1' : '0');
1730 assert(p - ai == len-1);
1731 *p = '\0';
1733 *aux = ai;
1736 #ifdef GENERATION_DIAGNOSTICS
1737 display_grid(params, grid, numbers, FALSE);
1738 #endif
1740 desc = snewn(11 * params->w * params->h, char);
1741 p = desc;
1742 run = 0;
1743 for (i = 0; i <= params->w * params->h; i++) {
1744 int n = (i < params->w * params->h ? numbers[i] : -1);
1746 if (!n)
1747 run++;
1748 else {
1749 if (run) {
1750 while (run > 0) {
1751 int c = 'a' - 1 + run;
1752 if (run > 26)
1753 c = 'z';
1754 *p++ = c;
1755 run -= c - ('a' - 1);
1757 } else {
1759 * If there's a number in the very top left or
1760 * bottom right, there's no point putting an
1761 * unnecessary _ before or after it.
1763 if (p > desc && n > 0)
1764 *p++ = '_';
1766 if (n > 0)
1767 p += sprintf(p, "%d", n);
1768 run = 0;
1771 *p = '\0';
1773 sfree(grid);
1774 sfree(numbers);
1776 return desc;
1779 static char *validate_desc(game_params *params, char *desc)
1781 int area = params->w * params->h;
1782 int squares = 0;
1784 while (*desc) {
1785 int n = *desc++;
1786 if (n >= 'a' && n <= 'z') {
1787 squares += n - 'a' + 1;
1788 } else if (n == '_') {
1789 /* do nothing */;
1790 } else if (n > '0' && n <= '9') {
1791 squares++;
1792 while (*desc >= '0' && *desc <= '9')
1793 desc++;
1794 } else
1795 return "Invalid character in game description";
1798 if (squares < area)
1799 return "Not enough data to fill grid";
1801 if (squares > area)
1802 return "Too much data to fit in grid";
1804 return NULL;
1807 static unsigned char *get_correct(game_state *state)
1809 unsigned char *ret;
1810 int x, y;
1812 ret = snewn(state->w * state->h, unsigned char);
1813 memset(ret, 0xFF, state->w * state->h);
1815 for (x = 0; x < state->w; x++)
1816 for (y = 0; y < state->h; y++)
1817 if (index(state,ret,x,y) == 0xFF) {
1818 int rw, rh;
1819 int xx, yy;
1820 int num, area, valid;
1823 * Find a rectangle starting at this point.
1825 rw = 1;
1826 while (x+rw < state->w && !vedge(state,x+rw,y))
1827 rw++;
1828 rh = 1;
1829 while (y+rh < state->h && !hedge(state,x,y+rh))
1830 rh++;
1833 * We know what the dimensions of the rectangle
1834 * should be if it's there at all. Find out if we
1835 * really have a valid rectangle.
1837 valid = TRUE;
1838 /* Check the horizontal edges. */
1839 for (xx = x; xx < x+rw; xx++) {
1840 for (yy = y; yy <= y+rh; yy++) {
1841 int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
1842 int ec = (yy == y || yy == y+rh);
1843 if (e != ec)
1844 valid = FALSE;
1847 /* Check the vertical edges. */
1848 for (yy = y; yy < y+rh; yy++) {
1849 for (xx = x; xx <= x+rw; xx++) {
1850 int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
1851 int ec = (xx == x || xx == x+rw);
1852 if (e != ec)
1853 valid = FALSE;
1858 * If this is not a valid rectangle with no other
1859 * edges inside it, we just mark this square as not
1860 * complete and proceed to the next square.
1862 if (!valid) {
1863 index(state, ret, x, y) = 0;
1864 continue;
1868 * We have a rectangle. Now see what its area is,
1869 * and how many numbers are in it.
1871 num = 0;
1872 area = 0;
1873 for (xx = x; xx < x+rw; xx++) {
1874 for (yy = y; yy < y+rh; yy++) {
1875 area++;
1876 if (grid(state,xx,yy)) {
1877 if (num > 0)
1878 valid = FALSE; /* two numbers */
1879 num = grid(state,xx,yy);
1883 if (num != area)
1884 valid = FALSE;
1887 * Now fill in the whole rectangle based on the
1888 * value of `valid'.
1890 for (xx = x; xx < x+rw; xx++) {
1891 for (yy = y; yy < y+rh; yy++) {
1892 index(state, ret, xx, yy) = valid;
1897 return ret;
1900 static game_state *new_game(midend *me, game_params *params, char *desc)
1902 game_state *state = snew(game_state);
1903 int x, y, i, area;
1905 state->w = params->w;
1906 state->h = params->h;
1908 area = state->w * state->h;
1910 state->grid = snewn(area, int);
1911 state->vedge = snewn(area, unsigned char);
1912 state->hedge = snewn(area, unsigned char);
1913 state->completed = state->cheated = FALSE;
1915 i = 0;
1916 while (*desc) {
1917 int n = *desc++;
1918 if (n >= 'a' && n <= 'z') {
1919 int run = n - 'a' + 1;
1920 assert(i + run <= area);
1921 while (run-- > 0)
1922 state->grid[i++] = 0;
1923 } else if (n == '_') {
1924 /* do nothing */;
1925 } else if (n > '0' && n <= '9') {
1926 assert(i < area);
1927 state->grid[i++] = atoi(desc-1);
1928 while (*desc >= '0' && *desc <= '9')
1929 desc++;
1930 } else {
1931 assert(!"We can't get here");
1934 assert(i == area);
1936 for (y = 0; y < state->h; y++)
1937 for (x = 0; x < state->w; x++)
1938 vedge(state,x,y) = hedge(state,x,y) = 0;
1940 state->correct = get_correct(state);
1942 return state;
1945 static game_state *dup_game(game_state *state)
1947 game_state *ret = snew(game_state);
1949 ret->w = state->w;
1950 ret->h = state->h;
1952 ret->vedge = snewn(state->w * state->h, unsigned char);
1953 ret->hedge = snewn(state->w * state->h, unsigned char);
1954 ret->grid = snewn(state->w * state->h, int);
1955 ret->correct = snewn(ret->w * ret->h, unsigned char);
1957 ret->completed = state->completed;
1958 ret->cheated = state->cheated;
1960 memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
1961 memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
1962 memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
1964 memcpy(ret->correct, state->correct, state->w*state->h*sizeof(unsigned char));
1966 return ret;
1969 static void free_game(game_state *state)
1971 sfree(state->grid);
1972 sfree(state->vedge);
1973 sfree(state->hedge);
1974 sfree(state->correct);
1975 sfree(state);
1978 static char *solve_game(game_state *state, game_state *currstate,
1979 char *ai, char **error)
1981 unsigned char *vedge, *hedge;
1982 int x, y, len;
1983 char *ret, *p;
1984 int i, j, n;
1985 struct numberdata *nd;
1987 if (ai)
1988 return dupstr(ai);
1991 * Attempt the in-built solver.
1994 /* Set up each number's (very short) candidate position list. */
1995 for (i = n = 0; i < state->h * state->w; i++)
1996 if (state->grid[i])
1997 n++;
1999 nd = snewn(n, struct numberdata);
2001 for (i = j = 0; i < state->h * state->w; i++)
2002 if (state->grid[i]) {
2003 nd[j].area = state->grid[i];
2004 nd[j].npoints = 1;
2005 nd[j].points = snewn(1, struct point);
2006 nd[j].points[0].x = i % state->w;
2007 nd[j].points[0].y = i / state->w;
2008 j++;
2011 assert(j == n);
2013 vedge = snewn(state->w * state->h, unsigned char);
2014 hedge = snewn(state->w * state->h, unsigned char);
2015 memset(vedge, 0, state->w * state->h);
2016 memset(hedge, 0, state->w * state->h);
2018 rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL);
2021 * Clean up.
2023 for (i = 0; i < n; i++)
2024 sfree(nd[i].points);
2025 sfree(nd);
2027 len = 2 + (state->w-1)*state->h + (state->h-1)*state->w;
2028 ret = snewn(len, char);
2030 p = ret;
2031 *p++ = 'S';
2032 for (y = 0; y < state->h; y++)
2033 for (x = 1; x < state->w; x++)
2034 *p++ = vedge[y*state->w+x] ? '1' : '0';
2035 for (y = 1; y < state->h; y++)
2036 for (x = 0; x < state->w; x++)
2037 *p++ = hedge[y*state->w+x] ? '1' : '0';
2038 *p++ = '\0';
2039 assert(p - ret == len);
2041 sfree(vedge);
2042 sfree(hedge);
2044 return ret;
2047 static int game_can_format_as_text_now(game_params *params)
2049 return TRUE;
2052 static char *game_text_format(game_state *state)
2054 char *ret, *p, buf[80];
2055 int i, x, y, col, maxlen;
2058 * First determine the number of spaces required to display a
2059 * number. We'll use at least two, because one looks a bit
2060 * silly.
2062 col = 2;
2063 for (i = 0; i < state->w * state->h; i++) {
2064 x = sprintf(buf, "%d", state->grid[i]);
2065 if (col < x) col = x;
2069 * Now we know the exact total size of the grid we're going to
2070 * produce: it's got 2*h+1 rows, each containing w lots of col,
2071 * w+1 boundary characters and a trailing newline.
2073 maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
2075 ret = snewn(maxlen+1, char);
2076 p = ret;
2078 for (y = 0; y <= 2*state->h; y++) {
2079 for (x = 0; x <= 2*state->w; x++) {
2080 if (x & y & 1) {
2082 * Display a number.
2084 int v = grid(state, x/2, y/2);
2085 if (v)
2086 sprintf(buf, "%*d", col, v);
2087 else
2088 sprintf(buf, "%*s", col, "");
2089 memcpy(p, buf, col);
2090 p += col;
2091 } else if (x & 1) {
2093 * Display a horizontal edge or nothing.
2095 int h = (y==0 || y==2*state->h ? 1 :
2096 HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
2097 int i;
2098 if (h)
2099 h = '-';
2100 else
2101 h = ' ';
2102 for (i = 0; i < col; i++)
2103 *p++ = h;
2104 } else if (y & 1) {
2106 * Display a vertical edge or nothing.
2108 int v = (x==0 || x==2*state->w ? 1 :
2109 VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
2110 if (v)
2111 *p++ = '|';
2112 else
2113 *p++ = ' ';
2114 } else {
2116 * Display a corner, or a vertical edge, or a
2117 * horizontal edge, or nothing.
2119 int hl = (y==0 || y==2*state->h ? 1 :
2120 HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
2121 int hr = (y==0 || y==2*state->h ? 1 :
2122 HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
2123 int vu = (x==0 || x==2*state->w ? 1 :
2124 VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
2125 int vd = (x==0 || x==2*state->w ? 1 :
2126 VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
2127 if (!hl && !hr && !vu && !vd)
2128 *p++ = ' ';
2129 else if (hl && hr && !vu && !vd)
2130 *p++ = '-';
2131 else if (!hl && !hr && vu && vd)
2132 *p++ = '|';
2133 else
2134 *p++ = '+';
2137 *p++ = '\n';
2140 assert(p - ret == maxlen);
2141 *p = '\0';
2142 return ret;
2145 struct game_ui {
2147 * These coordinates are 2 times the obvious grid coordinates.
2148 * Hence, the top left of the grid is (0,0), the grid point to
2149 * the right of that is (2,0), the one _below that_ is (2,2)
2150 * and so on. This is so that we can specify a drag start point
2151 * on an edge (one odd coordinate) or in the middle of a square
2152 * (two odd coordinates) rather than always at a corner.
2154 * -1,-1 means no drag is in progress.
2156 int drag_start_x;
2157 int drag_start_y;
2158 int drag_end_x;
2159 int drag_end_y;
2161 * This flag is set as soon as a dragging action moves the
2162 * mouse pointer away from its starting point, so that even if
2163 * the pointer _returns_ to its starting point the action is
2164 * treated as a small drag rather than a click.
2166 int dragged;
2167 /* This flag is set if we're doing an erase operation (i.e.
2168 * removing edges in the centre of the rectangle without altering
2169 * the outlines).
2171 int erasing;
2173 * These are the co-ordinates of the top-left and bottom-right squares
2174 * in the drag box, respectively, or -1 otherwise.
2176 int x1;
2177 int y1;
2178 int x2;
2179 int y2;
2181 * These are the coordinates of a cursor, whether it's visible, and
2182 * whether it was used to start a drag.
2184 int cur_x, cur_y, cur_visible, cur_dragging;
2187 static game_ui *new_ui(game_state *state)
2189 game_ui *ui = snew(game_ui);
2190 ui->drag_start_x = -1;
2191 ui->drag_start_y = -1;
2192 ui->drag_end_x = -1;
2193 ui->drag_end_y = -1;
2194 ui->dragged = ui->erasing = FALSE;
2195 ui->x1 = -1;
2196 ui->y1 = -1;
2197 ui->x2 = -1;
2198 ui->y2 = -1;
2199 ui->cur_x = ui->cur_y = ui->cur_visible = ui->cur_dragging = 0;
2200 return ui;
2203 static void free_ui(game_ui *ui)
2205 sfree(ui);
2208 static char *encode_ui(game_ui *ui)
2210 return NULL;
2213 static void decode_ui(game_ui *ui, char *encoding)
2217 static void coord_round(float x, float y, int *xr, int *yr)
2219 float xs, ys, xv, yv, dx, dy, dist;
2222 * Find the nearest square-centre.
2224 xs = (float)floor(x) + 0.5F;
2225 ys = (float)floor(y) + 0.5F;
2228 * And find the nearest grid vertex.
2230 xv = (float)floor(x + 0.5F);
2231 yv = (float)floor(y + 0.5F);
2234 * We allocate clicks in parts of the grid square to either
2235 * corners, edges or square centres, as follows:
2237 * +--+--------+--+
2238 * | | | |
2239 * +--+ +--+
2240 * | `. ,' |
2241 * | +--+ |
2242 * | | | |
2243 * | +--+ |
2244 * | ,' `. |
2245 * +--+ +--+
2246 * | | | |
2247 * +--+--------+--+
2249 * (Not to scale!)
2251 * In other words: we measure the square distance (i.e.
2252 * max(dx,dy)) from the click to the nearest corner, and if
2253 * it's within CORNER_TOLERANCE then we return a corner click.
2254 * We measure the square distance from the click to the nearest
2255 * centre, and if that's within CENTRE_TOLERANCE we return a
2256 * centre click. Failing that, we find which of the two edge
2257 * centres is nearer to the click and return that edge.
2261 * Check for corner click.
2263 dx = (float)fabs(x - xv);
2264 dy = (float)fabs(y - yv);
2265 dist = (dx > dy ? dx : dy);
2266 if (dist < CORNER_TOLERANCE) {
2267 *xr = 2 * (int)xv;
2268 *yr = 2 * (int)yv;
2269 } else {
2271 * Check for centre click.
2273 dx = (float)fabs(x - xs);
2274 dy = (float)fabs(y - ys);
2275 dist = (dx > dy ? dx : dy);
2276 if (dist < CENTRE_TOLERANCE) {
2277 *xr = 1 + 2 * (int)xs;
2278 *yr = 1 + 2 * (int)ys;
2279 } else {
2281 * Failing both of those, see which edge we're closer to.
2282 * Conveniently, this is simply done by testing the relative
2283 * magnitude of dx and dy (which are currently distances from
2284 * the square centre).
2286 if (dx > dy) {
2287 /* Vertical edge: x-coord of corner,
2288 * y-coord of square centre. */
2289 *xr = 2 * (int)xv;
2290 *yr = 1 + 2 * (int)floor(ys);
2291 } else {
2292 /* Horizontal edge: x-coord of square centre,
2293 * y-coord of corner. */
2294 *xr = 1 + 2 * (int)floor(xs);
2295 *yr = 2 * (int)yv;
2302 * Returns TRUE if it has made any change to the grid.
2304 static int grid_draw_rect(game_state *state,
2305 unsigned char *hedge, unsigned char *vedge,
2306 int c, int really, int outline,
2307 int x1, int y1, int x2, int y2)
2309 int x, y;
2310 int changed = FALSE;
2313 * Draw horizontal edges of rectangles.
2315 for (x = x1; x < x2; x++)
2316 for (y = y1; y <= y2; y++)
2317 if (HRANGE(state,x,y)) {
2318 int val = index(state,hedge,x,y);
2319 if (y == y1 || y == y2) {
2320 if (!outline) continue;
2321 val = c;
2322 } else if (c == 1)
2323 val = 0;
2324 changed = changed || (index(state,hedge,x,y) != val);
2325 if (really)
2326 index(state,hedge,x,y) = val;
2330 * Draw vertical edges of rectangles.
2332 for (y = y1; y < y2; y++)
2333 for (x = x1; x <= x2; x++)
2334 if (VRANGE(state,x,y)) {
2335 int val = index(state,vedge,x,y);
2336 if (x == x1 || x == x2) {
2337 if (!outline) continue;
2338 val = c;
2339 } else if (c == 1)
2340 val = 0;
2341 changed = changed || (index(state,vedge,x,y) != val);
2342 if (really)
2343 index(state,vedge,x,y) = val;
2346 return changed;
2349 static int ui_draw_rect(game_state *state, game_ui *ui,
2350 unsigned char *hedge, unsigned char *vedge, int c,
2351 int really, int outline)
2353 return grid_draw_rect(state, hedge, vedge, c, really, outline,
2354 ui->x1, ui->y1, ui->x2, ui->y2);
2357 static void game_changed_state(game_ui *ui, game_state *oldstate,
2358 game_state *newstate)
2362 struct game_drawstate {
2363 int started;
2364 int w, h, tilesize;
2365 unsigned long *visible;
2368 static char *interpret_move(game_state *from, game_ui *ui, game_drawstate *ds,
2369 int x, int y, int button)
2371 int xc, yc;
2372 int startdrag = FALSE, enddrag = FALSE, active = FALSE, erasing = FALSE;
2373 char buf[80], *ret;
2375 button &= ~MOD_MASK;
2377 coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
2379 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2380 startdrag = TRUE;
2381 ui->cur_visible = ui->cur_dragging = FALSE;
2382 active = TRUE;
2383 erasing = (button == RIGHT_BUTTON);
2384 } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
2385 /* We assert we should have had a LEFT_BUTTON first. */
2386 assert(!ui->cur_visible);
2387 assert(!ui->cur_dragging);
2388 enddrag = TRUE;
2389 erasing = (button == RIGHT_RELEASE);
2390 } else if (IS_CURSOR_MOVE(button)) {
2391 move_cursor(button, &ui->cur_x, &ui->cur_y, from->w, from->h, 0);
2392 ui->cur_visible = TRUE;
2393 active = TRUE;
2394 if (!ui->cur_dragging) return "";
2395 coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc);
2396 } else if (IS_CURSOR_SELECT(button)) {
2397 if (!ui->cur_visible) {
2398 assert(!ui->cur_dragging);
2399 ui->cur_visible = TRUE;
2400 return "";
2402 coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc);
2403 erasing = (button == CURSOR_SELECT2);
2404 if (ui->cur_dragging) {
2405 ui->cur_dragging = FALSE;
2406 enddrag = TRUE;
2407 active = TRUE;
2408 } else {
2409 ui->cur_dragging = TRUE;
2410 startdrag = TRUE;
2411 active = TRUE;
2413 } else if (button != LEFT_DRAG && button != RIGHT_DRAG) {
2414 return NULL;
2417 if (startdrag &&
2418 xc >= 0 && xc <= 2*from->w &&
2419 yc >= 0 && yc <= 2*from->h) {
2421 ui->drag_start_x = xc;
2422 ui->drag_start_y = yc;
2423 ui->drag_end_x = -1;
2424 ui->drag_end_y = -1;
2425 ui->dragged = FALSE;
2426 ui->erasing = erasing;
2427 active = TRUE;
2430 if (ui->drag_start_x >= 0 &&
2431 (xc != ui->drag_end_x || yc != ui->drag_end_y)) {
2432 int t;
2434 if (ui->drag_end_x != -1 && ui->drag_end_y != -1)
2435 ui->dragged = TRUE;
2436 ui->drag_end_x = xc;
2437 ui->drag_end_y = yc;
2438 active = TRUE;
2440 if (xc >= 0 && xc <= 2*from->w &&
2441 yc >= 0 && yc <= 2*from->h) {
2442 ui->x1 = ui->drag_start_x;
2443 ui->x2 = ui->drag_end_x;
2444 if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
2446 ui->y1 = ui->drag_start_y;
2447 ui->y2 = ui->drag_end_y;
2448 if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
2450 ui->x1 = ui->x1 / 2; /* rounds down */
2451 ui->x2 = (ui->x2+1) / 2; /* rounds up */
2452 ui->y1 = ui->y1 / 2; /* rounds down */
2453 ui->y2 = (ui->y2+1) / 2; /* rounds up */
2454 } else {
2455 ui->x1 = -1;
2456 ui->y1 = -1;
2457 ui->x2 = -1;
2458 ui->y2 = -1;
2462 ret = NULL;
2464 if (enddrag && (ui->drag_start_x >= 0)) {
2465 if (xc >= 0 && xc <= 2*from->w &&
2466 yc >= 0 && yc <= 2*from->h &&
2467 erasing == ui->erasing) {
2469 if (ui->dragged) {
2470 if (ui_draw_rect(from, ui, from->hedge,
2471 from->vedge, 1, FALSE, !ui->erasing)) {
2472 sprintf(buf, "%c%d,%d,%d,%d",
2473 (int)(ui->erasing ? 'E' : 'R'),
2474 ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1);
2475 ret = dupstr(buf);
2477 } else {
2478 if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
2479 sprintf(buf, "H%d,%d", xc/2, yc/2);
2480 ret = dupstr(buf);
2482 if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
2483 sprintf(buf, "V%d,%d", xc/2, yc/2);
2484 ret = dupstr(buf);
2489 ui->drag_start_x = -1;
2490 ui->drag_start_y = -1;
2491 ui->drag_end_x = -1;
2492 ui->drag_end_y = -1;
2493 ui->x1 = -1;
2494 ui->y1 = -1;
2495 ui->x2 = -1;
2496 ui->y2 = -1;
2497 ui->dragged = FALSE;
2498 active = TRUE;
2501 if (ret)
2502 return ret; /* a move has been made */
2503 else if (active)
2504 return ""; /* UI activity has occurred */
2505 else
2506 return NULL;
2509 static game_state *execute_move(game_state *from, char *move)
2511 game_state *ret;
2512 int x1, y1, x2, y2, mode;
2514 if (move[0] == 'S') {
2515 char *p = move+1;
2516 int x, y;
2518 ret = dup_game(from);
2519 ret->cheated = TRUE;
2521 for (y = 0; y < ret->h; y++)
2522 for (x = 1; x < ret->w; x++) {
2523 vedge(ret, x, y) = (*p == '1');
2524 if (*p) p++;
2526 for (y = 1; y < ret->h; y++)
2527 for (x = 0; x < ret->w; x++) {
2528 hedge(ret, x, y) = (*p == '1');
2529 if (*p) p++;
2532 sfree(ret->correct);
2533 ret->correct = get_correct(ret);
2535 return ret;
2537 } else if ((move[0] == 'R' || move[0] == 'E') &&
2538 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
2539 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
2540 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
2541 x2 += x1;
2542 y2 += y1;
2543 mode = move[0];
2544 } else if ((move[0] == 'H' || move[0] == 'V') &&
2545 sscanf(move+1, "%d,%d", &x1, &y1) == 2 &&
2546 (move[0] == 'H' ? HRANGE(from, x1, y1) :
2547 VRANGE(from, x1, y1))) {
2548 mode = move[0];
2549 } else
2550 return NULL; /* can't parse move string */
2552 ret = dup_game(from);
2554 if (mode == 'R' || mode == 'E') {
2555 grid_draw_rect(ret, ret->hedge, ret->vedge, 1, TRUE,
2556 mode == 'R', x1, y1, x2, y2);
2557 } else if (mode == 'H') {
2558 hedge(ret,x1,y1) = !hedge(ret,x1,y1);
2559 } else if (mode == 'V') {
2560 vedge(ret,x1,y1) = !vedge(ret,x1,y1);
2563 sfree(ret->correct);
2564 ret->correct = get_correct(ret);
2567 * We've made a real change to the grid. Check to see
2568 * if the game has been completed.
2570 if (!ret->completed) {
2571 int x, y, ok;
2573 ok = TRUE;
2574 for (x = 0; x < ret->w; x++)
2575 for (y = 0; y < ret->h; y++)
2576 if (!index(ret, ret->correct, x, y))
2577 ok = FALSE;
2579 if (ok)
2580 ret->completed = TRUE;
2583 return ret;
2586 /* ----------------------------------------------------------------------
2587 * Drawing routines.
2590 #define CORRECT (1L<<16)
2591 #define CURSOR (1L<<17)
2593 #define COLOUR(k) ( (k)==1 ? COL_LINE : (k)==2 ? COL_DRAG : COL_DRAGERASE )
2594 #define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
2596 static void game_compute_size(game_params *params, int tilesize,
2597 int *x, int *y)
2599 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2600 struct { int tilesize; } ads, *ds = &ads;
2601 ads.tilesize = tilesize;
2603 *x = params->w * TILE_SIZE + 2*BORDER + 1;
2604 *y = params->h * TILE_SIZE + 2*BORDER + 1;
2607 static void game_set_size(drawing *dr, game_drawstate *ds,
2608 game_params *params, int tilesize)
2610 ds->tilesize = tilesize;
2613 static float *game_colours(frontend *fe, int *ncolours)
2615 float *ret = snewn(3 * NCOLOURS, float);
2617 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2619 ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2620 ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2621 ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2623 ret[COL_DRAG * 3 + 0] = 1.0F;
2624 ret[COL_DRAG * 3 + 1] = 0.0F;
2625 ret[COL_DRAG * 3 + 2] = 0.0F;
2627 ret[COL_DRAGERASE * 3 + 0] = 0.2F;
2628 ret[COL_DRAGERASE * 3 + 1] = 0.2F;
2629 ret[COL_DRAGERASE * 3 + 2] = 1.0F;
2631 ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2632 ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2633 ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2635 ret[COL_LINE * 3 + 0] = 0.0F;
2636 ret[COL_LINE * 3 + 1] = 0.0F;
2637 ret[COL_LINE * 3 + 2] = 0.0F;
2639 ret[COL_TEXT * 3 + 0] = 0.0F;
2640 ret[COL_TEXT * 3 + 1] = 0.0F;
2641 ret[COL_TEXT * 3 + 2] = 0.0F;
2643 ret[COL_CURSOR * 3 + 0] = 1.0F;
2644 ret[COL_CURSOR * 3 + 1] = 0.5F;
2645 ret[COL_CURSOR * 3 + 2] = 0.5F;
2647 *ncolours = NCOLOURS;
2648 return ret;
2651 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2653 struct game_drawstate *ds = snew(struct game_drawstate);
2654 int i;
2656 ds->started = FALSE;
2657 ds->w = state->w;
2658 ds->h = state->h;
2659 ds->visible = snewn(ds->w * ds->h, unsigned long);
2660 ds->tilesize = 0; /* not decided yet */
2661 for (i = 0; i < ds->w * ds->h; i++)
2662 ds->visible[i] = 0xFFFF;
2664 return ds;
2667 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2669 sfree(ds->visible);
2670 sfree(ds);
2673 static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
2674 int x, int y, unsigned char *hedge, unsigned char *vedge,
2675 unsigned char *corners, unsigned long bgflags)
2677 int cx = COORD(x), cy = COORD(y);
2678 char str[80];
2680 draw_rect(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
2681 draw_rect(dr, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
2682 (bgflags & CURSOR) ? COL_CURSOR :
2683 (bgflags & CORRECT) ? COL_CORRECT : COL_BACKGROUND);
2685 if (grid(state,x,y)) {
2686 sprintf(str, "%d", grid(state,x,y));
2687 draw_text(dr, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
2688 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
2692 * Draw edges.
2694 if (!HRANGE(state,x,y) || index(state,hedge,x,y))
2695 draw_rect(dr, cx, cy, TILE_SIZE+1, 2,
2696 HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
2697 COL_LINE);
2698 if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
2699 draw_rect(dr, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
2700 HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
2701 COL_LINE);
2702 if (!VRANGE(state,x,y) || index(state,vedge,x,y))
2703 draw_rect(dr, cx, cy, 2, TILE_SIZE+1,
2704 VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
2705 COL_LINE);
2706 if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
2707 draw_rect(dr, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
2708 VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
2709 COL_LINE);
2712 * Draw corners.
2714 if (index(state,corners,x,y))
2715 draw_rect(dr, cx, cy, 2, 2,
2716 COLOUR(index(state,corners,x,y)));
2717 if (x+1 < state->w && index(state,corners,x+1,y))
2718 draw_rect(dr, cx+TILE_SIZE-1, cy, 2, 2,
2719 COLOUR(index(state,corners,x+1,y)));
2720 if (y+1 < state->h && index(state,corners,x,y+1))
2721 draw_rect(dr, cx, cy+TILE_SIZE-1, 2, 2,
2722 COLOUR(index(state,corners,x,y+1)));
2723 if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
2724 draw_rect(dr, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
2725 COLOUR(index(state,corners,x+1,y+1)));
2727 draw_update(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
2730 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2731 game_state *state, int dir, game_ui *ui,
2732 float animtime, float flashtime)
2734 int x, y;
2735 unsigned char *hedge, *vedge, *corners;
2737 if (ui->dragged) {
2738 hedge = snewn(state->w*state->h, unsigned char);
2739 vedge = snewn(state->w*state->h, unsigned char);
2740 memcpy(hedge, state->hedge, state->w*state->h);
2741 memcpy(vedge, state->vedge, state->w*state->h);
2742 ui_draw_rect(state, ui, hedge, vedge, ui->erasing ? 3 : 2, TRUE, TRUE);
2743 } else {
2744 hedge = state->hedge;
2745 vedge = state->vedge;
2748 corners = snewn(state->w * state->h, unsigned char);
2749 memset(corners, 0, state->w * state->h);
2750 for (x = 0; x < state->w; x++)
2751 for (y = 0; y < state->h; y++) {
2752 if (x > 0) {
2753 int e = index(state, vedge, x, y);
2754 if (index(state,corners,x,y) < e)
2755 index(state,corners,x,y) = e;
2756 if (y+1 < state->h &&
2757 index(state,corners,x,y+1) < e)
2758 index(state,corners,x,y+1) = e;
2760 if (y > 0) {
2761 int e = index(state, hedge, x, y);
2762 if (index(state,corners,x,y) < e)
2763 index(state,corners,x,y) = e;
2764 if (x+1 < state->w &&
2765 index(state,corners,x+1,y) < e)
2766 index(state,corners,x+1,y) = e;
2770 if (!ds->started) {
2771 draw_rect(dr, 0, 0,
2772 state->w * TILE_SIZE + 2*BORDER + 1,
2773 state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
2774 draw_rect(dr, COORD(0)-1, COORD(0)-1,
2775 ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
2776 ds->started = TRUE;
2777 draw_update(dr, 0, 0,
2778 state->w * TILE_SIZE + 2*BORDER + 1,
2779 state->h * TILE_SIZE + 2*BORDER + 1);
2782 for (x = 0; x < state->w; x++)
2783 for (y = 0; y < state->h; y++) {
2784 unsigned long c = 0;
2786 if (HRANGE(state,x,y))
2787 c |= index(state,hedge,x,y);
2788 if (HRANGE(state,x,y+1))
2789 c |= index(state,hedge,x,y+1) << 2;
2790 if (VRANGE(state,x,y))
2791 c |= index(state,vedge,x,y) << 4;
2792 if (VRANGE(state,x+1,y))
2793 c |= index(state,vedge,x+1,y) << 6;
2794 c |= index(state,corners,x,y) << 8;
2795 if (x+1 < state->w)
2796 c |= index(state,corners,x+1,y) << 10;
2797 if (y+1 < state->h)
2798 c |= index(state,corners,x,y+1) << 12;
2799 if (x+1 < state->w && y+1 < state->h)
2800 /* cast to prevent 2<<14 sign-extending on promotion to long */
2801 c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
2802 if (index(state, state->correct, x, y) && !flashtime)
2803 c |= CORRECT;
2804 if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
2805 c |= CURSOR;
2807 if (index(ds,ds->visible,x,y) != c) {
2808 draw_tile(dr, ds, state, x, y, hedge, vedge, corners,
2809 (c & (CORRECT|CURSOR)) );
2810 index(ds,ds->visible,x,y) = c;
2815 char buf[256];
2817 if (ui->dragged &&
2818 ui->x1 >= 0 && ui->y1 >= 0 &&
2819 ui->x2 >= 0 && ui->y2 >= 0) {
2820 sprintf(buf, "%dx%d ",
2821 ui->x2-ui->x1,
2822 ui->y2-ui->y1);
2823 } else {
2824 buf[0] = '\0';
2827 if (state->cheated)
2828 strcat(buf, "Auto-solved.");
2829 else if (state->completed)
2830 strcat(buf, "COMPLETED!");
2832 status_bar(dr, buf);
2835 if (hedge != state->hedge) {
2836 sfree(hedge);
2837 sfree(vedge);
2840 sfree(corners);
2843 static float game_anim_length(game_state *oldstate,
2844 game_state *newstate, int dir, game_ui *ui)
2846 return 0.0F;
2849 static float game_flash_length(game_state *oldstate,
2850 game_state *newstate, int dir, game_ui *ui)
2852 if (!oldstate->completed && newstate->completed &&
2853 !oldstate->cheated && !newstate->cheated)
2854 return FLASH_TIME;
2855 return 0.0F;
2858 static int game_timing_state(game_state *state, game_ui *ui)
2860 return TRUE;
2863 static void game_print_size(game_params *params, float *x, float *y)
2865 int pw, ph;
2868 * I'll use 5mm squares by default.
2870 game_compute_size(params, 500, &pw, &ph);
2871 *x = pw / 100.0F;
2872 *y = ph / 100.0F;
2875 static void game_print(drawing *dr, game_state *state, int tilesize)
2877 int w = state->w, h = state->h;
2878 int ink = print_mono_colour(dr, 0);
2879 int x, y;
2881 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2882 game_drawstate ads, *ds = &ads;
2883 game_set_size(dr, ds, NULL, tilesize);
2886 * Border.
2888 print_line_width(dr, TILE_SIZE / 10);
2889 draw_rect_outline(dr, COORD(0), COORD(0), w*TILE_SIZE, h*TILE_SIZE, ink);
2892 * Grid. We have to make the grid lines particularly thin,
2893 * because users will be drawing lines _along_ them and we want
2894 * those lines to be visible.
2896 print_line_width(dr, TILE_SIZE / 256);
2897 for (x = 1; x < w; x++)
2898 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
2899 for (y = 1; y < h; y++)
2900 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
2903 * Solution.
2905 print_line_width(dr, TILE_SIZE / 10);
2906 for (y = 0; y <= h; y++)
2907 for (x = 0; x <= w; x++) {
2908 if (HRANGE(state,x,y) && hedge(state,x,y))
2909 draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y), ink);
2910 if (VRANGE(state,x,y) && vedge(state,x,y))
2911 draw_line(dr, COORD(x), COORD(y), COORD(x), COORD(y+1), ink);
2915 * Clues.
2917 for (y = 0; y < h; y++)
2918 for (x = 0; x < w; x++)
2919 if (grid(state,x,y)) {
2920 char str[80];
2921 sprintf(str, "%d", grid(state,x,y));
2922 draw_text(dr, COORD(x)+TILE_SIZE/2, COORD(y)+TILE_SIZE/2,
2923 FONT_VARIABLE, TILE_SIZE/2,
2924 ALIGN_HCENTRE | ALIGN_VCENTRE, ink, str);
2928 #ifdef COMBINED
2929 #define thegame rect
2930 #endif
2932 const struct game thegame = {
2933 "Rectangles", "games.rectangles", "rectangles",
2934 default_params,
2935 game_fetch_preset,
2936 decode_params,
2937 encode_params,
2938 free_params,
2939 dup_params,
2940 TRUE, game_configure, custom_params,
2941 validate_params,
2942 new_game_desc,
2943 validate_desc,
2944 new_game,
2945 dup_game,
2946 free_game,
2947 TRUE, solve_game,
2948 TRUE, game_can_format_as_text_now, game_text_format,
2949 new_ui,
2950 free_ui,
2951 encode_ui,
2952 decode_ui,
2953 game_changed_state,
2954 interpret_move,
2955 execute_move,
2956 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2957 game_colours,
2958 game_new_drawstate,
2959 game_free_drawstate,
2960 game_redraw,
2961 game_anim_length,
2962 game_flash_length,
2963 TRUE, FALSE, game_print_size, game_print,
2964 TRUE, /* wants_statusbar */
2965 FALSE, game_timing_state,
2966 0, /* flags */
2969 /* vim: set shiftwidth=4 tabstop=8: */