2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
6 * - reports from users are that `Trivial'-mode puzzles are still
7 * rather hard compared to newspapers' easy ones, so some better
8 * low-end difficulty grading would be nice
9 * + it's possible that really easy puzzles always have
10 * _several_ things you can do, so don't make you hunt too
11 * hard for the one deduction you can currently make
12 * + it's also possible that easy puzzles require fewer
13 * cross-eliminations: perhaps there's a higher incidence of
14 * things you can deduce by looking only at (say) rows,
15 * rather than things you have to check both rows and columns
17 * + but really, what I need to do is find some really easy
18 * puzzles and _play_ them, to see what's actually easy about
20 * + while I'm revamping this area, filling in the _last_
21 * number in a nearly-full row or column should certainly be
22 * permitted even at the lowest difficulty level.
23 * + also Owen noticed that `Basic' grids requiring numeric
24 * elimination are actually very hard, so I wonder if a
25 * difficulty gradation between that and positional-
26 * elimination-only might be in order
27 * + but it's not good to have _too_ many difficulty levels, or
28 * it'll take too long to randomly generate a given level.
30 * - it might still be nice to do some prioritisation on the
31 * removal of numbers from the grid
32 * + one possibility is to try to minimise the maximum number
33 * of filled squares in any block, which in particular ought
34 * to enforce never leaving a completely filled block in the
35 * puzzle as presented.
37 * - alternative interface modes
38 * + sudoku.com's Windows program has a palette of possible
39 * entries; you select a palette entry first and then click
40 * on the square you want it to go in, thus enabling
41 * mouse-only play. Useful for PDAs! I don't think it's
42 * actually incompatible with the current highlight-then-type
43 * approach: you _either_ highlight a palette entry and then
44 * click, _or_ you highlight a square and then type. At most
45 * one thing is ever highlighted at a time, so there's no way
47 * + then again, I don't actually like sudoku.com's interface;
48 * it's too much like a paint package whereas I prefer to
49 * think of Solo as a text editor.
50 * + another PDA-friendly possibility is a drag interface:
51 * _drag_ numbers from the palette into the grid squares.
52 * Thought experiments suggest I'd prefer that to the
53 * sudoku.com approach, but I haven't actually tried it.
57 * Solo puzzles need to be square overall (since each row and each
58 * column must contain one of every digit), but they need not be
59 * subdivided the same way internally. I am going to adopt a
60 * convention whereby I _always_ refer to `r' as the number of rows
61 * of _big_ divisions, and `c' as the number of columns of _big_
62 * divisions. Thus, a 2c by 3r puzzle looks something like this:
66 * ------+------ (Of course, you can't subdivide it the other way
67 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
68 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
69 * ------+------ box down on the left-hand side.)
73 * The need for a strong naming convention should now be clear:
74 * each small box is two rows of digits by three columns, while the
75 * overall puzzle has three rows of small boxes by two columns. So
76 * I will (hopefully) consistently use `r' to denote the number of
77 * rows _of small boxes_ (here 3), which is also the number of
78 * columns of digits in each small box; and `c' vice versa (here
81 * I'm also going to choose arbitrarily to list c first wherever
82 * possible: the above is a 2x3 puzzle, not a 3x2 one.
92 #ifdef STANDALONE_SOLVER
94 int solver_show_working
, solver_recurse_depth
;
100 * To save space, I store digits internally as unsigned char. This
101 * imposes a hard limit of 255 on the order of the puzzle. Since
102 * even a 5x5 takes unacceptably long to generate, I don't see this
103 * as a serious limitation unless something _really_ impressive
104 * happens in computing technology; but here's a typedef anyway for
105 * general good practice.
107 typedef unsigned char digit
;
108 #define ORDER_MAX 255
110 #define PREFERRED_TILE_SIZE 48
111 #define TILE_SIZE (ds->tilesize)
112 #define BORDER (TILE_SIZE / 2)
113 #define GRIDEXTRA max((TILE_SIZE / 32),1)
115 #define FLASH_TIME 0.4F
117 enum { SYMM_NONE
, SYMM_ROT2
, SYMM_ROT4
, SYMM_REF2
, SYMM_REF2D
, SYMM_REF4
,
118 SYMM_REF4D
, SYMM_REF8
};
121 DIFF_SIMPLE
, DIFF_INTERSECT
, DIFF_SET
, DIFF_EXTREME
, DIFF_RECURSIVE
,
122 DIFF_AMBIGUOUS
, DIFF_IMPOSSIBLE
};
124 enum { DIFF_KSINGLE
, DIFF_KMINMAX
, DIFF_KSUMS
, DIFF_KINTERSECT
};
140 * To determine all possible ways to reach a given sum by adding two or
141 * three numbers from 1..9, each of which occurs exactly once in the sum,
142 * these arrays contain a list of bitmasks for each sum value, where if
143 * bit N is set, it means that N occurs in the sum. Each list is
144 * terminated by a zero if it is shorter than the size of the array.
149 unsigned long sum_bits2
[18][MAX_2SUMS
];
150 unsigned long sum_bits3
[25][MAX_3SUMS
];
151 unsigned long sum_bits4
[31][MAX_4SUMS
];
153 static int find_sum_bits(unsigned long *array
, int idx
, int value_left
,
154 int addends_left
, int min_addend
,
155 unsigned long bitmask_so_far
)
158 assert(addends_left
>= 2);
160 for (i
= min_addend
; i
< value_left
; i
++) {
161 unsigned long new_bitmask
= bitmask_so_far
| (1L << i
);
162 assert(bitmask_so_far
!= new_bitmask
);
164 if (addends_left
== 2) {
165 int j
= value_left
- i
;
170 array
[idx
++] = new_bitmask
| (1L << j
);
172 idx
= find_sum_bits(array
, idx
, value_left
- i
,
173 addends_left
- 1, i
+ 1,
179 static void precompute_sum_bits(void)
182 for (i
= 3; i
< 31; i
++) {
185 j
= find_sum_bits(sum_bits2
[i
], 0, i
, 2, 1, 0);
186 assert (j
<= MAX_2SUMS
);
191 j
= find_sum_bits(sum_bits3
[i
], 0, i
, 3, 1, 0);
192 assert (j
<= MAX_3SUMS
);
196 j
= find_sum_bits(sum_bits4
[i
], 0, i
, 4, 1, 0);
197 assert (j
<= MAX_4SUMS
);
205 * For a square puzzle, `c' and `r' indicate the puzzle
206 * parameters as described above.
208 * A jigsaw-style puzzle is indicated by r==1, in which case c
209 * can be whatever it likes (there is no constraint on
210 * compositeness - a 7x7 jigsaw sudoku makes perfect sense).
212 int c
, r
, symm
, diff
, kdiff
;
213 int xtype
; /* require all digits in X-diagonals */
217 struct block_structure
{
221 * For text formatting, we do need c and r here.
226 * For any square index, whichblock[i] gives its block index.
228 * For 0 <= b,i < cr, blocks[b][i] gives the index of the ith
229 * square in block b. nr_squares[b] gives the number of squares
230 * in block b (also the number of valid elements in blocks[b]).
232 * blocks_data holds the data pointed to by blocks.
234 * nr_squares may be NULL for block structures where all blocks are
237 int *whichblock
, **blocks
, *nr_squares
, *blocks_data
;
238 int nr_blocks
, max_nr_squares
;
240 #ifdef STANDALONE_SOLVER
242 * Textual descriptions of each block. For normal Sudoku these
243 * are of the form "(1,3)"; for jigsaw they are "starting at
244 * (5,7)". So the sensible usage in both cases is to say
245 * "elimination within block %s" with one of these strings.
247 * Only blocknames itself needs individually freeing; it's all
256 * For historical reasons, I use `cr' to denote the overall
257 * width/height of the puzzle. It was a natural notation when
258 * all puzzles were divided into blocks in a grid, but doesn't
259 * really make much sense given jigsaw puzzles. However, the
260 * obvious `n' is heavily used in the solver to describe the
261 * index of a number being placed, so `cr' will have to stay.
264 struct block_structure
*blocks
;
265 struct block_structure
*kblocks
; /* Blocks for killer puzzles. */
268 unsigned char *pencil
; /* c*r*c*r elements */
269 unsigned char *immutable
; /* marks which digits are clues */
270 int completed
, cheated
;
273 static game_params
*default_params(void)
275 game_params
*ret
= snew(game_params
);
280 ret
->symm
= SYMM_ROT2
; /* a plausible default */
281 ret
->diff
= DIFF_BLOCK
; /* so is this */
282 ret
->kdiff
= DIFF_KINTERSECT
; /* so is this */
287 static void free_params(game_params
*params
)
292 static game_params
*dup_params(game_params
*params
)
294 game_params
*ret
= snew(game_params
);
295 *ret
= *params
; /* structure copy */
299 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
305 { "2x2 Trivial", { 2, 2, SYMM_ROT2
, DIFF_BLOCK
, DIFF_KMINMAX
, FALSE
, FALSE
} },
306 { "2x3 Basic", { 2, 3, SYMM_ROT2
, DIFF_SIMPLE
, DIFF_KMINMAX
, FALSE
, FALSE
} },
307 { "3x3 Trivial", { 3, 3, SYMM_ROT2
, DIFF_BLOCK
, DIFF_KMINMAX
, FALSE
, FALSE
} },
308 { "3x3 Basic", { 3, 3, SYMM_ROT2
, DIFF_SIMPLE
, DIFF_KMINMAX
, FALSE
, FALSE
} },
309 { "3x3 Basic X", { 3, 3, SYMM_ROT2
, DIFF_SIMPLE
, DIFF_KMINMAX
, TRUE
} },
310 { "3x3 Intermediate", { 3, 3, SYMM_ROT2
, DIFF_INTERSECT
, DIFF_KMINMAX
, FALSE
, FALSE
} },
311 { "3x3 Advanced", { 3, 3, SYMM_ROT2
, DIFF_SET
, DIFF_KMINMAX
, FALSE
, FALSE
} },
312 { "3x3 Advanced X", { 3, 3, SYMM_ROT2
, DIFF_SET
, DIFF_KMINMAX
, TRUE
} },
313 { "3x3 Extreme", { 3, 3, SYMM_ROT2
, DIFF_EXTREME
, DIFF_KMINMAX
, FALSE
, FALSE
} },
314 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2
, DIFF_RECURSIVE
, DIFF_KMINMAX
, FALSE
, FALSE
} },
315 { "3x3 Killer", { 3, 3, SYMM_NONE
, DIFF_BLOCK
, DIFF_KINTERSECT
, FALSE
, TRUE
} },
316 { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2
, DIFF_SIMPLE
, DIFF_KMINMAX
, FALSE
, FALSE
} },
317 { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2
, DIFF_SIMPLE
, DIFF_KMINMAX
, TRUE
} },
318 { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2
, DIFF_SET
, DIFF_KMINMAX
, FALSE
, FALSE
} },
320 { "3x4 Basic", { 3, 4, SYMM_ROT2
, DIFF_SIMPLE
, DIFF_KMINMAX
, FALSE
, FALSE
} },
321 { "4x4 Basic", { 4, 4, SYMM_ROT2
, DIFF_SIMPLE
, DIFF_KMINMAX
, FALSE
, FALSE
} },
325 if (i
< 0 || i
>= lenof(presets
))
328 *name
= dupstr(presets
[i
].title
);
329 *params
= dup_params(&presets
[i
].params
);
334 static void decode_params(game_params
*ret
, char const *string
)
338 ret
->c
= ret
->r
= atoi(string
);
341 while (*string
&& isdigit((unsigned char)*string
)) string
++;
342 if (*string
== 'x') {
344 ret
->r
= atoi(string
);
346 while (*string
&& isdigit((unsigned char)*string
)) string
++;
349 if (*string
== 'j') {
354 } else if (*string
== 'x') {
357 } else if (*string
== 'k') {
360 } else if (*string
== 'r' || *string
== 'm' || *string
== 'a') {
363 if (sc
== 'm' && *string
== 'd') {
370 while (*string
&& isdigit((unsigned char)*string
)) string
++;
371 if (sc
== 'm' && sn
== 8)
372 ret
->symm
= SYMM_REF8
;
373 if (sc
== 'm' && sn
== 4)
374 ret
->symm
= sd
? SYMM_REF4D
: SYMM_REF4
;
375 if (sc
== 'm' && sn
== 2)
376 ret
->symm
= sd
? SYMM_REF2D
: SYMM_REF2
;
377 if (sc
== 'r' && sn
== 4)
378 ret
->symm
= SYMM_ROT4
;
379 if (sc
== 'r' && sn
== 2)
380 ret
->symm
= SYMM_ROT2
;
382 ret
->symm
= SYMM_NONE
;
383 } else if (*string
== 'd') {
385 if (*string
== 't') /* trivial */
386 string
++, ret
->diff
= DIFF_BLOCK
;
387 else if (*string
== 'b') /* basic */
388 string
++, ret
->diff
= DIFF_SIMPLE
;
389 else if (*string
== 'i') /* intermediate */
390 string
++, ret
->diff
= DIFF_INTERSECT
;
391 else if (*string
== 'a') /* advanced */
392 string
++, ret
->diff
= DIFF_SET
;
393 else if (*string
== 'e') /* extreme */
394 string
++, ret
->diff
= DIFF_EXTREME
;
395 else if (*string
== 'u') /* unreasonable */
396 string
++, ret
->diff
= DIFF_RECURSIVE
;
398 string
++; /* eat unknown character */
402 static char *encode_params(game_params
*params
, int full
)
407 sprintf(str
, "%dx%d", params
->c
, params
->r
);
409 sprintf(str
, "%dj", params
->c
);
416 switch (params
->symm
) {
417 case SYMM_REF8
: strcat(str
, "m8"); break;
418 case SYMM_REF4
: strcat(str
, "m4"); break;
419 case SYMM_REF4D
: strcat(str
, "md4"); break;
420 case SYMM_REF2
: strcat(str
, "m2"); break;
421 case SYMM_REF2D
: strcat(str
, "md2"); break;
422 case SYMM_ROT4
: strcat(str
, "r4"); break;
423 /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
424 case SYMM_NONE
: strcat(str
, "a"); break;
426 switch (params
->diff
) {
427 /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
428 case DIFF_SIMPLE
: strcat(str
, "db"); break;
429 case DIFF_INTERSECT
: strcat(str
, "di"); break;
430 case DIFF_SET
: strcat(str
, "da"); break;
431 case DIFF_EXTREME
: strcat(str
, "de"); break;
432 case DIFF_RECURSIVE
: strcat(str
, "du"); break;
438 static config_item
*game_configure(game_params
*params
)
443 ret
= snewn(8, config_item
);
445 ret
[0].name
= "Columns of sub-blocks";
446 ret
[0].type
= C_STRING
;
447 sprintf(buf
, "%d", params
->c
);
448 ret
[0].sval
= dupstr(buf
);
451 ret
[1].name
= "Rows of sub-blocks";
452 ret
[1].type
= C_STRING
;
453 sprintf(buf
, "%d", params
->r
);
454 ret
[1].sval
= dupstr(buf
);
457 ret
[2].name
= "\"X\" (require every number in each main diagonal)";
458 ret
[2].type
= C_BOOLEAN
;
460 ret
[2].ival
= params
->xtype
;
462 ret
[3].name
= "Jigsaw (irregularly shaped sub-blocks)";
463 ret
[3].type
= C_BOOLEAN
;
465 ret
[3].ival
= (params
->r
== 1);
467 ret
[4].name
= "Killer (digit sums)";
468 ret
[4].type
= C_BOOLEAN
;
470 ret
[4].ival
= params
->killer
;
472 ret
[5].name
= "Symmetry";
473 ret
[5].type
= C_CHOICES
;
474 ret
[5].sval
= ":None:2-way rotation:4-way rotation:2-way mirror:"
475 "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
477 ret
[5].ival
= params
->symm
;
479 ret
[6].name
= "Difficulty";
480 ret
[6].type
= C_CHOICES
;
481 ret
[6].sval
= ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable";
482 ret
[6].ival
= params
->diff
;
492 static game_params
*custom_params(config_item
*cfg
)
494 game_params
*ret
= snew(game_params
);
496 ret
->c
= atoi(cfg
[0].sval
);
497 ret
->r
= atoi(cfg
[1].sval
);
498 ret
->xtype
= cfg
[2].ival
;
503 ret
->killer
= cfg
[4].ival
;
504 ret
->symm
= cfg
[5].ival
;
505 ret
->diff
= cfg
[6].ival
;
506 ret
->kdiff
= DIFF_KINTERSECT
;
511 static char *validate_params(game_params
*params
, int full
)
514 return "Both dimensions must be at least 2";
515 if (params
->c
> ORDER_MAX
|| params
->r
> ORDER_MAX
)
516 return "Dimensions greater than "STR(ORDER_MAX
)" are not supported";
517 if ((params
->c
* params
->r
) > 31)
518 return "Unable to support more than 31 distinct symbols in a puzzle";
519 if (params
->killer
&& params
->c
* params
->r
> 9)
520 return "Killer puzzle dimensions must be smaller than 10.";
525 * ----------------------------------------------------------------------
526 * Block structure functions.
529 static struct block_structure
*alloc_block_structure(int c
, int r
, int area
,
534 struct block_structure
*b
= snew(struct block_structure
);
537 b
->nr_blocks
= nr_blocks
;
538 b
->max_nr_squares
= max_nr_squares
;
539 b
->c
= c
; b
->r
= r
; b
->area
= area
;
540 b
->whichblock
= snewn(area
, int);
541 b
->blocks_data
= snewn(nr_blocks
* max_nr_squares
, int);
542 b
->blocks
= snewn(nr_blocks
, int *);
543 b
->nr_squares
= snewn(nr_blocks
, int);
545 for (i
= 0; i
< nr_blocks
; i
++)
546 b
->blocks
[i
] = b
->blocks_data
+ i
*max_nr_squares
;
548 #ifdef STANDALONE_SOLVER
549 b
->blocknames
= (char **)smalloc(c
*r
*(sizeof(char *)+80));
550 for (i
= 0; i
< c
* r
; i
++)
551 b
->blocknames
[i
] = NULL
;
556 static void free_block_structure(struct block_structure
*b
)
558 if (--b
->refcount
== 0) {
559 sfree(b
->whichblock
);
561 sfree(b
->blocks_data
);
562 #ifdef STANDALONE_SOLVER
563 sfree(b
->blocknames
);
565 sfree(b
->nr_squares
);
570 static struct block_structure
*dup_block_structure(struct block_structure
*b
)
572 struct block_structure
*nb
;
575 nb
= alloc_block_structure(b
->c
, b
->r
, b
->area
, b
->max_nr_squares
,
577 memcpy(nb
->nr_squares
, b
->nr_squares
, b
->nr_blocks
* sizeof *b
->nr_squares
);
578 memcpy(nb
->whichblock
, b
->whichblock
, b
->area
* sizeof *b
->whichblock
);
579 memcpy(nb
->blocks_data
, b
->blocks_data
,
580 b
->nr_blocks
* b
->max_nr_squares
* sizeof *b
->blocks_data
);
581 for (i
= 0; i
< b
->nr_blocks
; i
++)
582 nb
->blocks
[i
] = nb
->blocks_data
+ i
*nb
->max_nr_squares
;
584 #ifdef STANDALONE_SOLVER
585 memcpy(nb
->blocknames
, b
->blocknames
, b
->c
* b
->r
*(sizeof(char *)+80));
588 for (i
= 0; i
< b
->c
* b
->r
; i
++)
589 if (b
->blocknames
[i
] == NULL
)
590 nb
->blocknames
[i
] = NULL
;
592 nb
->blocknames
[i
] = ((char *)nb
->blocknames
) + (b
->blocknames
[i
] - (char *)b
->blocknames
);
598 static void split_block(struct block_structure
*b
, int *squares
, int nr_squares
)
601 int previous_block
= b
->whichblock
[squares
[0]];
602 int newblock
= b
->nr_blocks
;
604 assert(b
->max_nr_squares
>= nr_squares
);
605 assert(b
->nr_squares
[previous_block
] > nr_squares
);
608 b
->blocks_data
= sresize(b
->blocks_data
,
609 b
->nr_blocks
* b
->max_nr_squares
, int);
610 b
->nr_squares
= sresize(b
->nr_squares
, b
->nr_blocks
, int);
612 b
->blocks
= snewn(b
->nr_blocks
, int *);
613 for (i
= 0; i
< b
->nr_blocks
; i
++)
614 b
->blocks
[i
] = b
->blocks_data
+ i
*b
->max_nr_squares
;
615 for (i
= 0; i
< nr_squares
; i
++) {
616 assert(b
->whichblock
[squares
[i
]] == previous_block
);
617 b
->whichblock
[squares
[i
]] = newblock
;
618 b
->blocks
[newblock
][i
] = squares
[i
];
620 for (i
= j
= 0; i
< b
->nr_squares
[previous_block
]; i
++) {
622 int sq
= b
->blocks
[previous_block
][i
];
623 for (k
= 0; k
< nr_squares
; k
++)
624 if (squares
[k
] == sq
)
627 b
->blocks
[previous_block
][j
++] = sq
;
629 b
->nr_squares
[previous_block
] -= nr_squares
;
630 b
->nr_squares
[newblock
] = nr_squares
;
633 static void remove_from_block(struct block_structure
*blocks
, int b
, int n
)
636 blocks
->whichblock
[n
] = -1;
637 for (i
= j
= 0; i
< blocks
->nr_squares
[b
]; i
++)
638 if (blocks
->blocks
[b
][i
] != n
)
639 blocks
->blocks
[b
][j
++] = blocks
->blocks
[b
][i
];
641 blocks
->nr_squares
[b
]--;
644 /* ----------------------------------------------------------------------
647 * This solver is used for two purposes:
648 * + to check solubility of a grid as we gradually remove numbers
650 * + to solve an externally generated puzzle when the user selects
653 * It supports a variety of specific modes of reasoning. By
654 * enabling or disabling subsets of these modes we can arrange a
655 * range of difficulty levels.
659 * Modes of reasoning currently supported:
661 * - Positional elimination: a number must go in a particular
662 * square because all the other empty squares in a given
663 * row/col/blk are ruled out.
665 * - Killer minmax elimination: for killer-type puzzles, a number
666 * is impossible if choosing it would cause the sum in a killer
667 * region to be guaranteed to be too large or too small.
669 * - Numeric elimination: a square must have a particular number
670 * in because all the other numbers that could go in it are
673 * - Intersectional analysis: given two domains which overlap
674 * (hence one must be a block, and the other can be a row or
675 * col), if the possible locations for a particular number in
676 * one of the domains can be narrowed down to the overlap, then
677 * that number can be ruled out everywhere but the overlap in
678 * the other domain too.
680 * - Set elimination: if there is a subset of the empty squares
681 * within a domain such that the union of the possible numbers
682 * in that subset has the same size as the subset itself, then
683 * those numbers can be ruled out everywhere else in the domain.
684 * (For example, if there are five empty squares and the
685 * possible numbers in each are 12, 23, 13, 134 and 1345, then
686 * the first three empty squares form such a subset: the numbers
687 * 1, 2 and 3 _must_ be in those three squares in some
688 * permutation, and hence we can deduce none of them can be in
689 * the fourth or fifth squares.)
690 * + You can also see this the other way round, concentrating
691 * on numbers rather than squares: if there is a subset of
692 * the unplaced numbers within a domain such that the union
693 * of all their possible positions has the same size as the
694 * subset itself, then all other numbers can be ruled out for
695 * those positions. However, it turns out that this is
696 * exactly equivalent to the first formulation at all times:
697 * there is a 1-1 correspondence between suitable subsets of
698 * the unplaced numbers and suitable subsets of the unfilled
699 * places, found by taking the _complement_ of the union of
700 * the numbers' possible positions (or the spaces' possible
703 * - Forcing chains (see comment for solver_forcing().)
705 * - Recursion. If all else fails, we pick one of the currently
706 * most constrained empty squares and take a random guess at its
707 * contents, then continue solving on that basis and see if we
711 struct solver_usage
{
713 struct block_structure
*blocks
, *kblocks
, *extra_cages
;
715 * We set up a cubic array, indexed by x, y and digit; each
716 * element of this array is TRUE or FALSE according to whether
717 * or not that digit _could_ in principle go in that position.
719 * The way to index this array is cube[(y*cr+x)*cr+n-1]; there
720 * are macros below to help with this.
724 * This is the grid in which we write down our final
725 * deductions. y-coordinates in here are _not_ transformed.
729 * For killer-type puzzles, kclues holds the secondary clue for
730 * each cage. For derived cages, the clue is in extra_clues.
732 digit
*kclues
, *extra_clues
;
734 * Now we keep track, at a slightly higher level, of what we
735 * have yet to work out, to prevent doing the same deduction
738 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
740 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
742 /* blk[i*cr+n-1] TRUE if digit n has been placed in block i */
744 /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
745 unsigned char *diag
; /* diag 0 is \, 1 is / */
751 #define cubepos2(xy,n) ((xy)*usage->cr+(n)-1)
752 #define cubepos(x,y,n) cubepos2((y)*usage->cr+(x),n)
753 #define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
754 #define cube2(xy,n) (usage->cube[cubepos2(xy,n)])
756 #define ondiag0(xy) ((xy) % (cr+1) == 0)
757 #define ondiag1(xy) ((xy) % (cr-1) == 0 && (xy) > 0 && (xy) < cr*cr-1)
758 #define diag0(i) ((i) * (cr+1))
759 #define diag1(i) ((i+1) * (cr-1))
762 * Function called when we are certain that a particular square has
763 * a particular number in it. The y-coordinate passed in here is
766 static void solver_place(struct solver_usage
*usage
, int x
, int y
, int n
)
769 int sqindex
= y
*cr
+x
;
775 * Rule out all other numbers in this square.
777 for (i
= 1; i
<= cr
; i
++)
782 * Rule out this number in all other positions in the row.
784 for (i
= 0; i
< cr
; i
++)
789 * Rule out this number in all other positions in the column.
791 for (i
= 0; i
< cr
; i
++)
796 * Rule out this number in all other positions in the block.
798 bi
= usage
->blocks
->whichblock
[sqindex
];
799 for (i
= 0; i
< cr
; i
++) {
800 int bp
= usage
->blocks
->blocks
[bi
][i
];
806 * Enter the number in the result grid.
808 usage
->grid
[sqindex
] = n
;
811 * Cross out this number from the list of numbers left to place
812 * in its row, its column and its block.
814 usage
->row
[y
*cr
+n
-1] = usage
->col
[x
*cr
+n
-1] =
815 usage
->blk
[bi
*cr
+n
-1] = TRUE
;
818 if (ondiag0(sqindex
)) {
819 for (i
= 0; i
< cr
; i
++)
820 if (diag0(i
) != sqindex
)
821 cube2(diag0(i
),n
) = FALSE
;
822 usage
->diag
[n
-1] = TRUE
;
824 if (ondiag1(sqindex
)) {
825 for (i
= 0; i
< cr
; i
++)
826 if (diag1(i
) != sqindex
)
827 cube2(diag1(i
),n
) = FALSE
;
828 usage
->diag
[cr
+n
-1] = TRUE
;
833 static int solver_elim(struct solver_usage
*usage
, int *indices
834 #ifdef STANDALONE_SOLVER
843 * Count the number of set bits within this section of the
848 for (i
= 0; i
< cr
; i
++)
849 if (usage
->cube
[indices
[i
]]) {
863 if (!usage
->grid
[y
*cr
+x
]) {
864 #ifdef STANDALONE_SOLVER
865 if (solver_show_working
) {
867 printf("%*s", solver_recurse_depth
*4, "");
871 printf(":\n%*s placing %d at (%d,%d)\n",
872 solver_recurse_depth
*4, "", n
, 1+x
, 1+y
);
875 solver_place(usage
, x
, y
, n
);
879 #ifdef STANDALONE_SOLVER
880 if (solver_show_working
) {
882 printf("%*s", solver_recurse_depth
*4, "");
886 printf(":\n%*s no possibilities available\n",
887 solver_recurse_depth
*4, "");
896 static int solver_intersect(struct solver_usage
*usage
,
897 int *indices1
, int *indices2
898 #ifdef STANDALONE_SOLVER
907 * Loop over the first domain and see if there's any set bit
908 * not also in the second.
910 for (i
= j
= 0; i
< cr
; i
++) {
912 while (j
< cr
&& indices2
[j
] < p
)
914 if (usage
->cube
[p
]) {
915 if (j
< cr
&& indices2
[j
] == p
)
916 continue; /* both domains contain this index */
918 return 0; /* there is, so we can't deduce */
923 * We have determined that all set bits in the first domain are
924 * within its overlap with the second. So loop over the second
925 * domain and remove all set bits that aren't also in that
926 * overlap; return +1 iff we actually _did_ anything.
929 for (i
= j
= 0; i
< cr
; i
++) {
931 while (j
< cr
&& indices1
[j
] < p
)
933 if (usage
->cube
[p
] && (j
>= cr
|| indices1
[j
] != p
)) {
934 #ifdef STANDALONE_SOLVER
935 if (solver_show_working
) {
940 printf("%*s", solver_recurse_depth
*4, "");
952 printf("%*s ruling out %d at (%d,%d)\n",
953 solver_recurse_depth
*4, "", pn
, 1+px
, 1+py
);
956 ret
= +1; /* we did something */
964 struct solver_scratch
{
965 unsigned char *grid
, *rowidx
, *colidx
, *set
;
966 int *neighbours
, *bfsqueue
;
967 int *indexlist
, *indexlist2
;
968 #ifdef STANDALONE_SOLVER
973 static int solver_set(struct solver_usage
*usage
,
974 struct solver_scratch
*scratch
,
976 #ifdef STANDALONE_SOLVER
983 unsigned char *grid
= scratch
->grid
;
984 unsigned char *rowidx
= scratch
->rowidx
;
985 unsigned char *colidx
= scratch
->colidx
;
986 unsigned char *set
= scratch
->set
;
989 * We are passed a cr-by-cr matrix of booleans. Our first job
990 * is to winnow it by finding any definite placements - i.e.
991 * any row with a solitary 1 - and discarding that row and the
992 * column containing the 1.
994 memset(rowidx
, TRUE
, cr
);
995 memset(colidx
, TRUE
, cr
);
996 for (i
= 0; i
< cr
; i
++) {
997 int count
= 0, first
= -1;
998 for (j
= 0; j
< cr
; j
++)
999 if (usage
->cube
[indices
[i
*cr
+j
]])
1003 * If count == 0, then there's a row with no 1s at all and
1004 * the puzzle is internally inconsistent. However, we ought
1005 * to have caught this already during the simpler reasoning
1006 * methods, so we can safely fail an assertion if we reach
1011 rowidx
[i
] = colidx
[first
] = FALSE
;
1015 * Convert each of rowidx/colidx from a list of 0s and 1s to a
1016 * list of the indices of the 1s.
1018 for (i
= j
= 0; i
< cr
; i
++)
1022 for (i
= j
= 0; i
< cr
; i
++)
1028 * And create the smaller matrix.
1030 for (i
= 0; i
< n
; i
++)
1031 for (j
= 0; j
< n
; j
++)
1032 grid
[i
*cr
+j
] = usage
->cube
[indices
[rowidx
[i
]*cr
+colidx
[j
]]];
1035 * Having done that, we now have a matrix in which every row
1036 * has at least two 1s in. Now we search to see if we can find
1037 * a rectangle of zeroes (in the set-theoretic sense of
1038 * `rectangle', i.e. a subset of rows crossed with a subset of
1039 * columns) whose width and height add up to n.
1046 * We have a candidate set. If its size is <=1 or >=n-1
1047 * then we move on immediately.
1049 if (count
> 1 && count
< n
-1) {
1051 * The number of rows we need is n-count. See if we can
1052 * find that many rows which each have a zero in all
1053 * the positions listed in `set'.
1056 for (i
= 0; i
< n
; i
++) {
1058 for (j
= 0; j
< n
; j
++)
1059 if (set
[j
] && grid
[i
*cr
+j
]) {
1068 * We expect never to be able to get _more_ than
1069 * n-count suitable rows: this would imply that (for
1070 * example) there are four numbers which between them
1071 * have at most three possible positions, and hence it
1072 * indicates a faulty deduction before this point or
1073 * even a bogus clue.
1075 if (rows
> n
- count
) {
1076 #ifdef STANDALONE_SOLVER
1077 if (solver_show_working
) {
1079 printf("%*s", solver_recurse_depth
*4,
1084 printf(":\n%*s contradiction reached\n",
1085 solver_recurse_depth
*4, "");
1091 if (rows
>= n
- count
) {
1092 int progress
= FALSE
;
1095 * We've got one! Now, for each row which _doesn't_
1096 * satisfy the criterion, eliminate all its set
1097 * bits in the positions _not_ listed in `set'.
1098 * Return +1 (meaning progress has been made) if we
1099 * successfully eliminated anything at all.
1101 * This involves referring back through
1102 * rowidx/colidx in order to work out which actual
1103 * positions in the cube to meddle with.
1105 for (i
= 0; i
< n
; i
++) {
1107 for (j
= 0; j
< n
; j
++)
1108 if (set
[j
] && grid
[i
*cr
+j
]) {
1113 for (j
= 0; j
< n
; j
++)
1114 if (!set
[j
] && grid
[i
*cr
+j
]) {
1115 int fpos
= indices
[rowidx
[i
]*cr
+colidx
[j
]];
1116 #ifdef STANDALONE_SOLVER
1117 if (solver_show_working
) {
1122 printf("%*s", solver_recurse_depth
*4,
1135 printf("%*s ruling out %d at (%d,%d)\n",
1136 solver_recurse_depth
*4, "",
1141 usage
->cube
[fpos
] = FALSE
;
1153 * Binary increment: change the rightmost 0 to a 1, and
1154 * change all 1s to the right of it to 0s.
1157 while (i
> 0 && set
[i
-1])
1158 set
[--i
] = 0, count
--;
1160 set
[--i
] = 1, count
++;
1169 * Look for forcing chains. A forcing chain is a path of
1170 * pairwise-exclusive squares (i.e. each pair of adjacent squares
1171 * in the path are in the same row, column or block) with the
1172 * following properties:
1174 * (a) Each square on the path has precisely two possible numbers.
1176 * (b) Each pair of squares which are adjacent on the path share
1177 * at least one possible number in common.
1179 * (c) Each square in the middle of the path shares _both_ of its
1180 * numbers with at least one of its neighbours (not the same
1181 * one with both neighbours).
1183 * These together imply that at least one of the possible number
1184 * choices at one end of the path forces _all_ the rest of the
1185 * numbers along the path. In order to make real use of this, we
1186 * need further properties:
1188 * (c) Ruling out some number N from the square at one end of the
1189 * path forces the square at the other end to take the same
1192 * (d) The two end squares are both in line with some third
1195 * (e) That third square currently has N as a possibility.
1197 * If we can find all of that lot, we can deduce that at least one
1198 * of the two ends of the forcing chain has number N, and that
1199 * therefore the mutually adjacent third square does not.
1201 * To find forcing chains, we're going to start a bfs at each
1202 * suitable square, once for each of its two possible numbers.
1204 static int solver_forcing(struct solver_usage
*usage
,
1205 struct solver_scratch
*scratch
)
1208 int *bfsqueue
= scratch
->bfsqueue
;
1209 #ifdef STANDALONE_SOLVER
1210 int *bfsprev
= scratch
->bfsprev
;
1212 unsigned char *number
= scratch
->grid
;
1213 int *neighbours
= scratch
->neighbours
;
1216 for (y
= 0; y
< cr
; y
++)
1217 for (x
= 0; x
< cr
; x
++) {
1221 * If this square doesn't have exactly two candidate
1222 * numbers, don't try it.
1224 * In this loop we also sum the candidate numbers,
1225 * which is a nasty hack to allow us to quickly find
1226 * `the other one' (since we will shortly know there
1229 for (count
= t
= 0, n
= 1; n
<= cr
; n
++)
1236 * Now attempt a bfs for each candidate.
1238 for (n
= 1; n
<= cr
; n
++)
1239 if (cube(x
, y
, n
)) {
1240 int orign
, currn
, head
, tail
;
1247 memset(number
, cr
+1, cr
*cr
);
1249 bfsqueue
[tail
++] = y
*cr
+x
;
1250 #ifdef STANDALONE_SOLVER
1251 bfsprev
[y
*cr
+x
] = -1;
1253 number
[y
*cr
+x
] = t
- n
;
1255 while (head
< tail
) {
1256 int xx
, yy
, nneighbours
, xt
, yt
, i
;
1258 xx
= bfsqueue
[head
++];
1262 currn
= number
[yy
*cr
+xx
];
1265 * Find neighbours of yy,xx.
1268 for (yt
= 0; yt
< cr
; yt
++)
1269 neighbours
[nneighbours
++] = yt
*cr
+xx
;
1270 for (xt
= 0; xt
< cr
; xt
++)
1271 neighbours
[nneighbours
++] = yy
*cr
+xt
;
1272 xt
= usage
->blocks
->whichblock
[yy
*cr
+xx
];
1273 for (yt
= 0; yt
< cr
; yt
++)
1274 neighbours
[nneighbours
++] = usage
->blocks
->blocks
[xt
][yt
];
1276 int sqindex
= yy
*cr
+xx
;
1277 if (ondiag0(sqindex
)) {
1278 for (i
= 0; i
< cr
; i
++)
1279 neighbours
[nneighbours
++] = diag0(i
);
1281 if (ondiag1(sqindex
)) {
1282 for (i
= 0; i
< cr
; i
++)
1283 neighbours
[nneighbours
++] = diag1(i
);
1288 * Try visiting each of those neighbours.
1290 for (i
= 0; i
< nneighbours
; i
++) {
1293 xt
= neighbours
[i
] % cr
;
1294 yt
= neighbours
[i
] / cr
;
1297 * We need this square to not be
1298 * already visited, and to include
1299 * currn as a possible number.
1301 if (number
[yt
*cr
+xt
] <= cr
)
1303 if (!cube(xt
, yt
, currn
))
1307 * Don't visit _this_ square a second
1310 if (xt
== xx
&& yt
== yy
)
1314 * To continue with the bfs, we need
1315 * this square to have exactly two
1318 for (cc
= tt
= 0, nn
= 1; nn
<= cr
; nn
++)
1319 if (cube(xt
, yt
, nn
))
1322 bfsqueue
[tail
++] = yt
*cr
+xt
;
1323 #ifdef STANDALONE_SOLVER
1324 bfsprev
[yt
*cr
+xt
] = yy
*cr
+xx
;
1326 number
[yt
*cr
+xt
] = tt
- currn
;
1330 * One other possibility is that this
1331 * might be the square in which we can
1332 * make a real deduction: if it's
1333 * adjacent to x,y, and currn is equal
1334 * to the original number we ruled out.
1336 if (currn
== orign
&&
1337 (xt
== x
|| yt
== y
||
1338 (usage
->blocks
->whichblock
[yt
*cr
+xt
] == usage
->blocks
->whichblock
[y
*cr
+x
]) ||
1339 (usage
->diag
&& ((ondiag0(yt
*cr
+xt
) && ondiag0(y
*cr
+x
)) ||
1340 (ondiag1(yt
*cr
+xt
) && ondiag1(y
*cr
+x
)))))) {
1341 #ifdef STANDALONE_SOLVER
1342 if (solver_show_working
) {
1345 printf("%*sforcing chain, %d at ends of ",
1346 solver_recurse_depth
*4, "", orign
);
1350 printf("%s(%d,%d)", sep
, 1+xl
,
1352 xl
= bfsprev
[yl
*cr
+xl
];
1359 printf("\n%*s ruling out %d at (%d,%d)\n",
1360 solver_recurse_depth
*4, "",
1364 cube(xt
, yt
, orign
) = FALSE
;
1375 static int solver_killer_minmax(struct solver_usage
*usage
,
1376 struct block_structure
*cages
, digit
*clues
,
1378 #ifdef STANDALONE_SOLVER
1386 int nsquares
= cages
->nr_squares
[b
];
1391 for (i
= 0; i
< nsquares
; i
++) {
1392 int n
, x
= cages
->blocks
[b
][i
];
1394 for (n
= 1; n
<= cr
; n
++)
1396 int maxval
= 0, minval
= 0;
1398 for (j
= 0; j
< nsquares
; j
++) {
1400 int y
= cages
->blocks
[b
][j
];
1403 for (m
= 1; m
<= cr
; m
++)
1408 for (m
= cr
; m
> 0; m
--)
1414 if (maxval
+ n
< clues
[b
]) {
1415 cube2(x
, n
) = FALSE
;
1417 #ifdef STANDALONE_SOLVER
1418 if (solver_show_working
)
1419 printf("%*s ruling out %d at (%d,%d) as too low %s\n",
1420 solver_recurse_depth
*4, "killer minmax analysis",
1421 n
, 1 + x
%cr
, 1 + x
/cr
, extra
);
1424 if (minval
+ n
> clues
[b
]) {
1425 cube2(x
, n
) = FALSE
;
1427 #ifdef STANDALONE_SOLVER
1428 if (solver_show_working
)
1429 printf("%*s ruling out %d at (%d,%d) as too high %s\n",
1430 solver_recurse_depth
*4, "killer minmax analysis",
1431 n
, 1 + x
%cr
, 1 + x
/cr
, extra
);
1439 static int solver_killer_sums(struct solver_usage
*usage
, int b
,
1440 struct block_structure
*cages
, int clue
,
1442 #ifdef STANDALONE_SOLVER
1443 , const char *cage_type
1448 int i
, ret
, max_sums
;
1449 int nsquares
= cages
->nr_squares
[b
];
1450 unsigned long *sumbits
, possible_addends
;
1453 assert(nsquares
== 0);
1456 assert(nsquares
> 0);
1461 if (!cage_is_region
) {
1462 int known_row
= -1, known_col
= -1, known_block
= -1;
1464 * Verify that the cage lies entirely within one region,
1465 * so that using the precomputed sums is valid.
1467 for (i
= 0; i
< nsquares
; i
++) {
1468 int x
= cages
->blocks
[b
][i
];
1470 assert(usage
->grid
[x
] == 0);
1475 known_block
= usage
->blocks
->whichblock
[x
];
1477 if (known_row
!= x
/cr
)
1479 if (known_col
!= x
%cr
)
1481 if (known_block
!= usage
->blocks
->whichblock
[x
])
1485 if (known_block
== -1 && known_col
== -1 && known_row
== -1)
1488 if (nsquares
== 2) {
1489 if (clue
< 3 || clue
> 17)
1492 sumbits
= sum_bits2
[clue
];
1493 max_sums
= MAX_2SUMS
;
1494 } else if (nsquares
== 3) {
1495 if (clue
< 6 || clue
> 24)
1498 sumbits
= sum_bits3
[clue
];
1499 max_sums
= MAX_3SUMS
;
1501 if (clue
< 10 || clue
> 30)
1504 sumbits
= sum_bits4
[clue
];
1505 max_sums
= MAX_4SUMS
;
1508 * For every possible way to get the sum, see if there is
1509 * one square in the cage that disallows all the required
1510 * addends. If we find one such square, this way to compute
1511 * the sum is impossible.
1513 possible_addends
= 0;
1514 for (i
= 0; i
< max_sums
; i
++) {
1516 unsigned long bits
= sumbits
[i
];
1521 for (j
= 0; j
< nsquares
; j
++) {
1523 unsigned long square_bits
= bits
;
1524 int x
= cages
->blocks
[b
][j
];
1525 for (n
= 1; n
<= cr
; n
++)
1527 square_bits
&= ~(1L << n
);
1528 if (square_bits
== 0) {
1533 possible_addends
|= bits
;
1536 * Now we know which addends can possibly be used to
1537 * compute the sum. Remove all other digits from the
1538 * set of possibilities.
1540 if (possible_addends
== 0)
1544 for (i
= 0; i
< nsquares
; i
++) {
1546 int x
= cages
->blocks
[b
][i
];
1547 for (n
= 1; n
<= cr
; n
++) {
1550 if ((possible_addends
& (1 << n
)) == 0) {
1551 cube2(x
, n
) = FALSE
;
1553 #ifdef STANDALONE_SOLVER
1554 if (solver_show_working
) {
1555 printf("%*s using %s\n",
1556 solver_recurse_depth
*4, "killer sums analysis",
1558 printf("%*s ruling out %d at (%d,%d) due to impossible %d-sum\n",
1559 solver_recurse_depth
*4, "",
1560 n
, 1 + x
%cr
, 1 + x
/cr
, nsquares
);
1569 static int filter_whole_cages(struct solver_usage
*usage
, int *squares
, int n
,
1575 /* First, filter squares with a clue. */
1576 for (i
= j
= 0; i
< n
; i
++)
1577 if (usage
->grid
[squares
[i
]])
1578 *filtered_sum
+= usage
->grid
[squares
[i
]];
1580 squares
[j
++] = squares
[i
];
1584 * Filter all cages that are covered entirely by the list of
1588 for (b
= 0; b
< usage
->kblocks
->nr_blocks
&& off
< n
; b
++) {
1589 int b_squares
= usage
->kblocks
->nr_squares
[b
];
1596 * Find all squares of block b that lie in our list,
1597 * and make them contiguous at off, which is the current position
1598 * in the output list.
1600 for (i
= 0; i
< b_squares
; i
++) {
1601 for (j
= off
; j
< n
; j
++)
1602 if (squares
[j
] == usage
->kblocks
->blocks
[b
][i
]) {
1603 int t
= squares
[off
+ matched
];
1604 squares
[off
+ matched
] = squares
[j
];
1610 /* If so, filter out all squares of b from the list. */
1611 if (matched
!= usage
->kblocks
->nr_squares
[b
]) {
1615 memmove(squares
+ off
, squares
+ off
+ matched
,
1616 (n
- off
- matched
) * sizeof *squares
);
1619 *filtered_sum
+= usage
->kclues
[b
];
1625 static struct solver_scratch
*solver_new_scratch(struct solver_usage
*usage
)
1627 struct solver_scratch
*scratch
= snew(struct solver_scratch
);
1629 scratch
->grid
= snewn(cr
*cr
, unsigned char);
1630 scratch
->rowidx
= snewn(cr
, unsigned char);
1631 scratch
->colidx
= snewn(cr
, unsigned char);
1632 scratch
->set
= snewn(cr
, unsigned char);
1633 scratch
->neighbours
= snewn(5*cr
, int);
1634 scratch
->bfsqueue
= snewn(cr
*cr
, int);
1635 #ifdef STANDALONE_SOLVER
1636 scratch
->bfsprev
= snewn(cr
*cr
, int);
1638 scratch
->indexlist
= snewn(cr
*cr
, int); /* used for set elimination */
1639 scratch
->indexlist2
= snewn(cr
, int); /* only used for intersect() */
1643 static void solver_free_scratch(struct solver_scratch
*scratch
)
1645 #ifdef STANDALONE_SOLVER
1646 sfree(scratch
->bfsprev
);
1648 sfree(scratch
->bfsqueue
);
1649 sfree(scratch
->neighbours
);
1650 sfree(scratch
->set
);
1651 sfree(scratch
->colidx
);
1652 sfree(scratch
->rowidx
);
1653 sfree(scratch
->grid
);
1654 sfree(scratch
->indexlist
);
1655 sfree(scratch
->indexlist2
);
1660 * Used for passing information about difficulty levels between the solver
1664 /* Maximum levels allowed. */
1665 int maxdiff
, maxkdiff
;
1666 /* Levels reached by the solver. */
1670 static void solver(int cr
, struct block_structure
*blocks
,
1671 struct block_structure
*kblocks
, int xtype
,
1672 digit
*grid
, digit
*kgrid
, struct difficulty
*dlev
)
1674 struct solver_usage
*usage
;
1675 struct solver_scratch
*scratch
;
1676 int x
, y
, b
, i
, n
, ret
;
1677 int diff
= DIFF_BLOCK
;
1678 int kdiff
= DIFF_KSINGLE
;
1681 * Set up a usage structure as a clean slate (everything
1684 usage
= snew(struct solver_usage
);
1686 usage
->blocks
= blocks
;
1688 usage
->kblocks
= dup_block_structure(kblocks
);
1689 usage
->extra_cages
= alloc_block_structure (kblocks
->c
, kblocks
->r
,
1690 cr
* cr
, cr
, cr
* cr
);
1691 usage
->extra_clues
= snewn(cr
*cr
, digit
);
1693 usage
->kblocks
= usage
->extra_cages
= NULL
;
1694 usage
->extra_clues
= NULL
;
1696 usage
->cube
= snewn(cr
*cr
*cr
, unsigned char);
1697 usage
->grid
= grid
; /* write straight back to the input */
1702 nclues
= kblocks
->nr_blocks
;
1704 * Allow for expansion of the killer regions, the absolute
1705 * limit is obviously one region per square.
1707 usage
->kclues
= snewn(cr
*cr
, digit
);
1708 for (i
= 0; i
< nclues
; i
++) {
1709 for (n
= 0; n
< kblocks
->nr_squares
[i
]; n
++)
1710 if (kgrid
[kblocks
->blocks
[i
][n
]] != 0)
1711 usage
->kclues
[i
] = kgrid
[kblocks
->blocks
[i
][n
]];
1712 assert(usage
->kclues
[i
] > 0);
1714 memset(usage
->kclues
+ nclues
, 0, cr
*cr
- nclues
);
1716 usage
->kclues
= NULL
;
1719 memset(usage
->cube
, TRUE
, cr
*cr
*cr
);
1721 usage
->row
= snewn(cr
* cr
, unsigned char);
1722 usage
->col
= snewn(cr
* cr
, unsigned char);
1723 usage
->blk
= snewn(cr
* cr
, unsigned char);
1724 memset(usage
->row
, FALSE
, cr
* cr
);
1725 memset(usage
->col
, FALSE
, cr
* cr
);
1726 memset(usage
->blk
, FALSE
, cr
* cr
);
1729 usage
->diag
= snewn(cr
* 2, unsigned char);
1730 memset(usage
->diag
, FALSE
, cr
* 2);
1734 usage
->nr_regions
= cr
* 3 + (xtype
? 2 : 0);
1735 usage
->regions
= snewn(cr
* usage
->nr_regions
, int);
1736 usage
->sq2region
= snewn(cr
* cr
* 3, int *);
1738 for (n
= 0; n
< cr
; n
++) {
1739 for (i
= 0; i
< cr
; i
++) {
1742 b
= usage
->blocks
->blocks
[n
][i
];
1743 usage
->regions
[cr
*n
*3 + i
] = x
;
1744 usage
->regions
[cr
*n
*3 + cr
+ i
] = y
;
1745 usage
->regions
[cr
*n
*3 + 2*cr
+ i
] = b
;
1746 usage
->sq2region
[x
*3] = usage
->regions
+ cr
*n
*3;
1747 usage
->sq2region
[y
*3 + 1] = usage
->regions
+ cr
*n
*3 + cr
;
1748 usage
->sq2region
[b
*3 + 2] = usage
->regions
+ cr
*n
*3 + 2*cr
;
1752 scratch
= solver_new_scratch(usage
);
1755 * Place all the clue numbers we are given.
1757 for (x
= 0; x
< cr
; x
++)
1758 for (y
= 0; y
< cr
; y
++)
1760 solver_place(usage
, x
, y
, grid
[y
*cr
+x
]);
1763 * Now loop over the grid repeatedly trying all permitted modes
1764 * of reasoning. The loop terminates if we complete an
1765 * iteration without making any progress; we then return
1766 * failure or success depending on whether the grid is full or
1771 * I'd like to write `continue;' inside each of the
1772 * following loops, so that the solver returns here after
1773 * making some progress. However, I can't specify that I
1774 * want to continue an outer loop rather than the innermost
1775 * one, so I'm apologetically resorting to a goto.
1780 * Blockwise positional elimination.
1782 for (b
= 0; b
< cr
; b
++)
1783 for (n
= 1; n
<= cr
; n
++)
1784 if (!usage
->blk
[b
*cr
+n
-1]) {
1785 for (i
= 0; i
< cr
; i
++)
1786 scratch
->indexlist
[i
] = cubepos2(usage
->blocks
->blocks
[b
][i
],n
);
1787 ret
= solver_elim(usage
, scratch
->indexlist
1788 #ifdef STANDALONE_SOLVER
1789 , "positional elimination,"
1790 " %d in block %s", n
,
1791 usage
->blocks
->blocknames
[b
]
1795 diff
= DIFF_IMPOSSIBLE
;
1797 } else if (ret
> 0) {
1798 diff
= max(diff
, DIFF_BLOCK
);
1803 if (usage
->kclues
!= NULL
) {
1804 int changed
= FALSE
;
1807 * First, bring the kblocks into a more useful form: remove
1808 * all filled-in squares, and reduce the sum by their values.
1809 * Walk in reverse order, since otherwise remove_from_block
1810 * can move element past our loop counter.
1812 for (b
= 0; b
< usage
->kblocks
->nr_blocks
; b
++)
1813 for (i
= usage
->kblocks
->nr_squares
[b
] -1; i
>= 0; i
--) {
1814 int x
= usage
->kblocks
->blocks
[b
][i
];
1815 int t
= usage
->grid
[x
];
1819 remove_from_block(usage
->kblocks
, b
, x
);
1820 if (t
> usage
->kclues
[b
]) {
1821 diff
= DIFF_IMPOSSIBLE
;
1824 usage
->kclues
[b
] -= t
;
1826 * Since cages are regions, this tells us something
1827 * about the other squares in the cage.
1829 for (n
= 0; n
< usage
->kblocks
->nr_squares
[b
]; n
++) {
1830 cube2(usage
->kblocks
->blocks
[b
][n
], t
) = FALSE
;
1835 * The most trivial kind of solver for killer puzzles: fill
1836 * single-square cages.
1838 for (b
= 0; b
< usage
->kblocks
->nr_blocks
; b
++) {
1839 int squares
= usage
->kblocks
->nr_squares
[b
];
1841 int v
= usage
->kclues
[b
];
1842 if (v
< 1 || v
> cr
) {
1843 diff
= DIFF_IMPOSSIBLE
;
1846 x
= usage
->kblocks
->blocks
[b
][0] % cr
;
1847 y
= usage
->kblocks
->blocks
[b
][0] / cr
;
1848 if (!cube(x
, y
, v
)) {
1849 diff
= DIFF_IMPOSSIBLE
;
1852 solver_place(usage
, x
, y
, v
);
1854 #ifdef STANDALONE_SOLVER
1855 if (solver_show_working
) {
1856 printf("%*s placing %d at (%d,%d)\n",
1857 solver_recurse_depth
*4, "killer single-square cage",
1858 v
, 1 + x
%cr
, 1 + x
/cr
);
1866 kdiff
= max(kdiff
, DIFF_KSINGLE
);
1870 if (dlev
->maxkdiff
>= DIFF_KINTERSECT
&& usage
->kclues
!= NULL
) {
1871 int changed
= FALSE
;
1873 * Now, create the extra_cages information. Every full region
1874 * (row, column, or block) has the same sum total (45 for 3x3
1875 * puzzles. After we try to cover these regions with cages that
1876 * lie entirely within them, any squares that remain must bring
1877 * the total to this known value, and so they form additional
1878 * cages which aren't immediately evident in the displayed form
1881 usage
->extra_cages
->nr_blocks
= 0;
1882 for (i
= 0; i
< 3; i
++) {
1883 for (n
= 0; n
< cr
; n
++) {
1884 int *region
= usage
->regions
+ cr
*n
*3 + i
*cr
;
1885 int sum
= cr
* (cr
+ 1) / 2;
1888 int n_extra
= usage
->extra_cages
->nr_blocks
;
1889 int *extra_list
= usage
->extra_cages
->blocks
[n_extra
];
1890 memcpy(extra_list
, region
, cr
* sizeof *extra_list
);
1892 nsquares
= filter_whole_cages(usage
, extra_list
, nsquares
, &filtered
);
1894 if (nsquares
== cr
|| nsquares
== 0)
1896 if (dlev
->maxdiff
>= DIFF_RECURSIVE
) {
1898 dlev
->diff
= DIFF_IMPOSSIBLE
;
1904 if (nsquares
== 1) {
1906 diff
= DIFF_IMPOSSIBLE
;
1909 x
= extra_list
[0] % cr
;
1910 y
= extra_list
[0] / cr
;
1911 if (!cube(x
, y
, sum
)) {
1912 diff
= DIFF_IMPOSSIBLE
;
1915 solver_place(usage
, x
, y
, sum
);
1917 #ifdef STANDALONE_SOLVER
1918 if (solver_show_working
) {
1919 printf("%*s placing %d at (%d,%d)\n",
1920 solver_recurse_depth
*4, "killer single-square deduced cage",
1926 b
= usage
->kblocks
->whichblock
[extra_list
[0]];
1927 for (x
= 1; x
< nsquares
; x
++)
1928 if (usage
->kblocks
->whichblock
[extra_list
[x
]] != b
)
1930 if (x
== nsquares
) {
1931 assert(usage
->kblocks
->nr_squares
[b
] > nsquares
);
1932 split_block(usage
->kblocks
, extra_list
, nsquares
);
1933 assert(usage
->kblocks
->nr_squares
[usage
->kblocks
->nr_blocks
- 1] == nsquares
);
1934 usage
->kclues
[usage
->kblocks
->nr_blocks
- 1] = sum
;
1935 usage
->kclues
[b
] -= sum
;
1937 usage
->extra_cages
->nr_squares
[n_extra
] = nsquares
;
1938 usage
->extra_cages
->nr_blocks
++;
1939 usage
->extra_clues
[n_extra
] = sum
;
1944 kdiff
= max(kdiff
, DIFF_KINTERSECT
);
1950 * Another simple killer-type elimination. For every square in a
1951 * cage, find the minimum and maximum possible sums of all the
1952 * other squares in the same cage, and rule out possibilities
1953 * for the given square based on whether they are guaranteed to
1954 * cause the sum to be either too high or too low.
1955 * This is a special case of trying all possible sums across a
1956 * region, which is a recursive algorithm. We should probably
1957 * implement it for a higher difficulty level.
1959 if (dlev
->maxkdiff
>= DIFF_KMINMAX
&& usage
->kclues
!= NULL
) {
1960 int changed
= FALSE
;
1961 for (b
= 0; b
< usage
->kblocks
->nr_blocks
; b
++) {
1962 int ret
= solver_killer_minmax(usage
, usage
->kblocks
,
1964 #ifdef STANDALONE_SOLVER
1969 diff
= DIFF_IMPOSSIBLE
;
1974 for (b
= 0; b
< usage
->extra_cages
->nr_blocks
; b
++) {
1975 int ret
= solver_killer_minmax(usage
, usage
->extra_cages
,
1976 usage
->extra_clues
, b
1977 #ifdef STANDALONE_SOLVER
1978 , "using deduced cages"
1982 diff
= DIFF_IMPOSSIBLE
;
1988 kdiff
= max(kdiff
, DIFF_KMINMAX
);
1994 * Try to use knowledge of which numbers can be used to generate
1996 * This can only be used if a cage lies entirely within a region.
1998 if (dlev
->maxkdiff
>= DIFF_KSUMS
&& usage
->kclues
!= NULL
) {
1999 int changed
= FALSE
;
2001 for (b
= 0; b
< usage
->kblocks
->nr_blocks
; b
++) {
2002 int ret
= solver_killer_sums(usage
, b
, usage
->kblocks
,
2003 usage
->kclues
[b
], TRUE
2004 #ifdef STANDALONE_SOLVER
2010 kdiff
= max(kdiff
, DIFF_KSUMS
);
2011 } else if (ret
< 0) {
2012 diff
= DIFF_IMPOSSIBLE
;
2017 for (b
= 0; b
< usage
->extra_cages
->nr_blocks
; b
++) {
2018 int ret
= solver_killer_sums(usage
, b
, usage
->extra_cages
,
2019 usage
->extra_clues
[b
], FALSE
2020 #ifdef STANDALONE_SOLVER
2026 kdiff
= max(kdiff
, DIFF_KINTERSECT
);
2027 } else if (ret
< 0) {
2028 diff
= DIFF_IMPOSSIBLE
;
2037 if (dlev
->maxdiff
<= DIFF_BLOCK
)
2041 * Row-wise positional elimination.
2043 for (y
= 0; y
< cr
; y
++)
2044 for (n
= 1; n
<= cr
; n
++)
2045 if (!usage
->row
[y
*cr
+n
-1]) {
2046 for (x
= 0; x
< cr
; x
++)
2047 scratch
->indexlist
[x
] = cubepos(x
, y
, n
);
2048 ret
= solver_elim(usage
, scratch
->indexlist
2049 #ifdef STANDALONE_SOLVER
2050 , "positional elimination,"
2051 " %d in row %d", n
, 1+y
2055 diff
= DIFF_IMPOSSIBLE
;
2057 } else if (ret
> 0) {
2058 diff
= max(diff
, DIFF_SIMPLE
);
2063 * Column-wise positional elimination.
2065 for (x
= 0; x
< cr
; x
++)
2066 for (n
= 1; n
<= cr
; n
++)
2067 if (!usage
->col
[x
*cr
+n
-1]) {
2068 for (y
= 0; y
< cr
; y
++)
2069 scratch
->indexlist
[y
] = cubepos(x
, y
, n
);
2070 ret
= solver_elim(usage
, scratch
->indexlist
2071 #ifdef STANDALONE_SOLVER
2072 , "positional elimination,"
2073 " %d in column %d", n
, 1+x
2077 diff
= DIFF_IMPOSSIBLE
;
2079 } else if (ret
> 0) {
2080 diff
= max(diff
, DIFF_SIMPLE
);
2086 * X-diagonal positional elimination.
2089 for (n
= 1; n
<= cr
; n
++)
2090 if (!usage
->diag
[n
-1]) {
2091 for (i
= 0; i
< cr
; i
++)
2092 scratch
->indexlist
[i
] = cubepos2(diag0(i
), n
);
2093 ret
= solver_elim(usage
, scratch
->indexlist
2094 #ifdef STANDALONE_SOLVER
2095 , "positional elimination,"
2096 " %d in \\-diagonal", n
2100 diff
= DIFF_IMPOSSIBLE
;
2102 } else if (ret
> 0) {
2103 diff
= max(diff
, DIFF_SIMPLE
);
2107 for (n
= 1; n
<= cr
; n
++)
2108 if (!usage
->diag
[cr
+n
-1]) {
2109 for (i
= 0; i
< cr
; i
++)
2110 scratch
->indexlist
[i
] = cubepos2(diag1(i
), n
);
2111 ret
= solver_elim(usage
, scratch
->indexlist
2112 #ifdef STANDALONE_SOLVER
2113 , "positional elimination,"
2114 " %d in /-diagonal", n
2118 diff
= DIFF_IMPOSSIBLE
;
2120 } else if (ret
> 0) {
2121 diff
= max(diff
, DIFF_SIMPLE
);
2128 * Numeric elimination.
2130 for (x
= 0; x
< cr
; x
++)
2131 for (y
= 0; y
< cr
; y
++)
2132 if (!usage
->grid
[y
*cr
+x
]) {
2133 for (n
= 1; n
<= cr
; n
++)
2134 scratch
->indexlist
[n
-1] = cubepos(x
, y
, n
);
2135 ret
= solver_elim(usage
, scratch
->indexlist
2136 #ifdef STANDALONE_SOLVER
2137 , "numeric elimination at (%d,%d)",
2142 diff
= DIFF_IMPOSSIBLE
;
2144 } else if (ret
> 0) {
2145 diff
= max(diff
, DIFF_SIMPLE
);
2150 if (dlev
->maxdiff
<= DIFF_SIMPLE
)
2154 * Intersectional analysis, rows vs blocks.
2156 for (y
= 0; y
< cr
; y
++)
2157 for (b
= 0; b
< cr
; b
++)
2158 for (n
= 1; n
<= cr
; n
++) {
2159 if (usage
->row
[y
*cr
+n
-1] ||
2160 usage
->blk
[b
*cr
+n
-1])
2162 for (i
= 0; i
< cr
; i
++) {
2163 scratch
->indexlist
[i
] = cubepos(i
, y
, n
);
2164 scratch
->indexlist2
[i
] = cubepos2(usage
->blocks
->blocks
[b
][i
], n
);
2167 * solver_intersect() never returns -1.
2169 if (solver_intersect(usage
, scratch
->indexlist
,
2171 #ifdef STANDALONE_SOLVER
2172 , "intersectional analysis,"
2173 " %d in row %d vs block %s",
2174 n
, 1+y
, usage
->blocks
->blocknames
[b
]
2177 solver_intersect(usage
, scratch
->indexlist2
,
2179 #ifdef STANDALONE_SOLVER
2180 , "intersectional analysis,"
2181 " %d in block %s vs row %d",
2182 n
, usage
->blocks
->blocknames
[b
], 1+y
2185 diff
= max(diff
, DIFF_INTERSECT
);
2191 * Intersectional analysis, columns vs blocks.
2193 for (x
= 0; x
< cr
; x
++)
2194 for (b
= 0; b
< cr
; b
++)
2195 for (n
= 1; n
<= cr
; n
++) {
2196 if (usage
->col
[x
*cr
+n
-1] ||
2197 usage
->blk
[b
*cr
+n
-1])
2199 for (i
= 0; i
< cr
; i
++) {
2200 scratch
->indexlist
[i
] = cubepos(x
, i
, n
);
2201 scratch
->indexlist2
[i
] = cubepos2(usage
->blocks
->blocks
[b
][i
], n
);
2203 if (solver_intersect(usage
, scratch
->indexlist
,
2205 #ifdef STANDALONE_SOLVER
2206 , "intersectional analysis,"
2207 " %d in column %d vs block %s",
2208 n
, 1+x
, usage
->blocks
->blocknames
[b
]
2211 solver_intersect(usage
, scratch
->indexlist2
,
2213 #ifdef STANDALONE_SOLVER
2214 , "intersectional analysis,"
2215 " %d in block %s vs column %d",
2216 n
, usage
->blocks
->blocknames
[b
], 1+x
2219 diff
= max(diff
, DIFF_INTERSECT
);
2226 * Intersectional analysis, \-diagonal vs blocks.
2228 for (b
= 0; b
< cr
; b
++)
2229 for (n
= 1; n
<= cr
; n
++) {
2230 if (usage
->diag
[n
-1] ||
2231 usage
->blk
[b
*cr
+n
-1])
2233 for (i
= 0; i
< cr
; i
++) {
2234 scratch
->indexlist
[i
] = cubepos2(diag0(i
), n
);
2235 scratch
->indexlist2
[i
] = cubepos2(usage
->blocks
->blocks
[b
][i
], n
);
2237 if (solver_intersect(usage
, scratch
->indexlist
,
2239 #ifdef STANDALONE_SOLVER
2240 , "intersectional analysis,"
2241 " %d in \\-diagonal vs block %s",
2242 n
, 1+x
, usage
->blocks
->blocknames
[b
]
2245 solver_intersect(usage
, scratch
->indexlist2
,
2247 #ifdef STANDALONE_SOLVER
2248 , "intersectional analysis,"
2249 " %d in block %s vs \\-diagonal",
2250 n
, usage
->blocks
->blocknames
[b
], 1+x
2253 diff
= max(diff
, DIFF_INTERSECT
);
2259 * Intersectional analysis, /-diagonal vs blocks.
2261 for (b
= 0; b
< cr
; b
++)
2262 for (n
= 1; n
<= cr
; n
++) {
2263 if (usage
->diag
[cr
+n
-1] ||
2264 usage
->blk
[b
*cr
+n
-1])
2266 for (i
= 0; i
< cr
; i
++) {
2267 scratch
->indexlist
[i
] = cubepos2(diag1(i
), n
);
2268 scratch
->indexlist2
[i
] = cubepos2(usage
->blocks
->blocks
[b
][i
], n
);
2270 if (solver_intersect(usage
, scratch
->indexlist
,
2272 #ifdef STANDALONE_SOLVER
2273 , "intersectional analysis,"
2274 " %d in /-diagonal vs block %s",
2275 n
, 1+x
, usage
->blocks
->blocknames
[b
]
2278 solver_intersect(usage
, scratch
->indexlist2
,
2280 #ifdef STANDALONE_SOLVER
2281 , "intersectional analysis,"
2282 " %d in block %s vs /-diagonal",
2283 n
, usage
->blocks
->blocknames
[b
], 1+x
2286 diff
= max(diff
, DIFF_INTERSECT
);
2292 if (dlev
->maxdiff
<= DIFF_INTERSECT
)
2296 * Blockwise set elimination.
2298 for (b
= 0; b
< cr
; b
++) {
2299 for (i
= 0; i
< cr
; i
++)
2300 for (n
= 1; n
<= cr
; n
++)
2301 scratch
->indexlist
[i
*cr
+n
-1] = cubepos2(usage
->blocks
->blocks
[b
][i
], n
);
2302 ret
= solver_set(usage
, scratch
, scratch
->indexlist
2303 #ifdef STANDALONE_SOLVER
2304 , "set elimination, block %s",
2305 usage
->blocks
->blocknames
[b
]
2309 diff
= DIFF_IMPOSSIBLE
;
2311 } else if (ret
> 0) {
2312 diff
= max(diff
, DIFF_SET
);
2318 * Row-wise set elimination.
2320 for (y
= 0; y
< cr
; y
++) {
2321 for (x
= 0; x
< cr
; x
++)
2322 for (n
= 1; n
<= cr
; n
++)
2323 scratch
->indexlist
[x
*cr
+n
-1] = cubepos(x
, y
, n
);
2324 ret
= solver_set(usage
, scratch
, scratch
->indexlist
2325 #ifdef STANDALONE_SOLVER
2326 , "set elimination, row %d", 1+y
2330 diff
= DIFF_IMPOSSIBLE
;
2332 } else if (ret
> 0) {
2333 diff
= max(diff
, DIFF_SET
);
2339 * Column-wise set elimination.
2341 for (x
= 0; x
< cr
; x
++) {
2342 for (y
= 0; y
< cr
; y
++)
2343 for (n
= 1; n
<= cr
; n
++)
2344 scratch
->indexlist
[y
*cr
+n
-1] = cubepos(x
, y
, n
);
2345 ret
= solver_set(usage
, scratch
, scratch
->indexlist
2346 #ifdef STANDALONE_SOLVER
2347 , "set elimination, column %d", 1+x
2351 diff
= DIFF_IMPOSSIBLE
;
2353 } else if (ret
> 0) {
2354 diff
= max(diff
, DIFF_SET
);
2361 * \-diagonal set elimination.
2363 for (i
= 0; i
< cr
; i
++)
2364 for (n
= 1; n
<= cr
; n
++)
2365 scratch
->indexlist
[i
*cr
+n
-1] = cubepos2(diag0(i
), n
);
2366 ret
= solver_set(usage
, scratch
, scratch
->indexlist
2367 #ifdef STANDALONE_SOLVER
2368 , "set elimination, \\-diagonal"
2372 diff
= DIFF_IMPOSSIBLE
;
2374 } else if (ret
> 0) {
2375 diff
= max(diff
, DIFF_SET
);
2380 * /-diagonal set elimination.
2382 for (i
= 0; i
< cr
; i
++)
2383 for (n
= 1; n
<= cr
; n
++)
2384 scratch
->indexlist
[i
*cr
+n
-1] = cubepos2(diag1(i
), n
);
2385 ret
= solver_set(usage
, scratch
, scratch
->indexlist
2386 #ifdef STANDALONE_SOLVER
2387 , "set elimination, \\-diagonal"
2391 diff
= DIFF_IMPOSSIBLE
;
2393 } else if (ret
> 0) {
2394 diff
= max(diff
, DIFF_SET
);
2399 if (dlev
->maxdiff
<= DIFF_SET
)
2403 * Row-vs-column set elimination on a single number.
2405 for (n
= 1; n
<= cr
; n
++) {
2406 for (y
= 0; y
< cr
; y
++)
2407 for (x
= 0; x
< cr
; x
++)
2408 scratch
->indexlist
[y
*cr
+x
] = cubepos(x
, y
, n
);
2409 ret
= solver_set(usage
, scratch
, scratch
->indexlist
2410 #ifdef STANDALONE_SOLVER
2411 , "positional set elimination, number %d", n
2415 diff
= DIFF_IMPOSSIBLE
;
2417 } else if (ret
> 0) {
2418 diff
= max(diff
, DIFF_EXTREME
);
2426 if (solver_forcing(usage
, scratch
)) {
2427 diff
= max(diff
, DIFF_EXTREME
);
2432 * If we reach here, we have made no deductions in this
2433 * iteration, so the algorithm terminates.
2439 * Last chance: if we haven't fully solved the puzzle yet, try
2440 * recursing based on guesses for a particular square. We pick
2441 * one of the most constrained empty squares we can find, which
2442 * has the effect of pruning the search tree as much as
2445 if (dlev
->maxdiff
>= DIFF_RECURSIVE
) {
2446 int best
, bestcount
;
2451 for (y
= 0; y
< cr
; y
++)
2452 for (x
= 0; x
< cr
; x
++)
2453 if (!grid
[y
*cr
+x
]) {
2457 * An unfilled square. Count the number of
2458 * possible digits in it.
2461 for (n
= 1; n
<= cr
; n
++)
2466 * We should have found any impossibilities
2467 * already, so this can safely be an assert.
2471 if (count
< bestcount
) {
2479 digit
*list
, *ingrid
, *outgrid
;
2481 diff
= DIFF_IMPOSSIBLE
; /* no solution found yet */
2484 * Attempt recursion.
2489 list
= snewn(cr
, digit
);
2490 ingrid
= snewn(cr
* cr
, digit
);
2491 outgrid
= snewn(cr
* cr
, digit
);
2492 memcpy(ingrid
, grid
, cr
* cr
);
2494 /* Make a list of the possible digits. */
2495 for (j
= 0, n
= 1; n
<= cr
; n
++)
2499 #ifdef STANDALONE_SOLVER
2500 if (solver_show_working
) {
2502 printf("%*srecursing on (%d,%d) [",
2503 solver_recurse_depth
*4, "", x
+ 1, y
+ 1);
2504 for (i
= 0; i
< j
; i
++) {
2505 printf("%s%d", sep
, list
[i
]);
2513 * And step along the list, recursing back into the
2514 * main solver at every stage.
2516 for (i
= 0; i
< j
; i
++) {
2517 memcpy(outgrid
, ingrid
, cr
* cr
);
2518 outgrid
[y
*cr
+x
] = list
[i
];
2520 #ifdef STANDALONE_SOLVER
2521 if (solver_show_working
)
2522 printf("%*sguessing %d at (%d,%d)\n",
2523 solver_recurse_depth
*4, "", list
[i
], x
+ 1, y
+ 1);
2524 solver_recurse_depth
++;
2527 solver(cr
, blocks
, kblocks
, xtype
, outgrid
, kgrid
, dlev
);
2529 #ifdef STANDALONE_SOLVER
2530 solver_recurse_depth
--;
2531 if (solver_show_working
) {
2532 printf("%*sretracting %d at (%d,%d)\n",
2533 solver_recurse_depth
*4, "", list
[i
], x
+ 1, y
+ 1);
2538 * If we have our first solution, copy it into the
2539 * grid we will return.
2541 if (diff
== DIFF_IMPOSSIBLE
&& dlev
->diff
!= DIFF_IMPOSSIBLE
)
2542 memcpy(grid
, outgrid
, cr
*cr
);
2544 if (dlev
->diff
== DIFF_AMBIGUOUS
)
2545 diff
= DIFF_AMBIGUOUS
;
2546 else if (dlev
->diff
== DIFF_IMPOSSIBLE
)
2547 /* do not change our return value */;
2549 /* the recursion turned up exactly one solution */
2550 if (diff
== DIFF_IMPOSSIBLE
)
2551 diff
= DIFF_RECURSIVE
;
2553 diff
= DIFF_AMBIGUOUS
;
2557 * As soon as we've found more than one solution,
2558 * give up immediately.
2560 if (diff
== DIFF_AMBIGUOUS
)
2571 * We're forbidden to use recursion, so we just see whether
2572 * our grid is fully solved, and return DIFF_IMPOSSIBLE
2575 for (y
= 0; y
< cr
; y
++)
2576 for (x
= 0; x
< cr
; x
++)
2578 diff
= DIFF_IMPOSSIBLE
;
2583 dlev
->kdiff
= kdiff
;
2585 #ifdef STANDALONE_SOLVER
2586 if (solver_show_working
)
2587 printf("%*s%s found\n",
2588 solver_recurse_depth
*4, "",
2589 diff
== DIFF_IMPOSSIBLE
? "no solution" :
2590 diff
== DIFF_AMBIGUOUS
? "multiple solutions" :
2594 sfree(usage
->sq2region
);
2595 sfree(usage
->regions
);
2600 if (usage
->kblocks
) {
2601 free_block_structure(usage
->kblocks
);
2602 free_block_structure(usage
->extra_cages
);
2603 sfree(usage
->extra_clues
);
2605 if (usage
->kclues
) sfree(usage
->kclues
);
2608 solver_free_scratch(scratch
);
2611 /* ----------------------------------------------------------------------
2612 * End of solver code.
2615 /* ----------------------------------------------------------------------
2616 * Killer set generator.
2619 /* ----------------------------------------------------------------------
2620 * Solo filled-grid generator.
2622 * This grid generator works by essentially trying to solve a grid
2623 * starting from no clues, and not worrying that there's more than
2624 * one possible solution. Unfortunately, it isn't computationally
2625 * feasible to do this by calling the above solver with an empty
2626 * grid, because that one needs to allocate a lot of scratch space
2627 * at every recursion level. Instead, I have a much simpler
2628 * algorithm which I shamelessly copied from a Python solver
2629 * written by Andrew Wilkinson (which is GPLed, but I've reused
2630 * only ideas and no code). It mostly just does the obvious
2631 * recursive thing: pick an empty square, put one of the possible
2632 * digits in it, recurse until all squares are filled, backtrack
2633 * and change some choices if necessary.
2635 * The clever bit is that every time it chooses which square to
2636 * fill in next, it does so by counting the number of _possible_
2637 * numbers that can go in each square, and it prioritises so that
2638 * it picks a square with the _lowest_ number of possibilities. The
2639 * idea is that filling in lots of the obvious bits (particularly
2640 * any squares with only one possibility) will cut down on the list
2641 * of possibilities for other squares and hence reduce the enormous
2642 * search space as much as possible as early as possible.
2644 * The use of bit sets implies that we support puzzles up to a size of
2645 * 32x32 (less if anyone finds a 16-bit machine to compile this on).
2649 * Internal data structure used in gridgen to keep track of
2652 struct gridgen_coord
{ int x
, y
, r
; };
2653 struct gridgen_usage
{
2655 struct block_structure
*blocks
, *kblocks
;
2656 /* grid is a copy of the input grid, modified as we go along */
2659 * Bitsets. In each of them, bit n is set if digit n has been placed
2660 * in the corresponding region. row, col and blk are used for all
2661 * puzzles. cge is used only for killer puzzles, and diag is used
2662 * only for x-type puzzles.
2663 * All of these have cr entries, except diag which only has 2,
2664 * and cge, which has as many entries as kblocks.
2666 unsigned int *row
, *col
, *blk
, *cge
, *diag
;
2667 /* This lists all the empty spaces remaining in the grid. */
2668 struct gridgen_coord
*spaces
;
2670 /* If we need randomisation in the solve, this is our random state. */
2674 static void gridgen_place(struct gridgen_usage
*usage
, int x
, int y
, digit n
)
2676 unsigned int bit
= 1 << n
;
2678 usage
->row
[y
] |= bit
;
2679 usage
->col
[x
] |= bit
;
2680 usage
->blk
[usage
->blocks
->whichblock
[y
*cr
+x
]] |= bit
;
2682 usage
->cge
[usage
->kblocks
->whichblock
[y
*cr
+x
]] |= bit
;
2684 if (ondiag0(y
*cr
+x
))
2685 usage
->diag
[0] |= bit
;
2686 if (ondiag1(y
*cr
+x
))
2687 usage
->diag
[1] |= bit
;
2689 usage
->grid
[y
*cr
+x
] = n
;
2692 static void gridgen_remove(struct gridgen_usage
*usage
, int x
, int y
, digit n
)
2694 unsigned int mask
= ~(1 << n
);
2696 usage
->row
[y
] &= mask
;
2697 usage
->col
[x
] &= mask
;
2698 usage
->blk
[usage
->blocks
->whichblock
[y
*cr
+x
]] &= mask
;
2700 usage
->cge
[usage
->kblocks
->whichblock
[y
*cr
+x
]] &= mask
;
2702 if (ondiag0(y
*cr
+x
))
2703 usage
->diag
[0] &= mask
;
2704 if (ondiag1(y
*cr
+x
))
2705 usage
->diag
[1] &= mask
;
2707 usage
->grid
[y
*cr
+x
] = 0;
2713 * The real recursive step in the generating function.
2715 * Return values: 1 means solution found, 0 means no solution
2716 * found on this branch.
2718 static int gridgen_real(struct gridgen_usage
*usage
, digit
*grid
, int *steps
)
2721 int i
, j
, n
, sx
, sy
, bestm
, bestr
, ret
;
2726 * Firstly, check for completion! If there are no spaces left
2727 * in the grid, we have a solution.
2729 if (usage
->nspaces
== 0)
2733 * Next, abandon generation if we went over our steps limit.
2740 * Otherwise, there must be at least one space. Find the most
2741 * constrained space, using the `r' field as a tie-breaker.
2743 bestm
= cr
+1; /* so that any space will beat it */
2747 for (j
= 0; j
< usage
->nspaces
; j
++) {
2748 int x
= usage
->spaces
[j
].x
, y
= usage
->spaces
[j
].y
;
2749 unsigned int used_xy
;
2752 m
= usage
->blocks
->whichblock
[y
*cr
+x
];
2753 used_xy
= usage
->row
[y
] | usage
->col
[x
] | usage
->blk
[m
];
2754 if (usage
->cge
!= NULL
)
2755 used_xy
|= usage
->cge
[usage
->kblocks
->whichblock
[y
*cr
+x
]];
2756 if (usage
->cge
!= NULL
)
2757 used_xy
|= usage
->cge
[usage
->kblocks
->whichblock
[y
*cr
+x
]];
2758 if (usage
->diag
!= NULL
) {
2759 if (ondiag0(y
*cr
+x
))
2760 used_xy
|= usage
->diag
[0];
2761 if (ondiag1(y
*cr
+x
))
2762 used_xy
|= usage
->diag
[1];
2766 * Find the number of digits that could go in this space.
2769 for (n
= 1; n
<= cr
; n
++) {
2770 unsigned int bit
= 1 << n
;
2771 if ((used_xy
& bit
) == 0)
2774 if (m
< bestm
|| (m
== bestm
&& usage
->spaces
[j
].r
< bestr
)) {
2776 bestr
= usage
->spaces
[j
].r
;
2785 * Swap that square into the final place in the spaces array,
2786 * so that decrementing nspaces will remove it from the list.
2788 if (i
!= usage
->nspaces
-1) {
2789 struct gridgen_coord t
;
2790 t
= usage
->spaces
[usage
->nspaces
-1];
2791 usage
->spaces
[usage
->nspaces
-1] = usage
->spaces
[i
];
2792 usage
->spaces
[i
] = t
;
2796 * Now we've decided which square to start our recursion at,
2797 * simply go through all possible values, shuffling them
2798 * randomly first if necessary.
2800 digits
= snewn(bestm
, int);
2803 for (n
= 1; n
<= cr
; n
++) {
2804 unsigned int bit
= 1 << n
;
2806 if ((used
& bit
) == 0)
2811 shuffle(digits
, j
, sizeof(*digits
), usage
->rs
);
2813 /* And finally, go through the digit list and actually recurse. */
2815 for (i
= 0; i
< j
; i
++) {
2818 /* Update the usage structure to reflect the placing of this digit. */
2819 gridgen_place(usage
, sx
, sy
, n
);
2822 /* Call the solver recursively. Stop when we find a solution. */
2823 if (gridgen_real(usage
, grid
, steps
)) {
2828 /* Revert the usage structure. */
2829 gridgen_remove(usage
, sx
, sy
, n
);
2838 * Entry point to generator. You give it parameters and a starting
2839 * grid, which is simply an array of cr*cr digits.
2841 static int gridgen(int cr
, struct block_structure
*blocks
,
2842 struct block_structure
*kblocks
, int xtype
,
2843 digit
*grid
, random_state
*rs
, int maxsteps
)
2845 struct gridgen_usage
*usage
;
2849 * Clear the grid to start with.
2851 memset(grid
, 0, cr
*cr
);
2854 * Create a gridgen_usage structure.
2856 usage
= snew(struct gridgen_usage
);
2859 usage
->blocks
= blocks
;
2863 usage
->row
= snewn(cr
, unsigned int);
2864 usage
->col
= snewn(cr
, unsigned int);
2865 usage
->blk
= snewn(cr
, unsigned int);
2866 if (kblocks
!= NULL
) {
2867 usage
->kblocks
= kblocks
;
2868 usage
->cge
= snewn(usage
->kblocks
->nr_blocks
, unsigned int);
2869 memset(usage
->cge
, FALSE
, kblocks
->nr_blocks
* sizeof *usage
->cge
);
2874 memset(usage
->row
, 0, cr
* sizeof *usage
->row
);
2875 memset(usage
->col
, 0, cr
* sizeof *usage
->col
);
2876 memset(usage
->blk
, 0, cr
* sizeof *usage
->blk
);
2879 usage
->diag
= snewn(2, unsigned int);
2880 memset(usage
->diag
, 0, 2 * sizeof *usage
->diag
);
2886 * Begin by filling in the whole top row with randomly chosen
2887 * numbers. This cannot introduce any bias or restriction on
2888 * the available grids, since we already know those numbers
2889 * are all distinct so all we're doing is choosing their
2892 for (x
= 0; x
< cr
; x
++)
2894 shuffle(grid
, cr
, sizeof(*grid
), rs
);
2895 for (x
= 0; x
< cr
; x
++)
2896 gridgen_place(usage
, x
, 0, grid
[x
]);
2898 usage
->spaces
= snewn(cr
* cr
, struct gridgen_coord
);
2904 * Initialise the list of grid spaces, taking care to leave
2905 * out the row I've already filled in above.
2907 for (y
= 1; y
< cr
; y
++) {
2908 for (x
= 0; x
< cr
; x
++) {
2909 usage
->spaces
[usage
->nspaces
].x
= x
;
2910 usage
->spaces
[usage
->nspaces
].y
= y
;
2911 usage
->spaces
[usage
->nspaces
].r
= random_bits(rs
, 31);
2917 * Run the real generator function.
2919 ret
= gridgen_real(usage
, grid
, &maxsteps
);
2922 * Clean up the usage structure now we have our answer.
2924 sfree(usage
->spaces
);
2934 /* ----------------------------------------------------------------------
2935 * End of grid generator code.
2939 * Check whether a grid contains a valid complete puzzle.
2941 static int check_valid(int cr
, struct block_structure
*blocks
,
2942 struct block_structure
*kblocks
, int xtype
, digit
*grid
)
2944 unsigned char *used
;
2947 used
= snewn(cr
, unsigned char);
2950 * Check that each row contains precisely one of everything.
2952 for (y
= 0; y
< cr
; y
++) {
2953 memset(used
, FALSE
, cr
);
2954 for (x
= 0; x
< cr
; x
++)
2955 if (grid
[y
*cr
+x
] > 0 && grid
[y
*cr
+x
] <= cr
)
2956 used
[grid
[y
*cr
+x
]-1] = TRUE
;
2957 for (n
= 0; n
< cr
; n
++)
2965 * Check that each column contains precisely one of everything.
2967 for (x
= 0; x
< cr
; x
++) {
2968 memset(used
, FALSE
, cr
);
2969 for (y
= 0; y
< cr
; y
++)
2970 if (grid
[y
*cr
+x
] > 0 && grid
[y
*cr
+x
] <= cr
)
2971 used
[grid
[y
*cr
+x
]-1] = TRUE
;
2972 for (n
= 0; n
< cr
; n
++)
2980 * Check that each block contains precisely one of everything.
2982 for (i
= 0; i
< cr
; i
++) {
2983 memset(used
, FALSE
, cr
);
2984 for (j
= 0; j
< cr
; j
++)
2985 if (grid
[blocks
->blocks
[i
][j
]] > 0 &&
2986 grid
[blocks
->blocks
[i
][j
]] <= cr
)
2987 used
[grid
[blocks
->blocks
[i
][j
]]-1] = TRUE
;
2988 for (n
= 0; n
< cr
; n
++)
2996 * Check that each Killer cage, if any, contains at most one of
3000 for (i
= 0; i
< kblocks
->nr_blocks
; i
++) {
3001 memset(used
, FALSE
, cr
);
3002 for (j
= 0; j
< kblocks
->nr_squares
[i
]; j
++)
3003 if (grid
[kblocks
->blocks
[i
][j
]] > 0 &&
3004 grid
[kblocks
->blocks
[i
][j
]] <= cr
) {
3005 if (used
[grid
[kblocks
->blocks
[i
][j
]]-1]) {
3009 used
[grid
[kblocks
->blocks
[i
][j
]]-1] = TRUE
;
3015 * Check that each diagonal contains precisely one of everything.
3018 memset(used
, FALSE
, cr
);
3019 for (i
= 0; i
< cr
; i
++)
3020 if (grid
[diag0(i
)] > 0 && grid
[diag0(i
)] <= cr
)
3021 used
[grid
[diag0(i
)]-1] = TRUE
;
3022 for (n
= 0; n
< cr
; n
++)
3027 for (i
= 0; i
< cr
; i
++)
3028 if (grid
[diag1(i
)] > 0 && grid
[diag1(i
)] <= cr
)
3029 used
[grid
[diag1(i
)]-1] = TRUE
;
3030 for (n
= 0; n
< cr
; n
++)
3041 static int symmetries(game_params
*params
, int x
, int y
, int *output
, int s
)
3043 int c
= params
->c
, r
= params
->r
, cr
= c
*r
;
3046 #define ADD(x,y) (*output++ = (x), *output++ = (y), i++)
3052 break; /* just x,y is all we need */
3054 ADD(cr
- 1 - x
, cr
- 1 - y
);
3059 ADD(cr
- 1 - x
, cr
- 1 - y
);
3070 ADD(cr
- 1 - x
, cr
- 1 - y
);
3074 ADD(cr
- 1 - x
, cr
- 1 - y
);
3075 ADD(cr
- 1 - y
, cr
- 1 - x
);
3080 ADD(cr
- 1 - x
, cr
- 1 - y
);
3084 ADD(cr
- 1 - y
, cr
- 1 - x
);
3093 static char *encode_solve_move(int cr
, digit
*grid
)
3096 char *ret
, *p
, *sep
;
3099 * It's surprisingly easy to work out _exactly_ how long this
3100 * string needs to be. To decimal-encode all the numbers from 1
3103 * - every number has a units digit; total is n.
3104 * - all numbers above 9 have a tens digit; total is max(n-9,0).
3105 * - all numbers above 99 have a hundreds digit; total is max(n-99,0).
3109 for (i
= 1; i
<= cr
; i
*= 10)
3110 len
+= max(cr
- i
+ 1, 0);
3111 len
+= cr
; /* don't forget the commas */
3112 len
*= cr
; /* there are cr rows of these */
3115 * Now len is one bigger than the total size of the
3116 * comma-separated numbers (because we counted an
3117 * additional leading comma). We need to have a leading S
3118 * and a trailing NUL, so we're off by one in total.
3122 ret
= snewn(len
, char);
3126 for (i
= 0; i
< cr
*cr
; i
++) {
3127 p
+= sprintf(p
, "%s%d", sep
, grid
[i
]);
3131 assert(p
- ret
== len
);
3136 static void dsf_to_blocks(int *dsf
, struct block_structure
*blocks
,
3137 int min_expected
, int max_expected
)
3139 int cr
= blocks
->c
* blocks
->r
, area
= cr
* cr
;
3142 for (i
= 0; i
< area
; i
++)
3143 blocks
->whichblock
[i
] = -1;
3144 for (i
= 0; i
< area
; i
++) {
3145 int j
= dsf_canonify(dsf
, i
);
3146 if (blocks
->whichblock
[j
] < 0)
3147 blocks
->whichblock
[j
] = nb
++;
3148 blocks
->whichblock
[i
] = blocks
->whichblock
[j
];
3150 assert(nb
>= min_expected
&& nb
<= max_expected
);
3151 blocks
->nr_blocks
= nb
;
3154 static void make_blocks_from_whichblock(struct block_structure
*blocks
)
3158 for (i
= 0; i
< blocks
->nr_blocks
; i
++) {
3159 blocks
->blocks
[i
][blocks
->max_nr_squares
-1] = 0;
3160 blocks
->nr_squares
[i
] = 0;
3162 for (i
= 0; i
< blocks
->area
; i
++) {
3163 int b
= blocks
->whichblock
[i
];
3164 int j
= blocks
->blocks
[b
][blocks
->max_nr_squares
-1]++;
3165 assert(j
< blocks
->max_nr_squares
);
3166 blocks
->blocks
[b
][j
] = i
;
3167 blocks
->nr_squares
[b
]++;
3171 static char *encode_block_structure_desc(char *p
, struct block_structure
*blocks
)
3174 int c
= blocks
->c
, r
= blocks
->r
, cr
= c
* r
;
3177 * Encode the block structure. We do this by encoding
3178 * the pattern of dividing lines: first we iterate
3179 * over the cr*(cr-1) internal vertical grid lines in
3180 * ordinary reading order, then over the cr*(cr-1)
3181 * internal horizontal ones in transposed reading
3184 * We encode the number of non-lines between the
3185 * lines; _ means zero (two adjacent divisions), a
3186 * means 1, ..., y means 25, and z means 25 non-lines
3187 * _and no following line_ (so that za means 26, zb 27
3190 for (i
= 0; i
<= 2*cr
*(cr
-1); i
++) {
3191 int x
, y
, p0
, p1
, edge
;
3193 if (i
== 2*cr
*(cr
-1)) {
3194 edge
= TRUE
; /* terminating virtual edge */
3196 if (i
< cr
*(cr
-1)) {
3207 edge
= (blocks
->whichblock
[p0
] != blocks
->whichblock
[p1
]);
3211 while (currrun
> 25)
3212 *p
++ = 'z', currrun
-= 25;
3214 *p
++ = 'a'-1 + currrun
;
3224 static char *encode_grid(char *desc
, digit
*grid
, int area
)
3230 for (i
= 0; i
<= area
; i
++) {
3231 int n
= (i
< area
? grid
[i
] : -1);
3238 int c
= 'a' - 1 + run
;
3242 run
-= c
- ('a' - 1);
3246 * If there's a number in the very top left or
3247 * bottom right, there's no point putting an
3248 * unnecessary _ before or after it.
3250 if (p
> desc
&& n
> 0)
3254 p
+= sprintf(p
, "%d", n
);
3262 * Conservatively stimate the number of characters required for
3263 * encoding a grid of a certain area.
3265 static int grid_encode_space (int area
)
3268 for (count
= 1, t
= area
; t
> 26; t
-= 26)
3270 return count
* area
;
3274 * Conservatively stimate the number of characters required for
3275 * encoding a given blocks structure.
3277 static int blocks_encode_space(struct block_structure
*blocks
)
3279 int cr
= blocks
->c
* blocks
->r
, area
= cr
* cr
;
3280 return grid_encode_space(area
);
3283 static char *encode_puzzle_desc(game_params
*params
, digit
*grid
,
3284 struct block_structure
*blocks
,
3286 struct block_structure
*kblocks
)
3288 int c
= params
->c
, r
= params
->r
, cr
= c
*r
;
3293 space
= grid_encode_space(area
) + 1;
3295 space
+= blocks_encode_space(blocks
) + 1;
3296 if (params
->killer
) {
3297 space
+= blocks_encode_space(kblocks
) + 1;
3298 space
+= grid_encode_space(area
) + 1;
3300 desc
= snewn(space
, char);
3301 p
= encode_grid(desc
, grid
, area
);
3305 p
= encode_block_structure_desc(p
, blocks
);
3307 if (params
->killer
) {
3309 p
= encode_block_structure_desc(p
, kblocks
);
3311 p
= encode_grid(p
, kgrid
, area
);
3313 assert(p
- desc
< space
);
3315 desc
= sresize(desc
, p
- desc
, char);
3320 static void merge_blocks(struct block_structure
*b
, int n1
, int n2
)
3323 /* Move data towards the lower block number. */
3330 /* Merge n2 into n1, and move the last block into n2's position. */
3331 for (i
= 0; i
< b
->nr_squares
[n2
]; i
++)
3332 b
->whichblock
[b
->blocks
[n2
][i
]] = n1
;
3333 memcpy(b
->blocks
[n1
] + b
->nr_squares
[n1
], b
->blocks
[n2
],
3334 b
->nr_squares
[n2
] * sizeof **b
->blocks
);
3335 b
->nr_squares
[n1
] += b
->nr_squares
[n2
];
3337 n1
= b
->nr_blocks
- 1;
3339 memcpy(b
->blocks
[n2
], b
->blocks
[n1
],
3340 b
->nr_squares
[n1
] * sizeof **b
->blocks
);
3341 for (i
= 0; i
< b
->nr_squares
[n1
]; i
++)
3342 b
->whichblock
[b
->blocks
[n1
][i
]] = n2
;
3343 b
->nr_squares
[n2
] = b
->nr_squares
[n1
];
3348 static int merge_some_cages(struct block_structure
*b
, int cr
, int area
,
3349 digit
*grid
, random_state
*rs
)
3352 * Make a list of all the pairs of adjacent blocks.
3360 pairs
= snewn(b
->nr_blocks
* b
->nr_blocks
, struct pair
);
3363 for (i
= 0; i
< b
->nr_blocks
; i
++) {
3364 for (j
= i
+1; j
< b
->nr_blocks
; j
++) {
3367 * Rule the merger out of consideration if it's
3368 * obviously not viable.
3370 if (b
->nr_squares
[i
] + b
->nr_squares
[j
] > b
->max_nr_squares
)
3371 continue; /* we couldn't merge these anyway */
3374 * See if these two blocks have a pair of squares
3375 * adjacent to each other.
3377 for (k
= 0; k
< b
->nr_squares
[i
]; k
++) {
3378 int xy
= b
->blocks
[i
][k
];
3379 int y
= xy
/ cr
, x
= xy
% cr
;
3380 if ((y
> 0 && b
->whichblock
[xy
- cr
] == j
) ||
3381 (y
+1 < cr
&& b
->whichblock
[xy
+ cr
] == j
) ||
3382 (x
> 0 && b
->whichblock
[xy
- 1] == j
) ||
3383 (x
+1 < cr
&& b
->whichblock
[xy
+ 1] == j
)) {
3385 * Yes! Add this pair to our list.
3387 pairs
[npairs
].b1
= i
;
3388 pairs
[npairs
].b2
= j
;
3396 * Now go through that list in random order until we find a pair
3397 * of blocks we can merge.
3399 while (npairs
> 0) {
3401 unsigned int digits_found
;
3404 * Pick a random pair, and remove it from the list.
3406 i
= random_upto(rs
, npairs
);
3410 pairs
[i
] = pairs
[npairs
-1];
3413 /* Guarantee that the merged cage would still be a region. */
3415 for (i
= 0; i
< b
->nr_squares
[n1
]; i
++)
3416 digits_found
|= 1 << grid
[b
->blocks
[n1
][i
]];
3417 for (i
= 0; i
< b
->nr_squares
[n2
]; i
++)
3418 if (digits_found
& (1 << grid
[b
->blocks
[n2
][i
]]))
3420 if (i
!= b
->nr_squares
[n2
])
3424 * Got one! Do the merge.
3426 merge_blocks(b
, n1
, n2
);
3435 static void compute_kclues(struct block_structure
*cages
, digit
*kclues
,
3436 digit
*grid
, int area
)
3439 memset(kclues
, 0, area
* sizeof *kclues
);
3440 for (i
= 0; i
< cages
->nr_blocks
; i
++) {
3442 for (j
= 0; j
< area
; j
++)
3443 if (cages
->whichblock
[j
] == i
)
3445 for (j
= 0; j
< area
; j
++)
3446 if (cages
->whichblock
[j
] == i
)
3453 static struct block_structure
*gen_killer_cages(int cr
, random_state
*rs
,
3454 int remove_singletons
)
3457 int x
, y
, area
= cr
* cr
;
3458 int n_singletons
= 0;
3459 struct block_structure
*b
= alloc_block_structure (1, cr
, area
, cr
, area
);
3461 for (x
= 0; x
< area
; x
++)
3462 b
->whichblock
[x
] = -1;
3464 for (y
= 0; y
< cr
; y
++)
3465 for (x
= 0; x
< cr
; x
++) {
3468 if (b
->whichblock
[xy
] != -1)
3470 b
->whichblock
[xy
] = nr
;
3472 rnd
= random_bits(rs
, 4);
3473 if (xy
+ 1 < area
&& (rnd
>= 4 || (!remove_singletons
&& rnd
>= 1))) {
3475 if (x
+ 1 == cr
|| b
->whichblock
[xy2
] != -1 ||
3476 (xy
+ cr
< area
&& random_bits(rs
, 1) == 0))
3481 b
->whichblock
[xy2
] = nr
;
3488 make_blocks_from_whichblock(b
);
3490 for (x
= y
= 0; x
< b
->nr_blocks
; x
++)
3491 if (b
->nr_squares
[x
] == 1)
3493 assert(y
== n_singletons
);
3495 if (n_singletons
> 0 && remove_singletons
) {
3497 for (n
= 0; n
< b
->nr_blocks
;) {
3498 int xy
, x
, y
, xy2
, other
;
3499 if (b
->nr_squares
[n
] > 1) {
3503 xy
= b
->blocks
[n
][0];
3508 else if (x
+ 1 < cr
&& (y
+ 1 == cr
|| random_bits(rs
, 1) == 0))
3512 other
= b
->whichblock
[xy2
];
3514 if (b
->nr_squares
[other
] == 1)
3517 merge_blocks(b
, n
, other
);
3521 assert(n_singletons
== 0);
3526 static char *new_game_desc(game_params
*params
, random_state
*rs
,
3527 char **aux
, int interactive
)
3529 int c
= params
->c
, r
= params
->r
, cr
= c
*r
;
3531 struct block_structure
*blocks
, *kblocks
;
3532 digit
*grid
, *grid2
, *kgrid
;
3533 struct xy
{ int x
, y
; } *locs
;
3536 int coords
[16], ncoords
;
3538 struct difficulty dlev
;
3540 precompute_sum_bits();
3543 * Adjust the maximum difficulty level to be consistent with
3544 * the puzzle size: all 2x2 puzzles appear to be Trivial
3545 * (DIFF_BLOCK) so we cannot hold out for even a Basic
3546 * (DIFF_SIMPLE) one.
3548 dlev
.maxdiff
= params
->diff
;
3549 dlev
.maxkdiff
= params
->kdiff
;
3550 if (c
== 2 && r
== 2)
3551 dlev
.maxdiff
= DIFF_BLOCK
;
3553 grid
= snewn(area
, digit
);
3554 locs
= snewn(area
, struct xy
);
3555 grid2
= snewn(area
, digit
);
3557 blocks
= alloc_block_structure (c
, r
, area
, cr
, cr
);
3560 kgrid
= (params
->killer
) ? snewn(area
, digit
) : NULL
;
3562 #ifdef STANDALONE_SOLVER
3563 assert(!"This should never happen, so we don't need to create blocknames");
3567 * Loop until we get a grid of the required difficulty. This is
3568 * nasty, but it seems to be unpleasantly hard to generate
3569 * difficult grids otherwise.
3573 * Generate a random solved state, starting by
3574 * constructing the block structure.
3576 if (r
== 1) { /* jigsaw mode */
3577 int *dsf
= divvy_rectangle(cr
, cr
, cr
, rs
);
3579 dsf_to_blocks (dsf
, blocks
, cr
, cr
);
3582 } else { /* basic Sudoku mode */
3583 for (y
= 0; y
< cr
; y
++)
3584 for (x
= 0; x
< cr
; x
++)
3585 blocks
->whichblock
[y
*cr
+x
] = (y
/c
) * c
+ (x
/r
);
3587 make_blocks_from_whichblock(blocks
);
3589 if (params
->killer
) {
3590 if (kblocks
) free_block_structure(kblocks
);
3591 kblocks
= gen_killer_cages(cr
, rs
, params
->kdiff
> DIFF_KSINGLE
);
3594 if (!gridgen(cr
, blocks
, kblocks
, params
->xtype
, grid
, rs
, area
*area
))
3596 assert(check_valid(cr
, blocks
, kblocks
, params
->xtype
, grid
));
3599 * Save the solved grid in aux.
3603 * We might already have written *aux the last time we
3604 * went round this loop, in which case we should free
3605 * the old aux before overwriting it with the new one.
3611 *aux
= encode_solve_move(cr
, grid
);
3615 * Now we have a solved grid. For normal puzzles, we start removing
3616 * things from it while preserving solubility. Killer puzzles are
3617 * different: we just pass the empty grid to the solver, and use
3618 * the puzzle if it comes back solved.
3621 if (params
->killer
) {
3622 struct block_structure
*good_cages
= NULL
;
3623 struct block_structure
*last_cages
= NULL
;
3626 memcpy(grid2
, grid
, area
);
3629 compute_kclues(kblocks
, kgrid
, grid2
, area
);
3631 memset(grid
, 0, area
* sizeof *grid
);
3632 solver(cr
, blocks
, kblocks
, params
->xtype
, grid
, kgrid
, &dlev
);
3633 if (dlev
.diff
== dlev
.maxdiff
&& dlev
.kdiff
== dlev
.maxkdiff
) {
3635 * We have one that matches our difficulty. Store it for
3636 * later, but keep going.
3639 free_block_structure(good_cages
);
3641 good_cages
= dup_block_structure(kblocks
);
3642 if (!merge_some_cages(kblocks
, cr
, area
, grid2
, rs
))
3644 } else if (dlev
.diff
> dlev
.maxdiff
|| dlev
.kdiff
> dlev
.maxkdiff
) {
3646 * Give up after too many tries and either use the good one we
3647 * found, or generate a new grid.
3652 * The difficulty level got too high. If we have a good
3653 * one, use it, otherwise go back to the last one that
3654 * was at a lower difficulty and restart the process from
3657 if (good_cages
!= NULL
) {
3658 free_block_structure(kblocks
);
3659 kblocks
= dup_block_structure(good_cages
);
3660 if (!merge_some_cages(kblocks
, cr
, area
, grid2
, rs
))
3663 if (last_cages
== NULL
)
3665 free_block_structure(kblocks
);
3666 kblocks
= last_cages
;
3671 free_block_structure(last_cages
);
3672 last_cages
= dup_block_structure(kblocks
);
3673 if (!merge_some_cages(kblocks
, cr
, area
, grid2
, rs
))
3678 free_block_structure(last_cages
);
3679 if (good_cages
!= NULL
) {
3680 free_block_structure(kblocks
);
3681 kblocks
= good_cages
;
3682 compute_kclues(kblocks
, kgrid
, grid2
, area
);
3683 memset(grid
, 0, area
* sizeof *grid
);
3690 * Find the set of equivalence classes of squares permitted
3691 * by the selected symmetry. We do this by enumerating all
3692 * the grid squares which have no symmetric companion
3693 * sorting lower than themselves.
3696 for (y
= 0; y
< cr
; y
++)
3697 for (x
= 0; x
< cr
; x
++) {
3701 ncoords
= symmetries(params
, x
, y
, coords
, params
->symm
);
3702 for (j
= 0; j
< ncoords
; j
++)
3703 if (coords
[2*j
+1]*cr
+coords
[2*j
] < i
)
3713 * Now shuffle that list.
3715 shuffle(locs
, nlocs
, sizeof(*locs
), rs
);
3718 * Now loop over the shuffled list and, for each element,
3719 * see whether removing that element (and its reflections)
3720 * from the grid will still leave the grid soluble.
3722 for (i
= 0; i
< nlocs
; i
++) {
3726 memcpy(grid2
, grid
, area
);
3727 ncoords
= symmetries(params
, x
, y
, coords
, params
->symm
);
3728 for (j
= 0; j
< ncoords
; j
++)
3729 grid2
[coords
[2*j
+1]*cr
+coords
[2*j
]] = 0;
3731 solver(cr
, blocks
, kblocks
, params
->xtype
, grid2
, kgrid
, &dlev
);
3732 if (dlev
.diff
<= dlev
.maxdiff
&&
3733 (!params
->killer
|| dlev
.kdiff
<= dlev
.maxkdiff
)) {
3734 for (j
= 0; j
< ncoords
; j
++)
3735 grid
[coords
[2*j
+1]*cr
+coords
[2*j
]] = 0;
3739 memcpy(grid2
, grid
, area
);
3741 solver(cr
, blocks
, kblocks
, params
->xtype
, grid2
, kgrid
, &dlev
);
3742 if (dlev
.diff
== dlev
.maxdiff
&&
3743 (!params
->killer
|| dlev
.kdiff
== dlev
.maxkdiff
))
3744 break; /* found one! */
3751 * Now we have the grid as it will be presented to the user.
3752 * Encode it in a game desc.
3754 desc
= encode_puzzle_desc(params
, grid
, blocks
, kgrid
, kblocks
);
3757 free_block_structure(blocks
);
3758 if (params
->killer
) {
3759 free_block_structure(kblocks
);
3766 static char *spec_to_grid(char *desc
, digit
*grid
, int area
)
3769 while (*desc
&& *desc
!= ',') {
3771 if (n
>= 'a' && n
<= 'z') {
3772 int run
= n
- 'a' + 1;
3773 assert(i
+ run
<= area
);
3776 } else if (n
== '_') {
3778 } else if (n
> '0' && n
<= '9') {
3780 grid
[i
++] = atoi(desc
-1);
3781 while (*desc
>= '0' && *desc
<= '9')
3784 assert(!"We can't get here");
3792 * Create a DSF from a spec found in *pdesc. Update this to point past the
3793 * end of the block spec, and return an error string or NULL if everything
3794 * is OK. The DSF is stored in *PDSF.
3796 static char *spec_to_dsf(char **pdesc
, int **pdsf
, int cr
, int area
)
3798 char *desc
= *pdesc
;
3802 *pdsf
= dsf
= snew_dsf(area
);
3804 while (*desc
&& *desc
!= ',') {
3809 else if (*desc
>= 'a' && *desc
<= 'z')
3810 c
= *desc
- 'a' + 1;
3813 return "Invalid character in game description";
3817 adv
= (c
!= 25); /* 'z' is a special case */
3823 * Non-edge; merge the two dsf classes on either
3826 assert(pos
< 2*cr
*(cr
-1));
3827 if (pos
< cr
*(cr
-1)) {
3833 int x
= pos
/(cr
-1) - cr
;
3838 dsf_merge(dsf
, p0
, p1
);
3848 * When desc is exhausted, we expect to have gone exactly
3849 * one space _past_ the end of the grid, due to the dummy
3852 if (pos
!= 2*cr
*(cr
-1)+1) {
3854 return "Not enough data in block structure specification";
3860 static char *validate_grid_desc(char **pdesc
, int range
, int area
)
3862 char *desc
= *pdesc
;
3864 while (*desc
&& *desc
!= ',') {
3866 if (n
>= 'a' && n
<= 'z') {
3867 squares
+= n
- 'a' + 1;
3868 } else if (n
== '_') {
3870 } else if (n
> '0' && n
<= '9') {
3871 int val
= atoi(desc
-1);
3872 if (val
< 1 || val
> range
)
3873 return "Out-of-range number in game description";
3875 while (*desc
>= '0' && *desc
<= '9')
3878 return "Invalid character in game description";
3882 return "Not enough data to fill grid";
3885 return "Too much data to fit in grid";
3890 static char *validate_block_desc(char **pdesc
, int cr
, int area
,
3891 int min_nr_blocks
, int max_nr_blocks
,
3892 int min_nr_squares
, int max_nr_squares
)
3897 err
= spec_to_dsf(pdesc
, &dsf
, cr
, area
);
3902 if (min_nr_squares
== max_nr_squares
) {
3903 assert(min_nr_blocks
== max_nr_blocks
);
3904 assert(min_nr_blocks
* min_nr_squares
== area
);
3907 * Now we've got our dsf. Verify that it matches
3911 int *canons
, *counts
;
3912 int i
, j
, c
, ncanons
= 0;
3914 canons
= snewn(max_nr_blocks
, int);
3915 counts
= snewn(max_nr_blocks
, int);
3917 for (i
= 0; i
< area
; i
++) {
3918 j
= dsf_canonify(dsf
, i
);
3920 for (c
= 0; c
< ncanons
; c
++)
3921 if (canons
[c
] == j
) {
3923 if (counts
[c
] > max_nr_squares
) {
3927 return "A jigsaw block is too big";
3933 if (ncanons
>= max_nr_blocks
) {
3937 return "Too many distinct jigsaw blocks";
3939 canons
[ncanons
] = j
;
3940 counts
[ncanons
] = 1;
3945 if (ncanons
< min_nr_blocks
) {
3949 return "Not enough distinct jigsaw blocks";
3951 for (c
= 0; c
< ncanons
; c
++) {
3952 if (counts
[c
] < min_nr_squares
) {
3956 return "A jigsaw block is too small";
3967 static char *validate_desc(game_params
*params
, char *desc
)
3969 int cr
= params
->c
* params
->r
, area
= cr
*cr
;
3972 err
= validate_grid_desc(&desc
, cr
, area
);
3976 if (params
->r
== 1) {
3978 * Now we expect a suffix giving the jigsaw block
3979 * structure. Parse it and validate that it divides the
3980 * grid into the right number of regions which are the
3984 return "Expected jigsaw block structure in game description";
3986 err
= validate_block_desc(&desc
, cr
, area
, cr
, cr
, cr
, cr
);
3991 if (params
->killer
) {
3993 return "Expected killer block structure in game description";
3995 err
= validate_block_desc(&desc
, cr
, area
, cr
, area
, 2, cr
);
3999 return "Expected killer clue grid in game description";
4001 err
= validate_grid_desc(&desc
, cr
* area
, area
);
4006 return "Unexpected data at end of game description";
4011 static game_state
*new_game(midend
*me
, game_params
*params
, char *desc
)
4013 game_state
*state
= snew(game_state
);
4014 int c
= params
->c
, r
= params
->r
, cr
= c
*r
, area
= cr
* cr
;
4017 precompute_sum_bits();
4020 state
->xtype
= params
->xtype
;
4021 state
->killer
= params
->killer
;
4023 state
->grid
= snewn(area
, digit
);
4024 state
->pencil
= snewn(area
* cr
, unsigned char);
4025 memset(state
->pencil
, 0, area
* cr
);
4026 state
->immutable
= snewn(area
, unsigned char);
4027 memset(state
->immutable
, FALSE
, area
);
4029 state
->blocks
= alloc_block_structure (c
, r
, area
, cr
, cr
);
4031 if (params
->killer
) {
4032 state
->kblocks
= alloc_block_structure (c
, r
, area
, cr
, area
);
4033 state
->kgrid
= snewn(area
, digit
);
4035 state
->kblocks
= NULL
;
4036 state
->kgrid
= NULL
;
4038 state
->completed
= state
->cheated
= FALSE
;
4040 desc
= spec_to_grid(desc
, state
->grid
, area
);
4041 for (i
= 0; i
< area
; i
++)
4042 if (state
->grid
[i
] != 0)
4043 state
->immutable
[i
] = TRUE
;
4048 assert(*desc
== ',');
4050 err
= spec_to_dsf(&desc
, &dsf
, cr
, area
);
4051 assert(err
== NULL
);
4052 dsf_to_blocks(dsf
, state
->blocks
, cr
, cr
);
4057 for (y
= 0; y
< cr
; y
++)
4058 for (x
= 0; x
< cr
; x
++)
4059 state
->blocks
->whichblock
[y
*cr
+x
] = (y
/c
) * c
+ (x
/r
);
4061 make_blocks_from_whichblock(state
->blocks
);
4063 if (params
->killer
) {
4066 assert(*desc
== ',');
4068 err
= spec_to_dsf(&desc
, &dsf
, cr
, area
);
4069 assert(err
== NULL
);
4070 dsf_to_blocks(dsf
, state
->kblocks
, cr
, area
);
4072 make_blocks_from_whichblock(state
->kblocks
);
4074 assert(*desc
== ',');
4076 desc
= spec_to_grid(desc
, state
->kgrid
, area
);
4080 #ifdef STANDALONE_SOLVER
4082 * Set up the block names for solver diagnostic output.
4085 char *p
= (char *)(state
->blocks
->blocknames
+ cr
);
4088 for (i
= 0; i
< area
; i
++) {
4089 int j
= state
->blocks
->whichblock
[i
];
4090 if (!state
->blocks
->blocknames
[j
]) {
4091 state
->blocks
->blocknames
[j
] = p
;
4092 p
+= 1 + sprintf(p
, "starting at (%d,%d)",
4093 1 + i
%cr
, 1 + i
/cr
);
4098 for (by
= 0; by
< r
; by
++)
4099 for (bx
= 0; bx
< c
; bx
++) {
4100 state
->blocks
->blocknames
[by
*c
+bx
] = p
;
4101 p
+= 1 + sprintf(p
, "(%d,%d)", bx
+1, by
+1);
4104 assert(p
- (char *)state
->blocks
->blocknames
< (int)(cr
*(sizeof(char *)+80)));
4105 for (i
= 0; i
< cr
; i
++)
4106 assert(state
->blocks
->blocknames
[i
]);
4113 static game_state
*dup_game(game_state
*state
)
4115 game_state
*ret
= snew(game_state
);
4116 int cr
= state
->cr
, area
= cr
* cr
;
4118 ret
->cr
= state
->cr
;
4119 ret
->xtype
= state
->xtype
;
4120 ret
->killer
= state
->killer
;
4122 ret
->blocks
= state
->blocks
;
4123 ret
->blocks
->refcount
++;
4125 ret
->kblocks
= state
->kblocks
;
4127 ret
->kblocks
->refcount
++;
4129 ret
->grid
= snewn(area
, digit
);
4130 memcpy(ret
->grid
, state
->grid
, area
);
4132 if (state
->killer
) {
4133 ret
->kgrid
= snewn(area
, digit
);
4134 memcpy(ret
->kgrid
, state
->kgrid
, area
);
4138 ret
->pencil
= snewn(area
* cr
, unsigned char);
4139 memcpy(ret
->pencil
, state
->pencil
, area
* cr
);
4141 ret
->immutable
= snewn(area
, unsigned char);
4142 memcpy(ret
->immutable
, state
->immutable
, area
);
4144 ret
->completed
= state
->completed
;
4145 ret
->cheated
= state
->cheated
;
4150 static void free_game(game_state
*state
)
4152 free_block_structure(state
->blocks
);
4154 free_block_structure(state
->kblocks
);
4156 sfree(state
->immutable
);
4157 sfree(state
->pencil
);
4159 if (state
->kgrid
) sfree(state
->kgrid
);
4163 static char *solve_game(game_state
*state
, game_state
*currstate
,
4164 char *ai
, char **error
)
4169 struct difficulty dlev
;
4172 * If we already have the solution in ai, save ourselves some
4178 grid
= snewn(cr
*cr
, digit
);
4179 memcpy(grid
, state
->grid
, cr
*cr
);
4180 dlev
.maxdiff
= DIFF_RECURSIVE
;
4181 dlev
.maxkdiff
= DIFF_KINTERSECT
;
4182 solver(cr
, state
->blocks
, state
->kblocks
, state
->xtype
, grid
,
4183 state
->kgrid
, &dlev
);
4187 if (dlev
.diff
== DIFF_IMPOSSIBLE
)
4188 *error
= "No solution exists for this puzzle";
4189 else if (dlev
.diff
== DIFF_AMBIGUOUS
)
4190 *error
= "Multiple solutions exist for this puzzle";
4197 ret
= encode_solve_move(cr
, grid
);
4204 static char *grid_text_format(int cr
, struct block_structure
*blocks
,
4205 int xtype
, digit
*grid
)
4209 int totallen
, linelen
, nlines
;
4213 * For non-jigsaw Sudoku, we format in the way we always have,
4214 * by having the digits unevenly spaced so that the dividing
4223 * For jigsaw puzzles, however, we must leave space between
4224 * _all_ pairs of digits for an optional dividing line, so we
4225 * have to move to the rather ugly
4235 * We deal with both cases using the same formatting code; we
4236 * simply invent a vmod value such that there's a vertical
4237 * dividing line before column i iff i is divisible by vmod
4238 * (so it's r in the first case and 1 in the second), and hmod
4239 * likewise for horizontal dividing lines.
4242 if (blocks
->r
!= 1) {
4250 * Line length: we have cr digits, each with a space after it,
4251 * and (cr-1)/vmod dividing lines, each with a space after it.
4252 * The final space is replaced by a newline, but that doesn't
4253 * affect the length.
4255 linelen
= 2*(cr
+ (cr
-1)/vmod
);
4258 * Number of lines: we have cr rows of digits, and (cr-1)/hmod
4261 nlines
= cr
+ (cr
-1)/hmod
;
4264 * Allocate the space.
4266 totallen
= linelen
* nlines
;
4267 ret
= snewn(totallen
+1, char); /* leave room for terminating NUL */
4273 for (y
= 0; y
< cr
; y
++) {
4277 for (x
= 0; x
< cr
; x
++) {
4281 digit d
= grid
[y
*cr
+x
];
4285 * Empty space: we usually write a dot, but we'll
4286 * highlight spaces on the X-diagonals (in X mode)
4287 * by using underscores instead.
4289 if (xtype
&& (ondiag0(y
*cr
+x
) || ondiag1(y
*cr
+x
)))
4293 } else if (d
<= 9) {
4310 * Optional dividing line.
4312 if (blocks
->whichblock
[y
*cr
+x
] != blocks
->whichblock
[y
*cr
+x
+1])
4319 if (y
== cr
-1 || (y
+1) % hmod
)
4325 for (x
= 0; x
< cr
; x
++) {
4330 * Division between two squares. This varies
4331 * complicatedly in length.
4333 dwid
= 2; /* digit and its following space */
4335 dwid
--; /* no following space at end of line */
4336 if (x
> 0 && x
% vmod
== 0)
4337 dwid
++; /* preceding space after a divider */
4339 if (blocks
->whichblock
[y
*cr
+x
] != blocks
->whichblock
[(y
+1)*cr
+x
])
4356 * Corner square. This is:
4357 * - a space if all four surrounding squares are in
4359 * - a vertical line if the two left ones are in one
4360 * block and the two right in another
4361 * - a horizontal line if the two top ones are in one
4362 * block and the two bottom in another
4363 * - a plus sign in all other cases. (If we had a
4364 * richer character set available we could break
4365 * this case up further by doing fun things with
4366 * line-drawing T-pieces.)
4368 tl
= blocks
->whichblock
[y
*cr
+x
];
4369 tr
= blocks
->whichblock
[y
*cr
+x
+1];
4370 bl
= blocks
->whichblock
[(y
+1)*cr
+x
];
4371 br
= blocks
->whichblock
[(y
+1)*cr
+x
+1];
4373 if (tl
== tr
&& tr
== bl
&& bl
== br
)
4375 else if (tl
== bl
&& tr
== br
)
4377 else if (tl
== tr
&& bl
== br
)
4386 assert(p
- ret
== totallen
);
4391 static int game_can_format_as_text_now(game_params
*params
)
4394 * Formatting Killer puzzles as text is currently unsupported. I
4395 * can't think of any sensible way of doing it which doesn't
4396 * involve expanding the puzzle to such a large scale as to make
4404 static char *game_text_format(game_state
*state
)
4406 assert(!state
->kblocks
);
4407 return grid_text_format(state
->cr
, state
->blocks
, state
->xtype
,
4413 * These are the coordinates of the currently highlighted
4414 * square on the grid, if hshow = 1.
4418 * This indicates whether the current highlight is a
4419 * pencil-mark one or a real one.
4423 * This indicates whether or not we're showing the highlight
4424 * (used to be hx = hy = -1); important so that when we're
4425 * using the cursor keys it doesn't keep coming back at a
4426 * fixed position. When hshow = 1, pressing a valid number
4427 * or letter key or Space will enter that number or letter in the grid.
4431 * This indicates whether we're using the highlight as a cursor;
4432 * it means that it doesn't vanish on a keypress, and that it is
4433 * allowed on immutable squares.
4438 static game_ui
*new_ui(game_state
*state
)
4440 game_ui
*ui
= snew(game_ui
);
4442 ui
->hx
= ui
->hy
= 0;
4443 ui
->hpencil
= ui
->hshow
= ui
->hcursor
= 0;
4448 static void free_ui(game_ui
*ui
)
4453 static char *encode_ui(game_ui
*ui
)
4458 static void decode_ui(game_ui
*ui
, char *encoding
)
4462 static void game_changed_state(game_ui
*ui
, game_state
*oldstate
,
4463 game_state
*newstate
)
4465 int cr
= newstate
->cr
;
4467 * We prevent pencil-mode highlighting of a filled square, unless
4468 * we're using the cursor keys. So if the user has just filled in
4469 * a square which we had a pencil-mode highlight in (by Undo, or
4470 * by Redo, or by Solve), then we cancel the highlight.
4472 if (ui
->hshow
&& ui
->hpencil
&& !ui
->hcursor
&&
4473 newstate
->grid
[ui
->hy
* cr
+ ui
->hx
] != 0) {
4478 struct game_drawstate
{
4483 unsigned char *pencil
;
4485 /* This is scratch space used within a single call to game_redraw. */
4486 int nregions
, *entered_items
;
4489 static char *interpret_move(game_state
*state
, game_ui
*ui
, game_drawstate
*ds
,
4490 int x
, int y
, int button
)
4496 button
&= ~MOD_MASK
;
4498 tx
= (x
+ TILE_SIZE
- BORDER
) / TILE_SIZE
- 1;
4499 ty
= (y
+ TILE_SIZE
- BORDER
) / TILE_SIZE
- 1;
4501 if (tx
>= 0 && tx
< cr
&& ty
>= 0 && ty
< cr
) {
4502 if (button
== LEFT_BUTTON
) {
4503 if (state
->immutable
[ty
*cr
+tx
]) {
4505 } else if (tx
== ui
->hx
&& ty
== ui
->hy
&&
4506 ui
->hshow
&& ui
->hpencil
== 0) {
4515 return ""; /* UI activity occurred */
4517 if (button
== RIGHT_BUTTON
) {
4519 * Pencil-mode highlighting for non filled squares.
4521 if (state
->grid
[ty
*cr
+tx
] == 0) {
4522 if (tx
== ui
->hx
&& ty
== ui
->hy
&&
4523 ui
->hshow
&& ui
->hpencil
) {
4535 return ""; /* UI activity occurred */
4538 if (IS_CURSOR_MOVE(button
)) {
4539 move_cursor(button
, &ui
->hx
, &ui
->hy
, cr
, cr
, 0);
4540 ui
->hshow
= ui
->hcursor
= 1;
4544 (button
== CURSOR_SELECT
)) {
4545 ui
->hpencil
= 1 - ui
->hpencil
;
4551 ((button
>= '0' && button
<= '9' && button
- '0' <= cr
) ||
4552 (button
>= 'a' && button
<= 'z' && button
- 'a' + 10 <= cr
) ||
4553 (button
>= 'A' && button
<= 'Z' && button
- 'A' + 10 <= cr
) ||
4554 button
== CURSOR_SELECT2
|| button
== '\b')) {
4555 int n
= button
- '0';
4556 if (button
>= 'A' && button
<= 'Z')
4557 n
= button
- 'A' + 10;
4558 if (button
>= 'a' && button
<= 'z')
4559 n
= button
- 'a' + 10;
4560 if (button
== CURSOR_SELECT2
|| button
== '\b')
4564 * Can't overwrite this square. This can only happen here
4565 * if we're using the cursor keys.
4567 if (state
->immutable
[ui
->hy
*cr
+ui
->hx
])
4571 * Can't make pencil marks in a filled square. Again, this
4572 * can only become highlighted if we're using cursor keys.
4574 if (ui
->hpencil
&& state
->grid
[ui
->hy
*cr
+ui
->hx
])
4577 sprintf(buf
, "%c%d,%d,%d",
4578 (char)(ui
->hpencil
&& n
> 0 ? 'P' : 'R'), ui
->hx
, ui
->hy
, n
);
4580 if (!ui
->hcursor
) ui
->hshow
= 0;
4588 static game_state
*execute_move(game_state
*from
, char *move
)
4594 if (move
[0] == 'S') {
4597 ret
= dup_game(from
);
4598 ret
->completed
= ret
->cheated
= TRUE
;
4601 for (n
= 0; n
< cr
*cr
; n
++) {
4602 ret
->grid
[n
] = atoi(p
);
4604 if (!*p
|| ret
->grid
[n
] < 1 || ret
->grid
[n
] > cr
) {
4609 while (*p
&& isdigit((unsigned char)*p
)) p
++;
4614 } else if ((move
[0] == 'P' || move
[0] == 'R') &&
4615 sscanf(move
+1, "%d,%d,%d", &x
, &y
, &n
) == 3 &&
4616 x
>= 0 && x
< cr
&& y
>= 0 && y
< cr
&& n
>= 0 && n
<= cr
) {
4618 ret
= dup_game(from
);
4619 if (move
[0] == 'P' && n
> 0) {
4620 int index
= (y
*cr
+x
) * cr
+ (n
-1);
4621 ret
->pencil
[index
] = !ret
->pencil
[index
];
4623 ret
->grid
[y
*cr
+x
] = n
;
4624 memset(ret
->pencil
+ (y
*cr
+x
)*cr
, 0, cr
);
4627 * We've made a real change to the grid. Check to see
4628 * if the game has been completed.
4630 if (!ret
->completed
&& check_valid(cr
, ret
->blocks
, ret
->kblocks
,
4631 ret
->xtype
, ret
->grid
)) {
4632 ret
->completed
= TRUE
;
4637 return NULL
; /* couldn't parse move string */
4640 /* ----------------------------------------------------------------------
4644 #define SIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
4645 #define GETTILESIZE(cr, w) ( (double)(w-1) / (double)(cr+1) )
4647 static void game_compute_size(game_params
*params
, int tilesize
,
4650 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
4651 struct { int tilesize
; } ads
, *ds
= &ads
;
4652 ads
.tilesize
= tilesize
;
4654 *x
= SIZE(params
->c
* params
->r
);
4655 *y
= SIZE(params
->c
* params
->r
);
4658 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
4659 game_params
*params
, int tilesize
)
4661 ds
->tilesize
= tilesize
;
4664 static float *game_colours(frontend
*fe
, int *ncolours
)
4666 float *ret
= snewn(3 * NCOLOURS
, float);
4668 frontend_default_colour(fe
, &ret
[COL_BACKGROUND
* 3]);
4670 ret
[COL_XDIAGONALS
* 3 + 0] = 0.9F
* ret
[COL_BACKGROUND
* 3 + 0];
4671 ret
[COL_XDIAGONALS
* 3 + 1] = 0.9F
* ret
[COL_BACKGROUND
* 3 + 1];
4672 ret
[COL_XDIAGONALS
* 3 + 2] = 0.9F
* ret
[COL_BACKGROUND
* 3 + 2];
4674 ret
[COL_GRID
* 3 + 0] = 0.0F
;
4675 ret
[COL_GRID
* 3 + 1] = 0.0F
;
4676 ret
[COL_GRID
* 3 + 2] = 0.0F
;
4678 ret
[COL_CLUE
* 3 + 0] = 0.0F
;
4679 ret
[COL_CLUE
* 3 + 1] = 0.0F
;
4680 ret
[COL_CLUE
* 3 + 2] = 0.0F
;
4682 ret
[COL_USER
* 3 + 0] = 0.0F
;
4683 ret
[COL_USER
* 3 + 1] = 0.6F
* ret
[COL_BACKGROUND
* 3 + 1];
4684 ret
[COL_USER
* 3 + 2] = 0.0F
;
4686 ret
[COL_HIGHLIGHT
* 3 + 0] = 0.78F
* ret
[COL_BACKGROUND
* 3 + 0];
4687 ret
[COL_HIGHLIGHT
* 3 + 1] = 0.78F
* ret
[COL_BACKGROUND
* 3 + 1];
4688 ret
[COL_HIGHLIGHT
* 3 + 2] = 0.78F
* ret
[COL_BACKGROUND
* 3 + 2];
4690 ret
[COL_ERROR
* 3 + 0] = 1.0F
;
4691 ret
[COL_ERROR
* 3 + 1] = 0.0F
;
4692 ret
[COL_ERROR
* 3 + 2] = 0.0F
;
4694 ret
[COL_PENCIL
* 3 + 0] = 0.5F
* ret
[COL_BACKGROUND
* 3 + 0];
4695 ret
[COL_PENCIL
* 3 + 1] = 0.5F
* ret
[COL_BACKGROUND
* 3 + 1];
4696 ret
[COL_PENCIL
* 3 + 2] = ret
[COL_BACKGROUND
* 3 + 2];
4698 ret
[COL_KILLER
* 3 + 0] = 0.5F
* ret
[COL_BACKGROUND
* 3 + 0];
4699 ret
[COL_KILLER
* 3 + 1] = 0.5F
* ret
[COL_BACKGROUND
* 3 + 1];
4700 ret
[COL_KILLER
* 3 + 2] = 0.1F
* ret
[COL_BACKGROUND
* 3 + 2];
4702 *ncolours
= NCOLOURS
;
4706 static game_drawstate
*game_new_drawstate(drawing
*dr
, game_state
*state
)
4708 struct game_drawstate
*ds
= snew(struct game_drawstate
);
4711 ds
->started
= FALSE
;
4713 ds
->xtype
= state
->xtype
;
4714 ds
->grid
= snewn(cr
*cr
, digit
);
4715 memset(ds
->grid
, cr
+2, cr
*cr
);
4716 ds
->pencil
= snewn(cr
*cr
*cr
, digit
);
4717 memset(ds
->pencil
, 0, cr
*cr
*cr
);
4718 ds
->hl
= snewn(cr
*cr
, unsigned char);
4719 memset(ds
->hl
, 0, cr
*cr
);
4721 * ds->entered_items needs one row of cr entries per entity in
4722 * which digits may not be duplicated. That's one for each row,
4723 * each column, each block, each diagonal, and each Killer cage.
4725 ds
->nregions
= cr
*3 + 2;
4727 ds
->nregions
+= state
->kblocks
->nr_blocks
;
4728 ds
->entered_items
= snewn(cr
* ds
->nregions
, int);
4729 ds
->tilesize
= 0; /* not decided yet */
4733 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
4738 sfree(ds
->entered_items
);
4742 static void draw_number(drawing
*dr
, game_drawstate
*ds
, game_state
*state
,
4743 int x
, int y
, int hl
)
4748 int col_killer
= (hl
& 32 ? COL_ERROR
: COL_KILLER
);
4751 if (ds
->grid
[y
*cr
+x
] == state
->grid
[y
*cr
+x
] &&
4752 ds
->hl
[y
*cr
+x
] == hl
&&
4753 !memcmp(ds
->pencil
+(y
*cr
+x
)*cr
, state
->pencil
+(y
*cr
+x
)*cr
, cr
))
4754 return; /* no change required */
4756 tx
= BORDER
+ x
* TILE_SIZE
+ 1 + GRIDEXTRA
;
4757 ty
= BORDER
+ y
* TILE_SIZE
+ 1 + GRIDEXTRA
;
4761 cw
= tw
= TILE_SIZE
-1-2*GRIDEXTRA
;
4762 ch
= th
= TILE_SIZE
-1-2*GRIDEXTRA
;
4764 if (x
> 0 && state
->blocks
->whichblock
[y
*cr
+x
] == state
->blocks
->whichblock
[y
*cr
+x
-1])
4765 cx
-= GRIDEXTRA
, cw
+= GRIDEXTRA
;
4766 if (x
+1 < cr
&& state
->blocks
->whichblock
[y
*cr
+x
] == state
->blocks
->whichblock
[y
*cr
+x
+1])
4768 if (y
> 0 && state
->blocks
->whichblock
[y
*cr
+x
] == state
->blocks
->whichblock
[(y
-1)*cr
+x
])
4769 cy
-= GRIDEXTRA
, ch
+= GRIDEXTRA
;
4770 if (y
+1 < cr
&& state
->blocks
->whichblock
[y
*cr
+x
] == state
->blocks
->whichblock
[(y
+1)*cr
+x
])
4773 clip(dr
, cx
, cy
, cw
, ch
);
4775 /* background needs erasing */
4776 draw_rect(dr
, cx
, cy
, cw
, ch
,
4777 ((hl
& 15) == 1 ? COL_HIGHLIGHT
:
4778 (ds
->xtype
&& (ondiag0(y
*cr
+x
) || ondiag1(y
*cr
+x
))) ? COL_XDIAGONALS
:
4782 * Draw the corners of thick lines in corner-adjacent squares,
4783 * which jut into this square by one pixel.
4785 if (x
> 0 && y
> 0 && state
->blocks
->whichblock
[y
*cr
+x
] != state
->blocks
->whichblock
[(y
-1)*cr
+x
-1])
4786 draw_rect(dr
, tx
-GRIDEXTRA
, ty
-GRIDEXTRA
, GRIDEXTRA
, GRIDEXTRA
, COL_GRID
);
4787 if (x
+1 < cr
&& y
> 0 && state
->blocks
->whichblock
[y
*cr
+x
] != state
->blocks
->whichblock
[(y
-1)*cr
+x
+1])
4788 draw_rect(dr
, tx
+TILE_SIZE
-1-2*GRIDEXTRA
, ty
-GRIDEXTRA
, GRIDEXTRA
, GRIDEXTRA
, COL_GRID
);
4789 if (x
> 0 && y
+1 < cr
&& state
->blocks
->whichblock
[y
*cr
+x
] != state
->blocks
->whichblock
[(y
+1)*cr
+x
-1])
4790 draw_rect(dr
, tx
-GRIDEXTRA
, ty
+TILE_SIZE
-1-2*GRIDEXTRA
, GRIDEXTRA
, GRIDEXTRA
, COL_GRID
);
4791 if (x
+1 < cr
&& y
+1 < cr
&& state
->blocks
->whichblock
[y
*cr
+x
] != state
->blocks
->whichblock
[(y
+1)*cr
+x
+1])
4792 draw_rect(dr
, tx
+TILE_SIZE
-1-2*GRIDEXTRA
, ty
+TILE_SIZE
-1-2*GRIDEXTRA
, GRIDEXTRA
, GRIDEXTRA
, COL_GRID
);
4794 /* pencil-mode highlight */
4795 if ((hl
& 15) == 2) {
4799 coords
[2] = cx
+cw
/2;
4802 coords
[5] = cy
+ch
/2;
4803 draw_polygon(dr
, coords
, 3, COL_HIGHLIGHT
, COL_HIGHLIGHT
);
4806 if (state
->kblocks
) {
4807 int t
= GRIDEXTRA
* 3;
4808 int kcx
, kcy
, kcw
, kch
;
4810 int has_left
= 0, has_right
= 0, has_top
= 0, has_bottom
= 0;
4813 * In non-jigsaw mode, the Killer cages are placed at a
4814 * fixed offset from the outer edge of the cell dividing
4815 * lines, so that they look right whether those lines are
4816 * thick or thin. In jigsaw mode, however, doing this will
4817 * sometimes cause the cage outlines in adjacent squares to
4818 * fail to match up with each other, so we must offset a
4819 * fixed amount from the _centre_ of the cell dividing
4822 if (state
->blocks
->r
== 1) {
4839 * First, draw the lines dividing this area from neighbouring
4842 if (x
== 0 || state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[y
*cr
+x
-1])
4843 has_left
= 1, kl
+= t
;
4844 if (x
+1 >= cr
|| state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[y
*cr
+x
+1])
4845 has_right
= 1, kr
-= t
;
4846 if (y
== 0 || state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[(y
-1)*cr
+x
])
4847 has_top
= 1, kt
+= t
;
4848 if (y
+1 >= cr
|| state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[(y
+1)*cr
+x
])
4849 has_bottom
= 1, kb
-= t
;
4851 draw_line(dr
, kl
, kt
, kr
, kt
, col_killer
);
4853 draw_line(dr
, kl
, kb
, kr
, kb
, col_killer
);
4855 draw_line(dr
, kl
, kt
, kl
, kb
, col_killer
);
4857 draw_line(dr
, kr
, kt
, kr
, kb
, col_killer
);
4859 * Now, take care of the corners (just as for the normal borders).
4860 * We only need a corner if there wasn't a full edge.
4862 if (x
> 0 && y
> 0 && !has_left
&& !has_top
4863 && state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[(y
-1)*cr
+x
-1])
4865 draw_line(dr
, kl
, kt
+ t
, kl
+ t
, kt
+ t
, col_killer
);
4866 draw_line(dr
, kl
+ t
, kt
, kl
+ t
, kt
+ t
, col_killer
);
4868 if (x
+1 < cr
&& y
> 0 && !has_right
&& !has_top
4869 && state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[(y
-1)*cr
+x
+1])
4871 draw_line(dr
, kcx
+ kcw
- t
, kt
+ t
, kcx
+ kcw
, kt
+ t
, col_killer
);
4872 draw_line(dr
, kcx
+ kcw
- t
, kt
, kcx
+ kcw
- t
, kt
+ t
, col_killer
);
4874 if (x
> 0 && y
+1 < cr
&& !has_left
&& !has_bottom
4875 && state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[(y
+1)*cr
+x
-1])
4877 draw_line(dr
, kl
, kcy
+ kch
- t
, kl
+ t
, kcy
+ kch
- t
, col_killer
);
4878 draw_line(dr
, kl
+ t
, kcy
+ kch
- t
, kl
+ t
, kcy
+ kch
, col_killer
);
4880 if (x
+1 < cr
&& y
+1 < cr
&& !has_right
&& !has_bottom
4881 && state
->kblocks
->whichblock
[y
*cr
+x
] != state
->kblocks
->whichblock
[(y
+1)*cr
+x
+1])
4883 draw_line(dr
, kcx
+ kcw
- t
, kcy
+ kch
- t
, kcx
+ kcw
- t
, kcy
+ kch
, col_killer
);
4884 draw_line(dr
, kcx
+ kcw
- t
, kcy
+ kch
- t
, kcx
+ kcw
, kcy
+ kch
- t
, col_killer
);
4889 if (state
->killer
&& state
->kgrid
[y
*cr
+x
]) {
4890 sprintf (str
, "%d", state
->kgrid
[y
*cr
+x
]);
4891 draw_text(dr
, tx
+ GRIDEXTRA
* 4, ty
+ GRIDEXTRA
* 4 + TILE_SIZE
/4,
4892 FONT_VARIABLE
, TILE_SIZE
/4, ALIGN_VNORMAL
| ALIGN_HLEFT
,
4896 /* new number needs drawing? */
4897 if (state
->grid
[y
*cr
+x
]) {
4899 str
[0] = state
->grid
[y
*cr
+x
] + '0';
4901 str
[0] += 'a' - ('9'+1);
4902 draw_text(dr
, tx
+ TILE_SIZE
/2, ty
+ TILE_SIZE
/2,
4903 FONT_VARIABLE
, TILE_SIZE
/2, ALIGN_VCENTRE
| ALIGN_HCENTRE
,
4904 state
->immutable
[y
*cr
+x
] ? COL_CLUE
: (hl
& 16) ? COL_ERROR
: COL_USER
, str
);
4909 int pw
, ph
, minph
, pbest
, fontsize
;
4911 /* Count the pencil marks required. */
4912 for (i
= npencil
= 0; i
< cr
; i
++)
4913 if (state
->pencil
[(y
*cr
+x
)*cr
+i
])
4920 * Determine the bounding rectangle within which we're going
4921 * to put the pencil marks.
4923 /* Start with the whole square */
4924 pl
= tx
+ GRIDEXTRA
;
4925 pr
= pl
+ TILE_SIZE
- GRIDEXTRA
;
4926 pt
= ty
+ GRIDEXTRA
;
4927 pb
= pt
+ TILE_SIZE
- GRIDEXTRA
;
4928 if (state
->killer
) {
4930 * Make space for the Killer cages. We do this
4931 * unconditionally, for uniformity between squares,
4932 * rather than making it depend on whether a Killer
4933 * cage edge is actually present on any given side.
4935 pl
+= GRIDEXTRA
* 3;
4936 pr
-= GRIDEXTRA
* 3;
4937 pt
+= GRIDEXTRA
* 3;
4938 pb
-= GRIDEXTRA
* 3;
4939 if (state
->kgrid
[y
*cr
+x
] != 0) {
4940 /* Make further space for the Killer number. */
4947 * We arrange our pencil marks in a grid layout, with
4948 * the number of rows and columns adjusted to allow the
4949 * maximum font size.
4951 * So now we work out what the grid size ought to be.
4956 for (pw
= 3; pw
< max(npencil
,4); pw
++) {
4959 ph
= (npencil
+ pw
- 1) / pw
;
4960 ph
= max(ph
, minph
);
4961 fw
= (pr
- pl
) / (float)pw
;
4962 fh
= (pb
- pt
) / (float)ph
;
4964 if (fs
> bestsize
) {
4971 ph
= (npencil
+ pw
- 1) / pw
;
4972 ph
= max(ph
, minph
);
4975 * Now we've got our grid dimensions, work out the pixel
4976 * size of a grid element, and round it to the nearest
4977 * pixel. (We don't want rounding errors to make the
4978 * grid look uneven at low pixel sizes.)
4980 fontsize
= min((pr
- pl
) / pw
, (pb
- pt
) / ph
);
4983 * Centre the resulting figure in the square.
4985 pl
= tx
+ (TILE_SIZE
- fontsize
* pw
) / 2;
4986 pt
= ty
+ (TILE_SIZE
- fontsize
* ph
) / 2;
4989 * And move it down a bit if it's collided with the
4990 * Killer cage number.
4992 if (state
->killer
&& state
->kgrid
[y
*cr
+x
] != 0) {
4993 pt
= max(pt
, ty
+ GRIDEXTRA
* 3 + TILE_SIZE
/4);
4997 * Now actually draw the pencil marks.
4999 for (i
= j
= 0; i
< cr
; i
++)
5000 if (state
->pencil
[(y
*cr
+x
)*cr
+i
]) {
5001 int dx
= j
% pw
, dy
= j
/ pw
;
5006 str
[0] += 'a' - ('9'+1);
5007 draw_text(dr
, pl
+ fontsize
* (2*dx
+1) / 2,
5008 pt
+ fontsize
* (2*dy
+1) / 2,
5009 FONT_VARIABLE
, fontsize
,
5010 ALIGN_VCENTRE
| ALIGN_HCENTRE
, COL_PENCIL
, str
);
5018 draw_update(dr
, cx
, cy
, cw
, ch
);
5020 ds
->grid
[y
*cr
+x
] = state
->grid
[y
*cr
+x
];
5021 memcpy(ds
->pencil
+(y
*cr
+x
)*cr
, state
->pencil
+(y
*cr
+x
)*cr
, cr
);
5022 ds
->hl
[y
*cr
+x
] = hl
;
5025 static void game_redraw(drawing
*dr
, game_drawstate
*ds
, game_state
*oldstate
,
5026 game_state
*state
, int dir
, game_ui
*ui
,
5027 float animtime
, float flashtime
)
5034 * The initial contents of the window are not guaranteed
5035 * and can vary with front ends. To be on the safe side,
5036 * all games should start by drawing a big
5037 * background-colour rectangle covering the whole window.
5039 draw_rect(dr
, 0, 0, SIZE(cr
), SIZE(cr
), COL_BACKGROUND
);
5042 * Draw the grid. We draw it as a big thick rectangle of
5043 * COL_GRID initially; individual calls to draw_number()
5044 * will poke the right-shaped holes in it.
5046 draw_rect(dr
, BORDER
-GRIDEXTRA
, BORDER
-GRIDEXTRA
,
5047 cr
*TILE_SIZE
+1+2*GRIDEXTRA
, cr
*TILE_SIZE
+1+2*GRIDEXTRA
,
5052 * This array is used to keep track of rows, columns and boxes
5053 * which contain a number more than once.
5055 for (x
= 0; x
< cr
* ds
->nregions
; x
++)
5056 ds
->entered_items
[x
] = 0;
5057 for (x
= 0; x
< cr
; x
++)
5058 for (y
= 0; y
< cr
; y
++) {
5059 digit d
= state
->grid
[y
*cr
+x
];
5064 ds
->entered_items
[x
*cr
+d
-1]++;
5067 ds
->entered_items
[(y
+cr
)*cr
+d
-1]++;
5070 box
= state
->blocks
->whichblock
[y
*cr
+x
];
5071 ds
->entered_items
[(box
+2*cr
)*cr
+d
-1]++;
5075 if (ondiag0(y
*cr
+x
))
5076 ds
->entered_items
[(3*cr
)*cr
+d
-1]++;
5077 if (ondiag1(y
*cr
+x
))
5078 ds
->entered_items
[(3*cr
+1)*cr
+d
-1]++;
5082 if (state
->kblocks
) {
5083 kbox
= state
->kblocks
->whichblock
[y
*cr
+x
];
5084 ds
->entered_items
[(kbox
+3*cr
+2)*cr
+d
-1]++;
5090 * Draw any numbers which need redrawing.
5092 for (x
= 0; x
< cr
; x
++) {
5093 for (y
= 0; y
< cr
; y
++) {
5095 digit d
= state
->grid
[y
*cr
+x
];
5097 if (flashtime
> 0 &&
5098 (flashtime
<= FLASH_TIME
/3 ||
5099 flashtime
>= FLASH_TIME
*2/3))
5102 /* Highlight active input areas. */
5103 if (x
== ui
->hx
&& y
== ui
->hy
&& ui
->hshow
)
5104 highlight
= ui
->hpencil
? 2 : 1;
5106 /* Mark obvious errors (ie, numbers which occur more than once
5107 * in a single row, column, or box). */
5108 if (d
&& (ds
->entered_items
[x
*cr
+d
-1] > 1 ||
5109 ds
->entered_items
[(y
+cr
)*cr
+d
-1] > 1 ||
5110 ds
->entered_items
[(state
->blocks
->whichblock
[y
*cr
+x
]
5111 +2*cr
)*cr
+d
-1] > 1 ||
5112 (ds
->xtype
&& ((ondiag0(y
*cr
+x
) &&
5113 ds
->entered_items
[(3*cr
)*cr
+d
-1] > 1) ||
5115 ds
->entered_items
[(3*cr
+1)*cr
+d
-1]>1)))||
5117 ds
->entered_items
[(state
->kblocks
->whichblock
[y
*cr
+x
]
5118 +3*cr
+2)*cr
+d
-1] > 1)))
5121 if (d
&& state
->kblocks
) {
5122 int i
, b
= state
->kblocks
->whichblock
[y
*cr
+x
];
5123 int n_squares
= state
->kblocks
->nr_squares
[b
];
5124 int sum
= 0, clue
= 0;
5125 for (i
= 0; i
< n_squares
; i
++) {
5126 int xy
= state
->kblocks
->blocks
[b
][i
];
5127 if (state
->grid
[xy
] == 0)
5130 sum
+= state
->grid
[xy
];
5131 if (state
->kgrid
[xy
]) {
5133 clue
= state
->kgrid
[xy
];
5137 if (i
== n_squares
) {
5144 draw_number(dr
, ds
, state
, x
, y
, highlight
);
5149 * Update the _entire_ grid if necessary.
5152 draw_update(dr
, 0, 0, SIZE(cr
), SIZE(cr
));
5157 static float game_anim_length(game_state
*oldstate
, game_state
*newstate
,
5158 int dir
, game_ui
*ui
)
5163 static float game_flash_length(game_state
*oldstate
, game_state
*newstate
,
5164 int dir
, game_ui
*ui
)
5166 if (!oldstate
->completed
&& newstate
->completed
&&
5167 !oldstate
->cheated
&& !newstate
->cheated
)
5172 static int game_timing_state(game_state
*state
, game_ui
*ui
)
5174 if (state
->completed
)
5179 static void game_print_size(game_params
*params
, float *x
, float *y
)
5184 * I'll use 9mm squares by default. They should be quite big
5185 * for this game, because players will want to jot down no end
5186 * of pencil marks in the squares.
5188 game_compute_size(params
, 900, &pw
, &ph
);
5194 * Subfunction to draw the thick lines between cells. In order to do
5195 * this using the line-drawing rather than rectangle-drawing API (so
5196 * as to get line thicknesses to scale correctly) and yet have
5197 * correctly mitred joins between lines, we must do this by tracing
5198 * the boundary of each sub-block and drawing it in one go as a
5201 * This subfunction is also reused with thinner dotted lines to
5202 * outline the Killer cages, this time offsetting the outline toward
5203 * the interior of the affected squares.
5205 static void outline_block_structure(drawing
*dr
, game_drawstate
*ds
,
5207 struct block_structure
*blocks
,
5213 int x
, y
, dx
, dy
, sx
, sy
, sdx
, sdy
;
5216 * Maximum perimeter of a k-omino is 2k+2. (Proof: start
5217 * with k unconnected squares, with total perimeter 4k.
5218 * Now repeatedly join two disconnected components
5219 * together into a larger one; every time you do so you
5220 * remove at least two unit edges, and you require k-1 of
5221 * these operations to create a single connected piece, so
5222 * you must have at most 4k-2(k-1) = 2k+2 unit edges left
5225 coords
= snewn(4*cr
+4, int); /* 2k+2 points, 2 coords per point */
5228 * Iterate over all the blocks.
5230 for (bi
= 0; bi
< blocks
->nr_blocks
; bi
++) {
5231 if (blocks
->nr_squares
[bi
] == 0)
5235 * For each block, find a starting square within it
5236 * which has a boundary at the left.
5238 for (i
= 0; i
< cr
; i
++) {
5239 int j
= blocks
->blocks
[bi
][i
];
5240 if (j
% cr
== 0 || blocks
->whichblock
[j
-1] != bi
)
5243 assert(i
< cr
); /* every block must have _some_ leftmost square */
5244 x
= blocks
->blocks
[bi
][i
] % cr
;
5245 y
= blocks
->blocks
[bi
][i
] / cr
;
5250 * Now begin tracing round the perimeter. At all
5251 * times, (x,y) describes some square within the
5252 * block, and (x+dx,y+dy) is some adjacent square
5253 * outside it; so the edge between those two squares
5254 * is always an edge of the block.
5256 sx
= x
, sy
= y
, sdx
= dx
, sdy
= dy
; /* save starting position */
5259 int cx
, cy
, tx
, ty
, nin
;
5262 * Advance to the next edge, by looking at the two
5263 * squares beyond it. If they're both outside the block,
5264 * we turn right (by leaving x,y the same and rotating
5265 * dx,dy clockwise); if they're both inside, we turn
5266 * left (by rotating dx,dy anticlockwise and contriving
5267 * to leave x+dx,y+dy unchanged); if one of each, we go
5268 * straight on (and may enforce by assertion that
5269 * they're one of each the _right_ way round).
5274 nin
+= (tx
>= 0 && tx
< cr
&& ty
>= 0 && ty
< cr
&&
5275 blocks
->whichblock
[ty
*cr
+tx
] == bi
);
5278 nin
+= (tx
>= 0 && tx
< cr
&& ty
>= 0 && ty
< cr
&&
5279 blocks
->whichblock
[ty
*cr
+tx
] == bi
);
5288 } else if (nin
== 2) {
5312 * Now enforce by assertion that we ended up
5313 * somewhere sensible.
5315 assert(x
>= 0 && x
< cr
&& y
>= 0 && y
< cr
&&
5316 blocks
->whichblock
[y
*cr
+x
] == bi
);
5317 assert(x
+dx
< 0 || x
+dx
>= cr
|| y
+dy
< 0 || y
+dy
>= cr
||
5318 blocks
->whichblock
[(y
+dy
)*cr
+(x
+dx
)] != bi
);
5321 * Record the point we just went past at one end of the
5322 * edge. To do this, we translate (x,y) down and right
5323 * by half a unit (so they're describing a point in the
5324 * _centre_ of the square) and then translate back again
5325 * in a manner rotated by dy and dx.
5328 cx
= ((2*x
+1) + dy
+ dx
) / 2;
5329 cy
= ((2*y
+1) - dx
+ dy
) / 2;
5330 coords
[2*n
+0] = BORDER
+ cx
* TILE_SIZE
;
5331 coords
[2*n
+1] = BORDER
+ cy
* TILE_SIZE
;
5332 coords
[2*n
+0] -= dx
* inset
;
5333 coords
[2*n
+1] -= dy
* inset
;
5336 * We turned right, so inset this corner back along
5337 * the edge towards the centre of the square.
5339 coords
[2*n
+0] -= dy
* inset
;
5340 coords
[2*n
+1] += dx
* inset
;
5341 } else if (nin
== 2) {
5343 * We turned left, so inset this corner further
5344 * _out_ along the edge into the next square.
5346 coords
[2*n
+0] += dy
* inset
;
5347 coords
[2*n
+1] -= dx
* inset
;
5351 } while (x
!= sx
|| y
!= sy
|| dx
!= sdx
|| dy
!= sdy
);
5354 * That's our polygon; now draw it.
5356 draw_polygon(dr
, coords
, n
, -1, ink
);
5362 static void game_print(drawing
*dr
, game_state
*state
, int tilesize
)
5365 int ink
= print_mono_colour(dr
, 0);
5368 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
5369 game_drawstate ads
, *ds
= &ads
;
5370 game_set_size(dr
, ds
, NULL
, tilesize
);
5375 print_line_width(dr
, 3 * TILE_SIZE
/ 40);
5376 draw_rect_outline(dr
, BORDER
, BORDER
, cr
*TILE_SIZE
, cr
*TILE_SIZE
, ink
);
5379 * Highlight X-diagonal squares.
5383 int xhighlight
= print_grey_colour(dr
, 0.90F
);
5385 for (i
= 0; i
< cr
; i
++)
5386 draw_rect(dr
, BORDER
+ i
*TILE_SIZE
, BORDER
+ i
*TILE_SIZE
,
5387 TILE_SIZE
, TILE_SIZE
, xhighlight
);
5388 for (i
= 0; i
< cr
; i
++)
5389 if (i
*2 != cr
-1) /* avoid redoing centre square, just for fun */
5390 draw_rect(dr
, BORDER
+ i
*TILE_SIZE
,
5391 BORDER
+ (cr
-1-i
)*TILE_SIZE
,
5392 TILE_SIZE
, TILE_SIZE
, xhighlight
);
5398 for (x
= 1; x
< cr
; x
++) {
5399 print_line_width(dr
, TILE_SIZE
/ 40);
5400 draw_line(dr
, BORDER
+x
*TILE_SIZE
, BORDER
,
5401 BORDER
+x
*TILE_SIZE
, BORDER
+cr
*TILE_SIZE
, ink
);
5403 for (y
= 1; y
< cr
; y
++) {
5404 print_line_width(dr
, TILE_SIZE
/ 40);
5405 draw_line(dr
, BORDER
, BORDER
+y
*TILE_SIZE
,
5406 BORDER
+cr
*TILE_SIZE
, BORDER
+y
*TILE_SIZE
, ink
);
5410 * Thick lines between cells.
5412 print_line_width(dr
, 3 * TILE_SIZE
/ 40);
5413 outline_block_structure(dr
, ds
, state
, state
->blocks
, ink
, 0);
5416 * Killer cages and their totals.
5418 if (state
->kblocks
) {
5419 print_line_width(dr
, TILE_SIZE
/ 40);
5420 print_line_dotted(dr
, TRUE
);
5421 outline_block_structure(dr
, ds
, state
, state
->kblocks
, ink
,
5422 5 * TILE_SIZE
/ 40);
5423 print_line_dotted(dr
, FALSE
);
5424 for (y
= 0; y
< cr
; y
++)
5425 for (x
= 0; x
< cr
; x
++)
5426 if (state
->kgrid
[y
*cr
+x
]) {
5428 sprintf(str
, "%d", state
->kgrid
[y
*cr
+x
]);
5430 BORDER
+x
*TILE_SIZE
+ 7*TILE_SIZE
/40,
5431 BORDER
+y
*TILE_SIZE
+ 16*TILE_SIZE
/40,
5432 FONT_VARIABLE
, TILE_SIZE
/4,
5433 ALIGN_VNORMAL
| ALIGN_HLEFT
,
5439 * Standard (non-Killer) clue numbers.
5441 for (y
= 0; y
< cr
; y
++)
5442 for (x
= 0; x
< cr
; x
++)
5443 if (state
->grid
[y
*cr
+x
]) {
5446 str
[0] = state
->grid
[y
*cr
+x
] + '0';
5448 str
[0] += 'a' - ('9'+1);
5449 draw_text(dr
, BORDER
+ x
*TILE_SIZE
+ TILE_SIZE
/2,
5450 BORDER
+ y
*TILE_SIZE
+ TILE_SIZE
/2,
5451 FONT_VARIABLE
, TILE_SIZE
/2,
5452 ALIGN_VCENTRE
| ALIGN_HCENTRE
, ink
, str
);
5457 #define thegame solo
5460 const struct game thegame
= {
5461 "Solo", "games.solo", "solo",
5468 TRUE
, game_configure
, custom_params
,
5476 TRUE
, game_can_format_as_text_now
, game_text_format
,
5484 PREFERRED_TILE_SIZE
, game_compute_size
, game_set_size
,
5487 game_free_drawstate
,
5491 TRUE
, FALSE
, game_print_size
, game_print
,
5492 FALSE
, /* wants_statusbar */
5493 FALSE
, game_timing_state
,
5494 REQUIRE_RBUTTON
| REQUIRE_NUMPAD
, /* flags */
5497 #ifdef STANDALONE_SOLVER
5499 int main(int argc
, char **argv
)
5503 char *id
= NULL
, *desc
, *err
;
5505 struct difficulty dlev
;
5507 while (--argc
> 0) {
5509 if (!strcmp(p
, "-v")) {
5510 solver_show_working
= TRUE
;
5511 } else if (!strcmp(p
, "-g")) {
5513 } else if (*p
== '-') {
5514 fprintf(stderr
, "%s: unrecognised option `%s'\n", argv
[0], p
);
5522 fprintf(stderr
, "usage: %s [-g | -v] <game_id>\n", argv
[0]);
5526 desc
= strchr(id
, ':');
5528 fprintf(stderr
, "%s: game id expects a colon in it\n", argv
[0]);
5533 p
= default_params();
5534 decode_params(p
, id
);
5535 err
= validate_desc(p
, desc
);
5537 fprintf(stderr
, "%s: %s\n", argv
[0], err
);
5540 s
= new_game(NULL
, p
, desc
);
5542 dlev
.maxdiff
= DIFF_RECURSIVE
;
5543 dlev
.maxkdiff
= DIFF_KINTERSECT
;
5544 solver(s
->cr
, s
->blocks
, s
->kblocks
, s
->xtype
, s
->grid
, s
->kgrid
, &dlev
);
5546 printf("Difficulty rating: %s\n",
5547 dlev
.diff
==DIFF_BLOCK
? "Trivial (blockwise positional elimination only)":
5548 dlev
.diff
==DIFF_SIMPLE
? "Basic (row/column/number elimination required)":
5549 dlev
.diff
==DIFF_INTERSECT
? "Intermediate (intersectional analysis required)":
5550 dlev
.diff
==DIFF_SET
? "Advanced (set elimination required)":
5551 dlev
.diff
==DIFF_EXTREME
? "Extreme (complex non-recursive techniques required)":
5552 dlev
.diff
==DIFF_RECURSIVE
? "Unreasonable (guesswork and backtracking required)":
5553 dlev
.diff
==DIFF_AMBIGUOUS
? "Ambiguous (multiple solutions exist)":
5554 dlev
.diff
==DIFF_IMPOSSIBLE
? "Impossible (no solution exists)":
5555 "INTERNAL ERROR: unrecognised difficulty code");
5557 printf("Killer diffculty: %s\n",
5558 dlev
.kdiff
==DIFF_KSINGLE
? "Trivial (single square cages only)":
5559 dlev
.kdiff
==DIFF_KMINMAX
? "Simple (maximum sum analysis required)":
5560 dlev
.kdiff
==DIFF_KSUMS
? "Intermediate (sum possibilities)":
5561 dlev
.kdiff
==DIFF_KINTERSECT
? "Advanced (sum region intersections)":
5562 "INTERNAL ERROR: unrecognised difficulty code");
5564 printf("%s\n", grid_text_format(s
->cr
, s
->blocks
, s
->xtype
, s
->grid
));
5572 /* vim: set shiftwidth=4 tabstop=8: */