Qt frontend: add missing dependency on lib to all games.
[sgt-puzzles/ydirson.git] / slant.c
blob52f21d6b86e6db651096147649fa576d58c3d0ff
1 /*
2 * slant.c: Puzzle from nikoli.co.jp involving drawing a diagonal
3 * line through each square of a grid.
4 */
6 /*
7 * In this puzzle you have a grid of squares, each of which must
8 * contain a diagonal line; you also have clue numbers placed at
9 * _points_ of that grid, which means there's a (w+1) x (h+1) array
10 * of possible clue positions.
12 * I'm therefore going to adopt a rigid convention throughout this
13 * source file of using w and h for the dimensions of the grid of
14 * squares, and W and H for the dimensions of the grid of points.
15 * Thus, W == w+1 and H == h+1 always.
17 * Clue arrays will be W*H `signed char's, and the clue at each
18 * point will be a number from 0 to 4, or -1 if there's no clue.
20 * Solution arrays will be W*H `signed char's, and the number at
21 * each point will be +1 for a forward slash (/), -1 for a
22 * backslash (\), and 0 for unknown.
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <stdarg.h>
28 #include <string.h>
29 #include <assert.h>
30 #include <ctype.h>
31 #include <math.h>
33 #include "puzzles.h"
35 enum {
36 COL_BACKGROUND,
37 COL_GRID,
38 COL_INK,
39 COL_SLANT1,
40 COL_SLANT2,
41 COL_ERROR,
42 COL_CURSOR,
43 COL_FILLEDSQUARE,
44 NCOLOURS
48 * In standalone solver mode, `verbose' is a variable which can be
49 * set by command-line option; in debugging mode it's simply always
50 * true.
52 #if defined STANDALONE_SOLVER
53 #define SOLVER_DIAGNOSTICS
54 int verbose = FALSE;
55 #elif defined SOLVER_DIAGNOSTICS
56 #define verbose TRUE
57 #endif
60 * Difficulty levels. I do some macro ickery here to ensure that my
61 * enum and the various forms of my name list always match up.
63 #define DIFFLIST(A) \
64 A(EASY,Easy,e) \
65 A(HARD,Hard,h)
66 #define ENUM(upper,title,lower) DIFF_ ## upper,
67 #define TITLE(upper,title,lower) #title,
68 #define ENCODE(upper,title,lower) #lower
69 #define CONFIG(upper,title,lower) ":" #title
70 enum { DIFFLIST(ENUM) DIFFCOUNT };
71 static char const *const slant_diffnames[] = { DIFFLIST(TITLE) };
72 static char const slant_diffchars[] = DIFFLIST(ENCODE);
73 #define DIFFCONFIG DIFFLIST(CONFIG)
75 struct game_params {
76 int w, h, diff;
79 typedef struct game_clues {
80 int w, h;
81 signed char *clues;
82 int *tmpdsf;
83 int refcount;
84 } game_clues;
86 #define ERR_VERTEX 1
87 #define ERR_SQUARE 2
89 struct game_state {
90 struct game_params p;
91 game_clues *clues;
92 signed char *soln;
93 unsigned char *errors;
94 int completed;
95 int used_solve; /* used to suppress completion flash */
98 static game_params *default_params(void)
100 game_params *ret = snew(game_params);
102 ret->w = ret->h = 8;
103 ret->diff = DIFF_EASY;
105 return ret;
108 static const struct game_params slant_presets[] = {
109 {5, 5, DIFF_EASY},
110 {5, 5, DIFF_HARD},
111 {8, 8, DIFF_EASY},
112 {8, 8, DIFF_HARD},
113 {12, 10, DIFF_EASY},
114 {12, 10, DIFF_HARD},
117 static int game_fetch_preset(int i, char **name, game_params **params)
119 game_params *ret;
120 char str[80];
122 if (i < 0 || i >= lenof(slant_presets))
123 return FALSE;
125 ret = snew(game_params);
126 *ret = slant_presets[i];
128 sprintf(str, "%dx%d %s", ret->w, ret->h, slant_diffnames[ret->diff]);
130 *name = dupstr(str);
131 *params = ret;
132 return TRUE;
135 static void free_params(game_params *params)
137 sfree(params);
140 static game_params *dup_params(game_params *params)
142 game_params *ret = snew(game_params);
143 *ret = *params; /* structure copy */
144 return ret;
147 static void decode_params(game_params *ret, char const *string)
149 ret->w = ret->h = atoi(string);
150 while (*string && isdigit((unsigned char)*string)) string++;
151 if (*string == 'x') {
152 string++;
153 ret->h = atoi(string);
154 while (*string && isdigit((unsigned char)*string)) string++;
156 if (*string == 'd') {
157 int i;
158 string++;
159 for (i = 0; i < DIFFCOUNT; i++)
160 if (*string == slant_diffchars[i])
161 ret->diff = i;
162 if (*string) string++;
166 static char *encode_params(game_params *params, int full)
168 char data[256];
170 sprintf(data, "%dx%d", params->w, params->h);
171 if (full)
172 sprintf(data + strlen(data), "d%c", slant_diffchars[params->diff]);
174 return dupstr(data);
177 static config_item *game_configure(game_params *params)
179 config_item *ret;
180 char buf[80];
182 ret = snewn(4, config_item);
184 ret[0].name = "Width";
185 ret[0].type = C_STRING;
186 sprintf(buf, "%d", params->w);
187 ret[0].sval = dupstr(buf);
188 ret[0].ival = 0;
190 ret[1].name = "Height";
191 ret[1].type = C_STRING;
192 sprintf(buf, "%d", params->h);
193 ret[1].sval = dupstr(buf);
194 ret[1].ival = 0;
196 ret[2].name = "Difficulty";
197 ret[2].type = C_CHOICES;
198 ret[2].sval = DIFFCONFIG;
199 ret[2].ival = params->diff;
201 ret[3].name = NULL;
202 ret[3].type = C_END;
203 ret[3].sval = NULL;
204 ret[3].ival = 0;
206 return ret;
209 static game_params *custom_params(config_item *cfg)
211 game_params *ret = snew(game_params);
213 ret->w = atoi(cfg[0].sval);
214 ret->h = atoi(cfg[1].sval);
215 ret->diff = cfg[2].ival;
217 return ret;
220 static char *validate_params(game_params *params, int full)
223 * (At least at the time of writing this comment) The grid
224 * generator is actually capable of handling even zero grid
225 * dimensions without crashing. Puzzles with a zero-area grid
226 * are a bit boring, though, because they're already solved :-)
227 * And puzzles with a dimension of 1 can't be made Hard, which
228 * means the simplest thing is to forbid them altogether.
231 if (params->w < 2 || params->h < 2)
232 return "Width and height must both be at least two";
234 return NULL;
238 * Scratch space for solver.
240 struct solver_scratch {
242 * Disjoint set forest which tracks the connected sets of
243 * points.
245 int *connected;
248 * Counts the number of possible exits from each connected set
249 * of points. (That is, the number of possible _simultaneous_
250 * exits: an unconnected point labelled 2 has an exit count of
251 * 2 even if all four possible edges are still under
252 * consideration.)
254 int *exits;
257 * Tracks whether each connected set of points includes a
258 * border point.
260 unsigned char *border;
263 * Another disjoint set forest. This one tracks _squares_ which
264 * are known to slant in the same direction.
266 int *equiv;
269 * Stores slash values which we know for an equivalence class.
270 * When we fill in a square, we set slashval[canonify(x)] to
271 * the same value as soln[x], so that we can then spot other
272 * squares equivalent to it and fill them in immediately via
273 * their known equivalence.
275 signed char *slashval;
278 * Stores possible v-shapes. This array is w by h in size, but
279 * not every bit of every entry is meaningful. The bits mean:
281 * - bit 0 for a square means that that square and the one to
282 * its right might form a v-shape between them
283 * - bit 1 for a square means that that square and the one to
284 * its right might form a ^-shape between them
285 * - bit 2 for a square means that that square and the one
286 * below it might form a >-shape between them
287 * - bit 3 for a square means that that square and the one
288 * below it might form a <-shape between them
290 * Any starting 1 or 3 clue rules out four bits in this array
291 * immediately; a 2 clue propagates any ruled-out bit past it
292 * (if the two squares on one side of a 2 cannot be a v-shape,
293 * then neither can the two on the other side be the same
294 * v-shape); we can rule out further bits during play using
295 * partially filled 2 clues; whenever a pair of squares is
296 * known not to be _either_ kind of v-shape, we can mark them
297 * as equivalent.
299 unsigned char *vbitmap;
302 * Useful to have this information automatically passed to
303 * solver subroutines. (This pointer is not dynamically
304 * allocated by new_scratch and free_scratch.)
306 const signed char *clues;
309 static struct solver_scratch *new_scratch(int w, int h)
311 int W = w+1, H = h+1;
312 struct solver_scratch *ret = snew(struct solver_scratch);
313 ret->connected = snewn(W*H, int);
314 ret->exits = snewn(W*H, int);
315 ret->border = snewn(W*H, unsigned char);
316 ret->equiv = snewn(w*h, int);
317 ret->slashval = snewn(w*h, signed char);
318 ret->vbitmap = snewn(w*h, unsigned char);
319 return ret;
322 static void free_scratch(struct solver_scratch *sc)
324 sfree(sc->vbitmap);
325 sfree(sc->slashval);
326 sfree(sc->equiv);
327 sfree(sc->border);
328 sfree(sc->exits);
329 sfree(sc->connected);
330 sfree(sc);
334 * Wrapper on dsf_merge() which updates the `exits' and `border'
335 * arrays.
337 static void merge_vertices(int *connected,
338 struct solver_scratch *sc, int i, int j)
340 int exits = -1, border = FALSE; /* initialise to placate optimiser */
342 if (sc) {
343 i = dsf_canonify(connected, i);
344 j = dsf_canonify(connected, j);
347 * We have used one possible exit from each of the two
348 * classes. Thus, the viable exit count of the new class is
349 * the sum of the old exit counts minus two.
351 exits = sc->exits[i] + sc->exits[j] - 2;
353 border = sc->border[i] || sc->border[j];
356 dsf_merge(connected, i, j);
358 if (sc) {
359 i = dsf_canonify(connected, i);
360 sc->exits[i] = exits;
361 sc->border[i] = border;
366 * Called when we have just blocked one way out of a particular
367 * point. If that point is a non-clue point (thus has a variable
368 * number of exits), we have therefore decreased its potential exit
369 * count, so we must decrement the exit count for the group as a
370 * whole.
372 static void decr_exits(struct solver_scratch *sc, int i)
374 if (sc->clues[i] < 0) {
375 i = dsf_canonify(sc->connected, i);
376 sc->exits[i]--;
380 static void fill_square(int w, int h, int x, int y, int v,
381 signed char *soln,
382 int *connected, struct solver_scratch *sc)
384 int W = w+1 /*, H = h+1 */;
386 assert(x >= 0 && x < w && y >= 0 && y < h);
388 if (soln[y*w+x] != 0) {
389 return; /* do nothing */
392 #ifdef SOLVER_DIAGNOSTICS
393 if (verbose)
394 printf(" placing %c in %d,%d\n", v == -1 ? '\\' : '/', x, y);
395 #endif
397 soln[y*w+x] = v;
399 if (sc) {
400 int c = dsf_canonify(sc->equiv, y*w+x);
401 sc->slashval[c] = v;
404 if (v < 0) {
405 merge_vertices(connected, sc, y*W+x, (y+1)*W+(x+1));
406 if (sc) {
407 decr_exits(sc, y*W+(x+1));
408 decr_exits(sc, (y+1)*W+x);
410 } else {
411 merge_vertices(connected, sc, y*W+(x+1), (y+1)*W+x);
412 if (sc) {
413 decr_exits(sc, y*W+x);
414 decr_exits(sc, (y+1)*W+(x+1));
419 static int vbitmap_clear(int w, int h, struct solver_scratch *sc,
420 int x, int y, int vbits, char *reason, ...)
422 int done_something = FALSE;
423 int vbit;
425 for (vbit = 1; vbit <= 8; vbit <<= 1)
426 if (vbits & sc->vbitmap[y*w+x] & vbit) {
427 done_something = TRUE;
428 #ifdef SOLVER_DIAGNOSTICS
429 if (verbose) {
430 va_list ap;
432 printf("ruling out %c shape at (%d,%d)-(%d,%d) (",
433 "!v^!>!!!<"[vbit], x, y,
434 x+((vbit&0x3)!=0), y+((vbit&0xC)!=0));
436 va_start(ap, reason);
437 vprintf(reason, ap);
438 va_end(ap);
440 printf(")\n");
442 #endif
443 sc->vbitmap[y*w+x] &= ~vbit;
446 return done_something;
450 * Solver. Returns 0 for impossibility, 1 for success, 2 for
451 * ambiguity or failure to converge.
453 static int slant_solve(int w, int h, const signed char *clues,
454 signed char *soln, struct solver_scratch *sc,
455 int difficulty)
457 int W = w+1, H = h+1;
458 int x, y, i, j;
459 int done_something;
462 * Clear the output.
464 memset(soln, 0, w*h);
466 sc->clues = clues;
469 * Establish a disjoint set forest for tracking connectedness
470 * between grid points.
472 dsf_init(sc->connected, W*H);
475 * Establish a disjoint set forest for tracking which squares
476 * are known to slant in the same direction.
478 dsf_init(sc->equiv, w*h);
481 * Clear the slashval array.
483 memset(sc->slashval, 0, w*h);
486 * Set up the vbitmap array. Initially all types of v are possible.
488 memset(sc->vbitmap, 0xF, w*h);
491 * Initialise the `exits' and `border' arrays. These are used
492 * to do second-order loop avoidance: the dual of the no loops
493 * constraint is that every point must be somehow connected to
494 * the border of the grid (otherwise there would be a solid
495 * loop around it which prevented this).
497 * I define a `dead end' to be a connected group of points
498 * which contains no border point, and which can form at most
499 * one new connection outside itself. Then I forbid placing an
500 * edge so that it connects together two dead-end groups, since
501 * this would yield a non-border-connected isolated subgraph
502 * with no further scope to extend it.
504 for (y = 0; y < H; y++)
505 for (x = 0; x < W; x++) {
506 if (y == 0 || y == H-1 || x == 0 || x == W-1)
507 sc->border[y*W+x] = TRUE;
508 else
509 sc->border[y*W+x] = FALSE;
511 if (clues[y*W+x] < 0)
512 sc->exits[y*W+x] = 4;
513 else
514 sc->exits[y*W+x] = clues[y*W+x];
518 * Repeatedly try to deduce something until we can't.
520 do {
521 done_something = FALSE;
524 * Any clue point with the number of remaining lines equal
525 * to zero or to the number of remaining undecided
526 * neighbouring squares can be filled in completely.
528 for (y = 0; y < H; y++)
529 for (x = 0; x < W; x++) {
530 struct {
531 int pos, slash;
532 } neighbours[4];
533 int nneighbours;
534 int nu, nl, c, s, eq, eq2, last, meq, mj1, mj2;
536 if ((c = clues[y*W+x]) < 0)
537 continue;
540 * We have a clue point. Start by listing its
541 * neighbouring squares, in order around the point,
542 * together with the type of slash that would be
543 * required in that square to connect to the point.
545 nneighbours = 0;
546 if (x > 0 && y > 0) {
547 neighbours[nneighbours].pos = (y-1)*w+(x-1);
548 neighbours[nneighbours].slash = -1;
549 nneighbours++;
551 if (x > 0 && y < h) {
552 neighbours[nneighbours].pos = y*w+(x-1);
553 neighbours[nneighbours].slash = +1;
554 nneighbours++;
556 if (x < w && y < h) {
557 neighbours[nneighbours].pos = y*w+x;
558 neighbours[nneighbours].slash = -1;
559 nneighbours++;
561 if (x < w && y > 0) {
562 neighbours[nneighbours].pos = (y-1)*w+x;
563 neighbours[nneighbours].slash = +1;
564 nneighbours++;
568 * Count up the number of undecided neighbours, and
569 * also the number of lines already present.
571 * If we're not on DIFF_EASY, then in this loop we
572 * also track whether we've seen two adjacent empty
573 * squares belonging to the same equivalence class
574 * (meaning they have the same type of slash). If
575 * so, we count them jointly as one line.
577 nu = 0;
578 nl = c;
579 last = neighbours[nneighbours-1].pos;
580 if (soln[last] == 0)
581 eq = dsf_canonify(sc->equiv, last);
582 else
583 eq = -1;
584 meq = mj1 = mj2 = -1;
585 for (i = 0; i < nneighbours; i++) {
586 j = neighbours[i].pos;
587 s = neighbours[i].slash;
588 if (soln[j] == 0) {
589 nu++; /* undecided */
590 if (meq < 0 && difficulty > DIFF_EASY) {
591 eq2 = dsf_canonify(sc->equiv, j);
592 if (eq == eq2 && last != j) {
594 * We've found an equivalent pair.
595 * Mark it. This also inhibits any
596 * further equivalence tracking
597 * around this square, since we can
598 * only handle one pair (and in
599 * particular we want to avoid
600 * being misled by two overlapping
601 * equivalence pairs).
603 meq = eq;
604 mj1 = last;
605 mj2 = j;
606 nl--; /* count one line */
607 nu -= 2; /* and lose two undecideds */
608 } else
609 eq = eq2;
611 } else {
612 eq = -1;
613 if (soln[j] == s)
614 nl--; /* here's a line */
616 last = j;
620 * Check the counts.
622 if (nl < 0 || nl > nu) {
624 * No consistent value for this at all!
626 #ifdef SOLVER_DIAGNOSTICS
627 if (verbose)
628 printf("need %d / %d lines around clue point at %d,%d!\n",
629 nl, nu, x, y);
630 #endif
631 return 0; /* impossible */
634 if (nu > 0 && (nl == 0 || nl == nu)) {
635 #ifdef SOLVER_DIAGNOSTICS
636 if (verbose) {
637 if (meq >= 0)
638 printf("partially (since %d,%d == %d,%d) ",
639 mj1%w, mj1/w, mj2%w, mj2/w);
640 printf("%s around clue point at %d,%d\n",
641 nl ? "filling" : "emptying", x, y);
643 #endif
644 for (i = 0; i < nneighbours; i++) {
645 j = neighbours[i].pos;
646 s = neighbours[i].slash;
647 if (soln[j] == 0 && j != mj1 && j != mj2)
648 fill_square(w, h, j%w, j/w, (nl ? s : -s), soln,
649 sc->connected, sc);
652 done_something = TRUE;
653 } else if (nu == 2 && nl == 1 && difficulty > DIFF_EASY) {
655 * If we have precisely two undecided squares
656 * and precisely one line to place between
657 * them, _and_ those squares are adjacent, then
658 * we can mark them as equivalent to one
659 * another.
661 * This even applies if meq >= 0: if we have a
662 * 2 clue point and two of its neighbours are
663 * already marked equivalent, we can indeed
664 * mark the other two as equivalent.
666 * We don't bother with this on DIFF_EASY,
667 * since we wouldn't have used the results
668 * anyway.
670 last = -1;
671 for (i = 0; i < nneighbours; i++) {
672 j = neighbours[i].pos;
673 if (soln[j] == 0 && j != mj1 && j != mj2) {
674 if (last < 0)
675 last = i;
676 else if (last == i-1 || (last == 0 && i == 3))
677 break; /* found a pair */
680 if (i < nneighbours) {
681 int sv1, sv2;
683 assert(last >= 0);
685 * neighbours[last] and neighbours[i] are
686 * the pair. Mark them equivalent.
688 #ifdef SOLVER_DIAGNOSTICS
689 if (verbose) {
690 if (meq >= 0)
691 printf("since %d,%d == %d,%d, ",
692 mj1%w, mj1/w, mj2%w, mj2/w);
694 #endif
695 mj1 = neighbours[last].pos;
696 mj2 = neighbours[i].pos;
697 #ifdef SOLVER_DIAGNOSTICS
698 if (verbose)
699 printf("clue point at %d,%d implies %d,%d == %d,"
700 "%d\n", x, y, mj1%w, mj1/w, mj2%w, mj2/w);
701 #endif
702 mj1 = dsf_canonify(sc->equiv, mj1);
703 sv1 = sc->slashval[mj1];
704 mj2 = dsf_canonify(sc->equiv, mj2);
705 sv2 = sc->slashval[mj2];
706 if (sv1 != 0 && sv2 != 0 && sv1 != sv2) {
707 #ifdef SOLVER_DIAGNOSTICS
708 if (verbose)
709 printf("merged two equivalence classes with"
710 " different slash values!\n");
711 #endif
712 return 0;
714 sv1 = sv1 ? sv1 : sv2;
715 dsf_merge(sc->equiv, mj1, mj2);
716 mj1 = dsf_canonify(sc->equiv, mj1);
717 sc->slashval[mj1] = sv1;
722 if (done_something)
723 continue;
726 * Failing that, we now apply the second condition, which
727 * is that no square may be filled in such a way as to form
728 * a loop. Also in this loop (since it's over squares
729 * rather than points), we check slashval to see if we've
730 * already filled in another square in the same equivalence
731 * class.
733 * The slashval check is disabled on DIFF_EASY, as is dead
734 * end avoidance. Only _immediate_ loop avoidance remains.
736 for (y = 0; y < h; y++)
737 for (x = 0; x < w; x++) {
738 int fs, bs, v;
739 int c1, c2;
740 #ifdef SOLVER_DIAGNOSTICS
741 char *reason = "<internal error>";
742 #endif
744 if (soln[y*w+x])
745 continue; /* got this one already */
747 fs = FALSE;
748 bs = FALSE;
750 if (difficulty > DIFF_EASY)
751 v = sc->slashval[dsf_canonify(sc->equiv, y*w+x)];
752 else
753 v = 0;
756 * Try to rule out connectivity between (x,y) and
757 * (x+1,y+1); if successful, we will deduce that we
758 * must have a forward slash.
760 c1 = dsf_canonify(sc->connected, y*W+x);
761 c2 = dsf_canonify(sc->connected, (y+1)*W+(x+1));
762 if (c1 == c2) {
763 fs = TRUE;
764 #ifdef SOLVER_DIAGNOSTICS
765 reason = "simple loop avoidance";
766 #endif
768 if (difficulty > DIFF_EASY &&
769 !sc->border[c1] && !sc->border[c2] &&
770 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
771 fs = TRUE;
772 #ifdef SOLVER_DIAGNOSTICS
773 reason = "dead end avoidance";
774 #endif
776 if (v == +1) {
777 fs = TRUE;
778 #ifdef SOLVER_DIAGNOSTICS
779 reason = "equivalence to an already filled square";
780 #endif
784 * Now do the same between (x+1,y) and (x,y+1), to
785 * see if we are required to have a backslash.
787 c1 = dsf_canonify(sc->connected, y*W+(x+1));
788 c2 = dsf_canonify(sc->connected, (y+1)*W+x);
789 if (c1 == c2) {
790 bs = TRUE;
791 #ifdef SOLVER_DIAGNOSTICS
792 reason = "simple loop avoidance";
793 #endif
795 if (difficulty > DIFF_EASY &&
796 !sc->border[c1] && !sc->border[c2] &&
797 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
798 bs = TRUE;
799 #ifdef SOLVER_DIAGNOSTICS
800 reason = "dead end avoidance";
801 #endif
803 if (v == -1) {
804 bs = TRUE;
805 #ifdef SOLVER_DIAGNOSTICS
806 reason = "equivalence to an already filled square";
807 #endif
810 if (fs && bs) {
812 * No consistent value for this at all!
814 #ifdef SOLVER_DIAGNOSTICS
815 if (verbose)
816 printf("%d,%d has no consistent slash!\n", x, y);
817 #endif
818 return 0; /* impossible */
821 if (fs) {
822 #ifdef SOLVER_DIAGNOSTICS
823 if (verbose)
824 printf("employing %s\n", reason);
825 #endif
826 fill_square(w, h, x, y, +1, soln, sc->connected, sc);
827 done_something = TRUE;
828 } else if (bs) {
829 #ifdef SOLVER_DIAGNOSTICS
830 if (verbose)
831 printf("employing %s\n", reason);
832 #endif
833 fill_square(w, h, x, y, -1, soln, sc->connected, sc);
834 done_something = TRUE;
838 if (done_something)
839 continue;
842 * Now see what we can do with the vbitmap array. All
843 * vbitmap deductions are disabled at Easy level.
845 if (difficulty <= DIFF_EASY)
846 continue;
848 for (y = 0; y < h; y++)
849 for (x = 0; x < w; x++) {
850 int s, c;
853 * Any line already placed in a square must rule
854 * out any type of v which contradicts it.
856 if ((s = soln[y*w+x]) != 0) {
857 if (x > 0)
858 done_something |=
859 vbitmap_clear(w, h, sc, x-1, y, (s < 0 ? 0x1 : 0x2),
860 "contradicts known edge at (%d,%d)",x,y);
861 if (x+1 < w)
862 done_something |=
863 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x2 : 0x1),
864 "contradicts known edge at (%d,%d)",x,y);
865 if (y > 0)
866 done_something |=
867 vbitmap_clear(w, h, sc, x, y-1, (s < 0 ? 0x4 : 0x8),
868 "contradicts known edge at (%d,%d)",x,y);
869 if (y+1 < h)
870 done_something |=
871 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x8 : 0x4),
872 "contradicts known edge at (%d,%d)",x,y);
876 * If both types of v are ruled out for a pair of
877 * adjacent squares, mark them as equivalent.
879 if (x+1 < w && !(sc->vbitmap[y*w+x] & 0x3)) {
880 int n1 = y*w+x, n2 = y*w+(x+1);
881 if (dsf_canonify(sc->equiv, n1) !=
882 dsf_canonify(sc->equiv, n2)) {
883 dsf_merge(sc->equiv, n1, n2);
884 done_something = TRUE;
885 #ifdef SOLVER_DIAGNOSTICS
886 if (verbose)
887 printf("(%d,%d) and (%d,%d) must be equivalent"
888 " because both v-shapes are ruled out\n",
889 x, y, x+1, y);
890 #endif
893 if (y+1 < h && !(sc->vbitmap[y*w+x] & 0xC)) {
894 int n1 = y*w+x, n2 = (y+1)*w+x;
895 if (dsf_canonify(sc->equiv, n1) !=
896 dsf_canonify(sc->equiv, n2)) {
897 dsf_merge(sc->equiv, n1, n2);
898 done_something = TRUE;
899 #ifdef SOLVER_DIAGNOSTICS
900 if (verbose)
901 printf("(%d,%d) and (%d,%d) must be equivalent"
902 " because both v-shapes are ruled out\n",
903 x, y, x, y+1);
904 #endif
909 * The remaining work in this loop only works
910 * around non-edge clue points.
912 if (y == 0 || x == 0)
913 continue;
914 if ((c = clues[y*W+x]) < 0)
915 continue;
918 * x,y marks a clue point not on the grid edge. See
919 * if this clue point allows us to rule out any v
920 * shapes.
923 if (c == 1) {
925 * A 1 clue can never have any v shape pointing
926 * at it.
928 done_something |=
929 vbitmap_clear(w, h, sc, x-1, y-1, 0x5,
930 "points at 1 clue at (%d,%d)", x, y);
931 done_something |=
932 vbitmap_clear(w, h, sc, x-1, y, 0x2,
933 "points at 1 clue at (%d,%d)", x, y);
934 done_something |=
935 vbitmap_clear(w, h, sc, x, y-1, 0x8,
936 "points at 1 clue at (%d,%d)", x, y);
937 } else if (c == 3) {
939 * A 3 clue can never have any v shape pointing
940 * away from it.
942 done_something |=
943 vbitmap_clear(w, h, sc, x-1, y-1, 0xA,
944 "points away from 3 clue at (%d,%d)", x, y);
945 done_something |=
946 vbitmap_clear(w, h, sc, x-1, y, 0x1,
947 "points away from 3 clue at (%d,%d)", x, y);
948 done_something |=
949 vbitmap_clear(w, h, sc, x, y-1, 0x4,
950 "points away from 3 clue at (%d,%d)", x, y);
951 } else if (c == 2) {
953 * If a 2 clue has any kind of v ruled out on
954 * one side of it, the same v is ruled out on
955 * the other side.
957 done_something |=
958 vbitmap_clear(w, h, sc, x-1, y-1,
959 (sc->vbitmap[(y )*w+(x-1)] & 0x3) ^ 0x3,
960 "propagated by 2 clue at (%d,%d)", x, y);
961 done_something |=
962 vbitmap_clear(w, h, sc, x-1, y-1,
963 (sc->vbitmap[(y-1)*w+(x )] & 0xC) ^ 0xC,
964 "propagated by 2 clue at (%d,%d)", x, y);
965 done_something |=
966 vbitmap_clear(w, h, sc, x-1, y,
967 (sc->vbitmap[(y-1)*w+(x-1)] & 0x3) ^ 0x3,
968 "propagated by 2 clue at (%d,%d)", x, y);
969 done_something |=
970 vbitmap_clear(w, h, sc, x, y-1,
971 (sc->vbitmap[(y-1)*w+(x-1)] & 0xC) ^ 0xC,
972 "propagated by 2 clue at (%d,%d)", x, y);
975 #undef CLEARBITS
979 } while (done_something);
982 * Solver can make no more progress. See if the grid is full.
984 for (i = 0; i < w*h; i++)
985 if (!soln[i])
986 return 2; /* failed to converge */
987 return 1; /* success */
991 * Filled-grid generator.
993 static void slant_generate(int w, int h, signed char *soln, random_state *rs)
995 int W = w+1, H = h+1;
996 int x, y, i;
997 int *connected, *indices;
1000 * Clear the output.
1002 memset(soln, 0, w*h);
1005 * Establish a disjoint set forest for tracking connectedness
1006 * between grid points.
1008 connected = snew_dsf(W*H);
1011 * Prepare a list of the squares in the grid, and fill them in
1012 * in a random order.
1014 indices = snewn(w*h, int);
1015 for (i = 0; i < w*h; i++)
1016 indices[i] = i;
1017 shuffle(indices, w*h, sizeof(*indices), rs);
1020 * Fill in each one in turn.
1022 for (i = 0; i < w*h; i++) {
1023 int fs, bs, v;
1025 y = indices[i] / w;
1026 x = indices[i] % w;
1028 fs = (dsf_canonify(connected, y*W+x) ==
1029 dsf_canonify(connected, (y+1)*W+(x+1)));
1030 bs = (dsf_canonify(connected, (y+1)*W+x) ==
1031 dsf_canonify(connected, y*W+(x+1)));
1034 * It isn't possible to get into a situation where we
1035 * aren't allowed to place _either_ type of slash in a
1036 * square. Thus, filled-grid generation never has to
1037 * backtrack.
1039 * Proof (thanks to Gareth Taylor):
1041 * If it were possible, it would have to be because there
1042 * was an existing path (not using this square) between the
1043 * top-left and bottom-right corners of this square, and
1044 * another between the other two. These two paths would
1045 * have to cross at some point.
1047 * Obviously they can't cross in the middle of a square, so
1048 * they must cross by sharing a point in common. But this
1049 * isn't possible either: if you chessboard-colour all the
1050 * points on the grid, you find that any continuous
1051 * diagonal path is entirely composed of points of the same
1052 * colour. And one of our two hypothetical paths is between
1053 * two black points, and the other is between two white
1054 * points - therefore they can have no point in common. []
1056 assert(!(fs && bs));
1058 v = fs ? +1 : bs ? -1 : 2 * random_upto(rs, 2) - 1;
1059 fill_square(w, h, x, y, v, soln, connected, NULL);
1062 sfree(indices);
1063 sfree(connected);
1066 static char *new_game_desc(game_params *params, random_state *rs,
1067 char **aux, int interactive)
1069 int w = params->w, h = params->h, W = w+1, H = h+1;
1070 signed char *soln, *tmpsoln, *clues;
1071 int *clueindices;
1072 struct solver_scratch *sc;
1073 int x, y, v, i, j;
1074 char *desc;
1076 soln = snewn(w*h, signed char);
1077 tmpsoln = snewn(w*h, signed char);
1078 clues = snewn(W*H, signed char);
1079 clueindices = snewn(W*H, int);
1080 sc = new_scratch(w, h);
1082 do {
1084 * Create the filled grid.
1086 slant_generate(w, h, soln, rs);
1089 * Fill in the complete set of clues.
1091 for (y = 0; y < H; y++)
1092 for (x = 0; x < W; x++) {
1093 v = 0;
1095 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] == -1) v++;
1096 if (x > 0 && y < h && soln[y*w+(x-1)] == +1) v++;
1097 if (x < w && y > 0 && soln[(y-1)*w+x] == +1) v++;
1098 if (x < w && y < h && soln[y*w+x] == -1) v++;
1100 clues[y*W+x] = v;
1104 * With all clue points filled in, all puzzles are easy: we can
1105 * simply process the clue points in lexicographic order, and
1106 * at each clue point we will always have at most one square
1107 * undecided, which we can then fill in uniquely.
1109 assert(slant_solve(w, h, clues, tmpsoln, sc, DIFF_EASY) == 1);
1112 * Remove as many clues as possible while retaining solubility.
1114 * In DIFF_HARD mode, we prioritise the removal of obvious
1115 * starting points (4s, 0s, border 2s and corner 1s), on
1116 * the grounds that having as few of these as possible
1117 * seems like a good thing. In particular, we can often get
1118 * away without _any_ completely obvious starting points,
1119 * which is even better.
1121 for (i = 0; i < W*H; i++)
1122 clueindices[i] = i;
1123 shuffle(clueindices, W*H, sizeof(*clueindices), rs);
1124 for (j = 0; j < 2; j++) {
1125 for (i = 0; i < W*H; i++) {
1126 int pass, yb, xb;
1128 y = clueindices[i] / W;
1129 x = clueindices[i] % W;
1130 v = clues[y*W+x];
1133 * Identify which pass we should process this point
1134 * in. If it's an obvious start point, _or_ we're
1135 * in DIFF_EASY, then it goes in pass 0; otherwise
1136 * pass 1.
1138 xb = (x == 0 || x == W-1);
1139 yb = (y == 0 || y == H-1);
1140 if (params->diff == DIFF_EASY || v == 4 || v == 0 ||
1141 (v == 2 && (xb||yb)) || (v == 1 && xb && yb))
1142 pass = 0;
1143 else
1144 pass = 1;
1146 if (pass == j) {
1147 clues[y*W+x] = -1;
1148 if (slant_solve(w, h, clues, tmpsoln, sc,
1149 params->diff) != 1)
1150 clues[y*W+x] = v; /* put it back */
1156 * And finally, verify that the grid is of _at least_ the
1157 * requested difficulty, by running the solver one level
1158 * down and verifying that it can't manage it.
1160 } while (params->diff > 0 &&
1161 slant_solve(w, h, clues, tmpsoln, sc, params->diff - 1) <= 1);
1164 * Now we have the clue set as it will be presented to the
1165 * user. Encode it in a game desc.
1168 char *p;
1169 int run, i;
1171 desc = snewn(W*H+1, char);
1172 p = desc;
1173 run = 0;
1174 for (i = 0; i <= W*H; i++) {
1175 int n = (i < W*H ? clues[i] : -2);
1177 if (n == -1)
1178 run++;
1179 else {
1180 if (run) {
1181 while (run > 0) {
1182 int c = 'a' - 1 + run;
1183 if (run > 26)
1184 c = 'z';
1185 *p++ = c;
1186 run -= c - ('a' - 1);
1189 if (n >= 0)
1190 *p++ = '0' + n;
1191 run = 0;
1194 assert(p - desc <= W*H);
1195 *p++ = '\0';
1196 desc = sresize(desc, p - desc, char);
1200 * Encode the solution as an aux_info.
1203 char *auxbuf;
1204 *aux = auxbuf = snewn(w*h+1, char);
1205 for (i = 0; i < w*h; i++)
1206 auxbuf[i] = soln[i] < 0 ? '\\' : '/';
1207 auxbuf[w*h] = '\0';
1210 free_scratch(sc);
1211 sfree(clueindices);
1212 sfree(clues);
1213 sfree(tmpsoln);
1214 sfree(soln);
1216 return desc;
1219 static char *validate_desc(game_params *params, char *desc)
1221 int w = params->w, h = params->h, W = w+1, H = h+1;
1222 int area = W*H;
1223 int squares = 0;
1225 while (*desc) {
1226 int n = *desc++;
1227 if (n >= 'a' && n <= 'z') {
1228 squares += n - 'a' + 1;
1229 } else if (n >= '0' && n <= '4') {
1230 squares++;
1231 } else
1232 return "Invalid character in game description";
1235 if (squares < area)
1236 return "Not enough data to fill grid";
1238 if (squares > area)
1239 return "Too much data to fit in grid";
1241 return NULL;
1244 static game_state *new_game(midend *me, game_params *params, char *desc)
1246 int w = params->w, h = params->h, W = w+1, H = h+1;
1247 game_state *state = snew(game_state);
1248 int area = W*H;
1249 int squares = 0;
1251 state->p = *params;
1252 state->soln = snewn(w*h, signed char);
1253 memset(state->soln, 0, w*h);
1254 state->completed = state->used_solve = FALSE;
1255 state->errors = snewn(W*H, unsigned char);
1256 memset(state->errors, 0, W*H);
1258 state->clues = snew(game_clues);
1259 state->clues->w = w;
1260 state->clues->h = h;
1261 state->clues->clues = snewn(W*H, signed char);
1262 state->clues->refcount = 1;
1263 state->clues->tmpdsf = snewn(W*H*2+W+H, int);
1264 memset(state->clues->clues, -1, W*H);
1265 while (*desc) {
1266 int n = *desc++;
1267 if (n >= 'a' && n <= 'z') {
1268 squares += n - 'a' + 1;
1269 } else if (n >= '0' && n <= '4') {
1270 state->clues->clues[squares++] = n - '0';
1271 } else
1272 assert(!"can't get here");
1274 assert(squares == area);
1276 return state;
1279 static game_state *dup_game(game_state *state)
1281 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1282 game_state *ret = snew(game_state);
1284 ret->p = state->p;
1285 ret->clues = state->clues;
1286 ret->clues->refcount++;
1287 ret->completed = state->completed;
1288 ret->used_solve = state->used_solve;
1290 ret->soln = snewn(w*h, signed char);
1291 memcpy(ret->soln, state->soln, w*h);
1293 ret->errors = snewn(W*H, unsigned char);
1294 memcpy(ret->errors, state->errors, W*H);
1296 return ret;
1299 static void free_game(game_state *state)
1301 sfree(state->errors);
1302 sfree(state->soln);
1303 assert(state->clues);
1304 if (--state->clues->refcount <= 0) {
1305 sfree(state->clues->clues);
1306 sfree(state->clues->tmpdsf);
1307 sfree(state->clues);
1309 sfree(state);
1313 * Utility function to return the current degree of a vertex. If
1314 * `anti' is set, it returns the number of filled-in edges
1315 * surrounding the point which _don't_ connect to it; thus 4 minus
1316 * its anti-degree is the maximum degree it could have if all the
1317 * empty spaces around it were filled in.
1319 * (Yes, _4_ minus its anti-degree even if it's a border vertex.)
1321 * If ret > 0, *sx and *sy are set to the coordinates of one of the
1322 * squares that contributed to it.
1324 static int vertex_degree(int w, int h, signed char *soln, int x, int y,
1325 int anti, int *sx, int *sy)
1327 int ret = 0;
1329 assert(x >= 0 && x <= w && y >= 0 && y <= h);
1330 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] - anti < 0) {
1331 if (sx) *sx = x-1;
1332 if (sy) *sy = y-1;
1333 ret++;
1335 if (x > 0 && y < h && soln[y*w+(x-1)] + anti > 0) {
1336 if (sx) *sx = x-1;
1337 if (sy) *sy = y;
1338 ret++;
1340 if (x < w && y > 0 && soln[(y-1)*w+x] + anti > 0) {
1341 if (sx) *sx = x;
1342 if (sy) *sy = y-1;
1343 ret++;
1345 if (x < w && y < h && soln[y*w+x] - anti < 0) {
1346 if (sx) *sx = x;
1347 if (sy) *sy = y;
1348 ret++;
1351 return anti ? 4 - ret : ret;
1354 static int check_completion(game_state *state)
1356 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1357 int x, y, err = FALSE;
1358 int *dsf;
1360 memset(state->errors, 0, W*H);
1363 * To detect loops in the grid, we iterate through each edge
1364 * building up a dsf of connected components of the space
1365 * around the edges; if there's more than one such component,
1366 * we have a loop, and in particular we can then easily
1367 * identify and highlight every edge forming part of a loop
1368 * because it separates two nonequivalent regions.
1370 * We use the `tmpdsf' scratch space in the shared clues
1371 * structure, to avoid mallocing too often.
1373 * For these purposes, the grid is considered to be divided
1374 * into diamond-shaped regions surrounding an orthogonal edge.
1375 * This means we have W*h vertical edges and w*H horizontal
1376 * ones; so our vertical edges are indexed in the dsf as
1377 * (y*W+x) (0<=y<h, 0<=x<W), and the horizontal ones as (W*h +
1378 * y*w+x) (0<=y<H, 0<=x<w), where (x,y) is the topmost or
1379 * leftmost point on the edge.
1381 dsf = state->clues->tmpdsf;
1382 dsf_init(dsf, W*h + w*H);
1383 /* Start by identifying all the outer edges with each other. */
1384 for (y = 0; y < h; y++) {
1385 dsf_merge(dsf, 0, y*W+0);
1386 dsf_merge(dsf, 0, y*W+w);
1388 for (x = 0; x < w; x++) {
1389 dsf_merge(dsf, 0, W*h + 0*w+x);
1390 dsf_merge(dsf, 0, W*h + h*w+x);
1392 /* Now go through the actual grid. */
1393 for (y = 0; y < h; y++)
1394 for (x = 0; x < w; x++) {
1395 if (state->soln[y*w+x] >= 0) {
1397 * There isn't a \ in this square, so we can unify
1398 * the top edge with the left, and the bottom with
1399 * the right.
1401 dsf_merge(dsf, y*W+x, W*h + y*w+x);
1402 dsf_merge(dsf, y*W+(x+1), W*h + (y+1)*w+x);
1404 if (state->soln[y*w+x] <= 0) {
1406 * There isn't a / in this square, so we can unify
1407 * the top edge with the right, and the bottom
1408 * with the left.
1410 dsf_merge(dsf, y*W+x, W*h + (y+1)*w+x);
1411 dsf_merge(dsf, y*W+(x+1), W*h + y*w+x);
1414 /* Now go through again and mark the appropriate edges as erroneous. */
1415 for (y = 0; y < h; y++)
1416 for (x = 0; x < w; x++) {
1417 int erroneous = 0;
1418 if (state->soln[y*w+x] > 0) {
1420 * A / separates the top and left edges (which
1421 * must already have been identified with each
1422 * other) from the bottom and right (likewise).
1423 * Hence it is erroneous if and only if the top
1424 * and right edges are nonequivalent.
1426 erroneous = (dsf_canonify(dsf, y*W+(x+1)) !=
1427 dsf_canonify(dsf, W*h + y*w+x));
1428 } else if (state->soln[y*w+x] < 0) {
1430 * A \ separates the top and right edges (which
1431 * must already have been identified with each
1432 * other) from the bottom and left (likewise).
1433 * Hence it is erroneous if and only if the top
1434 * and left edges are nonequivalent.
1436 erroneous = (dsf_canonify(dsf, y*W+x) !=
1437 dsf_canonify(dsf, W*h + y*w+x));
1439 if (erroneous) {
1440 state->errors[y*W+x] |= ERR_SQUARE;
1441 err = TRUE;
1446 * Now go through and check the degree of each clue vertex, and
1447 * mark it with ERR_VERTEX if it cannot be fulfilled.
1449 for (y = 0; y < H; y++)
1450 for (x = 0; x < W; x++) {
1451 int c;
1453 if ((c = state->clues->clues[y*W+x]) < 0)
1454 continue;
1457 * Check to see if there are too many connections to
1458 * this vertex _or_ too many non-connections. Either is
1459 * grounds for marking the vertex as erroneous.
1461 if (vertex_degree(w, h, state->soln, x, y,
1462 FALSE, NULL, NULL) > c ||
1463 vertex_degree(w, h, state->soln, x, y,
1464 TRUE, NULL, NULL) > 4-c) {
1465 state->errors[y*W+x] |= ERR_VERTEX;
1466 err = TRUE;
1471 * Now our actual victory condition is that (a) none of the
1472 * above code marked anything as erroneous, and (b) every
1473 * square has an edge in it.
1476 if (err)
1477 return FALSE;
1479 for (y = 0; y < h; y++)
1480 for (x = 0; x < w; x++)
1481 if (state->soln[y*w+x] == 0)
1482 return FALSE;
1484 return TRUE;
1487 static char *solve_game(game_state *state, game_state *currstate,
1488 char *aux, char **error)
1490 int w = state->p.w, h = state->p.h;
1491 signed char *soln;
1492 int bs, ret;
1493 int free_soln = FALSE;
1494 char *move, buf[80];
1495 int movelen, movesize;
1496 int x, y;
1498 if (aux) {
1500 * If we already have the solution, save ourselves some
1501 * time.
1503 soln = (signed char *)aux;
1504 bs = (signed char)'\\';
1505 free_soln = FALSE;
1506 } else {
1507 struct solver_scratch *sc = new_scratch(w, h);
1508 soln = snewn(w*h, signed char);
1509 bs = -1;
1510 ret = slant_solve(w, h, state->clues->clues, soln, sc, DIFF_HARD);
1511 free_scratch(sc);
1512 if (ret != 1) {
1513 sfree(soln);
1514 if (ret == 0)
1515 *error = "This puzzle is not self-consistent";
1516 else
1517 *error = "Unable to find a unique solution for this puzzle";
1518 return NULL;
1520 free_soln = TRUE;
1524 * Construct a move string which turns the current state into
1525 * the solved state.
1527 movesize = 256;
1528 move = snewn(movesize, char);
1529 movelen = 0;
1530 move[movelen++] = 'S';
1531 move[movelen] = '\0';
1532 for (y = 0; y < h; y++)
1533 for (x = 0; x < w; x++) {
1534 int v = (soln[y*w+x] == bs ? -1 : +1);
1535 if (state->soln[y*w+x] != v) {
1536 int len = sprintf(buf, ";%c%d,%d", (int)(v < 0 ? '\\' : '/'), x, y);
1537 if (movelen + len >= movesize) {
1538 movesize = movelen + len + 256;
1539 move = sresize(move, movesize, char);
1541 strcpy(move + movelen, buf);
1542 movelen += len;
1546 if (free_soln)
1547 sfree(soln);
1549 return move;
1552 static int game_can_format_as_text_now(game_params *params)
1554 return TRUE;
1557 static char *game_text_format(game_state *state)
1559 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1560 int x, y, len;
1561 char *ret, *p;
1564 * There are h+H rows of w+W columns.
1566 len = (h+H) * (w+W+1) + 1;
1567 ret = snewn(len, char);
1568 p = ret;
1570 for (y = 0; y < H; y++) {
1571 for (x = 0; x < W; x++) {
1572 if (state->clues->clues[y*W+x] >= 0)
1573 *p++ = state->clues->clues[y*W+x] + '0';
1574 else
1575 *p++ = '+';
1576 if (x < w)
1577 *p++ = '-';
1579 *p++ = '\n';
1580 if (y < h) {
1581 for (x = 0; x < W; x++) {
1582 *p++ = '|';
1583 if (x < w) {
1584 if (state->soln[y*w+x] != 0)
1585 *p++ = (state->soln[y*w+x] < 0 ? '\\' : '/');
1586 else
1587 *p++ = ' ';
1590 *p++ = '\n';
1593 *p++ = '\0';
1595 assert(p - ret == len);
1596 return ret;
1599 struct game_ui {
1600 int cur_x, cur_y, cur_visible;
1603 static game_ui *new_ui(game_state *state)
1605 game_ui *ui = snew(game_ui);
1606 ui->cur_x = ui->cur_y = ui->cur_visible = 0;
1607 return ui;
1610 static void free_ui(game_ui *ui)
1612 sfree(ui);
1615 static char *encode_ui(game_ui *ui)
1617 return NULL;
1620 static void decode_ui(game_ui *ui, char *encoding)
1624 static void game_changed_state(game_ui *ui, game_state *oldstate,
1625 game_state *newstate)
1629 #define PREFERRED_TILESIZE 32
1630 #define TILESIZE (ds->tilesize)
1631 #define BORDER TILESIZE
1632 #define CLUE_RADIUS (TILESIZE / 3)
1633 #define CLUE_TEXTSIZE (TILESIZE / 2)
1634 #define COORD(x) ( (x) * TILESIZE + BORDER )
1635 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1637 #define FLASH_TIME 0.30F
1640 * Bit fields in the `grid' and `todraw' elements of the drawstate.
1642 #define BACKSLASH 0x00000001L
1643 #define FORWSLASH 0x00000002L
1644 #define L_T 0x00000004L
1645 #define ERR_L_T 0x00000008L
1646 #define L_B 0x00000010L
1647 #define ERR_L_B 0x00000020L
1648 #define T_L 0x00000040L
1649 #define ERR_T_L 0x00000080L
1650 #define T_R 0x00000100L
1651 #define ERR_T_R 0x00000200L
1652 #define C_TL 0x00000400L
1653 #define ERR_C_TL 0x00000800L
1654 #define FLASH 0x00001000L
1655 #define ERRSLASH 0x00002000L
1656 #define ERR_TL 0x00004000L
1657 #define ERR_TR 0x00008000L
1658 #define ERR_BL 0x00010000L
1659 #define ERR_BR 0x00020000L
1660 #define CURSOR 0x00040000L
1662 struct game_drawstate {
1663 int tilesize;
1664 int started;
1665 long *grid;
1666 long *todraw;
1669 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1670 int x, int y, int button)
1672 int w = state->p.w, h = state->p.h;
1673 int v;
1674 char buf[80];
1675 enum { CLOCKWISE, ANTICLOCKWISE, NONE } action = NONE;
1677 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1679 * This is an utterly awful hack which I should really sort out
1680 * by means of a proper configuration mechanism. One Slant
1681 * player has observed that they prefer the mouse buttons to
1682 * function exactly the opposite way round, so here's a
1683 * mechanism for environment-based configuration. I cache the
1684 * result in a global variable - yuck! - to avoid repeated
1685 * lookups.
1688 static int swap_buttons = -1;
1689 if (swap_buttons < 0) {
1690 char *env = getenv("SLANT_SWAP_BUTTONS");
1691 swap_buttons = (env && (env[0] == 'y' || env[0] == 'Y'));
1693 if (swap_buttons) {
1694 if (button == LEFT_BUTTON)
1695 button = RIGHT_BUTTON;
1696 else
1697 button = LEFT_BUTTON;
1700 action = (button == LEFT_BUTTON) ? CLOCKWISE : ANTICLOCKWISE;
1702 x = FROMCOORD(x);
1703 y = FROMCOORD(y);
1704 if (x < 0 || y < 0 || x >= w || y >= h)
1705 return NULL;
1706 } else if (IS_CURSOR_SELECT(button)) {
1707 if (!ui->cur_visible) {
1708 ui->cur_visible = 1;
1709 return "";
1711 x = ui->cur_x;
1712 y = ui->cur_y;
1714 action = (button == CURSOR_SELECT2) ? ANTICLOCKWISE : CLOCKWISE;
1715 } else if (IS_CURSOR_MOVE(button)) {
1716 move_cursor(button, &ui->cur_x, &ui->cur_y, w, h, 0);
1717 ui->cur_visible = 1;
1718 return "";
1721 if (action != NONE) {
1722 if (action == CLOCKWISE) {
1724 * Left-clicking cycles blank -> \ -> / -> blank.
1726 v = state->soln[y*w+x] - 1;
1727 if (v == -2)
1728 v = +1;
1729 } else {
1731 * Right-clicking cycles blank -> / -> \ -> blank.
1733 v = state->soln[y*w+x] + 1;
1734 if (v == +2)
1735 v = -1;
1738 sprintf(buf, "%c%d,%d", (int)(v==-1 ? '\\' : v==+1 ? '/' : 'C'), x, y);
1739 return dupstr(buf);
1742 return NULL;
1745 static game_state *execute_move(game_state *state, char *move)
1747 int w = state->p.w, h = state->p.h;
1748 char c;
1749 int x, y, n;
1750 game_state *ret = dup_game(state);
1752 while (*move) {
1753 c = *move;
1754 if (c == 'S') {
1755 ret->used_solve = TRUE;
1756 move++;
1757 } else if (c == '\\' || c == '/' || c == 'C') {
1758 move++;
1759 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
1760 x < 0 || y < 0 || x >= w || y >= h) {
1761 free_game(ret);
1762 return NULL;
1764 ret->soln[y*w+x] = (c == '\\' ? -1 : c == '/' ? +1 : 0);
1765 move += n;
1766 } else {
1767 free_game(ret);
1768 return NULL;
1770 if (*move == ';')
1771 move++;
1772 else if (*move) {
1773 free_game(ret);
1774 return NULL;
1779 * We never clear the `completed' flag, but we must always
1780 * re-run the completion check because it also highlights
1781 * errors in the grid.
1783 ret->completed = check_completion(ret) || ret->completed;
1785 return ret;
1788 /* ----------------------------------------------------------------------
1789 * Drawing routines.
1792 static void game_compute_size(game_params *params, int tilesize,
1793 int *x, int *y)
1795 /* fool the macros */
1796 struct dummy { int tilesize; } dummy, *ds = &dummy;
1797 dummy.tilesize = tilesize;
1799 *x = 2 * BORDER + params->w * TILESIZE + 1;
1800 *y = 2 * BORDER + params->h * TILESIZE + 1;
1803 static void game_set_size(drawing *dr, game_drawstate *ds,
1804 game_params *params, int tilesize)
1806 ds->tilesize = tilesize;
1809 static float *game_colours(frontend *fe, int *ncolours)
1811 float *ret = snewn(3 * NCOLOURS, float);
1813 /* CURSOR colour is a background highlight. */
1814 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_CURSOR, -1);
1816 ret[COL_FILLEDSQUARE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0];
1817 ret[COL_FILLEDSQUARE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1];
1818 ret[COL_FILLEDSQUARE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
1820 ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.7F;
1821 ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.7F;
1822 ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.7F;
1824 ret[COL_INK * 3 + 0] = 0.0F;
1825 ret[COL_INK * 3 + 1] = 0.0F;
1826 ret[COL_INK * 3 + 2] = 0.0F;
1828 ret[COL_SLANT1 * 3 + 0] = 0.0F;
1829 ret[COL_SLANT1 * 3 + 1] = 0.0F;
1830 ret[COL_SLANT1 * 3 + 2] = 0.0F;
1832 ret[COL_SLANT2 * 3 + 0] = 0.0F;
1833 ret[COL_SLANT2 * 3 + 1] = 0.0F;
1834 ret[COL_SLANT2 * 3 + 2] = 0.0F;
1836 ret[COL_ERROR * 3 + 0] = 1.0F;
1837 ret[COL_ERROR * 3 + 1] = 0.0F;
1838 ret[COL_ERROR * 3 + 2] = 0.0F;
1840 *ncolours = NCOLOURS;
1841 return ret;
1844 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1846 int w = state->p.w, h = state->p.h;
1847 int i;
1848 struct game_drawstate *ds = snew(struct game_drawstate);
1850 ds->tilesize = 0;
1851 ds->started = FALSE;
1852 ds->grid = snewn((w+2)*(h+2), long);
1853 ds->todraw = snewn((w+2)*(h+2), long);
1854 for (i = 0; i < (w+2)*(h+2); i++)
1855 ds->grid[i] = ds->todraw[i] = -1;
1857 return ds;
1860 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1862 sfree(ds->todraw);
1863 sfree(ds->grid);
1864 sfree(ds);
1867 static void draw_clue(drawing *dr, game_drawstate *ds,
1868 int x, int y, long v, long err, int bg, int colour)
1870 char p[2];
1871 int ccol = colour >= 0 ? colour : ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2;
1872 int tcol = colour >= 0 ? colour : err ? COL_ERROR : COL_INK;
1874 if (v < 0)
1875 return;
1877 p[0] = (char)v + '0';
1878 p[1] = '\0';
1879 draw_circle(dr, COORD(x), COORD(y), CLUE_RADIUS,
1880 bg >= 0 ? bg : COL_BACKGROUND, ccol);
1881 draw_text(dr, COORD(x), COORD(y), FONT_VARIABLE,
1882 CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE, tcol, p);
1885 static void draw_tile(drawing *dr, game_drawstate *ds, game_clues *clues,
1886 int x, int y, long v)
1888 int w = clues->w, h = clues->h, W = w+1 /*, H = h+1 */;
1889 int chesscolour = (x ^ y) & 1;
1890 int fscol = chesscolour ? COL_SLANT2 : COL_SLANT1;
1891 int bscol = chesscolour ? COL_SLANT1 : COL_SLANT2;
1893 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
1895 draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
1896 (v & FLASH) ? COL_GRID :
1897 (v & CURSOR) ? COL_CURSOR :
1898 (v & (BACKSLASH | FORWSLASH)) ? COL_FILLEDSQUARE :
1899 COL_BACKGROUND);
1902 * Draw the grid lines.
1904 if (x >= 0 && x < w && y >= 0)
1905 draw_rect(dr, COORD(x), COORD(y), TILESIZE+1, 1, COL_GRID);
1906 if (x >= 0 && x < w && y < h)
1907 draw_rect(dr, COORD(x), COORD(y+1), TILESIZE+1, 1, COL_GRID);
1908 if (y >= 0 && y < h && x >= 0)
1909 draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE+1, COL_GRID);
1910 if (y >= 0 && y < h && x < w)
1911 draw_rect(dr, COORD(x+1), COORD(y), 1, TILESIZE+1, COL_GRID);
1912 if (x == -1 && y == -1)
1913 draw_rect(dr, COORD(x+1), COORD(y+1), 1, 1, COL_GRID);
1914 if (x == -1 && y == h)
1915 draw_rect(dr, COORD(x+1), COORD(y), 1, 1, COL_GRID);
1916 if (x == w && y == -1)
1917 draw_rect(dr, COORD(x), COORD(y+1), 1, 1, COL_GRID);
1918 if (x == w && y == h)
1919 draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
1922 * Draw the slash.
1924 if (v & BACKSLASH) {
1925 int scol = (v & ERRSLASH) ? COL_ERROR : bscol;
1926 draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y+1), scol);
1927 draw_line(dr, COORD(x)+1, COORD(y), COORD(x+1), COORD(y+1)-1,
1928 scol);
1929 draw_line(dr, COORD(x), COORD(y)+1, COORD(x+1)-1, COORD(y+1),
1930 scol);
1931 } else if (v & FORWSLASH) {
1932 int scol = (v & ERRSLASH) ? COL_ERROR : fscol;
1933 draw_line(dr, COORD(x+1), COORD(y), COORD(x), COORD(y+1), scol);
1934 draw_line(dr, COORD(x+1)-1, COORD(y), COORD(x), COORD(y+1)-1,
1935 scol);
1936 draw_line(dr, COORD(x+1), COORD(y)+1, COORD(x)+1, COORD(y+1),
1937 scol);
1941 * Draw dots on the grid corners that appear if a slash is in a
1942 * neighbouring cell.
1944 if (v & (L_T | BACKSLASH))
1945 draw_rect(dr, COORD(x), COORD(y)+1, 1, 1,
1946 (v & ERR_L_T ? COL_ERROR : bscol));
1947 if (v & (L_B | FORWSLASH))
1948 draw_rect(dr, COORD(x), COORD(y+1)-1, 1, 1,
1949 (v & ERR_L_B ? COL_ERROR : fscol));
1950 if (v & (T_L | BACKSLASH))
1951 draw_rect(dr, COORD(x)+1, COORD(y), 1, 1,
1952 (v & ERR_T_L ? COL_ERROR : bscol));
1953 if (v & (T_R | FORWSLASH))
1954 draw_rect(dr, COORD(x+1)-1, COORD(y), 1, 1,
1955 (v & ERR_T_R ? COL_ERROR : fscol));
1956 if (v & (C_TL | BACKSLASH))
1957 draw_rect(dr, COORD(x), COORD(y), 1, 1,
1958 (v & ERR_C_TL ? COL_ERROR : bscol));
1961 * And finally the clues at the corners.
1963 if (x >= 0 && y >= 0)
1964 draw_clue(dr, ds, x, y, clues->clues[y*W+x], v & ERR_TL, -1, -1);
1965 if (x < w && y >= 0)
1966 draw_clue(dr, ds, x+1, y, clues->clues[y*W+(x+1)], v & ERR_TR, -1, -1);
1967 if (x >= 0 && y < h)
1968 draw_clue(dr, ds, x, y+1, clues->clues[(y+1)*W+x], v & ERR_BL, -1, -1);
1969 if (x < w && y < h)
1970 draw_clue(dr, ds, x+1, y+1, clues->clues[(y+1)*W+(x+1)], v & ERR_BR,
1971 -1, -1);
1973 unclip(dr);
1974 draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
1977 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1978 game_state *state, int dir, game_ui *ui,
1979 float animtime, float flashtime)
1981 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1982 int x, y;
1983 int flashing;
1985 if (flashtime > 0)
1986 flashing = (int)(flashtime * 3 / FLASH_TIME) != 1;
1987 else
1988 flashing = FALSE;
1990 if (!ds->started) {
1991 int ww, wh;
1992 game_compute_size(&state->p, TILESIZE, &ww, &wh);
1993 draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
1994 draw_update(dr, 0, 0, ww, wh);
1995 ds->started = TRUE;
1999 * Loop over the grid and work out where all the slashes are.
2000 * We need to do this because a slash in one square affects the
2001 * drawing of the next one along.
2003 for (y = -1; y <= h; y++)
2004 for (x = -1; x <= w; x++) {
2005 if (x >= 0 && x < w && y >= 0 && y < h)
2006 ds->todraw[(y+1)*(w+2)+(x+1)] = flashing ? FLASH : 0;
2007 else
2008 ds->todraw[(y+1)*(w+2)+(x+1)] = 0;
2011 for (y = 0; y < h; y++) {
2012 for (x = 0; x < w; x++) {
2013 int err = state->errors[y*W+x] & ERR_SQUARE;
2015 if (state->soln[y*w+x] < 0) {
2016 ds->todraw[(y+1)*(w+2)+(x+1)] |= BACKSLASH;
2017 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_R;
2018 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_B;
2019 ds->todraw[(y+2)*(w+2)+(x+2)] |= C_TL;
2020 if (err) {
2021 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
2022 ERR_T_L | ERR_L_T | ERR_C_TL;
2023 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_R;
2024 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_B;
2025 ds->todraw[(y+2)*(w+2)+(x+2)] |= ERR_C_TL;
2027 } else if (state->soln[y*w+x] > 0) {
2028 ds->todraw[(y+1)*(w+2)+(x+1)] |= FORWSLASH;
2029 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_T | C_TL;
2030 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_L | C_TL;
2031 if (err) {
2032 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
2033 ERR_L_B | ERR_T_R;
2034 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_T | ERR_C_TL;
2035 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_L | ERR_C_TL;
2038 if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y)
2039 ds->todraw[(y+1)*(w+2)+(x+1)] |= CURSOR;
2043 for (y = 0; y < H; y++)
2044 for (x = 0; x < W; x++)
2045 if (state->errors[y*W+x] & ERR_VERTEX) {
2046 ds->todraw[y*(w+2)+x] |= ERR_BR;
2047 ds->todraw[y*(w+2)+(x+1)] |= ERR_BL;
2048 ds->todraw[(y+1)*(w+2)+x] |= ERR_TR;
2049 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERR_TL;
2053 * Now go through and draw the grid squares.
2055 for (y = -1; y <= h; y++) {
2056 for (x = -1; x <= w; x++) {
2057 if (ds->todraw[(y+1)*(w+2)+(x+1)] != ds->grid[(y+1)*(w+2)+(x+1)]) {
2058 draw_tile(dr, ds, state->clues, x, y,
2059 ds->todraw[(y+1)*(w+2)+(x+1)]);
2060 ds->grid[(y+1)*(w+2)+(x+1)] = ds->todraw[(y+1)*(w+2)+(x+1)];
2066 static float game_anim_length(game_state *oldstate, game_state *newstate,
2067 int dir, game_ui *ui)
2069 return 0.0F;
2072 static float game_flash_length(game_state *oldstate, game_state *newstate,
2073 int dir, game_ui *ui)
2075 if (!oldstate->completed && newstate->completed &&
2076 !oldstate->used_solve && !newstate->used_solve)
2077 return FLASH_TIME;
2079 return 0.0F;
2082 static int game_status(game_state *state)
2084 return state->completed ? +1 : 0;
2087 static int game_timing_state(game_state *state, game_ui *ui)
2089 return TRUE;
2092 static void game_print_size(game_params *params, float *x, float *y)
2094 int pw, ph;
2097 * I'll use 6mm squares by default.
2099 game_compute_size(params, 600, &pw, &ph);
2100 *x = pw / 100.0F;
2101 *y = ph / 100.0F;
2104 static void game_print(drawing *dr, game_state *state, int tilesize)
2106 int w = state->p.w, h = state->p.h, W = w+1;
2107 int ink = print_mono_colour(dr, 0);
2108 int paper = print_mono_colour(dr, 1);
2109 int x, y;
2111 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2112 game_drawstate ads, *ds = &ads;
2113 game_set_size(dr, ds, NULL, tilesize);
2116 * Border.
2118 print_line_width(dr, TILESIZE / 16);
2119 draw_rect_outline(dr, COORD(0), COORD(0), w*TILESIZE, h*TILESIZE, ink);
2122 * Grid.
2124 print_line_width(dr, TILESIZE / 24);
2125 for (x = 1; x < w; x++)
2126 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
2127 for (y = 1; y < h; y++)
2128 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
2131 * Solution.
2133 print_line_width(dr, TILESIZE / 12);
2134 for (y = 0; y < h; y++)
2135 for (x = 0; x < w; x++)
2136 if (state->soln[y*w+x]) {
2137 int ly, ry;
2139 * To prevent nasty line-ending artefacts at
2140 * corners, I'll do something slightly cunning
2141 * here.
2143 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2144 if (state->soln[y*w+x] < 0)
2145 ly = y-1, ry = y+2;
2146 else
2147 ry = y-1, ly = y+2;
2148 draw_line(dr, COORD(x-1), COORD(ly), COORD(x+2), COORD(ry),
2149 ink);
2150 unclip(dr);
2154 * Clues.
2156 print_line_width(dr, TILESIZE / 24);
2157 for (y = 0; y <= h; y++)
2158 for (x = 0; x <= w; x++)
2159 draw_clue(dr, ds, x, y, state->clues->clues[y*W+x],
2160 FALSE, paper, ink);
2163 #ifdef COMBINED
2164 #define thegame slant
2165 #endif
2167 const struct game thegame = {
2168 "Slant", "games.slant", "slant",
2169 default_params,
2170 game_fetch_preset,
2171 decode_params,
2172 encode_params,
2173 free_params,
2174 dup_params,
2175 TRUE, game_configure, custom_params,
2176 validate_params,
2177 new_game_desc,
2178 validate_desc,
2179 new_game,
2180 dup_game,
2181 free_game,
2182 TRUE, solve_game,
2183 TRUE, game_can_format_as_text_now, game_text_format,
2184 new_ui,
2185 free_ui,
2186 encode_ui,
2187 decode_ui,
2188 game_changed_state,
2189 interpret_move,
2190 execute_move,
2191 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2192 game_colours,
2193 game_new_drawstate,
2194 game_free_drawstate,
2195 game_redraw,
2196 game_anim_length,
2197 game_flash_length,
2198 game_status,
2199 TRUE, FALSE, game_print_size, game_print,
2200 FALSE, /* wants_statusbar */
2201 FALSE, game_timing_state,
2202 0, /* flags */
2205 #ifdef STANDALONE_SOLVER
2207 #include <stdarg.h>
2209 int main(int argc, char **argv)
2211 game_params *p;
2212 game_state *s;
2213 char *id = NULL, *desc, *err;
2214 int grade = FALSE;
2215 int ret, diff, really_verbose = FALSE;
2216 struct solver_scratch *sc;
2218 while (--argc > 0) {
2219 char *p = *++argv;
2220 if (!strcmp(p, "-v")) {
2221 really_verbose = TRUE;
2222 } else if (!strcmp(p, "-g")) {
2223 grade = TRUE;
2224 } else if (*p == '-') {
2225 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2226 return 1;
2227 } else {
2228 id = p;
2232 if (!id) {
2233 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2234 return 1;
2237 desc = strchr(id, ':');
2238 if (!desc) {
2239 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2240 return 1;
2242 *desc++ = '\0';
2244 p = default_params();
2245 decode_params(p, id);
2246 err = validate_desc(p, desc);
2247 if (err) {
2248 fprintf(stderr, "%s: %s\n", argv[0], err);
2249 return 1;
2251 s = new_game(NULL, p, desc);
2253 sc = new_scratch(p->w, p->h);
2256 * When solving an Easy puzzle, we don't want to bother the
2257 * user with Hard-level deductions. For this reason, we grade
2258 * the puzzle internally before doing anything else.
2260 ret = -1; /* placate optimiser */
2261 for (diff = 0; diff < DIFFCOUNT; diff++) {
2262 ret = slant_solve(p->w, p->h, s->clues->clues,
2263 s->soln, sc, diff);
2264 if (ret < 2)
2265 break;
2268 if (diff == DIFFCOUNT) {
2269 if (grade)
2270 printf("Difficulty rating: harder than Hard, or ambiguous\n");
2271 else
2272 printf("Unable to find a unique solution\n");
2273 } else {
2274 if (grade) {
2275 if (ret == 0)
2276 printf("Difficulty rating: impossible (no solution exists)\n");
2277 else if (ret == 1)
2278 printf("Difficulty rating: %s\n", slant_diffnames[diff]);
2279 } else {
2280 verbose = really_verbose;
2281 ret = slant_solve(p->w, p->h, s->clues->clues,
2282 s->soln, sc, diff);
2283 if (ret == 0)
2284 printf("Puzzle is inconsistent\n");
2285 else
2286 fputs(game_text_format(s), stdout);
2290 return 0;
2293 #endif
2295 /* vim: set shiftwidth=4 tabstop=8: */