2 * slant.c: Puzzle from nikoli.co.jp involving drawing a diagonal
3 * line through each square of a grid.
7 * In this puzzle you have a grid of squares, each of which must
8 * contain a diagonal line; you also have clue numbers placed at
9 * _points_ of that grid, which means there's a (w+1) x (h+1) array
10 * of possible clue positions.
12 * I'm therefore going to adopt a rigid convention throughout this
13 * source file of using w and h for the dimensions of the grid of
14 * squares, and W and H for the dimensions of the grid of points.
15 * Thus, W == w+1 and H == h+1 always.
17 * Clue arrays will be W*H `signed char's, and the clue at each
18 * point will be a number from 0 to 4, or -1 if there's no clue.
20 * Solution arrays will be W*H `signed char's, and the number at
21 * each point will be +1 for a forward slash (/), -1 for a
22 * backslash (\), and 0 for unknown.
48 * In standalone solver mode, `verbose' is a variable which can be
49 * set by command-line option; in debugging mode it's simply always
52 #if defined STANDALONE_SOLVER
53 #define SOLVER_DIAGNOSTICS
55 #elif defined SOLVER_DIAGNOSTICS
60 * Difficulty levels. I do some macro ickery here to ensure that my
61 * enum and the various forms of my name list always match up.
66 #define ENUM(upper,title,lower) DIFF_ ## upper,
67 #define TITLE(upper,title,lower) #title,
68 #define ENCODE(upper,title,lower) #lower
69 #define CONFIG(upper,title,lower) ":" #title
70 enum { DIFFLIST(ENUM
) DIFFCOUNT
};
71 static char const *const slant_diffnames
[] = { DIFFLIST(TITLE
) };
72 static char const slant_diffchars
[] = DIFFLIST(ENCODE
);
73 #define DIFFCONFIG DIFFLIST(CONFIG)
79 typedef struct game_clues
{
93 unsigned char *errors
;
95 int used_solve
; /* used to suppress completion flash */
98 static game_params
*default_params(void)
100 game_params
*ret
= snew(game_params
);
103 ret
->diff
= DIFF_EASY
;
108 static const struct game_params slant_presets
[] = {
117 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
122 if (i
< 0 || i
>= lenof(slant_presets
))
125 ret
= snew(game_params
);
126 *ret
= slant_presets
[i
];
128 sprintf(str
, "%dx%d %s", ret
->w
, ret
->h
, slant_diffnames
[ret
->diff
]);
135 static void free_params(game_params
*params
)
140 static game_params
*dup_params(game_params
*params
)
142 game_params
*ret
= snew(game_params
);
143 *ret
= *params
; /* structure copy */
147 static void decode_params(game_params
*ret
, char const *string
)
149 ret
->w
= ret
->h
= atoi(string
);
150 while (*string
&& isdigit((unsigned char)*string
)) string
++;
151 if (*string
== 'x') {
153 ret
->h
= atoi(string
);
154 while (*string
&& isdigit((unsigned char)*string
)) string
++;
156 if (*string
== 'd') {
159 for (i
= 0; i
< DIFFCOUNT
; i
++)
160 if (*string
== slant_diffchars
[i
])
162 if (*string
) string
++;
166 static char *encode_params(game_params
*params
, int full
)
170 sprintf(data
, "%dx%d", params
->w
, params
->h
);
172 sprintf(data
+ strlen(data
), "d%c", slant_diffchars
[params
->diff
]);
177 static config_item
*game_configure(game_params
*params
)
182 ret
= snewn(4, config_item
);
184 ret
[0].name
= "Width";
185 ret
[0].type
= C_STRING
;
186 sprintf(buf
, "%d", params
->w
);
187 ret
[0].sval
= dupstr(buf
);
190 ret
[1].name
= "Height";
191 ret
[1].type
= C_STRING
;
192 sprintf(buf
, "%d", params
->h
);
193 ret
[1].sval
= dupstr(buf
);
196 ret
[2].name
= "Difficulty";
197 ret
[2].type
= C_CHOICES
;
198 ret
[2].sval
= DIFFCONFIG
;
199 ret
[2].ival
= params
->diff
;
209 static game_params
*custom_params(config_item
*cfg
)
211 game_params
*ret
= snew(game_params
);
213 ret
->w
= atoi(cfg
[0].sval
);
214 ret
->h
= atoi(cfg
[1].sval
);
215 ret
->diff
= cfg
[2].ival
;
220 static char *validate_params(game_params
*params
, int full
)
223 * (At least at the time of writing this comment) The grid
224 * generator is actually capable of handling even zero grid
225 * dimensions without crashing. Puzzles with a zero-area grid
226 * are a bit boring, though, because they're already solved :-)
227 * And puzzles with a dimension of 1 can't be made Hard, which
228 * means the simplest thing is to forbid them altogether.
231 if (params
->w
< 2 || params
->h
< 2)
232 return "Width and height must both be at least two";
238 * Scratch space for solver.
240 struct solver_scratch
{
242 * Disjoint set forest which tracks the connected sets of
248 * Counts the number of possible exits from each connected set
249 * of points. (That is, the number of possible _simultaneous_
250 * exits: an unconnected point labelled 2 has an exit count of
251 * 2 even if all four possible edges are still under
257 * Tracks whether each connected set of points includes a
260 unsigned char *border
;
263 * Another disjoint set forest. This one tracks _squares_ which
264 * are known to slant in the same direction.
269 * Stores slash values which we know for an equivalence class.
270 * When we fill in a square, we set slashval[canonify(x)] to
271 * the same value as soln[x], so that we can then spot other
272 * squares equivalent to it and fill them in immediately via
273 * their known equivalence.
275 signed char *slashval
;
278 * Stores possible v-shapes. This array is w by h in size, but
279 * not every bit of every entry is meaningful. The bits mean:
281 * - bit 0 for a square means that that square and the one to
282 * its right might form a v-shape between them
283 * - bit 1 for a square means that that square and the one to
284 * its right might form a ^-shape between them
285 * - bit 2 for a square means that that square and the one
286 * below it might form a >-shape between them
287 * - bit 3 for a square means that that square and the one
288 * below it might form a <-shape between them
290 * Any starting 1 or 3 clue rules out four bits in this array
291 * immediately; a 2 clue propagates any ruled-out bit past it
292 * (if the two squares on one side of a 2 cannot be a v-shape,
293 * then neither can the two on the other side be the same
294 * v-shape); we can rule out further bits during play using
295 * partially filled 2 clues; whenever a pair of squares is
296 * known not to be _either_ kind of v-shape, we can mark them
299 unsigned char *vbitmap
;
302 * Useful to have this information automatically passed to
303 * solver subroutines. (This pointer is not dynamically
304 * allocated by new_scratch and free_scratch.)
306 const signed char *clues
;
309 static struct solver_scratch
*new_scratch(int w
, int h
)
311 int W
= w
+1, H
= h
+1;
312 struct solver_scratch
*ret
= snew(struct solver_scratch
);
313 ret
->connected
= snewn(W
*H
, int);
314 ret
->exits
= snewn(W
*H
, int);
315 ret
->border
= snewn(W
*H
, unsigned char);
316 ret
->equiv
= snewn(w
*h
, int);
317 ret
->slashval
= snewn(w
*h
, signed char);
318 ret
->vbitmap
= snewn(w
*h
, unsigned char);
322 static void free_scratch(struct solver_scratch
*sc
)
329 sfree(sc
->connected
);
334 * Wrapper on dsf_merge() which updates the `exits' and `border'
337 static void merge_vertices(int *connected
,
338 struct solver_scratch
*sc
, int i
, int j
)
340 int exits
= -1, border
= FALSE
; /* initialise to placate optimiser */
343 i
= dsf_canonify(connected
, i
);
344 j
= dsf_canonify(connected
, j
);
347 * We have used one possible exit from each of the two
348 * classes. Thus, the viable exit count of the new class is
349 * the sum of the old exit counts minus two.
351 exits
= sc
->exits
[i
] + sc
->exits
[j
] - 2;
353 border
= sc
->border
[i
] || sc
->border
[j
];
356 dsf_merge(connected
, i
, j
);
359 i
= dsf_canonify(connected
, i
);
360 sc
->exits
[i
] = exits
;
361 sc
->border
[i
] = border
;
366 * Called when we have just blocked one way out of a particular
367 * point. If that point is a non-clue point (thus has a variable
368 * number of exits), we have therefore decreased its potential exit
369 * count, so we must decrement the exit count for the group as a
372 static void decr_exits(struct solver_scratch
*sc
, int i
)
374 if (sc
->clues
[i
] < 0) {
375 i
= dsf_canonify(sc
->connected
, i
);
380 static void fill_square(int w
, int h
, int x
, int y
, int v
,
382 int *connected
, struct solver_scratch
*sc
)
384 int W
= w
+1 /*, H = h+1 */;
386 assert(x
>= 0 && x
< w
&& y
>= 0 && y
< h
);
388 if (soln
[y
*w
+x
] != 0) {
389 return; /* do nothing */
392 #ifdef SOLVER_DIAGNOSTICS
394 printf(" placing %c in %d,%d\n", v
== -1 ? '\\' : '/', x
, y
);
400 int c
= dsf_canonify(sc
->equiv
, y
*w
+x
);
405 merge_vertices(connected
, sc
, y
*W
+x
, (y
+1)*W
+(x
+1));
407 decr_exits(sc
, y
*W
+(x
+1));
408 decr_exits(sc
, (y
+1)*W
+x
);
411 merge_vertices(connected
, sc
, y
*W
+(x
+1), (y
+1)*W
+x
);
413 decr_exits(sc
, y
*W
+x
);
414 decr_exits(sc
, (y
+1)*W
+(x
+1));
419 static int vbitmap_clear(int w
, int h
, struct solver_scratch
*sc
,
420 int x
, int y
, int vbits
, char *reason
, ...)
422 int done_something
= FALSE
;
425 for (vbit
= 1; vbit
<= 8; vbit
<<= 1)
426 if (vbits
& sc
->vbitmap
[y
*w
+x
] & vbit
) {
427 done_something
= TRUE
;
428 #ifdef SOLVER_DIAGNOSTICS
432 printf("ruling out %c shape at (%d,%d)-(%d,%d) (",
433 "!v^!>!!!<"[vbit
], x
, y
,
434 x
+((vbit
&0x3)!=0), y
+((vbit
&0xC)!=0));
436 va_start(ap
, reason
);
443 sc
->vbitmap
[y
*w
+x
] &= ~vbit
;
446 return done_something
;
450 * Solver. Returns 0 for impossibility, 1 for success, 2 for
451 * ambiguity or failure to converge.
453 static int slant_solve(int w
, int h
, const signed char *clues
,
454 signed char *soln
, struct solver_scratch
*sc
,
457 int W
= w
+1, H
= h
+1;
464 memset(soln
, 0, w
*h
);
469 * Establish a disjoint set forest for tracking connectedness
470 * between grid points.
472 dsf_init(sc
->connected
, W
*H
);
475 * Establish a disjoint set forest for tracking which squares
476 * are known to slant in the same direction.
478 dsf_init(sc
->equiv
, w
*h
);
481 * Clear the slashval array.
483 memset(sc
->slashval
, 0, w
*h
);
486 * Set up the vbitmap array. Initially all types of v are possible.
488 memset(sc
->vbitmap
, 0xF, w
*h
);
491 * Initialise the `exits' and `border' arrays. These are used
492 * to do second-order loop avoidance: the dual of the no loops
493 * constraint is that every point must be somehow connected to
494 * the border of the grid (otherwise there would be a solid
495 * loop around it which prevented this).
497 * I define a `dead end' to be a connected group of points
498 * which contains no border point, and which can form at most
499 * one new connection outside itself. Then I forbid placing an
500 * edge so that it connects together two dead-end groups, since
501 * this would yield a non-border-connected isolated subgraph
502 * with no further scope to extend it.
504 for (y
= 0; y
< H
; y
++)
505 for (x
= 0; x
< W
; x
++) {
506 if (y
== 0 || y
== H
-1 || x
== 0 || x
== W
-1)
507 sc
->border
[y
*W
+x
] = TRUE
;
509 sc
->border
[y
*W
+x
] = FALSE
;
511 if (clues
[y
*W
+x
] < 0)
512 sc
->exits
[y
*W
+x
] = 4;
514 sc
->exits
[y
*W
+x
] = clues
[y
*W
+x
];
518 * Repeatedly try to deduce something until we can't.
521 done_something
= FALSE
;
524 * Any clue point with the number of remaining lines equal
525 * to zero or to the number of remaining undecided
526 * neighbouring squares can be filled in completely.
528 for (y
= 0; y
< H
; y
++)
529 for (x
= 0; x
< W
; x
++) {
534 int nu
, nl
, c
, s
, eq
, eq2
, last
, meq
, mj1
, mj2
;
536 if ((c
= clues
[y
*W
+x
]) < 0)
540 * We have a clue point. Start by listing its
541 * neighbouring squares, in order around the point,
542 * together with the type of slash that would be
543 * required in that square to connect to the point.
546 if (x
> 0 && y
> 0) {
547 neighbours
[nneighbours
].pos
= (y
-1)*w
+(x
-1);
548 neighbours
[nneighbours
].slash
= -1;
551 if (x
> 0 && y
< h
) {
552 neighbours
[nneighbours
].pos
= y
*w
+(x
-1);
553 neighbours
[nneighbours
].slash
= +1;
556 if (x
< w
&& y
< h
) {
557 neighbours
[nneighbours
].pos
= y
*w
+x
;
558 neighbours
[nneighbours
].slash
= -1;
561 if (x
< w
&& y
> 0) {
562 neighbours
[nneighbours
].pos
= (y
-1)*w
+x
;
563 neighbours
[nneighbours
].slash
= +1;
568 * Count up the number of undecided neighbours, and
569 * also the number of lines already present.
571 * If we're not on DIFF_EASY, then in this loop we
572 * also track whether we've seen two adjacent empty
573 * squares belonging to the same equivalence class
574 * (meaning they have the same type of slash). If
575 * so, we count them jointly as one line.
579 last
= neighbours
[nneighbours
-1].pos
;
581 eq
= dsf_canonify(sc
->equiv
, last
);
584 meq
= mj1
= mj2
= -1;
585 for (i
= 0; i
< nneighbours
; i
++) {
586 j
= neighbours
[i
].pos
;
587 s
= neighbours
[i
].slash
;
589 nu
++; /* undecided */
590 if (meq
< 0 && difficulty
> DIFF_EASY
) {
591 eq2
= dsf_canonify(sc
->equiv
, j
);
592 if (eq
== eq2
&& last
!= j
) {
594 * We've found an equivalent pair.
595 * Mark it. This also inhibits any
596 * further equivalence tracking
597 * around this square, since we can
598 * only handle one pair (and in
599 * particular we want to avoid
600 * being misled by two overlapping
601 * equivalence pairs).
606 nl
--; /* count one line */
607 nu
-= 2; /* and lose two undecideds */
614 nl
--; /* here's a line */
622 if (nl
< 0 || nl
> nu
) {
624 * No consistent value for this at all!
626 #ifdef SOLVER_DIAGNOSTICS
628 printf("need %d / %d lines around clue point at %d,%d!\n",
631 return 0; /* impossible */
634 if (nu
> 0 && (nl
== 0 || nl
== nu
)) {
635 #ifdef SOLVER_DIAGNOSTICS
638 printf("partially (since %d,%d == %d,%d) ",
639 mj1
%w
, mj1
/w
, mj2
%w
, mj2
/w
);
640 printf("%s around clue point at %d,%d\n",
641 nl
? "filling" : "emptying", x
, y
);
644 for (i
= 0; i
< nneighbours
; i
++) {
645 j
= neighbours
[i
].pos
;
646 s
= neighbours
[i
].slash
;
647 if (soln
[j
] == 0 && j
!= mj1
&& j
!= mj2
)
648 fill_square(w
, h
, j
%w
, j
/w
, (nl
? s
: -s
), soln
,
652 done_something
= TRUE
;
653 } else if (nu
== 2 && nl
== 1 && difficulty
> DIFF_EASY
) {
655 * If we have precisely two undecided squares
656 * and precisely one line to place between
657 * them, _and_ those squares are adjacent, then
658 * we can mark them as equivalent to one
661 * This even applies if meq >= 0: if we have a
662 * 2 clue point and two of its neighbours are
663 * already marked equivalent, we can indeed
664 * mark the other two as equivalent.
666 * We don't bother with this on DIFF_EASY,
667 * since we wouldn't have used the results
671 for (i
= 0; i
< nneighbours
; i
++) {
672 j
= neighbours
[i
].pos
;
673 if (soln
[j
] == 0 && j
!= mj1
&& j
!= mj2
) {
676 else if (last
== i
-1 || (last
== 0 && i
== 3))
677 break; /* found a pair */
680 if (i
< nneighbours
) {
685 * neighbours[last] and neighbours[i] are
686 * the pair. Mark them equivalent.
688 #ifdef SOLVER_DIAGNOSTICS
691 printf("since %d,%d == %d,%d, ",
692 mj1
%w
, mj1
/w
, mj2
%w
, mj2
/w
);
695 mj1
= neighbours
[last
].pos
;
696 mj2
= neighbours
[i
].pos
;
697 #ifdef SOLVER_DIAGNOSTICS
699 printf("clue point at %d,%d implies %d,%d == %d,"
700 "%d\n", x
, y
, mj1
%w
, mj1
/w
, mj2
%w
, mj2
/w
);
702 mj1
= dsf_canonify(sc
->equiv
, mj1
);
703 sv1
= sc
->slashval
[mj1
];
704 mj2
= dsf_canonify(sc
->equiv
, mj2
);
705 sv2
= sc
->slashval
[mj2
];
706 if (sv1
!= 0 && sv2
!= 0 && sv1
!= sv2
) {
707 #ifdef SOLVER_DIAGNOSTICS
709 printf("merged two equivalence classes with"
710 " different slash values!\n");
714 sv1
= sv1
? sv1
: sv2
;
715 dsf_merge(sc
->equiv
, mj1
, mj2
);
716 mj1
= dsf_canonify(sc
->equiv
, mj1
);
717 sc
->slashval
[mj1
] = sv1
;
726 * Failing that, we now apply the second condition, which
727 * is that no square may be filled in such a way as to form
728 * a loop. Also in this loop (since it's over squares
729 * rather than points), we check slashval to see if we've
730 * already filled in another square in the same equivalence
733 * The slashval check is disabled on DIFF_EASY, as is dead
734 * end avoidance. Only _immediate_ loop avoidance remains.
736 for (y
= 0; y
< h
; y
++)
737 for (x
= 0; x
< w
; x
++) {
740 #ifdef SOLVER_DIAGNOSTICS
741 char *reason
= "<internal error>";
745 continue; /* got this one already */
750 if (difficulty
> DIFF_EASY
)
751 v
= sc
->slashval
[dsf_canonify(sc
->equiv
, y
*w
+x
)];
756 * Try to rule out connectivity between (x,y) and
757 * (x+1,y+1); if successful, we will deduce that we
758 * must have a forward slash.
760 c1
= dsf_canonify(sc
->connected
, y
*W
+x
);
761 c2
= dsf_canonify(sc
->connected
, (y
+1)*W
+(x
+1));
764 #ifdef SOLVER_DIAGNOSTICS
765 reason
= "simple loop avoidance";
768 if (difficulty
> DIFF_EASY
&&
769 !sc
->border
[c1
] && !sc
->border
[c2
] &&
770 sc
->exits
[c1
] <= 1 && sc
->exits
[c2
] <= 1) {
772 #ifdef SOLVER_DIAGNOSTICS
773 reason
= "dead end avoidance";
778 #ifdef SOLVER_DIAGNOSTICS
779 reason
= "equivalence to an already filled square";
784 * Now do the same between (x+1,y) and (x,y+1), to
785 * see if we are required to have a backslash.
787 c1
= dsf_canonify(sc
->connected
, y
*W
+(x
+1));
788 c2
= dsf_canonify(sc
->connected
, (y
+1)*W
+x
);
791 #ifdef SOLVER_DIAGNOSTICS
792 reason
= "simple loop avoidance";
795 if (difficulty
> DIFF_EASY
&&
796 !sc
->border
[c1
] && !sc
->border
[c2
] &&
797 sc
->exits
[c1
] <= 1 && sc
->exits
[c2
] <= 1) {
799 #ifdef SOLVER_DIAGNOSTICS
800 reason
= "dead end avoidance";
805 #ifdef SOLVER_DIAGNOSTICS
806 reason
= "equivalence to an already filled square";
812 * No consistent value for this at all!
814 #ifdef SOLVER_DIAGNOSTICS
816 printf("%d,%d has no consistent slash!\n", x
, y
);
818 return 0; /* impossible */
822 #ifdef SOLVER_DIAGNOSTICS
824 printf("employing %s\n", reason
);
826 fill_square(w
, h
, x
, y
, +1, soln
, sc
->connected
, sc
);
827 done_something
= TRUE
;
829 #ifdef SOLVER_DIAGNOSTICS
831 printf("employing %s\n", reason
);
833 fill_square(w
, h
, x
, y
, -1, soln
, sc
->connected
, sc
);
834 done_something
= TRUE
;
842 * Now see what we can do with the vbitmap array. All
843 * vbitmap deductions are disabled at Easy level.
845 if (difficulty
<= DIFF_EASY
)
848 for (y
= 0; y
< h
; y
++)
849 for (x
= 0; x
< w
; x
++) {
853 * Any line already placed in a square must rule
854 * out any type of v which contradicts it.
856 if ((s
= soln
[y
*w
+x
]) != 0) {
859 vbitmap_clear(w
, h
, sc
, x
-1, y
, (s
< 0 ? 0x1 : 0x2),
860 "contradicts known edge at (%d,%d)",x
,y
);
863 vbitmap_clear(w
, h
, sc
, x
, y
, (s
< 0 ? 0x2 : 0x1),
864 "contradicts known edge at (%d,%d)",x
,y
);
867 vbitmap_clear(w
, h
, sc
, x
, y
-1, (s
< 0 ? 0x4 : 0x8),
868 "contradicts known edge at (%d,%d)",x
,y
);
871 vbitmap_clear(w
, h
, sc
, x
, y
, (s
< 0 ? 0x8 : 0x4),
872 "contradicts known edge at (%d,%d)",x
,y
);
876 * If both types of v are ruled out for a pair of
877 * adjacent squares, mark them as equivalent.
879 if (x
+1 < w
&& !(sc
->vbitmap
[y
*w
+x
] & 0x3)) {
880 int n1
= y
*w
+x
, n2
= y
*w
+(x
+1);
881 if (dsf_canonify(sc
->equiv
, n1
) !=
882 dsf_canonify(sc
->equiv
, n2
)) {
883 dsf_merge(sc
->equiv
, n1
, n2
);
884 done_something
= TRUE
;
885 #ifdef SOLVER_DIAGNOSTICS
887 printf("(%d,%d) and (%d,%d) must be equivalent"
888 " because both v-shapes are ruled out\n",
893 if (y
+1 < h
&& !(sc
->vbitmap
[y
*w
+x
] & 0xC)) {
894 int n1
= y
*w
+x
, n2
= (y
+1)*w
+x
;
895 if (dsf_canonify(sc
->equiv
, n1
) !=
896 dsf_canonify(sc
->equiv
, n2
)) {
897 dsf_merge(sc
->equiv
, n1
, n2
);
898 done_something
= TRUE
;
899 #ifdef SOLVER_DIAGNOSTICS
901 printf("(%d,%d) and (%d,%d) must be equivalent"
902 " because both v-shapes are ruled out\n",
909 * The remaining work in this loop only works
910 * around non-edge clue points.
912 if (y
== 0 || x
== 0)
914 if ((c
= clues
[y
*W
+x
]) < 0)
918 * x,y marks a clue point not on the grid edge. See
919 * if this clue point allows us to rule out any v
925 * A 1 clue can never have any v shape pointing
929 vbitmap_clear(w
, h
, sc
, x
-1, y
-1, 0x5,
930 "points at 1 clue at (%d,%d)", x
, y
);
932 vbitmap_clear(w
, h
, sc
, x
-1, y
, 0x2,
933 "points at 1 clue at (%d,%d)", x
, y
);
935 vbitmap_clear(w
, h
, sc
, x
, y
-1, 0x8,
936 "points at 1 clue at (%d,%d)", x
, y
);
939 * A 3 clue can never have any v shape pointing
943 vbitmap_clear(w
, h
, sc
, x
-1, y
-1, 0xA,
944 "points away from 3 clue at (%d,%d)", x
, y
);
946 vbitmap_clear(w
, h
, sc
, x
-1, y
, 0x1,
947 "points away from 3 clue at (%d,%d)", x
, y
);
949 vbitmap_clear(w
, h
, sc
, x
, y
-1, 0x4,
950 "points away from 3 clue at (%d,%d)", x
, y
);
953 * If a 2 clue has any kind of v ruled out on
954 * one side of it, the same v is ruled out on
958 vbitmap_clear(w
, h
, sc
, x
-1, y
-1,
959 (sc
->vbitmap
[(y
)*w
+(x
-1)] & 0x3) ^ 0x3,
960 "propagated by 2 clue at (%d,%d)", x
, y
);
962 vbitmap_clear(w
, h
, sc
, x
-1, y
-1,
963 (sc
->vbitmap
[(y
-1)*w
+(x
)] & 0xC) ^ 0xC,
964 "propagated by 2 clue at (%d,%d)", x
, y
);
966 vbitmap_clear(w
, h
, sc
, x
-1, y
,
967 (sc
->vbitmap
[(y
-1)*w
+(x
-1)] & 0x3) ^ 0x3,
968 "propagated by 2 clue at (%d,%d)", x
, y
);
970 vbitmap_clear(w
, h
, sc
, x
, y
-1,
971 (sc
->vbitmap
[(y
-1)*w
+(x
-1)] & 0xC) ^ 0xC,
972 "propagated by 2 clue at (%d,%d)", x
, y
);
979 } while (done_something
);
982 * Solver can make no more progress. See if the grid is full.
984 for (i
= 0; i
< w
*h
; i
++)
986 return 2; /* failed to converge */
987 return 1; /* success */
991 * Filled-grid generator.
993 static void slant_generate(int w
, int h
, signed char *soln
, random_state
*rs
)
995 int W
= w
+1, H
= h
+1;
997 int *connected
, *indices
;
1002 memset(soln
, 0, w
*h
);
1005 * Establish a disjoint set forest for tracking connectedness
1006 * between grid points.
1008 connected
= snew_dsf(W
*H
);
1011 * Prepare a list of the squares in the grid, and fill them in
1012 * in a random order.
1014 indices
= snewn(w
*h
, int);
1015 for (i
= 0; i
< w
*h
; i
++)
1017 shuffle(indices
, w
*h
, sizeof(*indices
), rs
);
1020 * Fill in each one in turn.
1022 for (i
= 0; i
< w
*h
; i
++) {
1028 fs
= (dsf_canonify(connected
, y
*W
+x
) ==
1029 dsf_canonify(connected
, (y
+1)*W
+(x
+1)));
1030 bs
= (dsf_canonify(connected
, (y
+1)*W
+x
) ==
1031 dsf_canonify(connected
, y
*W
+(x
+1)));
1034 * It isn't possible to get into a situation where we
1035 * aren't allowed to place _either_ type of slash in a
1036 * square. Thus, filled-grid generation never has to
1039 * Proof (thanks to Gareth Taylor):
1041 * If it were possible, it would have to be because there
1042 * was an existing path (not using this square) between the
1043 * top-left and bottom-right corners of this square, and
1044 * another between the other two. These two paths would
1045 * have to cross at some point.
1047 * Obviously they can't cross in the middle of a square, so
1048 * they must cross by sharing a point in common. But this
1049 * isn't possible either: if you chessboard-colour all the
1050 * points on the grid, you find that any continuous
1051 * diagonal path is entirely composed of points of the same
1052 * colour. And one of our two hypothetical paths is between
1053 * two black points, and the other is between two white
1054 * points - therefore they can have no point in common. []
1056 assert(!(fs
&& bs
));
1058 v
= fs
? +1 : bs
? -1 : 2 * random_upto(rs
, 2) - 1;
1059 fill_square(w
, h
, x
, y
, v
, soln
, connected
, NULL
);
1066 static char *new_game_desc(game_params
*params
, random_state
*rs
,
1067 char **aux
, int interactive
)
1069 int w
= params
->w
, h
= params
->h
, W
= w
+1, H
= h
+1;
1070 signed char *soln
, *tmpsoln
, *clues
;
1072 struct solver_scratch
*sc
;
1076 soln
= snewn(w
*h
, signed char);
1077 tmpsoln
= snewn(w
*h
, signed char);
1078 clues
= snewn(W
*H
, signed char);
1079 clueindices
= snewn(W
*H
, int);
1080 sc
= new_scratch(w
, h
);
1084 * Create the filled grid.
1086 slant_generate(w
, h
, soln
, rs
);
1089 * Fill in the complete set of clues.
1091 for (y
= 0; y
< H
; y
++)
1092 for (x
= 0; x
< W
; x
++) {
1095 if (x
> 0 && y
> 0 && soln
[(y
-1)*w
+(x
-1)] == -1) v
++;
1096 if (x
> 0 && y
< h
&& soln
[y
*w
+(x
-1)] == +1) v
++;
1097 if (x
< w
&& y
> 0 && soln
[(y
-1)*w
+x
] == +1) v
++;
1098 if (x
< w
&& y
< h
&& soln
[y
*w
+x
] == -1) v
++;
1104 * With all clue points filled in, all puzzles are easy: we can
1105 * simply process the clue points in lexicographic order, and
1106 * at each clue point we will always have at most one square
1107 * undecided, which we can then fill in uniquely.
1109 assert(slant_solve(w
, h
, clues
, tmpsoln
, sc
, DIFF_EASY
) == 1);
1112 * Remove as many clues as possible while retaining solubility.
1114 * In DIFF_HARD mode, we prioritise the removal of obvious
1115 * starting points (4s, 0s, border 2s and corner 1s), on
1116 * the grounds that having as few of these as possible
1117 * seems like a good thing. In particular, we can often get
1118 * away without _any_ completely obvious starting points,
1119 * which is even better.
1121 for (i
= 0; i
< W
*H
; i
++)
1123 shuffle(clueindices
, W
*H
, sizeof(*clueindices
), rs
);
1124 for (j
= 0; j
< 2; j
++) {
1125 for (i
= 0; i
< W
*H
; i
++) {
1128 y
= clueindices
[i
] / W
;
1129 x
= clueindices
[i
] % W
;
1133 * Identify which pass we should process this point
1134 * in. If it's an obvious start point, _or_ we're
1135 * in DIFF_EASY, then it goes in pass 0; otherwise
1138 xb
= (x
== 0 || x
== W
-1);
1139 yb
= (y
== 0 || y
== H
-1);
1140 if (params
->diff
== DIFF_EASY
|| v
== 4 || v
== 0 ||
1141 (v
== 2 && (xb
||yb
)) || (v
== 1 && xb
&& yb
))
1148 if (slant_solve(w
, h
, clues
, tmpsoln
, sc
,
1150 clues
[y
*W
+x
] = v
; /* put it back */
1156 * And finally, verify that the grid is of _at least_ the
1157 * requested difficulty, by running the solver one level
1158 * down and verifying that it can't manage it.
1160 } while (params
->diff
> 0 &&
1161 slant_solve(w
, h
, clues
, tmpsoln
, sc
, params
->diff
- 1) <= 1);
1164 * Now we have the clue set as it will be presented to the
1165 * user. Encode it in a game desc.
1171 desc
= snewn(W
*H
+1, char);
1174 for (i
= 0; i
<= W
*H
; i
++) {
1175 int n
= (i
< W
*H
? clues
[i
] : -2);
1182 int c
= 'a' - 1 + run
;
1186 run
-= c
- ('a' - 1);
1194 assert(p
- desc
<= W
*H
);
1196 desc
= sresize(desc
, p
- desc
, char);
1200 * Encode the solution as an aux_info.
1204 *aux
= auxbuf
= snewn(w
*h
+1, char);
1205 for (i
= 0; i
< w
*h
; i
++)
1206 auxbuf
[i
] = soln
[i
] < 0 ? '\\' : '/';
1219 static char *validate_desc(game_params
*params
, char *desc
)
1221 int w
= params
->w
, h
= params
->h
, W
= w
+1, H
= h
+1;
1227 if (n
>= 'a' && n
<= 'z') {
1228 squares
+= n
- 'a' + 1;
1229 } else if (n
>= '0' && n
<= '4') {
1232 return "Invalid character in game description";
1236 return "Not enough data to fill grid";
1239 return "Too much data to fit in grid";
1244 static game_state
*new_game(midend
*me
, game_params
*params
, char *desc
)
1246 int w
= params
->w
, h
= params
->h
, W
= w
+1, H
= h
+1;
1247 game_state
*state
= snew(game_state
);
1252 state
->soln
= snewn(w
*h
, signed char);
1253 memset(state
->soln
, 0, w
*h
);
1254 state
->completed
= state
->used_solve
= FALSE
;
1255 state
->errors
= snewn(W
*H
, unsigned char);
1256 memset(state
->errors
, 0, W
*H
);
1258 state
->clues
= snew(game_clues
);
1259 state
->clues
->w
= w
;
1260 state
->clues
->h
= h
;
1261 state
->clues
->clues
= snewn(W
*H
, signed char);
1262 state
->clues
->refcount
= 1;
1263 state
->clues
->tmpdsf
= snewn(W
*H
*2+W
+H
, int);
1264 memset(state
->clues
->clues
, -1, W
*H
);
1267 if (n
>= 'a' && n
<= 'z') {
1268 squares
+= n
- 'a' + 1;
1269 } else if (n
>= '0' && n
<= '4') {
1270 state
->clues
->clues
[squares
++] = n
- '0';
1272 assert(!"can't get here");
1274 assert(squares
== area
);
1279 static game_state
*dup_game(game_state
*state
)
1281 int w
= state
->p
.w
, h
= state
->p
.h
, W
= w
+1, H
= h
+1;
1282 game_state
*ret
= snew(game_state
);
1285 ret
->clues
= state
->clues
;
1286 ret
->clues
->refcount
++;
1287 ret
->completed
= state
->completed
;
1288 ret
->used_solve
= state
->used_solve
;
1290 ret
->soln
= snewn(w
*h
, signed char);
1291 memcpy(ret
->soln
, state
->soln
, w
*h
);
1293 ret
->errors
= snewn(W
*H
, unsigned char);
1294 memcpy(ret
->errors
, state
->errors
, W
*H
);
1299 static void free_game(game_state
*state
)
1301 sfree(state
->errors
);
1303 assert(state
->clues
);
1304 if (--state
->clues
->refcount
<= 0) {
1305 sfree(state
->clues
->clues
);
1306 sfree(state
->clues
->tmpdsf
);
1307 sfree(state
->clues
);
1313 * Utility function to return the current degree of a vertex. If
1314 * `anti' is set, it returns the number of filled-in edges
1315 * surrounding the point which _don't_ connect to it; thus 4 minus
1316 * its anti-degree is the maximum degree it could have if all the
1317 * empty spaces around it were filled in.
1319 * (Yes, _4_ minus its anti-degree even if it's a border vertex.)
1321 * If ret > 0, *sx and *sy are set to the coordinates of one of the
1322 * squares that contributed to it.
1324 static int vertex_degree(int w
, int h
, signed char *soln
, int x
, int y
,
1325 int anti
, int *sx
, int *sy
)
1329 assert(x
>= 0 && x
<= w
&& y
>= 0 && y
<= h
);
1330 if (x
> 0 && y
> 0 && soln
[(y
-1)*w
+(x
-1)] - anti
< 0) {
1335 if (x
> 0 && y
< h
&& soln
[y
*w
+(x
-1)] + anti
> 0) {
1340 if (x
< w
&& y
> 0 && soln
[(y
-1)*w
+x
] + anti
> 0) {
1345 if (x
< w
&& y
< h
&& soln
[y
*w
+x
] - anti
< 0) {
1351 return anti
? 4 - ret
: ret
;
1354 static int check_completion(game_state
*state
)
1356 int w
= state
->p
.w
, h
= state
->p
.h
, W
= w
+1, H
= h
+1;
1357 int x
, y
, err
= FALSE
;
1360 memset(state
->errors
, 0, W
*H
);
1363 * To detect loops in the grid, we iterate through each edge
1364 * building up a dsf of connected components of the space
1365 * around the edges; if there's more than one such component,
1366 * we have a loop, and in particular we can then easily
1367 * identify and highlight every edge forming part of a loop
1368 * because it separates two nonequivalent regions.
1370 * We use the `tmpdsf' scratch space in the shared clues
1371 * structure, to avoid mallocing too often.
1373 * For these purposes, the grid is considered to be divided
1374 * into diamond-shaped regions surrounding an orthogonal edge.
1375 * This means we have W*h vertical edges and w*H horizontal
1376 * ones; so our vertical edges are indexed in the dsf as
1377 * (y*W+x) (0<=y<h, 0<=x<W), and the horizontal ones as (W*h +
1378 * y*w+x) (0<=y<H, 0<=x<w), where (x,y) is the topmost or
1379 * leftmost point on the edge.
1381 dsf
= state
->clues
->tmpdsf
;
1382 dsf_init(dsf
, W
*h
+ w
*H
);
1383 /* Start by identifying all the outer edges with each other. */
1384 for (y
= 0; y
< h
; y
++) {
1385 dsf_merge(dsf
, 0, y
*W
+0);
1386 dsf_merge(dsf
, 0, y
*W
+w
);
1388 for (x
= 0; x
< w
; x
++) {
1389 dsf_merge(dsf
, 0, W
*h
+ 0*w
+x
);
1390 dsf_merge(dsf
, 0, W
*h
+ h
*w
+x
);
1392 /* Now go through the actual grid. */
1393 for (y
= 0; y
< h
; y
++)
1394 for (x
= 0; x
< w
; x
++) {
1395 if (state
->soln
[y
*w
+x
] >= 0) {
1397 * There isn't a \ in this square, so we can unify
1398 * the top edge with the left, and the bottom with
1401 dsf_merge(dsf
, y
*W
+x
, W
*h
+ y
*w
+x
);
1402 dsf_merge(dsf
, y
*W
+(x
+1), W
*h
+ (y
+1)*w
+x
);
1404 if (state
->soln
[y
*w
+x
] <= 0) {
1406 * There isn't a / in this square, so we can unify
1407 * the top edge with the right, and the bottom
1410 dsf_merge(dsf
, y
*W
+x
, W
*h
+ (y
+1)*w
+x
);
1411 dsf_merge(dsf
, y
*W
+(x
+1), W
*h
+ y
*w
+x
);
1414 /* Now go through again and mark the appropriate edges as erroneous. */
1415 for (y
= 0; y
< h
; y
++)
1416 for (x
= 0; x
< w
; x
++) {
1418 if (state
->soln
[y
*w
+x
] > 0) {
1420 * A / separates the top and left edges (which
1421 * must already have been identified with each
1422 * other) from the bottom and right (likewise).
1423 * Hence it is erroneous if and only if the top
1424 * and right edges are nonequivalent.
1426 erroneous
= (dsf_canonify(dsf
, y
*W
+(x
+1)) !=
1427 dsf_canonify(dsf
, W
*h
+ y
*w
+x
));
1428 } else if (state
->soln
[y
*w
+x
] < 0) {
1430 * A \ separates the top and right edges (which
1431 * must already have been identified with each
1432 * other) from the bottom and left (likewise).
1433 * Hence it is erroneous if and only if the top
1434 * and left edges are nonequivalent.
1436 erroneous
= (dsf_canonify(dsf
, y
*W
+x
) !=
1437 dsf_canonify(dsf
, W
*h
+ y
*w
+x
));
1440 state
->errors
[y
*W
+x
] |= ERR_SQUARE
;
1446 * Now go through and check the degree of each clue vertex, and
1447 * mark it with ERR_VERTEX if it cannot be fulfilled.
1449 for (y
= 0; y
< H
; y
++)
1450 for (x
= 0; x
< W
; x
++) {
1453 if ((c
= state
->clues
->clues
[y
*W
+x
]) < 0)
1457 * Check to see if there are too many connections to
1458 * this vertex _or_ too many non-connections. Either is
1459 * grounds for marking the vertex as erroneous.
1461 if (vertex_degree(w
, h
, state
->soln
, x
, y
,
1462 FALSE
, NULL
, NULL
) > c
||
1463 vertex_degree(w
, h
, state
->soln
, x
, y
,
1464 TRUE
, NULL
, NULL
) > 4-c
) {
1465 state
->errors
[y
*W
+x
] |= ERR_VERTEX
;
1471 * Now our actual victory condition is that (a) none of the
1472 * above code marked anything as erroneous, and (b) every
1473 * square has an edge in it.
1479 for (y
= 0; y
< h
; y
++)
1480 for (x
= 0; x
< w
; x
++)
1481 if (state
->soln
[y
*w
+x
] == 0)
1487 static char *solve_game(game_state
*state
, game_state
*currstate
,
1488 char *aux
, char **error
)
1490 int w
= state
->p
.w
, h
= state
->p
.h
;
1493 int free_soln
= FALSE
;
1494 char *move
, buf
[80];
1495 int movelen
, movesize
;
1500 * If we already have the solution, save ourselves some
1503 soln
= (signed char *)aux
;
1504 bs
= (signed char)'\\';
1507 struct solver_scratch
*sc
= new_scratch(w
, h
);
1508 soln
= snewn(w
*h
, signed char);
1510 ret
= slant_solve(w
, h
, state
->clues
->clues
, soln
, sc
, DIFF_HARD
);
1515 *error
= "This puzzle is not self-consistent";
1517 *error
= "Unable to find a unique solution for this puzzle";
1524 * Construct a move string which turns the current state into
1528 move
= snewn(movesize
, char);
1530 move
[movelen
++] = 'S';
1531 move
[movelen
] = '\0';
1532 for (y
= 0; y
< h
; y
++)
1533 for (x
= 0; x
< w
; x
++) {
1534 int v
= (soln
[y
*w
+x
] == bs
? -1 : +1);
1535 if (state
->soln
[y
*w
+x
] != v
) {
1536 int len
= sprintf(buf
, ";%c%d,%d", (int)(v
< 0 ? '\\' : '/'), x
, y
);
1537 if (movelen
+ len
>= movesize
) {
1538 movesize
= movelen
+ len
+ 256;
1539 move
= sresize(move
, movesize
, char);
1541 strcpy(move
+ movelen
, buf
);
1552 static int game_can_format_as_text_now(game_params
*params
)
1557 static char *game_text_format(game_state
*state
)
1559 int w
= state
->p
.w
, h
= state
->p
.h
, W
= w
+1, H
= h
+1;
1564 * There are h+H rows of w+W columns.
1566 len
= (h
+H
) * (w
+W
+1) + 1;
1567 ret
= snewn(len
, char);
1570 for (y
= 0; y
< H
; y
++) {
1571 for (x
= 0; x
< W
; x
++) {
1572 if (state
->clues
->clues
[y
*W
+x
] >= 0)
1573 *p
++ = state
->clues
->clues
[y
*W
+x
] + '0';
1581 for (x
= 0; x
< W
; x
++) {
1584 if (state
->soln
[y
*w
+x
] != 0)
1585 *p
++ = (state
->soln
[y
*w
+x
] < 0 ? '\\' : '/');
1595 assert(p
- ret
== len
);
1600 int cur_x
, cur_y
, cur_visible
;
1603 static game_ui
*new_ui(game_state
*state
)
1605 game_ui
*ui
= snew(game_ui
);
1606 ui
->cur_x
= ui
->cur_y
= ui
->cur_visible
= 0;
1610 static void free_ui(game_ui
*ui
)
1615 static char *encode_ui(game_ui
*ui
)
1620 static void decode_ui(game_ui
*ui
, char *encoding
)
1624 static void game_changed_state(game_ui
*ui
, game_state
*oldstate
,
1625 game_state
*newstate
)
1629 #define PREFERRED_TILESIZE 32
1630 #define TILESIZE (ds->tilesize)
1631 #define BORDER TILESIZE
1632 #define CLUE_RADIUS (TILESIZE / 3)
1633 #define CLUE_TEXTSIZE (TILESIZE / 2)
1634 #define COORD(x) ( (x) * TILESIZE + BORDER )
1635 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1637 #define FLASH_TIME 0.30F
1640 * Bit fields in the `grid' and `todraw' elements of the drawstate.
1642 #define BACKSLASH 0x00000001L
1643 #define FORWSLASH 0x00000002L
1644 #define L_T 0x00000004L
1645 #define ERR_L_T 0x00000008L
1646 #define L_B 0x00000010L
1647 #define ERR_L_B 0x00000020L
1648 #define T_L 0x00000040L
1649 #define ERR_T_L 0x00000080L
1650 #define T_R 0x00000100L
1651 #define ERR_T_R 0x00000200L
1652 #define C_TL 0x00000400L
1653 #define ERR_C_TL 0x00000800L
1654 #define FLASH 0x00001000L
1655 #define ERRSLASH 0x00002000L
1656 #define ERR_TL 0x00004000L
1657 #define ERR_TR 0x00008000L
1658 #define ERR_BL 0x00010000L
1659 #define ERR_BR 0x00020000L
1660 #define CURSOR 0x00040000L
1662 struct game_drawstate
{
1669 static char *interpret_move(game_state
*state
, game_ui
*ui
, game_drawstate
*ds
,
1670 int x
, int y
, int button
)
1672 int w
= state
->p
.w
, h
= state
->p
.h
;
1675 enum { CLOCKWISE
, ANTICLOCKWISE
, NONE
} action
= NONE
;
1677 if (button
== LEFT_BUTTON
|| button
== RIGHT_BUTTON
) {
1679 * This is an utterly awful hack which I should really sort out
1680 * by means of a proper configuration mechanism. One Slant
1681 * player has observed that they prefer the mouse buttons to
1682 * function exactly the opposite way round, so here's a
1683 * mechanism for environment-based configuration. I cache the
1684 * result in a global variable - yuck! - to avoid repeated
1688 static int swap_buttons
= -1;
1689 if (swap_buttons
< 0) {
1690 char *env
= getenv("SLANT_SWAP_BUTTONS");
1691 swap_buttons
= (env
&& (env
[0] == 'y' || env
[0] == 'Y'));
1694 if (button
== LEFT_BUTTON
)
1695 button
= RIGHT_BUTTON
;
1697 button
= LEFT_BUTTON
;
1700 action
= (button
== LEFT_BUTTON
) ? CLOCKWISE
: ANTICLOCKWISE
;
1704 if (x
< 0 || y
< 0 || x
>= w
|| y
>= h
)
1706 } else if (IS_CURSOR_SELECT(button
)) {
1707 if (!ui
->cur_visible
) {
1708 ui
->cur_visible
= 1;
1714 action
= (button
== CURSOR_SELECT2
) ? ANTICLOCKWISE
: CLOCKWISE
;
1715 } else if (IS_CURSOR_MOVE(button
)) {
1716 move_cursor(button
, &ui
->cur_x
, &ui
->cur_y
, w
, h
, 0);
1717 ui
->cur_visible
= 1;
1721 if (action
!= NONE
) {
1722 if (action
== CLOCKWISE
) {
1724 * Left-clicking cycles blank -> \ -> / -> blank.
1726 v
= state
->soln
[y
*w
+x
] - 1;
1731 * Right-clicking cycles blank -> / -> \ -> blank.
1733 v
= state
->soln
[y
*w
+x
] + 1;
1738 sprintf(buf
, "%c%d,%d", (int)(v
==-1 ? '\\' : v
==+1 ? '/' : 'C'), x
, y
);
1745 static game_state
*execute_move(game_state
*state
, char *move
)
1747 int w
= state
->p
.w
, h
= state
->p
.h
;
1750 game_state
*ret
= dup_game(state
);
1755 ret
->used_solve
= TRUE
;
1757 } else if (c
== '\\' || c
== '/' || c
== 'C') {
1759 if (sscanf(move
, "%d,%d%n", &x
, &y
, &n
) != 2 ||
1760 x
< 0 || y
< 0 || x
>= w
|| y
>= h
) {
1764 ret
->soln
[y
*w
+x
] = (c
== '\\' ? -1 : c
== '/' ? +1 : 0);
1779 * We never clear the `completed' flag, but we must always
1780 * re-run the completion check because it also highlights
1781 * errors in the grid.
1783 ret
->completed
= check_completion(ret
) || ret
->completed
;
1788 /* ----------------------------------------------------------------------
1792 static void game_compute_size(game_params
*params
, int tilesize
,
1795 /* fool the macros */
1796 struct dummy
{ int tilesize
; } dummy
, *ds
= &dummy
;
1797 dummy
.tilesize
= tilesize
;
1799 *x
= 2 * BORDER
+ params
->w
* TILESIZE
+ 1;
1800 *y
= 2 * BORDER
+ params
->h
* TILESIZE
+ 1;
1803 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
1804 game_params
*params
, int tilesize
)
1806 ds
->tilesize
= tilesize
;
1809 static float *game_colours(frontend
*fe
, int *ncolours
)
1811 float *ret
= snewn(3 * NCOLOURS
, float);
1813 /* CURSOR colour is a background highlight. */
1814 game_mkhighlight(fe
, ret
, COL_BACKGROUND
, COL_CURSOR
, -1);
1816 ret
[COL_FILLEDSQUARE
* 3 + 0] = ret
[COL_BACKGROUND
* 3 + 0];
1817 ret
[COL_FILLEDSQUARE
* 3 + 1] = ret
[COL_BACKGROUND
* 3 + 1];
1818 ret
[COL_FILLEDSQUARE
* 3 + 2] = ret
[COL_BACKGROUND
* 3 + 2];
1820 ret
[COL_GRID
* 3 + 0] = ret
[COL_BACKGROUND
* 3 + 0] * 0.7F
;
1821 ret
[COL_GRID
* 3 + 1] = ret
[COL_BACKGROUND
* 3 + 1] * 0.7F
;
1822 ret
[COL_GRID
* 3 + 2] = ret
[COL_BACKGROUND
* 3 + 2] * 0.7F
;
1824 ret
[COL_INK
* 3 + 0] = 0.0F
;
1825 ret
[COL_INK
* 3 + 1] = 0.0F
;
1826 ret
[COL_INK
* 3 + 2] = 0.0F
;
1828 ret
[COL_SLANT1
* 3 + 0] = 0.0F
;
1829 ret
[COL_SLANT1
* 3 + 1] = 0.0F
;
1830 ret
[COL_SLANT1
* 3 + 2] = 0.0F
;
1832 ret
[COL_SLANT2
* 3 + 0] = 0.0F
;
1833 ret
[COL_SLANT2
* 3 + 1] = 0.0F
;
1834 ret
[COL_SLANT2
* 3 + 2] = 0.0F
;
1836 ret
[COL_ERROR
* 3 + 0] = 1.0F
;
1837 ret
[COL_ERROR
* 3 + 1] = 0.0F
;
1838 ret
[COL_ERROR
* 3 + 2] = 0.0F
;
1840 *ncolours
= NCOLOURS
;
1844 static game_drawstate
*game_new_drawstate(drawing
*dr
, game_state
*state
)
1846 int w
= state
->p
.w
, h
= state
->p
.h
;
1848 struct game_drawstate
*ds
= snew(struct game_drawstate
);
1851 ds
->started
= FALSE
;
1852 ds
->grid
= snewn((w
+2)*(h
+2), long);
1853 ds
->todraw
= snewn((w
+2)*(h
+2), long);
1854 for (i
= 0; i
< (w
+2)*(h
+2); i
++)
1855 ds
->grid
[i
] = ds
->todraw
[i
] = -1;
1860 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
1867 static void draw_clue(drawing
*dr
, game_drawstate
*ds
,
1868 int x
, int y
, long v
, long err
, int bg
, int colour
)
1871 int ccol
= colour
>= 0 ? colour
: ((x
^ y
) & 1) ? COL_SLANT1
: COL_SLANT2
;
1872 int tcol
= colour
>= 0 ? colour
: err
? COL_ERROR
: COL_INK
;
1877 p
[0] = (char)v
+ '0';
1879 draw_circle(dr
, COORD(x
), COORD(y
), CLUE_RADIUS
,
1880 bg
>= 0 ? bg
: COL_BACKGROUND
, ccol
);
1881 draw_text(dr
, COORD(x
), COORD(y
), FONT_VARIABLE
,
1882 CLUE_TEXTSIZE
, ALIGN_VCENTRE
|ALIGN_HCENTRE
, tcol
, p
);
1885 static void draw_tile(drawing
*dr
, game_drawstate
*ds
, game_clues
*clues
,
1886 int x
, int y
, long v
)
1888 int w
= clues
->w
, h
= clues
->h
, W
= w
+1 /*, H = h+1 */;
1889 int chesscolour
= (x
^ y
) & 1;
1890 int fscol
= chesscolour
? COL_SLANT2
: COL_SLANT1
;
1891 int bscol
= chesscolour
? COL_SLANT1
: COL_SLANT2
;
1893 clip(dr
, COORD(x
), COORD(y
), TILESIZE
, TILESIZE
);
1895 draw_rect(dr
, COORD(x
), COORD(y
), TILESIZE
, TILESIZE
,
1896 (v
& FLASH
) ? COL_GRID
:
1897 (v
& CURSOR
) ? COL_CURSOR
:
1898 (v
& (BACKSLASH
| FORWSLASH
)) ? COL_FILLEDSQUARE
:
1902 * Draw the grid lines.
1904 if (x
>= 0 && x
< w
&& y
>= 0)
1905 draw_rect(dr
, COORD(x
), COORD(y
), TILESIZE
+1, 1, COL_GRID
);
1906 if (x
>= 0 && x
< w
&& y
< h
)
1907 draw_rect(dr
, COORD(x
), COORD(y
+1), TILESIZE
+1, 1, COL_GRID
);
1908 if (y
>= 0 && y
< h
&& x
>= 0)
1909 draw_rect(dr
, COORD(x
), COORD(y
), 1, TILESIZE
+1, COL_GRID
);
1910 if (y
>= 0 && y
< h
&& x
< w
)
1911 draw_rect(dr
, COORD(x
+1), COORD(y
), 1, TILESIZE
+1, COL_GRID
);
1912 if (x
== -1 && y
== -1)
1913 draw_rect(dr
, COORD(x
+1), COORD(y
+1), 1, 1, COL_GRID
);
1914 if (x
== -1 && y
== h
)
1915 draw_rect(dr
, COORD(x
+1), COORD(y
), 1, 1, COL_GRID
);
1916 if (x
== w
&& y
== -1)
1917 draw_rect(dr
, COORD(x
), COORD(y
+1), 1, 1, COL_GRID
);
1918 if (x
== w
&& y
== h
)
1919 draw_rect(dr
, COORD(x
), COORD(y
), 1, 1, COL_GRID
);
1924 if (v
& BACKSLASH
) {
1925 int scol
= (v
& ERRSLASH
) ? COL_ERROR
: bscol
;
1926 draw_line(dr
, COORD(x
), COORD(y
), COORD(x
+1), COORD(y
+1), scol
);
1927 draw_line(dr
, COORD(x
)+1, COORD(y
), COORD(x
+1), COORD(y
+1)-1,
1929 draw_line(dr
, COORD(x
), COORD(y
)+1, COORD(x
+1)-1, COORD(y
+1),
1931 } else if (v
& FORWSLASH
) {
1932 int scol
= (v
& ERRSLASH
) ? COL_ERROR
: fscol
;
1933 draw_line(dr
, COORD(x
+1), COORD(y
), COORD(x
), COORD(y
+1), scol
);
1934 draw_line(dr
, COORD(x
+1)-1, COORD(y
), COORD(x
), COORD(y
+1)-1,
1936 draw_line(dr
, COORD(x
+1), COORD(y
)+1, COORD(x
)+1, COORD(y
+1),
1941 * Draw dots on the grid corners that appear if a slash is in a
1942 * neighbouring cell.
1944 if (v
& (L_T
| BACKSLASH
))
1945 draw_rect(dr
, COORD(x
), COORD(y
)+1, 1, 1,
1946 (v
& ERR_L_T
? COL_ERROR
: bscol
));
1947 if (v
& (L_B
| FORWSLASH
))
1948 draw_rect(dr
, COORD(x
), COORD(y
+1)-1, 1, 1,
1949 (v
& ERR_L_B
? COL_ERROR
: fscol
));
1950 if (v
& (T_L
| BACKSLASH
))
1951 draw_rect(dr
, COORD(x
)+1, COORD(y
), 1, 1,
1952 (v
& ERR_T_L
? COL_ERROR
: bscol
));
1953 if (v
& (T_R
| FORWSLASH
))
1954 draw_rect(dr
, COORD(x
+1)-1, COORD(y
), 1, 1,
1955 (v
& ERR_T_R
? COL_ERROR
: fscol
));
1956 if (v
& (C_TL
| BACKSLASH
))
1957 draw_rect(dr
, COORD(x
), COORD(y
), 1, 1,
1958 (v
& ERR_C_TL
? COL_ERROR
: bscol
));
1961 * And finally the clues at the corners.
1963 if (x
>= 0 && y
>= 0)
1964 draw_clue(dr
, ds
, x
, y
, clues
->clues
[y
*W
+x
], v
& ERR_TL
, -1, -1);
1965 if (x
< w
&& y
>= 0)
1966 draw_clue(dr
, ds
, x
+1, y
, clues
->clues
[y
*W
+(x
+1)], v
& ERR_TR
, -1, -1);
1967 if (x
>= 0 && y
< h
)
1968 draw_clue(dr
, ds
, x
, y
+1, clues
->clues
[(y
+1)*W
+x
], v
& ERR_BL
, -1, -1);
1970 draw_clue(dr
, ds
, x
+1, y
+1, clues
->clues
[(y
+1)*W
+(x
+1)], v
& ERR_BR
,
1974 draw_update(dr
, COORD(x
), COORD(y
), TILESIZE
, TILESIZE
);
1977 static void game_redraw(drawing
*dr
, game_drawstate
*ds
, game_state
*oldstate
,
1978 game_state
*state
, int dir
, game_ui
*ui
,
1979 float animtime
, float flashtime
)
1981 int w
= state
->p
.w
, h
= state
->p
.h
, W
= w
+1, H
= h
+1;
1986 flashing
= (int)(flashtime
* 3 / FLASH_TIME
) != 1;
1992 game_compute_size(&state
->p
, TILESIZE
, &ww
, &wh
);
1993 draw_rect(dr
, 0, 0, ww
, wh
, COL_BACKGROUND
);
1994 draw_update(dr
, 0, 0, ww
, wh
);
1999 * Loop over the grid and work out where all the slashes are.
2000 * We need to do this because a slash in one square affects the
2001 * drawing of the next one along.
2003 for (y
= -1; y
<= h
; y
++)
2004 for (x
= -1; x
<= w
; x
++) {
2005 if (x
>= 0 && x
< w
&& y
>= 0 && y
< h
)
2006 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] = flashing
? FLASH
: 0;
2008 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] = 0;
2011 for (y
= 0; y
< h
; y
++) {
2012 for (x
= 0; x
< w
; x
++) {
2013 int err
= state
->errors
[y
*W
+x
] & ERR_SQUARE
;
2015 if (state
->soln
[y
*w
+x
] < 0) {
2016 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] |= BACKSLASH
;
2017 ds
->todraw
[(y
+2)*(w
+2)+(x
+1)] |= T_R
;
2018 ds
->todraw
[(y
+1)*(w
+2)+(x
+2)] |= L_B
;
2019 ds
->todraw
[(y
+2)*(w
+2)+(x
+2)] |= C_TL
;
2021 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] |= ERRSLASH
|
2022 ERR_T_L
| ERR_L_T
| ERR_C_TL
;
2023 ds
->todraw
[(y
+2)*(w
+2)+(x
+1)] |= ERR_T_R
;
2024 ds
->todraw
[(y
+1)*(w
+2)+(x
+2)] |= ERR_L_B
;
2025 ds
->todraw
[(y
+2)*(w
+2)+(x
+2)] |= ERR_C_TL
;
2027 } else if (state
->soln
[y
*w
+x
] > 0) {
2028 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] |= FORWSLASH
;
2029 ds
->todraw
[(y
+1)*(w
+2)+(x
+2)] |= L_T
| C_TL
;
2030 ds
->todraw
[(y
+2)*(w
+2)+(x
+1)] |= T_L
| C_TL
;
2032 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] |= ERRSLASH
|
2034 ds
->todraw
[(y
+1)*(w
+2)+(x
+2)] |= ERR_L_T
| ERR_C_TL
;
2035 ds
->todraw
[(y
+2)*(w
+2)+(x
+1)] |= ERR_T_L
| ERR_C_TL
;
2038 if (ui
->cur_visible
&& ui
->cur_x
== x
&& ui
->cur_y
== y
)
2039 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] |= CURSOR
;
2043 for (y
= 0; y
< H
; y
++)
2044 for (x
= 0; x
< W
; x
++)
2045 if (state
->errors
[y
*W
+x
] & ERR_VERTEX
) {
2046 ds
->todraw
[y
*(w
+2)+x
] |= ERR_BR
;
2047 ds
->todraw
[y
*(w
+2)+(x
+1)] |= ERR_BL
;
2048 ds
->todraw
[(y
+1)*(w
+2)+x
] |= ERR_TR
;
2049 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] |= ERR_TL
;
2053 * Now go through and draw the grid squares.
2055 for (y
= -1; y
<= h
; y
++) {
2056 for (x
= -1; x
<= w
; x
++) {
2057 if (ds
->todraw
[(y
+1)*(w
+2)+(x
+1)] != ds
->grid
[(y
+1)*(w
+2)+(x
+1)]) {
2058 draw_tile(dr
, ds
, state
->clues
, x
, y
,
2059 ds
->todraw
[(y
+1)*(w
+2)+(x
+1)]);
2060 ds
->grid
[(y
+1)*(w
+2)+(x
+1)] = ds
->todraw
[(y
+1)*(w
+2)+(x
+1)];
2066 static float game_anim_length(game_state
*oldstate
, game_state
*newstate
,
2067 int dir
, game_ui
*ui
)
2072 static float game_flash_length(game_state
*oldstate
, game_state
*newstate
,
2073 int dir
, game_ui
*ui
)
2075 if (!oldstate
->completed
&& newstate
->completed
&&
2076 !oldstate
->used_solve
&& !newstate
->used_solve
)
2082 static int game_status(game_state
*state
)
2084 return state
->completed
? +1 : 0;
2087 static int game_timing_state(game_state
*state
, game_ui
*ui
)
2092 static void game_print_size(game_params
*params
, float *x
, float *y
)
2097 * I'll use 6mm squares by default.
2099 game_compute_size(params
, 600, &pw
, &ph
);
2104 static void game_print(drawing
*dr
, game_state
*state
, int tilesize
)
2106 int w
= state
->p
.w
, h
= state
->p
.h
, W
= w
+1;
2107 int ink
= print_mono_colour(dr
, 0);
2108 int paper
= print_mono_colour(dr
, 1);
2111 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2112 game_drawstate ads
, *ds
= &ads
;
2113 game_set_size(dr
, ds
, NULL
, tilesize
);
2118 print_line_width(dr
, TILESIZE
/ 16);
2119 draw_rect_outline(dr
, COORD(0), COORD(0), w
*TILESIZE
, h
*TILESIZE
, ink
);
2124 print_line_width(dr
, TILESIZE
/ 24);
2125 for (x
= 1; x
< w
; x
++)
2126 draw_line(dr
, COORD(x
), COORD(0), COORD(x
), COORD(h
), ink
);
2127 for (y
= 1; y
< h
; y
++)
2128 draw_line(dr
, COORD(0), COORD(y
), COORD(w
), COORD(y
), ink
);
2133 print_line_width(dr
, TILESIZE
/ 12);
2134 for (y
= 0; y
< h
; y
++)
2135 for (x
= 0; x
< w
; x
++)
2136 if (state
->soln
[y
*w
+x
]) {
2139 * To prevent nasty line-ending artefacts at
2140 * corners, I'll do something slightly cunning
2143 clip(dr
, COORD(x
), COORD(y
), TILESIZE
, TILESIZE
);
2144 if (state
->soln
[y
*w
+x
] < 0)
2148 draw_line(dr
, COORD(x
-1), COORD(ly
), COORD(x
+2), COORD(ry
),
2156 print_line_width(dr
, TILESIZE
/ 24);
2157 for (y
= 0; y
<= h
; y
++)
2158 for (x
= 0; x
<= w
; x
++)
2159 draw_clue(dr
, ds
, x
, y
, state
->clues
->clues
[y
*W
+x
],
2164 #define thegame slant
2167 const struct game thegame
= {
2168 "Slant", "games.slant", "slant",
2175 TRUE
, game_configure
, custom_params
,
2183 TRUE
, game_can_format_as_text_now
, game_text_format
,
2191 PREFERRED_TILESIZE
, game_compute_size
, game_set_size
,
2194 game_free_drawstate
,
2199 TRUE
, FALSE
, game_print_size
, game_print
,
2200 FALSE
, /* wants_statusbar */
2201 FALSE
, game_timing_state
,
2205 #ifdef STANDALONE_SOLVER
2209 int main(int argc
, char **argv
)
2213 char *id
= NULL
, *desc
, *err
;
2215 int ret
, diff
, really_verbose
= FALSE
;
2216 struct solver_scratch
*sc
;
2218 while (--argc
> 0) {
2220 if (!strcmp(p
, "-v")) {
2221 really_verbose
= TRUE
;
2222 } else if (!strcmp(p
, "-g")) {
2224 } else if (*p
== '-') {
2225 fprintf(stderr
, "%s: unrecognised option `%s'\n", argv
[0], p
);
2233 fprintf(stderr
, "usage: %s [-g | -v] <game_id>\n", argv
[0]);
2237 desc
= strchr(id
, ':');
2239 fprintf(stderr
, "%s: game id expects a colon in it\n", argv
[0]);
2244 p
= default_params();
2245 decode_params(p
, id
);
2246 err
= validate_desc(p
, desc
);
2248 fprintf(stderr
, "%s: %s\n", argv
[0], err
);
2251 s
= new_game(NULL
, p
, desc
);
2253 sc
= new_scratch(p
->w
, p
->h
);
2256 * When solving an Easy puzzle, we don't want to bother the
2257 * user with Hard-level deductions. For this reason, we grade
2258 * the puzzle internally before doing anything else.
2260 ret
= -1; /* placate optimiser */
2261 for (diff
= 0; diff
< DIFFCOUNT
; diff
++) {
2262 ret
= slant_solve(p
->w
, p
->h
, s
->clues
->clues
,
2268 if (diff
== DIFFCOUNT
) {
2270 printf("Difficulty rating: harder than Hard, or ambiguous\n");
2272 printf("Unable to find a unique solution\n");
2276 printf("Difficulty rating: impossible (no solution exists)\n");
2278 printf("Difficulty rating: %s\n", slant_diffnames
[diff
]);
2280 verbose
= really_verbose
;
2281 ret
= slant_solve(p
->w
, p
->h
, s
->clues
->clues
,
2284 printf("Puzzle is inconsistent\n");
2286 fputs(game_text_format(s
), stdout
);
2295 /* vim: set shiftwidth=4 tabstop=8: */