2 * inertia.c: Game involving navigating round a grid picking up
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
18 /* Used in the game_state */
25 /* Used in the game IDs */
28 /* Used in the game generation */
31 /* Used only in the game_drawstate*/
35 #define DP1 (DIRECTIONS+1)
36 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
37 #define DY(dir) ( DX((dir)+6) )
40 * Lvalue macro which expects x and y to be in range.
42 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
45 * Rvalue macro which can cope with x and y being out of range.
47 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
48 WALL : LV_AT(w, h, grid, x, y) )
86 static game_params
*default_params(void)
88 game_params
*ret
= snew(game_params
);
96 static void free_params(game_params
*params
)
101 static game_params
*dup_params(game_params
*params
)
103 game_params
*ret
= snew(game_params
);
104 *ret
= *params
; /* structure copy */
108 static const struct game_params inertia_presets
[] = {
114 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
120 if (i
< 0 || i
>= lenof(inertia_presets
))
123 p
= inertia_presets
[i
];
124 ret
= dup_params(&p
);
125 sprintf(namebuf
, "%dx%d", ret
->w
, ret
->h
);
126 retname
= dupstr(namebuf
);
133 static void decode_params(game_params
*params
, char const *string
)
135 params
->w
= params
->h
= atoi(string
);
136 while (*string
&& isdigit((unsigned char)*string
)) string
++;
137 if (*string
== 'x') {
139 params
->h
= atoi(string
);
143 static char *encode_params(game_params
*params
, int full
)
147 sprintf(data
, "%dx%d", params
->w
, params
->h
);
152 static config_item
*game_configure(game_params
*params
)
157 ret
= snewn(3, config_item
);
159 ret
[0].name
= "Width";
160 ret
[0].type
= C_STRING
;
161 sprintf(buf
, "%d", params
->w
);
162 ret
[0].sval
= dupstr(buf
);
165 ret
[1].name
= "Height";
166 ret
[1].type
= C_STRING
;
167 sprintf(buf
, "%d", params
->h
);
168 ret
[1].sval
= dupstr(buf
);
179 static game_params
*custom_params(config_item
*cfg
)
181 game_params
*ret
= snew(game_params
);
183 ret
->w
= atoi(cfg
[0].sval
);
184 ret
->h
= atoi(cfg
[1].sval
);
189 static char *validate_params(game_params
*params
, int full
)
192 * Avoid completely degenerate cases which only have one
193 * row/column. We probably could generate completable puzzles
194 * of that shape, but they'd be forced to be extremely boring
195 * and at large sizes would take a while to happen upon at
198 if (params
->w
< 2 || params
->h
< 2)
199 return "Width and height must both be at least two";
202 * The grid construction algorithm creates 1/5 as many gems as
203 * grid squares, and must create at least one gem to have an
204 * actual puzzle. However, an area-five grid is ruled out by
205 * the above constraint, so the practical minimum is six.
207 if (params
->w
* params
->h
< 6)
208 return "Grid area must be at least six squares";
213 /* ----------------------------------------------------------------------
214 * Solver used by grid generator.
217 struct solver_scratch
{
218 unsigned char *reachable_from
, *reachable_to
;
222 static struct solver_scratch
*new_scratch(int w
, int h
)
224 struct solver_scratch
*sc
= snew(struct solver_scratch
);
226 sc
->reachable_from
= snewn(w
* h
* DIRECTIONS
, unsigned char);
227 sc
->reachable_to
= snewn(w
* h
* DIRECTIONS
, unsigned char);
228 sc
->positions
= snewn(w
* h
* DIRECTIONS
, int);
233 static void free_scratch(struct solver_scratch
*sc
)
235 sfree(sc
->reachable_from
);
236 sfree(sc
->reachable_to
);
237 sfree(sc
->positions
);
241 static int can_go(int w
, int h
, char *grid
,
242 int x1
, int y1
, int dir1
, int x2
, int y2
, int dir2
)
245 * Returns TRUE if we can transition directly from (x1,y1)
246 * going in direction dir1, to (x2,y2) going in direction dir2.
250 * If we're actually in the middle of an unoccupyable square,
251 * we cannot make any move.
253 if (AT(w
, h
, grid
, x1
, y1
) == WALL
||
254 AT(w
, h
, grid
, x1
, y1
) == MINE
)
258 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
259 * the same coordinate as x1,y1, then we can make the
260 * transition (by stopping and changing direction).
262 * For this to be the case, we have to either have a wall
263 * beyond x1,y1,dir1, or have a stop on x1,y1.
265 if (x2
== x1
&& y2
== y1
&&
266 (AT(w
, h
, grid
, x1
, y1
) == STOP
||
267 AT(w
, h
, grid
, x1
, y1
) == START
||
268 AT(w
, h
, grid
, x1
+DX(dir1
), y1
+DY(dir1
)) == WALL
))
272 * If a move is capable of continuing here, then x1,y1,dir1 can
273 * move one space further on.
275 if (x2
== x1
+DX(dir1
) && y2
== y1
+DY(dir1
) && dir1
== dir2
&&
276 (AT(w
, h
, grid
, x2
, y2
) == BLANK
||
277 AT(w
, h
, grid
, x2
, y2
) == GEM
||
278 AT(w
, h
, grid
, x2
, y2
) == STOP
||
279 AT(w
, h
, grid
, x2
, y2
) == START
))
288 static int find_gem_candidates(int w
, int h
, char *grid
,
289 struct solver_scratch
*sc
)
293 int sx
, sy
, gx
, gy
, gd
, pass
, possgems
;
296 * This function finds all the candidate gem squares, which are
297 * precisely those squares which can be picked up on a loop
298 * from the starting point back to the starting point. Doing
299 * this may involve passing through such a square in the middle
300 * of a move; so simple breadth-first search over the _squares_
301 * of the grid isn't quite adequate, because it might be that
302 * we can only reach a gem from the start by moving over it in
303 * one direction, but can only return to the start if we were
304 * moving over it in another direction.
306 * Instead, we BFS over a space which mentions each grid square
307 * eight times - once for each direction. We also BFS twice:
308 * once to find out what square+direction pairs we can reach
309 * _from_ the start point, and once to find out what pairs we
310 * can reach the start point from. Then a square is reachable
311 * if any of the eight directions for that square has both
315 memset(sc
->reachable_from
, 0, wh
* DIRECTIONS
);
316 memset(sc
->reachable_to
, 0, wh
* DIRECTIONS
);
319 * Find the starting square.
321 sx
= -1; /* placate optimiser */
322 for (sy
= 0; sy
< h
; sy
++) {
323 for (sx
= 0; sx
< w
; sx
++)
324 if (AT(w
, h
, grid
, sx
, sy
) == START
)
331 for (pass
= 0; pass
< 2; pass
++) {
332 unsigned char *reachable
= (pass
== 0 ? sc
->reachable_from
:
334 int sign
= (pass
== 0 ? +1 : -1);
337 #ifdef SOLVER_DIAGNOSTICS
338 printf("starting pass %d\n", pass
);
342 * `head' and `tail' are indices within sc->positions which
343 * track the list of board positions left to process.
346 for (dir
= 0; dir
< DIRECTIONS
; dir
++) {
347 int index
= (sy
*w
+sx
)*DIRECTIONS
+dir
;
348 sc
->positions
[tail
++] = index
;
349 reachable
[index
] = TRUE
;
350 #ifdef SOLVER_DIAGNOSTICS
351 printf("starting point %d,%d,%d\n", sx
, sy
, dir
);
356 * Now repeatedly pick an element off the list and process
359 while (head
< tail
) {
360 int index
= sc
->positions
[head
++];
361 int dir
= index
% DIRECTIONS
;
362 int x
= (index
/ DIRECTIONS
) % w
;
363 int y
= index
/ (w
* DIRECTIONS
);
364 int n
, x2
, y2
, d2
, i2
;
366 #ifdef SOLVER_DIAGNOSTICS
367 printf("processing point %d,%d,%d\n", x
, y
, dir
);
370 * The places we attempt to switch to here are:
371 * - each possible direction change (all the other
372 * directions in this square)
373 * - one step further in the direction we're going (or
374 * one step back, if we're in the reachable_to pass).
376 for (n
= -1; n
< DIRECTIONS
; n
++) {
378 x2
= x
+ sign
* DX(dir
);
379 y2
= y
+ sign
* DY(dir
);
386 i2
= (y2
*w
+x2
)*DIRECTIONS
+d2
;
387 if (x2
>= 0 && x2
< w
&&
391 #ifdef SOLVER_DIAGNOSTICS
392 printf(" trying point %d,%d,%d", x2
, y2
, d2
);
395 ok
= can_go(w
, h
, grid
, x
, y
, dir
, x2
, y2
, d2
);
397 ok
= can_go(w
, h
, grid
, x2
, y2
, d2
, x
, y
, dir
);
398 #ifdef SOLVER_DIAGNOSTICS
399 printf(" - %sok\n", ok
? "" : "not ");
402 sc
->positions
[tail
++] = i2
;
403 reachable
[i2
] = TRUE
;
411 * And that should be it. Now all we have to do is find the
412 * squares for which there exists _some_ direction such that
413 * the square plus that direction form a tuple which is both
414 * reachable from the start and reachable to the start.
417 for (gy
= 0; gy
< h
; gy
++)
418 for (gx
= 0; gx
< w
; gx
++)
419 if (AT(w
, h
, grid
, gx
, gy
) == BLANK
) {
420 for (gd
= 0; gd
< DIRECTIONS
; gd
++) {
421 int index
= (gy
*w
+gx
)*DIRECTIONS
+gd
;
422 if (sc
->reachable_from
[index
] && sc
->reachable_to
[index
]) {
423 #ifdef SOLVER_DIAGNOSTICS
424 printf("space at %d,%d is reachable via"
425 " direction %d\n", gx
, gy
, gd
);
427 LV_AT(w
, h
, grid
, gx
, gy
) = POSSGEM
;
437 /* ----------------------------------------------------------------------
438 * Grid generation code.
441 static char *gengrid(int w
, int h
, random_state
*rs
)
444 char *grid
= snewn(wh
+1, char);
445 struct solver_scratch
*sc
= new_scratch(w
, h
);
446 int maxdist_threshold
, tries
;
448 maxdist_threshold
= 2;
454 int *dist
, *list
, head
, tail
, maxdist
;
457 * We're going to fill the grid with the five basic piece
458 * types in about 1/5 proportion. For the moment, though,
459 * we leave out the gems, because we'll put those in
460 * _after_ we run the solver to tell us where the viable
464 for (j
= 0; j
< wh
/5; j
++)
466 for (j
= 0; j
< wh
/5; j
++)
468 for (j
= 0; j
< wh
/5; j
++)
474 shuffle(grid
, wh
, sizeof(*grid
), rs
);
477 * Find the viable gem locations, and immediately give up
478 * and try again if there aren't enough of them.
480 possgems
= find_gem_candidates(w
, h
, grid
, sc
);
485 * We _could_ now select wh/5 of the POSSGEMs and set them
486 * to GEM, and have a viable level. However, there's a
487 * chance that a large chunk of the level will turn out to
488 * be unreachable, so first we test for that.
490 * We do this by finding the largest distance from any
491 * square to the nearest POSSGEM, by breadth-first search.
492 * If this is above a critical threshold, we abort and try
495 * (This search is purely geometric, without regard to
496 * walls and long ways round.)
498 dist
= sc
->positions
;
499 list
= sc
->positions
+ wh
;
500 for (i
= 0; i
< wh
; i
++)
503 for (i
= 0; i
< wh
; i
++)
504 if (grid
[i
] == POSSGEM
) {
509 while (head
< tail
) {
513 if (maxdist
< dist
[pos
])
519 for (d
= 0; d
< DIRECTIONS
; d
++) {
525 if (x2
>= 0 && x2
< w
&& y2
>= 0 && y2
< h
) {
528 dist
[p2
] = dist
[pos
] + 1;
534 assert(head
== wh
&& tail
== wh
);
537 * Now abandon this grid and go round again if maxdist is
538 * above the required threshold.
540 * We can safely start the threshold as low as 2. As we
541 * accumulate failed generation attempts, we gradually
542 * raise it as we get more desperate.
544 if (maxdist
> maxdist_threshold
) {
554 * Now our reachable squares are plausibly evenly
555 * distributed over the grid. I'm not actually going to
556 * _enforce_ that I place the gems in such a way as not to
557 * increase that maxdist value; I'm now just going to trust
558 * to the RNG to pick a sensible subset of the POSSGEMs.
561 for (i
= 0; i
< wh
; i
++)
562 if (grid
[i
] == POSSGEM
)
564 shuffle(list
, j
, sizeof(*list
), rs
);
565 for (i
= 0; i
< j
; i
++)
566 grid
[list
[i
]] = (i
< wh
/5 ? GEM
: BLANK
);
577 static char *new_game_desc(game_params
*params
, random_state
*rs
,
578 char **aux
, int interactive
)
580 return gengrid(params
->w
, params
->h
, rs
);
583 static char *validate_desc(game_params
*params
, char *desc
)
585 int w
= params
->w
, h
= params
->h
, wh
= w
*h
;
586 int starts
= 0, gems
= 0, i
;
588 for (i
= 0; i
< wh
; i
++) {
590 return "Not enough data to fill grid";
591 if (desc
[i
] != WALL
&& desc
[i
] != START
&& desc
[i
] != STOP
&&
592 desc
[i
] != GEM
&& desc
[i
] != MINE
&& desc
[i
] != BLANK
)
593 return "Unrecognised character in game description";
594 if (desc
[i
] == START
)
600 return "Too much data to fill grid";
602 return "No starting square specified";
604 return "More than one starting square specified";
606 return "No gems specified";
611 static game_state
*new_game(midend
*me
, game_params
*params
, char *desc
)
613 int w
= params
->w
, h
= params
->h
, wh
= w
*h
;
615 game_state
*state
= snew(game_state
);
617 state
->p
= *params
; /* structure copy */
619 state
->grid
= snewn(wh
, char);
620 assert(strlen(desc
) == wh
);
621 memcpy(state
->grid
, desc
, wh
);
623 state
->px
= state
->py
= -1;
625 for (i
= 0; i
< wh
; i
++) {
626 if (state
->grid
[i
] == START
) {
627 state
->grid
[i
] = STOP
;
630 } else if (state
->grid
[i
] == GEM
) {
635 assert(state
->gems
> 0);
636 assert(state
->px
>= 0 && state
->py
>= 0);
638 state
->distance_moved
= 0;
641 state
->cheated
= FALSE
;
648 static game_state
*dup_game(game_state
*state
)
650 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
651 game_state
*ret
= snew(game_state
);
656 ret
->gems
= state
->gems
;
657 ret
->grid
= snewn(wh
, char);
658 ret
->distance_moved
= state
->distance_moved
;
660 memcpy(ret
->grid
, state
->grid
, wh
);
661 ret
->cheated
= state
->cheated
;
662 ret
->soln
= state
->soln
;
664 ret
->soln
->refcount
++;
665 ret
->solnpos
= state
->solnpos
;
670 static void free_game(game_state
*state
)
672 if (state
->soln
&& --state
->soln
->refcount
== 0) {
673 sfree(state
->soln
->list
);
681 * Internal function used by solver.
683 static int move_goes_to(int w
, int h
, char *grid
, int x
, int y
, int d
)
688 * See where we'd get to if we made this move.
690 dr
= -1; /* placate optimiser */
692 if (AT(w
, h
, grid
, x
+DX(d
), y
+DY(d
)) == WALL
) {
693 dr
= DIRECTIONS
; /* hit a wall, so end up stationary */
698 if (AT(w
, h
, grid
, x
, y
) == STOP
) {
699 dr
= DIRECTIONS
; /* hit a stop, so end up stationary */
702 if (AT(w
, h
, grid
, x
, y
) == GEM
) {
703 dr
= d
; /* hit a gem, so we're still moving */
706 if (AT(w
, h
, grid
, x
, y
) == MINE
)
707 return -1; /* hit a mine, so move is invalid */
710 return (y
*w
+x
)*DP1
+dr
;
713 static int compare_integers(const void *av
, const void *bv
)
715 const int *a
= (const int *)av
;
716 const int *b
= (const int *)bv
;
725 static char *solve_game(game_state
*state
, game_state
*currstate
,
726 char *aux
, char **error
)
728 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
729 int *nodes
, *nodeindex
, *edges
, *backedges
, *edgei
, *backedgei
, *circuit
;
731 int *dist
, *dist2
, *list
;
733 int circuitlen
, circuitsize
;
734 int head
, tail
, pass
, i
, j
, n
, x
, y
, d
, dd
;
735 char *err
, *soln
, *p
;
738 * Before anything else, deal with the special case in which
739 * all the gems are already collected.
741 for (i
= 0; i
< wh
; i
++)
742 if (currstate
->grid
[i
] == GEM
)
745 *error
= "Game is already solved";
750 * Solving Inertia is a question of first building up the graph
751 * of where you can get to from where, and secondly finding a
752 * tour of the graph which takes in every gem.
754 * This is of course a close cousin of the travelling salesman
755 * problem, which is NP-complete; so I rather doubt that any
756 * _optimal_ tour can be found in plausible time. Hence I'll
757 * restrict myself to merely finding a not-too-bad one.
759 * First construct the graph, by bfsing out move by move from
760 * the current player position. Graph vertices will be
761 * - every endpoint of a move (place the ball can be
763 * - every gem (place the ball can go through in motion).
764 * Vertices of this type have an associated direction, since
765 * if a gem can be collected by sliding through it in two
766 * different directions it doesn't follow that you can
767 * change direction at it.
769 * I'm going to refer to a non-directional vertex as
770 * (y*w+x)*DP1+DIRECTIONS, and a directional one as
775 * nodeindex[] maps node codes as shown above to numeric
776 * indices in the nodes[] array.
778 nodeindex
= snewn(DP1
*wh
, int);
779 for (i
= 0; i
< DP1
*wh
; i
++)
783 * Do the bfs to find all the interesting graph nodes.
785 nodes
= snewn(DP1
*wh
, int);
788 nodes
[tail
] = (currstate
->py
* w
+ currstate
->px
) * DP1
+ DIRECTIONS
;
789 nodeindex
[nodes
[0]] = tail
;
792 while (head
< tail
) {
793 int nc
= nodes
[head
++], nnc
;
798 * Plot all possible moves from this node. If the node is
799 * directed, there's only one.
801 for (dd
= 0; dd
< DIRECTIONS
; dd
++) {
806 if (d
< DIRECTIONS
&& d
!= dd
)
809 nnc
= move_goes_to(w
, h
, currstate
->grid
, x
, y
, dd
);
810 if (nnc
>= 0 && nnc
!= nc
) {
811 if (nodeindex
[nnc
] < 0) {
813 nodeindex
[nnc
] = tail
;
822 * Now we know how many nodes we have, allocate the edge array
823 * and go through setting up the edges.
825 edges
= snewn(DIRECTIONS
*n
, int);
826 edgei
= snewn(n
+1, int);
829 for (i
= 0; i
< n
; i
++) {
839 for (dd
= 0; dd
< DIRECTIONS
; dd
++) {
842 if (d
>= DIRECTIONS
|| d
== dd
) {
843 nnc
= move_goes_to(w
, h
, currstate
->grid
, x
, y
, dd
);
845 if (nnc
>= 0 && nnc
!= nc
)
846 edges
[nedges
++] = nodeindex
[nnc
];
853 * Now set up the backedges array.
855 backedges
= snewn(nedges
, int);
856 backedgei
= snewn(n
+1, int);
857 for (i
= j
= 0; i
< nedges
; i
++) {
858 while (j
+1 < n
&& i
>= edgei
[j
+1])
860 backedges
[i
] = edges
[i
] * n
+ j
;
862 qsort(backedges
, nedges
, sizeof(int), compare_integers
);
864 for (i
= j
= 0; i
< nedges
; i
++) {
865 int k
= backedges
[i
] / n
;
870 backedgei
[n
] = nedges
;
873 * Set up the initial tour. At all times, our tour is a circuit
874 * of graph vertices (which may, and probably will often,
875 * repeat vertices). To begin with, it's got exactly one vertex
876 * in it, which is the player's current starting point.
879 circuit
= snewn(circuitsize
, int);
881 circuit
[circuitlen
++] = 0; /* node index 0 is the starting posn */
884 * Track which gems are as yet unvisited.
886 unvisited
= snewn(wh
, int);
887 for (i
= 0; i
< wh
; i
++)
888 unvisited
[i
] = FALSE
;
889 for (i
= 0; i
< wh
; i
++)
890 if (currstate
->grid
[i
] == GEM
)
894 * Allocate space for doing bfses inside the main loop.
896 dist
= snewn(n
, int);
897 dist2
= snewn(n
, int);
898 list
= snewn(n
, int);
904 * Now enter the main loop, in each iteration of which we
905 * extend the tour to take in an as yet uncollected gem.
908 int target
, n1
, n2
, bestdist
, extralen
, targetpos
;
910 #ifdef TSP_DIAGNOSTICS
911 printf("circuit is");
912 for (i
= 0; i
< circuitlen
; i
++) {
913 int nc
= nodes
[circuit
[i
]];
914 printf(" (%d,%d,%d)", nc
/DP1
%w
, nc
/(DP1
*w
), nc
%DP1
);
917 printf("moves are ");
918 x
= nodes
[circuit
[0]] / DP1
% w
;
919 y
= nodes
[circuit
[0]] / DP1
/ w
;
920 for (i
= 1; i
< circuitlen
; i
++) {
922 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
924 x2
= nodes
[circuit
[i
]] / DP1
% w
;
925 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
926 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
927 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
928 for (d
= 0; d
< DIRECTIONS
; d
++)
929 if (DX(d
) == dx
&& DY(d
) == dy
)
930 printf("%c", "89632147"[d
]);
938 * First, start a pair of bfses at _every_ vertex currently
939 * in the tour, and extend them outwards to find the
940 * nearest as yet unreached gem vertex.
942 * This is largely a heuristic: we could pick _any_ doubly
943 * reachable node here and still get a valid tour as
944 * output. I hope that picking a nearby one will result in
945 * generally good tours.
947 for (pass
= 0; pass
< 2; pass
++) {
948 int *ep
= (pass
== 0 ? edges
: backedges
);
949 int *ei
= (pass
== 0 ? edgei
: backedgei
);
950 int *dp
= (pass
== 0 ? dist
: dist2
);
952 for (i
= 0; i
< n
; i
++)
954 for (i
= 0; i
< circuitlen
; i
++) {
961 while (head
< tail
) {
962 int ni
= list
[head
++];
963 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
965 if (ti
>= 0 && dp
[ti
] < 0) {
972 /* Now find the nearest unvisited gem. */
975 for (i
= 0; i
< n
; i
++) {
976 if (unvisited
[nodes
[i
] / DP1
] &&
977 dist
[i
] >= 0 && dist2
[i
] >= 0) {
978 int thisdist
= dist
[i
] + dist2
[i
];
979 if (bestdist
< 0 || bestdist
> thisdist
) {
988 * If we get to here, we haven't found a gem we can get
989 * at all, which means we terminate this loop.
995 * Now we have a graph vertex at list[tail-1] which is an
996 * unvisited gem. We want to add that vertex to our tour.
997 * So we run two more breadth-first searches: one starting
998 * from that vertex and following forward edges, and
999 * another starting from the same vertex and following
1000 * backward edges. This allows us to determine, for each
1001 * node on the current tour, how quickly we can get both to
1002 * and from the target vertex from that node.
1004 #ifdef TSP_DIAGNOSTICS
1005 printf("target node is %d (%d,%d,%d)\n", target
, nodes
[target
]/DP1
%w
,
1006 nodes
[target
]/DP1
/w
, nodes
[target
]%DP1
);
1009 for (pass
= 0; pass
< 2; pass
++) {
1010 int *ep
= (pass
== 0 ? edges
: backedges
);
1011 int *ei
= (pass
== 0 ? edgei
: backedgei
);
1012 int *dp
= (pass
== 0 ? dist
: dist2
);
1014 for (i
= 0; i
< n
; i
++)
1019 list
[tail
++] = target
;
1021 while (head
< tail
) {
1022 int ni
= list
[head
++];
1023 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
1025 if (ti
>= 0 && dp
[ti
] < 0) {
1026 dp
[ti
] = dp
[ni
] + 1;
1027 /*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
1035 * Now for every node n, dist[n] gives the length of the
1036 * shortest path from the target vertex to n, and dist2[n]
1037 * gives the length of the shortest path from n to the
1040 * Our next step is to search linearly along the tour to
1041 * find the optimum place to insert a trip to the target
1042 * vertex and back. Our two options are either
1043 * (a) to find two adjacent vertices A,B in the tour and
1044 * replace the edge A->B with the path A->target->B
1045 * (b) to find a single vertex X in the tour and replace
1046 * it with the complete round trip X->target->X.
1047 * We do whichever takes the fewest moves.
1051 for (i
= 0; i
< circuitlen
; i
++) {
1055 * Try a round trip from vertex i.
1057 if (dist
[circuit
[i
]] >= 0 &&
1058 dist2
[circuit
[i
]] >= 0) {
1059 thisdist
= dist
[circuit
[i
]] + dist2
[circuit
[i
]];
1060 if (bestdist
< 0 || thisdist
< bestdist
) {
1061 bestdist
= thisdist
;
1067 * Try a trip from vertex i via target to vertex i+1.
1069 if (i
+1 < circuitlen
&&
1070 dist2
[circuit
[i
]] >= 0 &&
1071 dist
[circuit
[i
+1]] >= 0) {
1072 thisdist
= dist2
[circuit
[i
]] + dist
[circuit
[i
+1]];
1073 if (bestdist
< 0 || thisdist
< bestdist
) {
1074 bestdist
= thisdist
;
1082 * We couldn't find a round trip taking in this gem _at
1085 err
= "Unable to find a solution from this starting point";
1088 #ifdef TSP_DIAGNOSTICS
1089 printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1
, n2
, bestdist
);
1092 #ifdef TSP_DIAGNOSTICS
1093 printf("circuit before lengthening is");
1094 for (i
= 0; i
< circuitlen
; i
++) {
1095 printf(" %d", circuit
[i
]);
1101 * Now actually lengthen the tour to take in this round
1104 extralen
= dist2
[circuit
[n1
]] + dist
[circuit
[n2
]];
1107 circuitlen
+= extralen
;
1108 if (circuitlen
>= circuitsize
) {
1109 circuitsize
= circuitlen
+ 256;
1110 circuit
= sresize(circuit
, circuitsize
, int);
1112 memmove(circuit
+ n2
+ extralen
, circuit
+ n2
,
1113 (circuitlen
- n2
- extralen
) * sizeof(int));
1116 #ifdef TSP_DIAGNOSTICS
1117 printf("circuit in middle of lengthening is");
1118 for (i
= 0; i
< circuitlen
; i
++) {
1119 printf(" %d", circuit
[i
]);
1125 * Find the shortest-path routes to and from the target,
1126 * and write them into the circuit.
1128 targetpos
= n1
+ dist2
[circuit
[n1
]];
1129 assert(targetpos
- dist2
[circuit
[n1
]] == n1
);
1130 assert(targetpos
+ dist
[circuit
[n2
]] == n2
);
1131 for (pass
= 0; pass
< 2; pass
++) {
1132 int dir
= (pass
== 0 ? -1 : +1);
1133 int *ep
= (pass
== 0 ? backedges
: edges
);
1134 int *ei
= (pass
== 0 ? backedgei
: edgei
);
1135 int *dp
= (pass
== 0 ? dist
: dist2
);
1136 int nn
= (pass
== 0 ? n2
: n1
);
1137 int ni
= circuit
[nn
], ti
, dest
= nn
;
1145 /*printf("pass %d: looking at vertex %d\n", pass, ni);*/
1146 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
1148 if (ti
>= 0 && dp
[ti
] == dp
[ni
] - 1)
1151 assert(i
< ei
[ni
+1] && ti
>= 0);
1156 #ifdef TSP_DIAGNOSTICS
1157 printf("circuit after lengthening is");
1158 for (i
= 0; i
< circuitlen
; i
++) {
1159 printf(" %d", circuit
[i
]);
1165 * Finally, mark all gems that the new piece of circuit
1166 * passes through as visited.
1168 for (i
= n1
; i
<= n2
; i
++) {
1169 int pos
= nodes
[circuit
[i
]] / DP1
;
1170 assert(pos
>= 0 && pos
< wh
);
1171 unvisited
[pos
] = FALSE
;
1175 #ifdef TSP_DIAGNOSTICS
1176 printf("before reduction, moves are ");
1177 x
= nodes
[circuit
[0]] / DP1
% w
;
1178 y
= nodes
[circuit
[0]] / DP1
/ w
;
1179 for (i
= 1; i
< circuitlen
; i
++) {
1181 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1183 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1184 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1185 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1186 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1187 for (d
= 0; d
< DIRECTIONS
; d
++)
1188 if (DX(d
) == dx
&& DY(d
) == dy
)
1189 printf("%c", "89632147"[d
]);
1197 * That's got a basic solution. Now optimise it by removing
1198 * redundant sections of the circuit: it's entirely possible
1199 * that a piece of circuit we carefully inserted at one stage
1200 * to collect a gem has become pointless because the steps
1201 * required to collect some _later_ gem necessarily passed
1202 * through the same one.
1204 * So first we go through and work out how many times each gem
1205 * is collected. Then we look for maximal sections of circuit
1206 * which are redundant in the sense that their removal would
1207 * not reduce any gem's collection count to zero, and replace
1208 * each one with a bfs-derived fastest path between their
1212 int oldlen
= circuitlen
;
1215 for (dir
= +1; dir
>= -1; dir
-= 2) {
1217 for (i
= 0; i
< wh
; i
++)
1219 for (i
= 0; i
< circuitlen
; i
++) {
1220 int xy
= nodes
[circuit
[i
]] / DP1
;
1221 if (currstate
->grid
[xy
] == GEM
)
1226 * If there's any gem we didn't end up visiting at all,
1229 for (i
= 0; i
< wh
; i
++) {
1230 if (currstate
->grid
[i
] == GEM
&& unvisited
[i
] == 0) {
1231 err
= "Unable to find a solution from this starting point";
1238 for (i
= j
= (dir
> 0 ? 0 : circuitlen
-1);
1239 i
< circuitlen
&& i
>= 0;
1241 int xy
= nodes
[circuit
[i
]] / DP1
;
1242 if (currstate
->grid
[xy
] == GEM
&& unvisited
[xy
] > 1) {
1244 } else if (currstate
->grid
[xy
] == GEM
|| i
== circuitlen
-1) {
1246 * circuit[i] collects a gem for the only time,
1247 * or is the last node in the circuit.
1248 * Therefore it cannot be removed; so we now
1249 * want to replace the path from circuit[j] to
1250 * circuit[i] with a bfs-shortest path.
1252 int p
, q
, k
, dest
, ni
, ti
, thisdist
;
1255 * Set up the upper and lower bounds of the
1261 #ifdef TSP_DIAGNOSTICS
1262 printf("optimising section from %d - %d\n", p
, q
);
1265 for (k
= 0; k
< n
; k
++)
1269 dist
[circuit
[p
]] = 0;
1270 list
[tail
++] = circuit
[p
];
1272 while (head
< tail
&& dist
[circuit
[q
]] < 0) {
1273 int ni
= list
[head
++];
1274 for (k
= edgei
[ni
]; k
< edgei
[ni
+1]; k
++) {
1276 if (ti
>= 0 && dist
[ti
] < 0) {
1277 dist
[ti
] = dist
[ni
] + 1;
1283 thisdist
= dist
[circuit
[q
]];
1284 assert(thisdist
>= 0 && thisdist
<= q
-p
);
1286 memmove(circuit
+p
+thisdist
, circuit
+q
,
1287 (circuitlen
- q
) * sizeof(int));
1293 i
= q
; /* resume loop from the right place */
1295 #ifdef TSP_DIAGNOSTICS
1296 printf("new section runs from %d - %d\n", p
, q
);
1304 /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
1310 for (k
= backedgei
[ni
]; k
< backedgei
[ni
+1]; k
++) {
1312 if (ti
>= 0 && dist
[ti
] == dist
[ni
] - 1)
1315 assert(k
< backedgei
[ni
+1] && ti
>= 0);
1320 * Now re-increment the visit counts for the
1324 int xy
= nodes
[circuit
[p
]] / DP1
;
1325 if (currstate
->grid
[xy
] == GEM
)
1331 #ifdef TSP_DIAGNOSTICS
1332 printf("during reduction, circuit is");
1333 for (k
= 0; k
< circuitlen
; k
++) {
1334 int nc
= nodes
[circuit
[k
]];
1335 printf(" (%d,%d,%d)", nc
/DP1
%w
, nc
/(DP1
*w
), nc
%DP1
);
1338 printf("moves are ");
1339 x
= nodes
[circuit
[0]] / DP1
% w
;
1340 y
= nodes
[circuit
[0]] / DP1
/ w
;
1341 for (k
= 1; k
< circuitlen
; k
++) {
1343 if (nodes
[circuit
[k
]] % DP1
!= DIRECTIONS
)
1345 x2
= nodes
[circuit
[k
]] / DP1
% w
;
1346 y2
= nodes
[circuit
[k
]] / DP1
/ w
;
1347 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1348 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1349 for (d
= 0; d
< DIRECTIONS
; d
++)
1350 if (DX(d
) == dx
&& DY(d
) == dy
)
1351 printf("%c", "89632147"[d
]);
1360 #ifdef TSP_DIAGNOSTICS
1361 printf("after reduction, moves are ");
1362 x
= nodes
[circuit
[0]] / DP1
% w
;
1363 y
= nodes
[circuit
[0]] / DP1
/ w
;
1364 for (i
= 1; i
< circuitlen
; i
++) {
1366 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1368 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1369 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1370 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1371 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1372 for (d
= 0; d
< DIRECTIONS
; d
++)
1373 if (DX(d
) == dx
&& DY(d
) == dy
)
1374 printf("%c", "89632147"[d
]);
1383 * If we've managed an entire reduction pass in each
1384 * direction and not made the solution any shorter, we're
1387 if (circuitlen
== oldlen
)
1392 * Encode the solution as a move string.
1395 soln
= snewn(circuitlen
+2, char);
1398 x
= nodes
[circuit
[0]] / DP1
% w
;
1399 y
= nodes
[circuit
[0]] / DP1
/ w
;
1400 for (i
= 1; i
< circuitlen
; i
++) {
1402 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1404 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1405 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1406 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1407 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1408 for (d
= 0; d
< DIRECTIONS
; d
++)
1409 if (DX(d
) == dx
&& DY(d
) == dy
) {
1413 assert(d
< DIRECTIONS
);
1418 assert(p
- soln
< circuitlen
+2);
1439 static char *game_text_format(game_state
*state
)
1452 static game_ui
*new_ui(game_state
*state
)
1454 game_ui
*ui
= snew(game_ui
);
1455 ui
->anim_length
= 0.0F
;
1458 ui
->just_made_move
= FALSE
;
1459 ui
->just_died
= FALSE
;
1463 static void free_ui(game_ui
*ui
)
1468 static char *encode_ui(game_ui
*ui
)
1472 * The deaths counter needs preserving across a serialisation.
1474 sprintf(buf
, "D%d", ui
->deaths
);
1478 static void decode_ui(game_ui
*ui
, char *encoding
)
1481 sscanf(encoding
, "D%d%n", &ui
->deaths
, &p
);
1484 static void game_changed_state(game_ui
*ui
, game_state
*oldstate
,
1485 game_state
*newstate
)
1488 * Increment the deaths counter. We only do this if
1489 * ui->just_made_move is set (redoing a suicide move doesn't
1490 * kill you _again_), and also we only do it if the game wasn't
1491 * already completed (once you're finished, you can play).
1493 if (!oldstate
->dead
&& newstate
->dead
&& ui
->just_made_move
&&
1496 ui
->just_died
= TRUE
;
1498 ui
->just_died
= FALSE
;
1500 ui
->just_made_move
= FALSE
;
1503 struct game_drawstate
{
1507 unsigned short *grid
;
1508 blitter
*player_background
;
1509 int player_bg_saved
, pbgx
, pbgy
;
1512 #define PREFERRED_TILESIZE 32
1513 #define TILESIZE (ds->tilesize)
1514 #define BORDER (TILESIZE)
1515 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
1516 #define COORD(x) ( (x) * TILESIZE + BORDER )
1517 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1519 static char *interpret_move(game_state
*state
, game_ui
*ui
, game_drawstate
*ds
,
1520 int x
, int y
, int button
)
1522 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1528 if (button
== LEFT_BUTTON
) {
1530 * Mouse-clicking near the target point (or, more
1531 * accurately, in the appropriate octant) is an alternative
1532 * way to input moves.
1535 if (FROMCOORD(x
) != state
->px
|| FROMCOORD(y
) != state
->py
) {
1539 dx
= FROMCOORD(x
) - state
->px
;
1540 dy
= FROMCOORD(y
) - state
->py
;
1541 /* I pass dx,dy rather than dy,dx so that the octants
1542 * end up the right way round. */
1543 angle
= atan2(dx
, -dy
);
1545 angle
= (angle
+ (PI
/8)) / (PI
/4);
1546 assert(angle
> -16.0F
);
1547 dir
= (int)(angle
+ 16.0F
) & 7;
1549 } else if (button
== CURSOR_UP
|| button
== (MOD_NUM_KEYPAD
| '8'))
1551 else if (button
== CURSOR_DOWN
|| button
== (MOD_NUM_KEYPAD
| '2'))
1553 else if (button
== CURSOR_LEFT
|| button
== (MOD_NUM_KEYPAD
| '4'))
1555 else if (button
== CURSOR_RIGHT
|| button
== (MOD_NUM_KEYPAD
| '6'))
1557 else if (button
== (MOD_NUM_KEYPAD
| '7'))
1559 else if (button
== (MOD_NUM_KEYPAD
| '1'))
1561 else if (button
== (MOD_NUM_KEYPAD
| '9'))
1563 else if (button
== (MOD_NUM_KEYPAD
| '3'))
1565 else if (button
== ' ' && state
->soln
&& state
->solnpos
< state
->soln
->len
)
1566 dir
= state
->soln
->list
[state
->solnpos
];
1572 * Reject the move if we can't make it at all due to a wall
1575 if (AT(w
, h
, state
->grid
, state
->px
+DX(dir
), state
->py
+DY(dir
)) == WALL
)
1579 * Reject the move if we're dead!
1585 * Otherwise, we can make the move. All we need to specify is
1588 ui
->just_made_move
= TRUE
;
1589 sprintf(buf
, "%d", dir
);
1593 static game_state
*execute_move(game_state
*state
, char *move
)
1595 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1604 * This is a solve move, so we don't actually _change_ the
1605 * grid but merely set up a stored solution path.
1611 sol
->list
= snewn(len
, unsigned char);
1612 for (i
= 0; i
< len
; i
++)
1613 sol
->list
[i
] = move
[i
] - '0';
1614 ret
= dup_game(state
);
1615 ret
->cheated
= TRUE
;
1623 if (dir
< 0 || dir
>= DIRECTIONS
)
1624 return NULL
; /* huh? */
1629 if (AT(w
, h
, state
->grid
, state
->px
+DX(dir
), state
->py
+DY(dir
)) == WALL
)
1630 return NULL
; /* wall in the way! */
1633 * Now make the move.
1635 ret
= dup_game(state
);
1636 ret
->distance_moved
= 0;
1640 ret
->distance_moved
++;
1642 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == GEM
) {
1643 LV_AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) = BLANK
;
1647 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == MINE
) {
1652 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == STOP
||
1653 AT(w
, h
, ret
->grid
, ret
->px
+DX(dir
),
1654 ret
->py
+DY(dir
)) == WALL
)
1660 * If this move is the correct next one in the stored
1661 * solution path, advance solnpos.
1663 if (ret
->soln
->list
[ret
->solnpos
] == dir
&&
1664 ret
->solnpos
+1 < ret
->soln
->len
) {
1668 * Otherwise, the user has strayed from the path, so
1669 * the path is no longer valid.
1671 ret
->soln
->refcount
--;
1672 assert(ret
->soln
->refcount
> 0);/* `state' at least still exists */
1681 /* ----------------------------------------------------------------------
1685 static void game_compute_size(game_params
*params
, int tilesize
,
1688 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1689 struct { int tilesize
; } ads
, *ds
= &ads
;
1690 ads
.tilesize
= tilesize
;
1692 *x
= 2 * BORDER
+ 1 + params
->w
* TILESIZE
;
1693 *y
= 2 * BORDER
+ 1 + params
->h
* TILESIZE
;
1696 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
1697 game_params
*params
, int tilesize
)
1699 ds
->tilesize
= tilesize
;
1701 assert(!ds
->player_background
); /* set_size is never called twice */
1702 assert(!ds
->player_bg_saved
);
1704 ds
->player_background
= blitter_new(dr
, TILESIZE
, TILESIZE
);
1707 static float *game_colours(frontend
*fe
, int *ncolours
)
1709 float *ret
= snewn(3 * NCOLOURS
, float);
1712 game_mkhighlight(fe
, ret
, COL_BACKGROUND
, COL_HIGHLIGHT
, COL_LOWLIGHT
);
1714 ret
[COL_OUTLINE
* 3 + 0] = 0.0F
;
1715 ret
[COL_OUTLINE
* 3 + 1] = 0.0F
;
1716 ret
[COL_OUTLINE
* 3 + 2] = 0.0F
;
1718 ret
[COL_PLAYER
* 3 + 0] = 0.0F
;
1719 ret
[COL_PLAYER
* 3 + 1] = 1.0F
;
1720 ret
[COL_PLAYER
* 3 + 2] = 0.0F
;
1722 ret
[COL_DEAD_PLAYER
* 3 + 0] = 1.0F
;
1723 ret
[COL_DEAD_PLAYER
* 3 + 1] = 0.0F
;
1724 ret
[COL_DEAD_PLAYER
* 3 + 2] = 0.0F
;
1726 ret
[COL_MINE
* 3 + 0] = 0.0F
;
1727 ret
[COL_MINE
* 3 + 1] = 0.0F
;
1728 ret
[COL_MINE
* 3 + 2] = 0.0F
;
1730 ret
[COL_GEM
* 3 + 0] = 0.6F
;
1731 ret
[COL_GEM
* 3 + 1] = 1.0F
;
1732 ret
[COL_GEM
* 3 + 2] = 1.0F
;
1734 for (i
= 0; i
< 3; i
++) {
1735 ret
[COL_WALL
* 3 + i
] = (3 * ret
[COL_BACKGROUND
* 3 + i
] +
1736 1 * ret
[COL_HIGHLIGHT
* 3 + i
]) / 4;
1739 ret
[COL_HINT
* 3 + 0] = 1.0F
;
1740 ret
[COL_HINT
* 3 + 1] = 1.0F
;
1741 ret
[COL_HINT
* 3 + 2] = 0.0F
;
1743 *ncolours
= NCOLOURS
;
1747 static game_drawstate
*game_new_drawstate(drawing
*dr
, game_state
*state
)
1749 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
1750 struct game_drawstate
*ds
= snew(struct game_drawstate
);
1755 /* We can't allocate the blitter rectangle for the player background
1756 * until we know what size to make it. */
1757 ds
->player_background
= NULL
;
1758 ds
->player_bg_saved
= FALSE
;
1759 ds
->pbgx
= ds
->pbgy
= -1;
1761 ds
->p
= state
->p
; /* structure copy */
1762 ds
->started
= FALSE
;
1763 ds
->grid
= snewn(wh
, unsigned short);
1764 for (i
= 0; i
< wh
; i
++)
1765 ds
->grid
[i
] = UNDRAWN
;
1770 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
1772 if (ds
->player_background
)
1773 blitter_free(dr
, ds
->player_background
);
1778 static void draw_player(drawing
*dr
, game_drawstate
*ds
, int x
, int y
,
1779 int dead
, int hintdir
)
1782 int coords
[DIRECTIONS
*4];
1785 for (d
= 0; d
< DIRECTIONS
; d
++) {
1786 float x1
, y1
, x2
, y2
, x3
, y3
, len
;
1790 len
= sqrt(x1
*x1
+y1
*y1
); x1
/= len
; y1
/= len
;
1794 len
= sqrt(x3
*x3
+y3
*y3
); x3
/= len
; y3
/= len
;
1799 coords
[d
*4+0] = x
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * x1
);
1800 coords
[d
*4+1] = y
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * y1
);
1801 coords
[d
*4+2] = x
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * x2
);
1802 coords
[d
*4+3] = y
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * y2
);
1804 draw_polygon(dr
, coords
, DIRECTIONS
*2, COL_DEAD_PLAYER
, COL_OUTLINE
);
1806 draw_circle(dr
, x
+ TILESIZE
/2, y
+ TILESIZE
/2,
1807 TILESIZE
/3, COL_PLAYER
, COL_OUTLINE
);
1810 if (!dead
&& hintdir
>= 0) {
1811 float scale
= (DX(hintdir
) && DY(hintdir
) ? 0.8F
: 1.0F
);
1812 int ax
= (TILESIZE
*2/5) * scale
* DX(hintdir
);
1813 int ay
= (TILESIZE
*2/5) * scale
* DY(hintdir
);
1814 int px
= -ay
, py
= ax
;
1815 int ox
= x
+ TILESIZE
/2, oy
= y
+ TILESIZE
/2;
1821 *c
++ = ox
+ px
/9 + ax
*2/3;
1822 *c
++ = oy
+ py
/9 + ay
*2/3;
1823 *c
++ = ox
+ px
/3 + ax
*2/3;
1824 *c
++ = oy
+ py
/3 + ay
*2/3;
1827 *c
++ = ox
- px
/3 + ax
*2/3;
1828 *c
++ = oy
- py
/3 + ay
*2/3;
1829 *c
++ = ox
- px
/9 + ax
*2/3;
1830 *c
++ = oy
- py
/9 + ay
*2/3;
1833 draw_polygon(dr
, coords
, 7, COL_HINT
, COL_OUTLINE
);
1836 draw_update(dr
, x
, y
, TILESIZE
, TILESIZE
);
1839 #define FLASH_DEAD 0x100
1840 #define FLASH_WIN 0x200
1841 #define FLASH_MASK 0x300
1843 static void draw_tile(drawing
*dr
, game_drawstate
*ds
, int x
, int y
, int v
)
1845 int tx
= COORD(x
), ty
= COORD(y
);
1846 int bg
= (v
& FLASH_DEAD
? COL_DEAD_PLAYER
:
1847 v
& FLASH_WIN
? COL_HIGHLIGHT
: COL_BACKGROUND
);
1851 clip(dr
, tx
+1, ty
+1, TILESIZE
-1, TILESIZE
-1);
1852 draw_rect(dr
, tx
+1, ty
+1, TILESIZE
-1, TILESIZE
-1, bg
);
1857 coords
[0] = tx
+ TILESIZE
;
1858 coords
[1] = ty
+ TILESIZE
;
1859 coords
[2] = tx
+ TILESIZE
;
1862 coords
[5] = ty
+ TILESIZE
;
1863 draw_polygon(dr
, coords
, 3, COL_LOWLIGHT
, COL_LOWLIGHT
);
1867 draw_polygon(dr
, coords
, 3, COL_HIGHLIGHT
, COL_HIGHLIGHT
);
1869 draw_rect(dr
, tx
+ 1 + HIGHLIGHT_WIDTH
, ty
+ 1 + HIGHLIGHT_WIDTH
,
1870 TILESIZE
- 2*HIGHLIGHT_WIDTH
,
1871 TILESIZE
- 2*HIGHLIGHT_WIDTH
, COL_WALL
);
1872 } else if (v
== MINE
) {
1873 int cx
= tx
+ TILESIZE
/ 2;
1874 int cy
= ty
+ TILESIZE
/ 2;
1875 int r
= TILESIZE
/ 2 - 3;
1877 int xdx
= 1, xdy
= 0, ydx
= 0, ydy
= 1;
1880 for (i
= 0; i
< 4*5*2; i
+= 5*2) {
1881 coords
[i
+2*0+0] = cx
- r
/6*xdx
+ r
*4/5*ydx
;
1882 coords
[i
+2*0+1] = cy
- r
/6*xdy
+ r
*4/5*ydy
;
1883 coords
[i
+2*1+0] = cx
- r
/6*xdx
+ r
*ydx
;
1884 coords
[i
+2*1+1] = cy
- r
/6*xdy
+ r
*ydy
;
1885 coords
[i
+2*2+0] = cx
+ r
/6*xdx
+ r
*ydx
;
1886 coords
[i
+2*2+1] = cy
+ r
/6*xdy
+ r
*ydy
;
1887 coords
[i
+2*3+0] = cx
+ r
/6*xdx
+ r
*4/5*ydx
;
1888 coords
[i
+2*3+1] = cy
+ r
/6*xdy
+ r
*4/5*ydy
;
1889 coords
[i
+2*4+0] = cx
+ r
*3/5*xdx
+ r
*3/5*ydx
;
1890 coords
[i
+2*4+1] = cy
+ r
*3/5*xdy
+ r
*3/5*ydy
;
1900 draw_polygon(dr
, coords
, 5*4, COL_MINE
, COL_MINE
);
1902 draw_rect(dr
, cx
-r
/3, cy
-r
/3, r
/3, r
/4, COL_HIGHLIGHT
);
1903 } else if (v
== STOP
) {
1904 draw_circle(dr
, tx
+ TILESIZE
/2, ty
+ TILESIZE
/2,
1905 TILESIZE
*3/7, -1, COL_OUTLINE
);
1906 draw_rect(dr
, tx
+ TILESIZE
*3/7, ty
+1,
1907 TILESIZE
- 2*(TILESIZE
*3/7) + 1, TILESIZE
-1, bg
);
1908 draw_rect(dr
, tx
+1, ty
+ TILESIZE
*3/7,
1909 TILESIZE
-1, TILESIZE
- 2*(TILESIZE
*3/7) + 1, bg
);
1910 } else if (v
== GEM
) {
1913 coords
[0] = tx
+TILESIZE
/2;
1914 coords
[1] = ty
+TILESIZE
*1/7;
1915 coords
[2] = tx
+TILESIZE
*1/7;
1916 coords
[3] = ty
+TILESIZE
/2;
1917 coords
[4] = tx
+TILESIZE
/2;
1918 coords
[5] = ty
+TILESIZE
-TILESIZE
*1/7;
1919 coords
[6] = tx
+TILESIZE
-TILESIZE
*1/7;
1920 coords
[7] = ty
+TILESIZE
/2;
1922 draw_polygon(dr
, coords
, 4, COL_GEM
, COL_OUTLINE
);
1926 draw_update(dr
, tx
, ty
, TILESIZE
, TILESIZE
);
1929 #define BASE_ANIM_LENGTH 0.1F
1930 #define FLASH_LENGTH 0.3F
1932 static void game_redraw(drawing
*dr
, game_drawstate
*ds
, game_state
*oldstate
,
1933 game_state
*state
, int dir
, game_ui
*ui
,
1934 float animtime
, float flashtime
)
1936 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1945 !((int)(flashtime
* 3 / FLASH_LENGTH
) % 2))
1946 flashtype
= ui
->flashtype
;
1951 * Erase the player sprite.
1953 if (ds
->player_bg_saved
) {
1954 assert(ds
->player_background
);
1955 blitter_load(dr
, ds
->player_background
, ds
->pbgx
, ds
->pbgy
);
1956 draw_update(dr
, ds
->pbgx
, ds
->pbgy
, TILESIZE
, TILESIZE
);
1957 ds
->player_bg_saved
= FALSE
;
1961 * Initialise a fresh drawstate.
1967 * Blank out the window initially.
1969 game_compute_size(&ds
->p
, TILESIZE
, &wid
, &ht
);
1970 draw_rect(dr
, 0, 0, wid
, ht
, COL_BACKGROUND
);
1971 draw_update(dr
, 0, 0, wid
, ht
);
1974 * Draw the grid lines.
1976 for (y
= 0; y
<= h
; y
++)
1977 draw_line(dr
, COORD(0), COORD(y
), COORD(w
), COORD(y
),
1979 for (x
= 0; x
<= w
; x
++)
1980 draw_line(dr
, COORD(x
), COORD(0), COORD(x
), COORD(h
),
1987 * If we're in the process of animating a move, let's start by
1988 * working out how far the player has moved from their _older_
1992 ap
= animtime
/ ui
->anim_length
;
1993 player_dist
= ap
* (dir
> 0 ? state
: oldstate
)->distance_moved
;
2000 * Draw the grid contents.
2002 * We count the gems as we go round this loop, for the purposes
2003 * of the status bar. Of course we have a gems counter in the
2004 * game_state already, but if we do the counting in this loop
2005 * then it tracks gems being picked up in a sliding move, and
2006 * updates one by one.
2009 for (y
= 0; y
< h
; y
++)
2010 for (x
= 0; x
< w
; x
++) {
2011 unsigned short v
= (unsigned char)state
->grid
[y
*w
+x
];
2014 * Special case: if the player is in the process of
2015 * moving over a gem, we draw the gem iff they haven't
2018 if (oldstate
&& oldstate
->grid
[y
*w
+x
] != state
->grid
[y
*w
+x
]) {
2020 * Compute the distance from this square to the
2021 * original player position.
2023 int dist
= max(abs(x
- oldstate
->px
), abs(y
- oldstate
->py
));
2026 * If the player has reached here, use the new grid
2027 * element. Otherwise use the old one.
2029 if (player_dist
< dist
)
2030 v
= oldstate
->grid
[y
*w
+x
];
2032 v
= state
->grid
[y
*w
+x
];
2036 * Special case: erase the mine the dead player is
2037 * sitting on. Only at the end of the move.
2039 if (v
== MINE
&& !oldstate
&& state
->dead
&&
2040 x
== state
->px
&& y
== state
->py
)
2048 if (ds
->grid
[y
*w
+x
] != v
) {
2049 draw_tile(dr
, ds
, x
, y
, v
);
2050 ds
->grid
[y
*w
+x
] = v
;
2055 * Gem counter in the status bar. We replace it with
2056 * `COMPLETED!' when it reaches zero ... or rather, when the
2057 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
2058 * shown between the collection of the last gem and the
2059 * completion of the move animation that did it.)
2061 if (state
->dead
&& (!oldstate
|| oldstate
->dead
)) {
2062 sprintf(status
, "DEAD!");
2063 } else if (state
->gems
|| (oldstate
&& oldstate
->gems
)) {
2065 sprintf(status
, "Auto-solver used. ");
2068 sprintf(status
+ strlen(status
), "Gems: %d", gems
);
2069 } else if (state
->cheated
) {
2070 sprintf(status
, "Auto-solved.");
2072 sprintf(status
, "COMPLETED!");
2074 /* We subtract one from the visible death counter if we're still
2075 * animating the move at the end of which the death took place. */
2076 deaths
= ui
->deaths
;
2077 if (oldstate
&& ui
->just_died
) {
2082 sprintf(status
+ strlen(status
), " Deaths: %d", deaths
);
2083 status_bar(dr
, status
);
2086 * Draw the player sprite.
2088 assert(!ds
->player_bg_saved
);
2089 assert(ds
->player_background
);
2092 nx
= COORD(state
->px
);
2093 ny
= COORD(state
->py
);
2095 ox
= COORD(oldstate
->px
);
2096 oy
= COORD(oldstate
->py
);
2101 ds
->pbgx
= ox
+ ap
* (nx
- ox
);
2102 ds
->pbgy
= oy
+ ap
* (ny
- oy
);
2104 blitter_save(dr
, ds
->player_background
, ds
->pbgx
, ds
->pbgy
);
2105 draw_player(dr
, ds
, ds
->pbgx
, ds
->pbgy
,
2106 (state
->dead
&& !oldstate
),
2107 (!oldstate
&& state
->soln
?
2108 state
->soln
->list
[state
->solnpos
] : -1));
2109 ds
->player_bg_saved
= TRUE
;
2112 static float game_anim_length(game_state
*oldstate
, game_state
*newstate
,
2113 int dir
, game_ui
*ui
)
2117 dist
= newstate
->distance_moved
;
2119 dist
= oldstate
->distance_moved
;
2120 ui
->anim_length
= sqrt(dist
) * BASE_ANIM_LENGTH
;
2121 return ui
->anim_length
;
2124 static float game_flash_length(game_state
*oldstate
, game_state
*newstate
,
2125 int dir
, game_ui
*ui
)
2127 if (!oldstate
->dead
&& newstate
->dead
) {
2128 ui
->flashtype
= FLASH_DEAD
;
2129 return FLASH_LENGTH
;
2130 } else if (oldstate
->gems
&& !newstate
->gems
) {
2131 ui
->flashtype
= FLASH_WIN
;
2132 return FLASH_LENGTH
;
2137 static int game_timing_state(game_state
*state
, game_ui
*ui
)
2142 static void game_print_size(game_params
*params
, float *x
, float *y
)
2146 static void game_print(drawing
*dr
, game_state
*state
, int tilesize
)
2151 #define thegame inertia
2154 const struct game thegame
= {
2155 "Inertia", "inertia",
2162 TRUE
, game_configure
, custom_params
,
2170 FALSE
, game_text_format
,
2178 PREFERRED_TILESIZE
, game_compute_size
, game_set_size
,
2181 game_free_drawstate
,
2185 FALSE
, FALSE
, game_print_size
, game_print
,
2186 TRUE
, /* wants_statusbar */
2187 FALSE
, game_timing_state
,