Merge commit '6526' into HEAD
[sgt-puzzles/ydirson.git] / inertia.c
blob32cbbcbf983632bee9c3dfb6831e8c711b52e309
1 /*
2 * inertia.c: Game involving navigating round a grid picking up
3 * gems.
4 *
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
7 */
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
16 #include "puzzles.h"
18 /* Used in the game_state */
19 #define BLANK 'b'
20 #define GEM 'g'
21 #define MINE 'm'
22 #define STOP 's'
23 #define WALL 'w'
25 /* Used in the game IDs */
26 #define START 'S'
28 /* Used in the game generation */
29 #define POSSGEM 'G'
31 /* Used only in the game_drawstate*/
32 #define UNDRAWN '?'
34 #define DIRECTIONS 8
35 #define DP1 (DIRECTIONS+1)
36 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
37 #define DY(dir) ( DX((dir)+6) )
40 * Lvalue macro which expects x and y to be in range.
42 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
45 * Rvalue macro which can cope with x and y being out of range.
47 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
48 WALL : LV_AT(w, h, grid, x, y) )
50 enum {
51 COL_BACKGROUND,
52 COL_OUTLINE,
53 COL_HIGHLIGHT,
54 COL_LOWLIGHT,
55 COL_PLAYER,
56 COL_DEAD_PLAYER,
57 COL_MINE,
58 COL_GEM,
59 COL_WALL,
60 COL_HINT,
61 NCOLOURS
64 struct game_params {
65 int w, h;
68 typedef struct soln {
69 int refcount;
70 int len;
71 unsigned char *list;
72 } soln;
74 struct game_state {
75 game_params p;
76 int px, py;
77 int gems;
78 char *grid;
79 int distance_moved;
80 int dead;
81 int cheated;
82 int solnpos;
83 soln *soln;
86 static game_params *default_params(void)
88 game_params *ret = snew(game_params);
90 ret->w = 10;
91 ret->h = 8;
93 return ret;
96 static void free_params(game_params *params)
98 sfree(params);
101 static game_params *dup_params(game_params *params)
103 game_params *ret = snew(game_params);
104 *ret = *params; /* structure copy */
105 return ret;
108 static const struct game_params inertia_presets[] = {
109 { 10, 8 },
110 { 15, 12 },
111 { 20, 16 },
114 static int game_fetch_preset(int i, char **name, game_params **params)
116 game_params p, *ret;
117 char *retname;
118 char namebuf[80];
120 if (i < 0 || i >= lenof(inertia_presets))
121 return FALSE;
123 p = inertia_presets[i];
124 ret = dup_params(&p);
125 sprintf(namebuf, "%dx%d", ret->w, ret->h);
126 retname = dupstr(namebuf);
128 *params = ret;
129 *name = retname;
130 return TRUE;
133 static void decode_params(game_params *params, char const *string)
135 params->w = params->h = atoi(string);
136 while (*string && isdigit((unsigned char)*string)) string++;
137 if (*string == 'x') {
138 string++;
139 params->h = atoi(string);
143 static char *encode_params(game_params *params, int full)
145 char data[256];
147 sprintf(data, "%dx%d", params->w, params->h);
149 return dupstr(data);
152 static config_item *game_configure(game_params *params)
154 config_item *ret;
155 char buf[80];
157 ret = snewn(3, config_item);
159 ret[0].name = "Width";
160 ret[0].type = C_STRING;
161 sprintf(buf, "%d", params->w);
162 ret[0].sval = dupstr(buf);
163 ret[0].ival = 0;
165 ret[1].name = "Height";
166 ret[1].type = C_STRING;
167 sprintf(buf, "%d", params->h);
168 ret[1].sval = dupstr(buf);
169 ret[1].ival = 0;
171 ret[2].name = NULL;
172 ret[2].type = C_END;
173 ret[2].sval = NULL;
174 ret[2].ival = 0;
176 return ret;
179 static game_params *custom_params(config_item *cfg)
181 game_params *ret = snew(game_params);
183 ret->w = atoi(cfg[0].sval);
184 ret->h = atoi(cfg[1].sval);
186 return ret;
189 static char *validate_params(game_params *params, int full)
192 * Avoid completely degenerate cases which only have one
193 * row/column. We probably could generate completable puzzles
194 * of that shape, but they'd be forced to be extremely boring
195 * and at large sizes would take a while to happen upon at
196 * random as well.
198 if (params->w < 2 || params->h < 2)
199 return "Width and height must both be at least two";
202 * The grid construction algorithm creates 1/5 as many gems as
203 * grid squares, and must create at least one gem to have an
204 * actual puzzle. However, an area-five grid is ruled out by
205 * the above constraint, so the practical minimum is six.
207 if (params->w * params->h < 6)
208 return "Grid area must be at least six squares";
210 return NULL;
213 /* ----------------------------------------------------------------------
214 * Solver used by grid generator.
217 struct solver_scratch {
218 unsigned char *reachable_from, *reachable_to;
219 int *positions;
222 static struct solver_scratch *new_scratch(int w, int h)
224 struct solver_scratch *sc = snew(struct solver_scratch);
226 sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
227 sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
228 sc->positions = snewn(w * h * DIRECTIONS, int);
230 return sc;
233 static void free_scratch(struct solver_scratch *sc)
235 sfree(sc->reachable_from);
236 sfree(sc->reachable_to);
237 sfree(sc->positions);
238 sfree(sc);
241 static int can_go(int w, int h, char *grid,
242 int x1, int y1, int dir1, int x2, int y2, int dir2)
245 * Returns TRUE if we can transition directly from (x1,y1)
246 * going in direction dir1, to (x2,y2) going in direction dir2.
250 * If we're actually in the middle of an unoccupyable square,
251 * we cannot make any move.
253 if (AT(w, h, grid, x1, y1) == WALL ||
254 AT(w, h, grid, x1, y1) == MINE)
255 return FALSE;
258 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
259 * the same coordinate as x1,y1, then we can make the
260 * transition (by stopping and changing direction).
262 * For this to be the case, we have to either have a wall
263 * beyond x1,y1,dir1, or have a stop on x1,y1.
265 if (x2 == x1 && y2 == y1 &&
266 (AT(w, h, grid, x1, y1) == STOP ||
267 AT(w, h, grid, x1, y1) == START ||
268 AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
269 return TRUE;
272 * If a move is capable of continuing here, then x1,y1,dir1 can
273 * move one space further on.
275 if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
276 (AT(w, h, grid, x2, y2) == BLANK ||
277 AT(w, h, grid, x2, y2) == GEM ||
278 AT(w, h, grid, x2, y2) == STOP ||
279 AT(w, h, grid, x2, y2) == START))
280 return TRUE;
283 * That's it.
285 return FALSE;
288 static int find_gem_candidates(int w, int h, char *grid,
289 struct solver_scratch *sc)
291 int wh = w*h;
292 int head, tail;
293 int sx, sy, gx, gy, gd, pass, possgems;
296 * This function finds all the candidate gem squares, which are
297 * precisely those squares which can be picked up on a loop
298 * from the starting point back to the starting point. Doing
299 * this may involve passing through such a square in the middle
300 * of a move; so simple breadth-first search over the _squares_
301 * of the grid isn't quite adequate, because it might be that
302 * we can only reach a gem from the start by moving over it in
303 * one direction, but can only return to the start if we were
304 * moving over it in another direction.
306 * Instead, we BFS over a space which mentions each grid square
307 * eight times - once for each direction. We also BFS twice:
308 * once to find out what square+direction pairs we can reach
309 * _from_ the start point, and once to find out what pairs we
310 * can reach the start point from. Then a square is reachable
311 * if any of the eight directions for that square has both
312 * flags set.
315 memset(sc->reachable_from, 0, wh * DIRECTIONS);
316 memset(sc->reachable_to, 0, wh * DIRECTIONS);
319 * Find the starting square.
321 sx = -1; /* placate optimiser */
322 for (sy = 0; sy < h; sy++) {
323 for (sx = 0; sx < w; sx++)
324 if (AT(w, h, grid, sx, sy) == START)
325 break;
326 if (sx < w)
327 break;
329 assert(sy < h);
331 for (pass = 0; pass < 2; pass++) {
332 unsigned char *reachable = (pass == 0 ? sc->reachable_from :
333 sc->reachable_to);
334 int sign = (pass == 0 ? +1 : -1);
335 int dir;
337 #ifdef SOLVER_DIAGNOSTICS
338 printf("starting pass %d\n", pass);
339 #endif
342 * `head' and `tail' are indices within sc->positions which
343 * track the list of board positions left to process.
345 head = tail = 0;
346 for (dir = 0; dir < DIRECTIONS; dir++) {
347 int index = (sy*w+sx)*DIRECTIONS+dir;
348 sc->positions[tail++] = index;
349 reachable[index] = TRUE;
350 #ifdef SOLVER_DIAGNOSTICS
351 printf("starting point %d,%d,%d\n", sx, sy, dir);
352 #endif
356 * Now repeatedly pick an element off the list and process
357 * it.
359 while (head < tail) {
360 int index = sc->positions[head++];
361 int dir = index % DIRECTIONS;
362 int x = (index / DIRECTIONS) % w;
363 int y = index / (w * DIRECTIONS);
364 int n, x2, y2, d2, i2;
366 #ifdef SOLVER_DIAGNOSTICS
367 printf("processing point %d,%d,%d\n", x, y, dir);
368 #endif
370 * The places we attempt to switch to here are:
371 * - each possible direction change (all the other
372 * directions in this square)
373 * - one step further in the direction we're going (or
374 * one step back, if we're in the reachable_to pass).
376 for (n = -1; n < DIRECTIONS; n++) {
377 if (n < 0) {
378 x2 = x + sign * DX(dir);
379 y2 = y + sign * DY(dir);
380 d2 = dir;
381 } else {
382 x2 = x;
383 y2 = y;
384 d2 = n;
386 i2 = (y2*w+x2)*DIRECTIONS+d2;
387 if (x2 >= 0 && x2 < w &&
388 y2 >= 0 && y2 < h &&
389 !reachable[i2]) {
390 int ok;
391 #ifdef SOLVER_DIAGNOSTICS
392 printf(" trying point %d,%d,%d", x2, y2, d2);
393 #endif
394 if (pass == 0)
395 ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
396 else
397 ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
398 #ifdef SOLVER_DIAGNOSTICS
399 printf(" - %sok\n", ok ? "" : "not ");
400 #endif
401 if (ok) {
402 sc->positions[tail++] = i2;
403 reachable[i2] = TRUE;
411 * And that should be it. Now all we have to do is find the
412 * squares for which there exists _some_ direction such that
413 * the square plus that direction form a tuple which is both
414 * reachable from the start and reachable to the start.
416 possgems = 0;
417 for (gy = 0; gy < h; gy++)
418 for (gx = 0; gx < w; gx++)
419 if (AT(w, h, grid, gx, gy) == BLANK) {
420 for (gd = 0; gd < DIRECTIONS; gd++) {
421 int index = (gy*w+gx)*DIRECTIONS+gd;
422 if (sc->reachable_from[index] && sc->reachable_to[index]) {
423 #ifdef SOLVER_DIAGNOSTICS
424 printf("space at %d,%d is reachable via"
425 " direction %d\n", gx, gy, gd);
426 #endif
427 LV_AT(w, h, grid, gx, gy) = POSSGEM;
428 possgems++;
429 break;
434 return possgems;
437 /* ----------------------------------------------------------------------
438 * Grid generation code.
441 static char *gengrid(int w, int h, random_state *rs)
443 int wh = w*h;
444 char *grid = snewn(wh+1, char);
445 struct solver_scratch *sc = new_scratch(w, h);
446 int maxdist_threshold, tries;
448 maxdist_threshold = 2;
449 tries = 0;
451 while (1) {
452 int i, j;
453 int possgems;
454 int *dist, *list, head, tail, maxdist;
457 * We're going to fill the grid with the five basic piece
458 * types in about 1/5 proportion. For the moment, though,
459 * we leave out the gems, because we'll put those in
460 * _after_ we run the solver to tell us where the viable
461 * locations are.
463 i = 0;
464 for (j = 0; j < wh/5; j++)
465 grid[i++] = WALL;
466 for (j = 0; j < wh/5; j++)
467 grid[i++] = STOP;
468 for (j = 0; j < wh/5; j++)
469 grid[i++] = MINE;
470 assert(i < wh);
471 grid[i++] = START;
472 while (i < wh)
473 grid[i++] = BLANK;
474 shuffle(grid, wh, sizeof(*grid), rs);
477 * Find the viable gem locations, and immediately give up
478 * and try again if there aren't enough of them.
480 possgems = find_gem_candidates(w, h, grid, sc);
481 if (possgems < wh/5)
482 continue;
485 * We _could_ now select wh/5 of the POSSGEMs and set them
486 * to GEM, and have a viable level. However, there's a
487 * chance that a large chunk of the level will turn out to
488 * be unreachable, so first we test for that.
490 * We do this by finding the largest distance from any
491 * square to the nearest POSSGEM, by breadth-first search.
492 * If this is above a critical threshold, we abort and try
493 * again.
495 * (This search is purely geometric, without regard to
496 * walls and long ways round.)
498 dist = sc->positions;
499 list = sc->positions + wh;
500 for (i = 0; i < wh; i++)
501 dist[i] = -1;
502 head = tail = 0;
503 for (i = 0; i < wh; i++)
504 if (grid[i] == POSSGEM) {
505 dist[i] = 0;
506 list[tail++] = i;
508 maxdist = 0;
509 while (head < tail) {
510 int pos, x, y, d;
512 pos = list[head++];
513 if (maxdist < dist[pos])
514 maxdist = dist[pos];
516 x = pos % w;
517 y = pos / w;
519 for (d = 0; d < DIRECTIONS; d++) {
520 int x2, y2, p2;
522 x2 = x + DX(d);
523 y2 = y + DY(d);
525 if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
526 p2 = y2*w+x2;
527 if (dist[p2] < 0) {
528 dist[p2] = dist[pos] + 1;
529 list[tail++] = p2;
534 assert(head == wh && tail == wh);
537 * Now abandon this grid and go round again if maxdist is
538 * above the required threshold.
540 * We can safely start the threshold as low as 2. As we
541 * accumulate failed generation attempts, we gradually
542 * raise it as we get more desperate.
544 if (maxdist > maxdist_threshold) {
545 tries++;
546 if (tries == 50) {
547 maxdist_threshold++;
548 tries = 0;
550 continue;
554 * Now our reachable squares are plausibly evenly
555 * distributed over the grid. I'm not actually going to
556 * _enforce_ that I place the gems in such a way as not to
557 * increase that maxdist value; I'm now just going to trust
558 * to the RNG to pick a sensible subset of the POSSGEMs.
560 j = 0;
561 for (i = 0; i < wh; i++)
562 if (grid[i] == POSSGEM)
563 list[j++] = i;
564 shuffle(list, j, sizeof(*list), rs);
565 for (i = 0; i < j; i++)
566 grid[list[i]] = (i < wh/5 ? GEM : BLANK);
567 break;
570 free_scratch(sc);
572 grid[wh] = '\0';
574 return grid;
577 static char *new_game_desc(game_params *params, random_state *rs,
578 char **aux, int interactive)
580 return gengrid(params->w, params->h, rs);
583 static char *validate_desc(game_params *params, char *desc)
585 int w = params->w, h = params->h, wh = w*h;
586 int starts = 0, gems = 0, i;
588 for (i = 0; i < wh; i++) {
589 if (!desc[i])
590 return "Not enough data to fill grid";
591 if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
592 desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
593 return "Unrecognised character in game description";
594 if (desc[i] == START)
595 starts++;
596 if (desc[i] == GEM)
597 gems++;
599 if (desc[i])
600 return "Too much data to fill grid";
601 if (starts < 1)
602 return "No starting square specified";
603 if (starts > 1)
604 return "More than one starting square specified";
605 if (gems < 1)
606 return "No gems specified";
608 return NULL;
611 static game_state *new_game(midend *me, game_params *params, char *desc)
613 int w = params->w, h = params->h, wh = w*h;
614 int i;
615 game_state *state = snew(game_state);
617 state->p = *params; /* structure copy */
619 state->grid = snewn(wh, char);
620 assert(strlen(desc) == wh);
621 memcpy(state->grid, desc, wh);
623 state->px = state->py = -1;
624 state->gems = 0;
625 for (i = 0; i < wh; i++) {
626 if (state->grid[i] == START) {
627 state->grid[i] = STOP;
628 state->px = i % w;
629 state->py = i / w;
630 } else if (state->grid[i] == GEM) {
631 state->gems++;
635 assert(state->gems > 0);
636 assert(state->px >= 0 && state->py >= 0);
638 state->distance_moved = 0;
639 state->dead = FALSE;
641 state->cheated = FALSE;
642 state->solnpos = 0;
643 state->soln = NULL;
645 return state;
648 static game_state *dup_game(game_state *state)
650 int w = state->p.w, h = state->p.h, wh = w*h;
651 game_state *ret = snew(game_state);
653 ret->p = state->p;
654 ret->px = state->px;
655 ret->py = state->py;
656 ret->gems = state->gems;
657 ret->grid = snewn(wh, char);
658 ret->distance_moved = state->distance_moved;
659 ret->dead = FALSE;
660 memcpy(ret->grid, state->grid, wh);
661 ret->cheated = state->cheated;
662 ret->soln = state->soln;
663 if (ret->soln)
664 ret->soln->refcount++;
665 ret->solnpos = state->solnpos;
667 return ret;
670 static void free_game(game_state *state)
672 if (state->soln && --state->soln->refcount == 0) {
673 sfree(state->soln->list);
674 sfree(state->soln);
676 sfree(state->grid);
677 sfree(state);
681 * Internal function used by solver.
683 static int move_goes_to(int w, int h, char *grid, int x, int y, int d)
685 int dr;
688 * See where we'd get to if we made this move.
690 dr = -1; /* placate optimiser */
691 while (1) {
692 if (AT(w, h, grid, x+DX(d), y+DY(d)) == WALL) {
693 dr = DIRECTIONS; /* hit a wall, so end up stationary */
694 break;
696 x += DX(d);
697 y += DY(d);
698 if (AT(w, h, grid, x, y) == STOP) {
699 dr = DIRECTIONS; /* hit a stop, so end up stationary */
700 break;
702 if (AT(w, h, grid, x, y) == GEM) {
703 dr = d; /* hit a gem, so we're still moving */
704 break;
706 if (AT(w, h, grid, x, y) == MINE)
707 return -1; /* hit a mine, so move is invalid */
709 assert(dr >= 0);
710 return (y*w+x)*DP1+dr;
713 static int compare_integers(const void *av, const void *bv)
715 const int *a = (const int *)av;
716 const int *b = (const int *)bv;
717 if (*a < *b)
718 return -1;
719 else if (*a > *b)
720 return +1;
721 else
722 return 0;
725 static char *solve_game(game_state *state, game_state *currstate,
726 char *aux, char **error)
728 int w = state->p.w, h = state->p.h, wh = w*h;
729 int *nodes, *nodeindex, *edges, *backedges, *edgei, *backedgei, *circuit;
730 int nedges;
731 int *dist, *dist2, *list;
732 int *unvisited;
733 int circuitlen, circuitsize;
734 int head, tail, pass, i, j, n, x, y, d, dd;
735 char *err, *soln, *p;
738 * Before anything else, deal with the special case in which
739 * all the gems are already collected.
741 for (i = 0; i < wh; i++)
742 if (currstate->grid[i] == GEM)
743 break;
744 if (i == wh) {
745 *error = "Game is already solved";
746 return NULL;
750 * Solving Inertia is a question of first building up the graph
751 * of where you can get to from where, and secondly finding a
752 * tour of the graph which takes in every gem.
754 * This is of course a close cousin of the travelling salesman
755 * problem, which is NP-complete; so I rather doubt that any
756 * _optimal_ tour can be found in plausible time. Hence I'll
757 * restrict myself to merely finding a not-too-bad one.
759 * First construct the graph, by bfsing out move by move from
760 * the current player position. Graph vertices will be
761 * - every endpoint of a move (place the ball can be
762 * stationary)
763 * - every gem (place the ball can go through in motion).
764 * Vertices of this type have an associated direction, since
765 * if a gem can be collected by sliding through it in two
766 * different directions it doesn't follow that you can
767 * change direction at it.
769 * I'm going to refer to a non-directional vertex as
770 * (y*w+x)*DP1+DIRECTIONS, and a directional one as
771 * (y*w+x)*DP1+d.
775 * nodeindex[] maps node codes as shown above to numeric
776 * indices in the nodes[] array.
778 nodeindex = snewn(DP1*wh, int);
779 for (i = 0; i < DP1*wh; i++)
780 nodeindex[i] = -1;
783 * Do the bfs to find all the interesting graph nodes.
785 nodes = snewn(DP1*wh, int);
786 head = tail = 0;
788 nodes[tail] = (currstate->py * w + currstate->px) * DP1 + DIRECTIONS;
789 nodeindex[nodes[0]] = tail;
790 tail++;
792 while (head < tail) {
793 int nc = nodes[head++], nnc;
795 d = nc % DP1;
798 * Plot all possible moves from this node. If the node is
799 * directed, there's only one.
801 for (dd = 0; dd < DIRECTIONS; dd++) {
802 x = nc / DP1;
803 y = x / w;
804 x %= w;
806 if (d < DIRECTIONS && d != dd)
807 continue;
809 nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
810 if (nnc >= 0 && nnc != nc) {
811 if (nodeindex[nnc] < 0) {
812 nodes[tail] = nnc;
813 nodeindex[nnc] = tail;
814 tail++;
819 n = head;
822 * Now we know how many nodes we have, allocate the edge array
823 * and go through setting up the edges.
825 edges = snewn(DIRECTIONS*n, int);
826 edgei = snewn(n+1, int);
827 nedges = 0;
829 for (i = 0; i < n; i++) {
830 int nc = nodes[i];
832 edgei[i] = nedges;
834 d = nc % DP1;
835 x = nc / DP1;
836 y = x / w;
837 x %= w;
839 for (dd = 0; dd < DIRECTIONS; dd++) {
840 int nnc;
842 if (d >= DIRECTIONS || d == dd) {
843 nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
845 if (nnc >= 0 && nnc != nc)
846 edges[nedges++] = nodeindex[nnc];
850 edgei[n] = nedges;
853 * Now set up the backedges array.
855 backedges = snewn(nedges, int);
856 backedgei = snewn(n+1, int);
857 for (i = j = 0; i < nedges; i++) {
858 while (j+1 < n && i >= edgei[j+1])
859 j++;
860 backedges[i] = edges[i] * n + j;
862 qsort(backedges, nedges, sizeof(int), compare_integers);
863 backedgei[0] = 0;
864 for (i = j = 0; i < nedges; i++) {
865 int k = backedges[i] / n;
866 backedges[i] %= n;
867 while (j < k)
868 backedgei[++j] = i;
870 backedgei[n] = nedges;
873 * Set up the initial tour. At all times, our tour is a circuit
874 * of graph vertices (which may, and probably will often,
875 * repeat vertices). To begin with, it's got exactly one vertex
876 * in it, which is the player's current starting point.
878 circuitsize = 256;
879 circuit = snewn(circuitsize, int);
880 circuitlen = 0;
881 circuit[circuitlen++] = 0; /* node index 0 is the starting posn */
884 * Track which gems are as yet unvisited.
886 unvisited = snewn(wh, int);
887 for (i = 0; i < wh; i++)
888 unvisited[i] = FALSE;
889 for (i = 0; i < wh; i++)
890 if (currstate->grid[i] == GEM)
891 unvisited[i] = TRUE;
894 * Allocate space for doing bfses inside the main loop.
896 dist = snewn(n, int);
897 dist2 = snewn(n, int);
898 list = snewn(n, int);
900 err = NULL;
901 soln = NULL;
904 * Now enter the main loop, in each iteration of which we
905 * extend the tour to take in an as yet uncollected gem.
907 while (1) {
908 int target, n1, n2, bestdist, extralen, targetpos;
910 #ifdef TSP_DIAGNOSTICS
911 printf("circuit is");
912 for (i = 0; i < circuitlen; i++) {
913 int nc = nodes[circuit[i]];
914 printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
916 printf("\n");
917 printf("moves are ");
918 x = nodes[circuit[0]] / DP1 % w;
919 y = nodes[circuit[0]] / DP1 / w;
920 for (i = 1; i < circuitlen; i++) {
921 int x2, y2, dx, dy;
922 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
923 continue;
924 x2 = nodes[circuit[i]] / DP1 % w;
925 y2 = nodes[circuit[i]] / DP1 / w;
926 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
927 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
928 for (d = 0; d < DIRECTIONS; d++)
929 if (DX(d) == dx && DY(d) == dy)
930 printf("%c", "89632147"[d]);
931 x = x2;
932 y = y2;
934 printf("\n");
935 #endif
938 * First, start a pair of bfses at _every_ vertex currently
939 * in the tour, and extend them outwards to find the
940 * nearest as yet unreached gem vertex.
942 * This is largely a heuristic: we could pick _any_ doubly
943 * reachable node here and still get a valid tour as
944 * output. I hope that picking a nearby one will result in
945 * generally good tours.
947 for (pass = 0; pass < 2; pass++) {
948 int *ep = (pass == 0 ? edges : backedges);
949 int *ei = (pass == 0 ? edgei : backedgei);
950 int *dp = (pass == 0 ? dist : dist2);
951 head = tail = 0;
952 for (i = 0; i < n; i++)
953 dp[i] = -1;
954 for (i = 0; i < circuitlen; i++) {
955 int ni = circuit[i];
956 if (dp[ni] < 0) {
957 dp[ni] = 0;
958 list[tail++] = ni;
961 while (head < tail) {
962 int ni = list[head++];
963 for (i = ei[ni]; i < ei[ni+1]; i++) {
964 int ti = ep[i];
965 if (ti >= 0 && dp[ti] < 0) {
966 dp[ti] = dp[ni] + 1;
967 list[tail++] = ti;
972 /* Now find the nearest unvisited gem. */
973 bestdist = -1;
974 target = -1;
975 for (i = 0; i < n; i++) {
976 if (unvisited[nodes[i] / DP1] &&
977 dist[i] >= 0 && dist2[i] >= 0) {
978 int thisdist = dist[i] + dist2[i];
979 if (bestdist < 0 || bestdist > thisdist) {
980 bestdist = thisdist;
981 target = i;
986 if (target < 0) {
988 * If we get to here, we haven't found a gem we can get
989 * at all, which means we terminate this loop.
991 break;
995 * Now we have a graph vertex at list[tail-1] which is an
996 * unvisited gem. We want to add that vertex to our tour.
997 * So we run two more breadth-first searches: one starting
998 * from that vertex and following forward edges, and
999 * another starting from the same vertex and following
1000 * backward edges. This allows us to determine, for each
1001 * node on the current tour, how quickly we can get both to
1002 * and from the target vertex from that node.
1004 #ifdef TSP_DIAGNOSTICS
1005 printf("target node is %d (%d,%d,%d)\n", target, nodes[target]/DP1%w,
1006 nodes[target]/DP1/w, nodes[target]%DP1);
1007 #endif
1009 for (pass = 0; pass < 2; pass++) {
1010 int *ep = (pass == 0 ? edges : backedges);
1011 int *ei = (pass == 0 ? edgei : backedgei);
1012 int *dp = (pass == 0 ? dist : dist2);
1014 for (i = 0; i < n; i++)
1015 dp[i] = -1;
1016 head = tail = 0;
1018 dp[target] = 0;
1019 list[tail++] = target;
1021 while (head < tail) {
1022 int ni = list[head++];
1023 for (i = ei[ni]; i < ei[ni+1]; i++) {
1024 int ti = ep[i];
1025 if (ti >= 0 && dp[ti] < 0) {
1026 dp[ti] = dp[ni] + 1;
1027 /*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
1028 list[tail++] = ti;
1035 * Now for every node n, dist[n] gives the length of the
1036 * shortest path from the target vertex to n, and dist2[n]
1037 * gives the length of the shortest path from n to the
1038 * target vertex.
1040 * Our next step is to search linearly along the tour to
1041 * find the optimum place to insert a trip to the target
1042 * vertex and back. Our two options are either
1043 * (a) to find two adjacent vertices A,B in the tour and
1044 * replace the edge A->B with the path A->target->B
1045 * (b) to find a single vertex X in the tour and replace
1046 * it with the complete round trip X->target->X.
1047 * We do whichever takes the fewest moves.
1049 n1 = n2 = -1;
1050 bestdist = -1;
1051 for (i = 0; i < circuitlen; i++) {
1052 int thisdist;
1055 * Try a round trip from vertex i.
1057 if (dist[circuit[i]] >= 0 &&
1058 dist2[circuit[i]] >= 0) {
1059 thisdist = dist[circuit[i]] + dist2[circuit[i]];
1060 if (bestdist < 0 || thisdist < bestdist) {
1061 bestdist = thisdist;
1062 n1 = n2 = i;
1067 * Try a trip from vertex i via target to vertex i+1.
1069 if (i+1 < circuitlen &&
1070 dist2[circuit[i]] >= 0 &&
1071 dist[circuit[i+1]] >= 0) {
1072 thisdist = dist2[circuit[i]] + dist[circuit[i+1]];
1073 if (bestdist < 0 || thisdist < bestdist) {
1074 bestdist = thisdist;
1075 n1 = i;
1076 n2 = i+1;
1080 if (bestdist < 0) {
1082 * We couldn't find a round trip taking in this gem _at
1083 * all_. Give up.
1085 err = "Unable to find a solution from this starting point";
1086 break;
1088 #ifdef TSP_DIAGNOSTICS
1089 printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1, n2, bestdist);
1090 #endif
1092 #ifdef TSP_DIAGNOSTICS
1093 printf("circuit before lengthening is");
1094 for (i = 0; i < circuitlen; i++) {
1095 printf(" %d", circuit[i]);
1097 printf("\n");
1098 #endif
1101 * Now actually lengthen the tour to take in this round
1102 * trip.
1104 extralen = dist2[circuit[n1]] + dist[circuit[n2]];
1105 if (n1 != n2)
1106 extralen--;
1107 circuitlen += extralen;
1108 if (circuitlen >= circuitsize) {
1109 circuitsize = circuitlen + 256;
1110 circuit = sresize(circuit, circuitsize, int);
1112 memmove(circuit + n2 + extralen, circuit + n2,
1113 (circuitlen - n2 - extralen) * sizeof(int));
1114 n2 += extralen;
1116 #ifdef TSP_DIAGNOSTICS
1117 printf("circuit in middle of lengthening is");
1118 for (i = 0; i < circuitlen; i++) {
1119 printf(" %d", circuit[i]);
1121 printf("\n");
1122 #endif
1125 * Find the shortest-path routes to and from the target,
1126 * and write them into the circuit.
1128 targetpos = n1 + dist2[circuit[n1]];
1129 assert(targetpos - dist2[circuit[n1]] == n1);
1130 assert(targetpos + dist[circuit[n2]] == n2);
1131 for (pass = 0; pass < 2; pass++) {
1132 int dir = (pass == 0 ? -1 : +1);
1133 int *ep = (pass == 0 ? backedges : edges);
1134 int *ei = (pass == 0 ? backedgei : edgei);
1135 int *dp = (pass == 0 ? dist : dist2);
1136 int nn = (pass == 0 ? n2 : n1);
1137 int ni = circuit[nn], ti, dest = nn;
1139 while (1) {
1140 circuit[dest] = ni;
1141 if (dp[ni] == 0)
1142 break;
1143 dest += dir;
1144 ti = -1;
1145 /*printf("pass %d: looking at vertex %d\n", pass, ni);*/
1146 for (i = ei[ni]; i < ei[ni+1]; i++) {
1147 ti = ep[i];
1148 if (ti >= 0 && dp[ti] == dp[ni] - 1)
1149 break;
1151 assert(i < ei[ni+1] && ti >= 0);
1152 ni = ti;
1156 #ifdef TSP_DIAGNOSTICS
1157 printf("circuit after lengthening is");
1158 for (i = 0; i < circuitlen; i++) {
1159 printf(" %d", circuit[i]);
1161 printf("\n");
1162 #endif
1165 * Finally, mark all gems that the new piece of circuit
1166 * passes through as visited.
1168 for (i = n1; i <= n2; i++) {
1169 int pos = nodes[circuit[i]] / DP1;
1170 assert(pos >= 0 && pos < wh);
1171 unvisited[pos] = FALSE;
1175 #ifdef TSP_DIAGNOSTICS
1176 printf("before reduction, moves are ");
1177 x = nodes[circuit[0]] / DP1 % w;
1178 y = nodes[circuit[0]] / DP1 / w;
1179 for (i = 1; i < circuitlen; i++) {
1180 int x2, y2, dx, dy;
1181 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1182 continue;
1183 x2 = nodes[circuit[i]] / DP1 % w;
1184 y2 = nodes[circuit[i]] / DP1 / w;
1185 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1186 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1187 for (d = 0; d < DIRECTIONS; d++)
1188 if (DX(d) == dx && DY(d) == dy)
1189 printf("%c", "89632147"[d]);
1190 x = x2;
1191 y = y2;
1193 printf("\n");
1194 #endif
1197 * That's got a basic solution. Now optimise it by removing
1198 * redundant sections of the circuit: it's entirely possible
1199 * that a piece of circuit we carefully inserted at one stage
1200 * to collect a gem has become pointless because the steps
1201 * required to collect some _later_ gem necessarily passed
1202 * through the same one.
1204 * So first we go through and work out how many times each gem
1205 * is collected. Then we look for maximal sections of circuit
1206 * which are redundant in the sense that their removal would
1207 * not reduce any gem's collection count to zero, and replace
1208 * each one with a bfs-derived fastest path between their
1209 * endpoints.
1211 while (1) {
1212 int oldlen = circuitlen;
1213 int dir;
1215 for (dir = +1; dir >= -1; dir -= 2) {
1217 for (i = 0; i < wh; i++)
1218 unvisited[i] = 0;
1219 for (i = 0; i < circuitlen; i++) {
1220 int xy = nodes[circuit[i]] / DP1;
1221 if (currstate->grid[xy] == GEM)
1222 unvisited[xy]++;
1226 * If there's any gem we didn't end up visiting at all,
1227 * give up.
1229 for (i = 0; i < wh; i++) {
1230 if (currstate->grid[i] == GEM && unvisited[i] == 0) {
1231 err = "Unable to find a solution from this starting point";
1232 break;
1235 if (i < wh)
1236 break;
1238 for (i = j = (dir > 0 ? 0 : circuitlen-1);
1239 i < circuitlen && i >= 0;
1240 i += dir) {
1241 int xy = nodes[circuit[i]] / DP1;
1242 if (currstate->grid[xy] == GEM && unvisited[xy] > 1) {
1243 unvisited[xy]--;
1244 } else if (currstate->grid[xy] == GEM || i == circuitlen-1) {
1246 * circuit[i] collects a gem for the only time,
1247 * or is the last node in the circuit.
1248 * Therefore it cannot be removed; so we now
1249 * want to replace the path from circuit[j] to
1250 * circuit[i] with a bfs-shortest path.
1252 int p, q, k, dest, ni, ti, thisdist;
1255 * Set up the upper and lower bounds of the
1256 * reduced section.
1258 p = min(i, j);
1259 q = max(i, j);
1261 #ifdef TSP_DIAGNOSTICS
1262 printf("optimising section from %d - %d\n", p, q);
1263 #endif
1265 for (k = 0; k < n; k++)
1266 dist[k] = -1;
1267 head = tail = 0;
1269 dist[circuit[p]] = 0;
1270 list[tail++] = circuit[p];
1272 while (head < tail && dist[circuit[q]] < 0) {
1273 int ni = list[head++];
1274 for (k = edgei[ni]; k < edgei[ni+1]; k++) {
1275 int ti = edges[k];
1276 if (ti >= 0 && dist[ti] < 0) {
1277 dist[ti] = dist[ni] + 1;
1278 list[tail++] = ti;
1283 thisdist = dist[circuit[q]];
1284 assert(thisdist >= 0 && thisdist <= q-p);
1286 memmove(circuit+p+thisdist, circuit+q,
1287 (circuitlen - q) * sizeof(int));
1288 circuitlen -= q-p;
1289 q = p + thisdist;
1290 circuitlen += q-p;
1292 if (dir > 0)
1293 i = q; /* resume loop from the right place */
1295 #ifdef TSP_DIAGNOSTICS
1296 printf("new section runs from %d - %d\n", p, q);
1297 #endif
1299 dest = q;
1300 assert(dest >= 0);
1301 ni = circuit[q];
1303 while (1) {
1304 /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
1305 circuit[dest] = ni;
1306 if (dist[ni] == 0)
1307 break;
1308 dest--;
1309 ti = -1;
1310 for (k = backedgei[ni]; k < backedgei[ni+1]; k++) {
1311 ti = backedges[k];
1312 if (ti >= 0 && dist[ti] == dist[ni] - 1)
1313 break;
1315 assert(k < backedgei[ni+1] && ti >= 0);
1316 ni = ti;
1320 * Now re-increment the visit counts for the
1321 * new path.
1323 while (++p < q) {
1324 int xy = nodes[circuit[p]] / DP1;
1325 if (currstate->grid[xy] == GEM)
1326 unvisited[xy]++;
1329 j = i;
1331 #ifdef TSP_DIAGNOSTICS
1332 printf("during reduction, circuit is");
1333 for (k = 0; k < circuitlen; k++) {
1334 int nc = nodes[circuit[k]];
1335 printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
1337 printf("\n");
1338 printf("moves are ");
1339 x = nodes[circuit[0]] / DP1 % w;
1340 y = nodes[circuit[0]] / DP1 / w;
1341 for (k = 1; k < circuitlen; k++) {
1342 int x2, y2, dx, dy;
1343 if (nodes[circuit[k]] % DP1 != DIRECTIONS)
1344 continue;
1345 x2 = nodes[circuit[k]] / DP1 % w;
1346 y2 = nodes[circuit[k]] / DP1 / w;
1347 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1348 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1349 for (d = 0; d < DIRECTIONS; d++)
1350 if (DX(d) == dx && DY(d) == dy)
1351 printf("%c", "89632147"[d]);
1352 x = x2;
1353 y = y2;
1355 printf("\n");
1356 #endif
1360 #ifdef TSP_DIAGNOSTICS
1361 printf("after reduction, moves are ");
1362 x = nodes[circuit[0]] / DP1 % w;
1363 y = nodes[circuit[0]] / DP1 / w;
1364 for (i = 1; i < circuitlen; i++) {
1365 int x2, y2, dx, dy;
1366 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1367 continue;
1368 x2 = nodes[circuit[i]] / DP1 % w;
1369 y2 = nodes[circuit[i]] / DP1 / w;
1370 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1371 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1372 for (d = 0; d < DIRECTIONS; d++)
1373 if (DX(d) == dx && DY(d) == dy)
1374 printf("%c", "89632147"[d]);
1375 x = x2;
1376 y = y2;
1378 printf("\n");
1379 #endif
1383 * If we've managed an entire reduction pass in each
1384 * direction and not made the solution any shorter, we're
1385 * _really_ done.
1387 if (circuitlen == oldlen)
1388 break;
1392 * Encode the solution as a move string.
1394 if (!err) {
1395 soln = snewn(circuitlen+2, char);
1396 p = soln;
1397 *p++ = 'S';
1398 x = nodes[circuit[0]] / DP1 % w;
1399 y = nodes[circuit[0]] / DP1 / w;
1400 for (i = 1; i < circuitlen; i++) {
1401 int x2, y2, dx, dy;
1402 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1403 continue;
1404 x2 = nodes[circuit[i]] / DP1 % w;
1405 y2 = nodes[circuit[i]] / DP1 / w;
1406 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1407 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1408 for (d = 0; d < DIRECTIONS; d++)
1409 if (DX(d) == dx && DY(d) == dy) {
1410 *p++ = '0' + d;
1411 break;
1413 assert(d < DIRECTIONS);
1414 x = x2;
1415 y = y2;
1417 *p++ = '\0';
1418 assert(p - soln < circuitlen+2);
1421 sfree(list);
1422 sfree(dist);
1423 sfree(dist2);
1424 sfree(unvisited);
1425 sfree(circuit);
1426 sfree(backedgei);
1427 sfree(backedges);
1428 sfree(edgei);
1429 sfree(edges);
1430 sfree(nodeindex);
1431 sfree(nodes);
1433 if (err)
1434 *error = err;
1436 return soln;
1439 static char *game_text_format(game_state *state)
1441 return NULL;
1444 struct game_ui {
1445 float anim_length;
1446 int flashtype;
1447 int deaths;
1448 int just_made_move;
1449 int just_died;
1452 static game_ui *new_ui(game_state *state)
1454 game_ui *ui = snew(game_ui);
1455 ui->anim_length = 0.0F;
1456 ui->flashtype = 0;
1457 ui->deaths = 0;
1458 ui->just_made_move = FALSE;
1459 ui->just_died = FALSE;
1460 return ui;
1463 static void free_ui(game_ui *ui)
1465 sfree(ui);
1468 static char *encode_ui(game_ui *ui)
1470 char buf[80];
1472 * The deaths counter needs preserving across a serialisation.
1474 sprintf(buf, "D%d", ui->deaths);
1475 return dupstr(buf);
1478 static void decode_ui(game_ui *ui, char *encoding)
1480 int p = 0;
1481 sscanf(encoding, "D%d%n", &ui->deaths, &p);
1484 static void game_changed_state(game_ui *ui, game_state *oldstate,
1485 game_state *newstate)
1488 * Increment the deaths counter. We only do this if
1489 * ui->just_made_move is set (redoing a suicide move doesn't
1490 * kill you _again_), and also we only do it if the game wasn't
1491 * already completed (once you're finished, you can play).
1493 if (!oldstate->dead && newstate->dead && ui->just_made_move &&
1494 oldstate->gems) {
1495 ui->deaths++;
1496 ui->just_died = TRUE;
1497 } else {
1498 ui->just_died = FALSE;
1500 ui->just_made_move = FALSE;
1503 struct game_drawstate {
1504 game_params p;
1505 int tilesize;
1506 int started;
1507 unsigned short *grid;
1508 blitter *player_background;
1509 int player_bg_saved, pbgx, pbgy;
1512 #define PREFERRED_TILESIZE 32
1513 #define TILESIZE (ds->tilesize)
1514 #define BORDER (TILESIZE)
1515 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
1516 #define COORD(x) ( (x) * TILESIZE + BORDER )
1517 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1519 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1520 int x, int y, int button)
1522 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1523 int dir;
1524 char buf[80];
1526 dir = -1;
1528 if (button == LEFT_BUTTON) {
1530 * Mouse-clicking near the target point (or, more
1531 * accurately, in the appropriate octant) is an alternative
1532 * way to input moves.
1535 if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
1536 int dx, dy;
1537 float angle;
1539 dx = FROMCOORD(x) - state->px;
1540 dy = FROMCOORD(y) - state->py;
1541 /* I pass dx,dy rather than dy,dx so that the octants
1542 * end up the right way round. */
1543 angle = atan2(dx, -dy);
1545 angle = (angle + (PI/8)) / (PI/4);
1546 assert(angle > -16.0F);
1547 dir = (int)(angle + 16.0F) & 7;
1549 } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1550 dir = 0;
1551 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1552 dir = 4;
1553 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1554 dir = 6;
1555 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1556 dir = 2;
1557 else if (button == (MOD_NUM_KEYPAD | '7'))
1558 dir = 7;
1559 else if (button == (MOD_NUM_KEYPAD | '1'))
1560 dir = 5;
1561 else if (button == (MOD_NUM_KEYPAD | '9'))
1562 dir = 1;
1563 else if (button == (MOD_NUM_KEYPAD | '3'))
1564 dir = 3;
1565 else if (button == ' ' && state->soln && state->solnpos < state->soln->len)
1566 dir = state->soln->list[state->solnpos];
1568 if (dir < 0)
1569 return NULL;
1572 * Reject the move if we can't make it at all due to a wall
1573 * being in the way.
1575 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
1576 return NULL;
1579 * Reject the move if we're dead!
1581 if (state->dead)
1582 return NULL;
1585 * Otherwise, we can make the move. All we need to specify is
1586 * the direction.
1588 ui->just_made_move = TRUE;
1589 sprintf(buf, "%d", dir);
1590 return dupstr(buf);
1593 static game_state *execute_move(game_state *state, char *move)
1595 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1596 int dir;
1597 game_state *ret;
1599 if (*move == 'S') {
1600 int len, i;
1601 soln *sol;
1604 * This is a solve move, so we don't actually _change_ the
1605 * grid but merely set up a stored solution path.
1607 move++;
1608 len = strlen(move);
1609 sol = snew(soln);
1610 sol->len = len;
1611 sol->list = snewn(len, unsigned char);
1612 for (i = 0; i < len; i++)
1613 sol->list[i] = move[i] - '0';
1614 ret = dup_game(state);
1615 ret->cheated = TRUE;
1616 ret->soln = sol;
1617 ret->solnpos = 0;
1618 sol->refcount = 1;
1619 return ret;
1622 dir = atoi(move);
1623 if (dir < 0 || dir >= DIRECTIONS)
1624 return NULL; /* huh? */
1626 if (state->dead)
1627 return NULL;
1629 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
1630 return NULL; /* wall in the way! */
1633 * Now make the move.
1635 ret = dup_game(state);
1636 ret->distance_moved = 0;
1637 while (1) {
1638 ret->px += DX(dir);
1639 ret->py += DY(dir);
1640 ret->distance_moved++;
1642 if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
1643 LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
1644 ret->gems--;
1647 if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
1648 ret->dead = TRUE;
1649 break;
1652 if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
1653 AT(w, h, ret->grid, ret->px+DX(dir),
1654 ret->py+DY(dir)) == WALL)
1655 break;
1658 if (ret->soln) {
1660 * If this move is the correct next one in the stored
1661 * solution path, advance solnpos.
1663 if (ret->soln->list[ret->solnpos] == dir &&
1664 ret->solnpos+1 < ret->soln->len) {
1665 ret->solnpos++;
1666 } else {
1668 * Otherwise, the user has strayed from the path, so
1669 * the path is no longer valid.
1671 ret->soln->refcount--;
1672 assert(ret->soln->refcount > 0);/* `state' at least still exists */
1673 ret->soln = NULL;
1674 ret->solnpos = 0;
1678 return ret;
1681 /* ----------------------------------------------------------------------
1682 * Drawing routines.
1685 static void game_compute_size(game_params *params, int tilesize,
1686 int *x, int *y)
1688 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1689 struct { int tilesize; } ads, *ds = &ads;
1690 ads.tilesize = tilesize;
1692 *x = 2 * BORDER + 1 + params->w * TILESIZE;
1693 *y = 2 * BORDER + 1 + params->h * TILESIZE;
1696 static void game_set_size(drawing *dr, game_drawstate *ds,
1697 game_params *params, int tilesize)
1699 ds->tilesize = tilesize;
1701 assert(!ds->player_background); /* set_size is never called twice */
1702 assert(!ds->player_bg_saved);
1704 ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
1707 static float *game_colours(frontend *fe, int *ncolours)
1709 float *ret = snewn(3 * NCOLOURS, float);
1710 int i;
1712 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1714 ret[COL_OUTLINE * 3 + 0] = 0.0F;
1715 ret[COL_OUTLINE * 3 + 1] = 0.0F;
1716 ret[COL_OUTLINE * 3 + 2] = 0.0F;
1718 ret[COL_PLAYER * 3 + 0] = 0.0F;
1719 ret[COL_PLAYER * 3 + 1] = 1.0F;
1720 ret[COL_PLAYER * 3 + 2] = 0.0F;
1722 ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
1723 ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
1724 ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
1726 ret[COL_MINE * 3 + 0] = 0.0F;
1727 ret[COL_MINE * 3 + 1] = 0.0F;
1728 ret[COL_MINE * 3 + 2] = 0.0F;
1730 ret[COL_GEM * 3 + 0] = 0.6F;
1731 ret[COL_GEM * 3 + 1] = 1.0F;
1732 ret[COL_GEM * 3 + 2] = 1.0F;
1734 for (i = 0; i < 3; i++) {
1735 ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
1736 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
1739 ret[COL_HINT * 3 + 0] = 1.0F;
1740 ret[COL_HINT * 3 + 1] = 1.0F;
1741 ret[COL_HINT * 3 + 2] = 0.0F;
1743 *ncolours = NCOLOURS;
1744 return ret;
1747 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1749 int w = state->p.w, h = state->p.h, wh = w*h;
1750 struct game_drawstate *ds = snew(struct game_drawstate);
1751 int i;
1753 ds->tilesize = 0;
1755 /* We can't allocate the blitter rectangle for the player background
1756 * until we know what size to make it. */
1757 ds->player_background = NULL;
1758 ds->player_bg_saved = FALSE;
1759 ds->pbgx = ds->pbgy = -1;
1761 ds->p = state->p; /* structure copy */
1762 ds->started = FALSE;
1763 ds->grid = snewn(wh, unsigned short);
1764 for (i = 0; i < wh; i++)
1765 ds->grid[i] = UNDRAWN;
1767 return ds;
1770 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1772 if (ds->player_background)
1773 blitter_free(dr, ds->player_background);
1774 sfree(ds->grid);
1775 sfree(ds);
1778 static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
1779 int dead, int hintdir)
1781 if (dead) {
1782 int coords[DIRECTIONS*4];
1783 int d;
1785 for (d = 0; d < DIRECTIONS; d++) {
1786 float x1, y1, x2, y2, x3, y3, len;
1788 x1 = DX(d);
1789 y1 = DY(d);
1790 len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
1792 x3 = DX(d+1);
1793 y3 = DY(d+1);
1794 len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
1796 x2 = (x1+x3) / 4;
1797 y2 = (y1+y3) / 4;
1799 coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
1800 coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
1801 coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
1802 coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
1804 draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
1805 } else {
1806 draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
1807 TILESIZE/3, COL_PLAYER, COL_OUTLINE);
1810 if (!dead && hintdir >= 0) {
1811 float scale = (DX(hintdir) && DY(hintdir) ? 0.8F : 1.0F);
1812 int ax = (TILESIZE*2/5) * scale * DX(hintdir);
1813 int ay = (TILESIZE*2/5) * scale * DY(hintdir);
1814 int px = -ay, py = ax;
1815 int ox = x + TILESIZE/2, oy = y + TILESIZE/2;
1816 int coords[14], *c;
1818 c = coords;
1819 *c++ = ox + px/9;
1820 *c++ = oy + py/9;
1821 *c++ = ox + px/9 + ax*2/3;
1822 *c++ = oy + py/9 + ay*2/3;
1823 *c++ = ox + px/3 + ax*2/3;
1824 *c++ = oy + py/3 + ay*2/3;
1825 *c++ = ox + ax;
1826 *c++ = oy + ay;
1827 *c++ = ox - px/3 + ax*2/3;
1828 *c++ = oy - py/3 + ay*2/3;
1829 *c++ = ox - px/9 + ax*2/3;
1830 *c++ = oy - py/9 + ay*2/3;
1831 *c++ = ox - px/9;
1832 *c++ = oy - py/9;
1833 draw_polygon(dr, coords, 7, COL_HINT, COL_OUTLINE);
1836 draw_update(dr, x, y, TILESIZE, TILESIZE);
1839 #define FLASH_DEAD 0x100
1840 #define FLASH_WIN 0x200
1841 #define FLASH_MASK 0x300
1843 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
1845 int tx = COORD(x), ty = COORD(y);
1846 int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
1847 v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
1849 v &= ~FLASH_MASK;
1851 clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
1852 draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
1854 if (v == WALL) {
1855 int coords[6];
1857 coords[0] = tx + TILESIZE;
1858 coords[1] = ty + TILESIZE;
1859 coords[2] = tx + TILESIZE;
1860 coords[3] = ty + 1;
1861 coords[4] = tx + 1;
1862 coords[5] = ty + TILESIZE;
1863 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1865 coords[0] = tx + 1;
1866 coords[1] = ty + 1;
1867 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1869 draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
1870 TILESIZE - 2*HIGHLIGHT_WIDTH,
1871 TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
1872 } else if (v == MINE) {
1873 int cx = tx + TILESIZE / 2;
1874 int cy = ty + TILESIZE / 2;
1875 int r = TILESIZE / 2 - 3;
1876 int coords[4*5*2];
1877 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
1878 int tdx, tdy, i;
1880 for (i = 0; i < 4*5*2; i += 5*2) {
1881 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
1882 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
1883 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
1884 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
1885 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
1886 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
1887 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
1888 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
1889 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
1890 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
1892 tdx = ydx;
1893 tdy = ydy;
1894 ydx = xdx;
1895 ydy = xdy;
1896 xdx = -tdx;
1897 xdy = -tdy;
1900 draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
1902 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
1903 } else if (v == STOP) {
1904 draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1905 TILESIZE*3/7, -1, COL_OUTLINE);
1906 draw_rect(dr, tx + TILESIZE*3/7, ty+1,
1907 TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
1908 draw_rect(dr, tx+1, ty + TILESIZE*3/7,
1909 TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
1910 } else if (v == GEM) {
1911 int coords[8];
1913 coords[0] = tx+TILESIZE/2;
1914 coords[1] = ty+TILESIZE*1/7;
1915 coords[2] = tx+TILESIZE*1/7;
1916 coords[3] = ty+TILESIZE/2;
1917 coords[4] = tx+TILESIZE/2;
1918 coords[5] = ty+TILESIZE-TILESIZE*1/7;
1919 coords[6] = tx+TILESIZE-TILESIZE*1/7;
1920 coords[7] = ty+TILESIZE/2;
1922 draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
1925 unclip(dr);
1926 draw_update(dr, tx, ty, TILESIZE, TILESIZE);
1929 #define BASE_ANIM_LENGTH 0.1F
1930 #define FLASH_LENGTH 0.3F
1932 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1933 game_state *state, int dir, game_ui *ui,
1934 float animtime, float flashtime)
1936 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1937 int x, y;
1938 float ap;
1939 int player_dist;
1940 int flashtype;
1941 int gems, deaths;
1942 char status[256];
1944 if (flashtime &&
1945 !((int)(flashtime * 3 / FLASH_LENGTH) % 2))
1946 flashtype = ui->flashtype;
1947 else
1948 flashtype = 0;
1951 * Erase the player sprite.
1953 if (ds->player_bg_saved) {
1954 assert(ds->player_background);
1955 blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
1956 draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
1957 ds->player_bg_saved = FALSE;
1961 * Initialise a fresh drawstate.
1963 if (!ds->started) {
1964 int wid, ht;
1967 * Blank out the window initially.
1969 game_compute_size(&ds->p, TILESIZE, &wid, &ht);
1970 draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
1971 draw_update(dr, 0, 0, wid, ht);
1974 * Draw the grid lines.
1976 for (y = 0; y <= h; y++)
1977 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
1978 COL_LOWLIGHT);
1979 for (x = 0; x <= w; x++)
1980 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
1981 COL_LOWLIGHT);
1983 ds->started = TRUE;
1987 * If we're in the process of animating a move, let's start by
1988 * working out how far the player has moved from their _older_
1989 * state.
1991 if (oldstate) {
1992 ap = animtime / ui->anim_length;
1993 player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
1994 } else {
1995 player_dist = 0;
1996 ap = 0.0F;
2000 * Draw the grid contents.
2002 * We count the gems as we go round this loop, for the purposes
2003 * of the status bar. Of course we have a gems counter in the
2004 * game_state already, but if we do the counting in this loop
2005 * then it tracks gems being picked up in a sliding move, and
2006 * updates one by one.
2008 gems = 0;
2009 for (y = 0; y < h; y++)
2010 for (x = 0; x < w; x++) {
2011 unsigned short v = (unsigned char)state->grid[y*w+x];
2014 * Special case: if the player is in the process of
2015 * moving over a gem, we draw the gem iff they haven't
2016 * gone past it yet.
2018 if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
2020 * Compute the distance from this square to the
2021 * original player position.
2023 int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
2026 * If the player has reached here, use the new grid
2027 * element. Otherwise use the old one.
2029 if (player_dist < dist)
2030 v = oldstate->grid[y*w+x];
2031 else
2032 v = state->grid[y*w+x];
2036 * Special case: erase the mine the dead player is
2037 * sitting on. Only at the end of the move.
2039 if (v == MINE && !oldstate && state->dead &&
2040 x == state->px && y == state->py)
2041 v = BLANK;
2043 if (v == GEM)
2044 gems++;
2046 v |= flashtype;
2048 if (ds->grid[y*w+x] != v) {
2049 draw_tile(dr, ds, x, y, v);
2050 ds->grid[y*w+x] = v;
2055 * Gem counter in the status bar. We replace it with
2056 * `COMPLETED!' when it reaches zero ... or rather, when the
2057 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
2058 * shown between the collection of the last gem and the
2059 * completion of the move animation that did it.)
2061 if (state->dead && (!oldstate || oldstate->dead)) {
2062 sprintf(status, "DEAD!");
2063 } else if (state->gems || (oldstate && oldstate->gems)) {
2064 if (state->cheated)
2065 sprintf(status, "Auto-solver used. ");
2066 else
2067 *status = '\0';
2068 sprintf(status + strlen(status), "Gems: %d", gems);
2069 } else if (state->cheated) {
2070 sprintf(status, "Auto-solved.");
2071 } else {
2072 sprintf(status, "COMPLETED!");
2074 /* We subtract one from the visible death counter if we're still
2075 * animating the move at the end of which the death took place. */
2076 deaths = ui->deaths;
2077 if (oldstate && ui->just_died) {
2078 assert(deaths > 0);
2079 deaths--;
2081 if (deaths)
2082 sprintf(status + strlen(status), " Deaths: %d", deaths);
2083 status_bar(dr, status);
2086 * Draw the player sprite.
2088 assert(!ds->player_bg_saved);
2089 assert(ds->player_background);
2091 int ox, oy, nx, ny;
2092 nx = COORD(state->px);
2093 ny = COORD(state->py);
2094 if (oldstate) {
2095 ox = COORD(oldstate->px);
2096 oy = COORD(oldstate->py);
2097 } else {
2098 ox = nx;
2099 oy = ny;
2101 ds->pbgx = ox + ap * (nx - ox);
2102 ds->pbgy = oy + ap * (ny - oy);
2104 blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
2105 draw_player(dr, ds, ds->pbgx, ds->pbgy,
2106 (state->dead && !oldstate),
2107 (!oldstate && state->soln ?
2108 state->soln->list[state->solnpos] : -1));
2109 ds->player_bg_saved = TRUE;
2112 static float game_anim_length(game_state *oldstate, game_state *newstate,
2113 int dir, game_ui *ui)
2115 int dist;
2116 if (dir > 0)
2117 dist = newstate->distance_moved;
2118 else
2119 dist = oldstate->distance_moved;
2120 ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
2121 return ui->anim_length;
2124 static float game_flash_length(game_state *oldstate, game_state *newstate,
2125 int dir, game_ui *ui)
2127 if (!oldstate->dead && newstate->dead) {
2128 ui->flashtype = FLASH_DEAD;
2129 return FLASH_LENGTH;
2130 } else if (oldstate->gems && !newstate->gems) {
2131 ui->flashtype = FLASH_WIN;
2132 return FLASH_LENGTH;
2134 return 0.0F;
2137 static int game_timing_state(game_state *state, game_ui *ui)
2139 return TRUE;
2142 static void game_print_size(game_params *params, float *x, float *y)
2146 static void game_print(drawing *dr, game_state *state, int tilesize)
2150 #ifdef COMBINED
2151 #define thegame inertia
2152 #endif
2154 const struct game thegame = {
2155 "Inertia", "inertia",
2156 default_params,
2157 game_fetch_preset,
2158 decode_params,
2159 encode_params,
2160 free_params,
2161 dup_params,
2162 TRUE, game_configure, custom_params,
2163 validate_params,
2164 new_game_desc,
2165 validate_desc,
2166 new_game,
2167 dup_game,
2168 free_game,
2169 TRUE, solve_game,
2170 FALSE, game_text_format,
2171 new_ui,
2172 free_ui,
2173 encode_ui,
2174 decode_ui,
2175 game_changed_state,
2176 interpret_move,
2177 execute_move,
2178 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2179 game_colours,
2180 game_new_drawstate,
2181 game_free_drawstate,
2182 game_redraw,
2183 game_anim_length,
2184 game_flash_length,
2185 FALSE, FALSE, game_print_size, game_print,
2186 TRUE, /* wants_statusbar */
2187 FALSE, game_timing_state,
2188 0, /* flags */