Release version 9306-1
[sgt-puzzles/ydirson.git] / grid.c
blob658fd4d4d01c2bd137fe69855dbb78df665f5bd4
1 /*
2 * (c) Lambros Lambrou 2008
4 * Code for working with general grids, which can be any planar graph
5 * with faces, edges and vertices (dots). Includes generators for a few
6 * types of grid, including square, hexagonal, triangular and others.
7 */
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15 #include <float.h>
17 #include "puzzles.h"
18 #include "tree234.h"
19 #include "grid.h"
20 #include "penrose.h"
22 /* Debugging options */
25 #define DEBUG_GRID
28 /* ----------------------------------------------------------------------
29 * Deallocate or dereference a grid
31 void grid_free(grid *g)
33 assert(g->refcount);
35 g->refcount--;
36 if (g->refcount == 0) {
37 int i;
38 for (i = 0; i < g->num_faces; i++) {
39 sfree(g->faces[i].dots);
40 sfree(g->faces[i].edges);
42 for (i = 0; i < g->num_dots; i++) {
43 sfree(g->dots[i].faces);
44 sfree(g->dots[i].edges);
46 sfree(g->faces);
47 sfree(g->edges);
48 sfree(g->dots);
49 sfree(g);
53 /* Used by the other grid generators. Create a brand new grid with nothing
54 * initialised (all lists are NULL) */
55 static grid *grid_empty(void)
57 grid *g = snew(grid);
58 g->faces = NULL;
59 g->edges = NULL;
60 g->dots = NULL;
61 g->num_faces = g->num_edges = g->num_dots = 0;
62 g->refcount = 1;
63 g->lowest_x = g->lowest_y = g->highest_x = g->highest_y = 0;
64 return g;
67 /* Helper function to calculate perpendicular distance from
68 * a point P to a line AB. A and B mustn't be equal here.
70 * Well-known formula for area A of a triangle:
71 * / 1 1 1 \
72 * 2A = determinant of matrix | px ax bx |
73 * \ py ay by /
75 * Also well-known: 2A = base * height
76 * = perpendicular distance * line-length.
78 * Combining gives: distance = determinant / line-length(a,b)
80 static double point_line_distance(long px, long py,
81 long ax, long ay,
82 long bx, long by)
84 long det = ax*by - bx*ay + bx*py - px*by + px*ay - ax*py;
85 double len;
86 det = max(det, -det);
87 len = sqrt(SQ(ax - bx) + SQ(ay - by));
88 return det / len;
91 /* Determine nearest edge to where the user clicked.
92 * (x, y) is the clicked location, converted to grid coordinates.
93 * Returns the nearest edge, or NULL if no edge is reasonably
94 * near the position.
96 * Just judging edges by perpendicular distance is not quite right -
97 * the edge might be "off to one side". So we insist that the triangle
98 * with (x,y) has acute angles at the edge's dots.
100 * edge1
101 * *---------*------
103 * | *(x,y)
104 * edge2 |
105 * | edge2 is OK, but edge1 is not, even though
106 * | edge1 is perpendicularly closer to (x,y)
110 grid_edge *grid_nearest_edge(grid *g, int x, int y)
112 grid_edge *best_edge;
113 double best_distance = 0;
114 int i;
116 best_edge = NULL;
118 for (i = 0; i < g->num_edges; i++) {
119 grid_edge *e = &g->edges[i];
120 long e2; /* squared length of edge */
121 long a2, b2; /* squared lengths of other sides */
122 double dist;
124 /* See if edge e is eligible - the triangle must have acute angles
125 * at the edge's dots.
126 * Pythagoras formula h^2 = a^2 + b^2 detects right-angles,
127 * so detect acute angles by testing for h^2 < a^2 + b^2 */
128 e2 = SQ((long)e->dot1->x - (long)e->dot2->x) + SQ((long)e->dot1->y - (long)e->dot2->y);
129 a2 = SQ((long)e->dot1->x - (long)x) + SQ((long)e->dot1->y - (long)y);
130 b2 = SQ((long)e->dot2->x - (long)x) + SQ((long)e->dot2->y - (long)y);
131 if (a2 >= e2 + b2) continue;
132 if (b2 >= e2 + a2) continue;
134 /* e is eligible so far. Now check the edge is reasonably close
135 * to where the user clicked. Don't want to toggle an edge if the
136 * click was way off the grid.
137 * There is room for experimentation here. We could check the
138 * perpendicular distance is within a certain fraction of the length
139 * of the edge. That amounts to testing a rectangular region around
140 * the edge.
141 * Alternatively, we could check that the angle at the point is obtuse.
142 * That would amount to testing a circular region with the edge as
143 * diameter. */
144 dist = point_line_distance((long)x, (long)y,
145 (long)e->dot1->x, (long)e->dot1->y,
146 (long)e->dot2->x, (long)e->dot2->y);
147 /* Is dist more than half edge length ? */
148 if (4 * SQ(dist) > e2)
149 continue;
151 if (best_edge == NULL || dist < best_distance) {
152 best_edge = e;
153 best_distance = dist;
156 return best_edge;
159 /* ----------------------------------------------------------------------
160 * Grid generation
163 #ifdef SVG_GRID
165 #define SVG_DOTS 1
166 #define SVG_EDGES 2
167 #define SVG_FACES 4
169 #define FACE_COLOUR "red"
170 #define EDGE_COLOUR "blue"
171 #define DOT_COLOUR "black"
173 static void grid_output_svg(FILE *fp, grid *g, int which)
175 int i, j;
177 fprintf(fp,"\
178 <?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n\
179 <!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 20010904//EN\"\n\
180 \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n\
182 <svg xmlns=\"http://www.w3.org/2000/svg\"\n\
183 xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n\n");
185 if (which & SVG_FACES) {
186 fprintf(fp, "<g>\n");
187 for (i = 0; i < g->num_faces; i++) {
188 grid_face *f = g->faces + i;
189 fprintf(fp, "<polygon points=\"");
190 for (j = 0; j < f->order; j++) {
191 grid_dot *d = f->dots[j];
192 fprintf(fp, "%s%d,%d", (j == 0) ? "" : " ",
193 d->x, d->y);
195 fprintf(fp, "\" style=\"fill: %s; fill-opacity: 0.2; stroke: %s\" />\n",
196 FACE_COLOUR, FACE_COLOUR);
198 fprintf(fp, "</g>\n");
200 if (which & SVG_EDGES) {
201 fprintf(fp, "<g>\n");
202 for (i = 0; i < g->num_edges; i++) {
203 grid_edge *e = g->edges + i;
204 grid_dot *d1 = e->dot1, *d2 = e->dot2;
206 fprintf(fp, "<line x1=\"%d\" y1=\"%d\" x2=\"%d\" y2=\"%d\" "
207 "style=\"stroke: %s\" />\n",
208 d1->x, d1->y, d2->x, d2->y, EDGE_COLOUR);
210 fprintf(fp, "</g>\n");
213 if (which & SVG_DOTS) {
214 fprintf(fp, "<g>\n");
215 for (i = 0; i < g->num_dots; i++) {
216 grid_dot *d = g->dots + i;
217 fprintf(fp, "<ellipse cx=\"%d\" cy=\"%d\" rx=\"%d\" ry=\"%d\" fill=\"%s\" />",
218 d->x, d->y, g->tilesize/20, g->tilesize/20, DOT_COLOUR);
220 fprintf(fp, "</g>\n");
223 fprintf(fp, "</svg>\n");
225 #endif
227 #ifdef SVG_GRID
228 #include <errno.h>
230 static void grid_try_svg(grid *g, int which)
232 char *svg = getenv("PUZZLES_SVG_GRID");
233 if (svg) {
234 FILE *svgf = fopen(svg, "w");
235 if (svgf) {
236 grid_output_svg(svgf, g, which);
237 fclose(svgf);
238 } else {
239 fprintf(stderr, "Unable to open file `%s': %s", svg, strerror(errno));
243 #endif
245 /* Show the basic grid information, before doing grid_make_consistent */
246 static void grid_debug_basic(grid *g)
248 /* TODO: Maybe we should generate an SVG image of the dots and lines
249 * of the grid here, before grid_make_consistent.
250 * Would help with debugging grid generation. */
251 #ifdef DEBUG_GRID
252 int i;
253 printf("--- Basic Grid Data ---\n");
254 for (i = 0; i < g->num_faces; i++) {
255 grid_face *f = g->faces + i;
256 printf("Face %d: dots[", i);
257 int j;
258 for (j = 0; j < f->order; j++) {
259 grid_dot *d = f->dots[j];
260 printf("%s%d", j ? "," : "", (int)(d - g->dots));
262 printf("]\n");
264 #endif
265 #ifdef SVG_GRID
266 grid_try_svg(g, SVG_FACES);
267 #endif
270 /* Show the derived grid information, computed by grid_make_consistent */
271 static void grid_debug_derived(grid *g)
273 #ifdef DEBUG_GRID
274 /* edges */
275 int i;
276 printf("--- Derived Grid Data ---\n");
277 for (i = 0; i < g->num_edges; i++) {
278 grid_edge *e = g->edges + i;
279 printf("Edge %d: dots[%d,%d] faces[%d,%d]\n",
280 i, (int)(e->dot1 - g->dots), (int)(e->dot2 - g->dots),
281 e->face1 ? (int)(e->face1 - g->faces) : -1,
282 e->face2 ? (int)(e->face2 - g->faces) : -1);
284 /* faces */
285 for (i = 0; i < g->num_faces; i++) {
286 grid_face *f = g->faces + i;
287 int j;
288 printf("Face %d: faces[", i);
289 for (j = 0; j < f->order; j++) {
290 grid_edge *e = f->edges[j];
291 grid_face *f2 = (e->face1 == f) ? e->face2 : e->face1;
292 printf("%s%d", j ? "," : "", f2 ? (int)(f2 - g->faces) : -1);
294 printf("]\n");
296 /* dots */
297 for (i = 0; i < g->num_dots; i++) {
298 grid_dot *d = g->dots + i;
299 int j;
300 printf("Dot %d: dots[", i);
301 for (j = 0; j < d->order; j++) {
302 grid_edge *e = d->edges[j];
303 grid_dot *d2 = (e->dot1 == d) ? e->dot2 : e->dot1;
304 printf("%s%d", j ? "," : "", (int)(d2 - g->dots));
306 printf("] faces[");
307 for (j = 0; j < d->order; j++) {
308 grid_face *f = d->faces[j];
309 printf("%s%d", j ? "," : "", f ? (int)(f - g->faces) : -1);
311 printf("]\n");
313 #endif
314 #ifdef SVG_GRID
315 grid_try_svg(g, SVG_DOTS | SVG_EDGES | SVG_FACES);
316 #endif
319 /* Helper function for building incomplete-edges list in
320 * grid_make_consistent() */
321 static int grid_edge_bydots_cmpfn(void *v1, void *v2)
323 grid_edge *a = v1;
324 grid_edge *b = v2;
325 grid_dot *da, *db;
327 /* Pointer subtraction is valid here, because all dots point into the
328 * same dot-list (g->dots).
329 * Edges are not "normalised" - the 2 dots could be stored in any order,
330 * so we need to take this into account when comparing edges. */
332 /* Compare first dots */
333 da = (a->dot1 < a->dot2) ? a->dot1 : a->dot2;
334 db = (b->dot1 < b->dot2) ? b->dot1 : b->dot2;
335 if (da != db)
336 return db - da;
337 /* Compare last dots */
338 da = (a->dot1 < a->dot2) ? a->dot2 : a->dot1;
339 db = (b->dot1 < b->dot2) ? b->dot2 : b->dot1;
340 if (da != db)
341 return db - da;
343 return 0;
347 * 'Vigorously trim' a grid, by which I mean deleting any isolated or
348 * uninteresting faces. By which, in turn, I mean: ensure that the
349 * grid is composed solely of faces adjacent to at least one
350 * 'landlocked' dot (i.e. one not in contact with the infinite
351 * exterior face), and that all those dots are in a single connected
352 * component.
354 * This function operates on, and returns, a grid satisfying the
355 * preconditions to grid_make_consistent() rather than the
356 * postconditions. (So call it first.)
358 static void grid_trim_vigorously(grid *g)
360 int *dotpairs, *faces, *dots;
361 int *dsf;
362 int i, j, k, size, newfaces, newdots;
365 * First construct a matrix in which each ordered pair of dots is
366 * mapped to the index of the face in which those dots occur in
367 * that order.
369 dotpairs = snewn(g->num_dots * g->num_dots, int);
370 for (i = 0; i < g->num_dots; i++)
371 for (j = 0; j < g->num_dots; j++)
372 dotpairs[i*g->num_dots+j] = -1;
373 for (i = 0; i < g->num_faces; i++) {
374 grid_face *f = g->faces + i;
375 int dot0 = f->dots[f->order-1] - g->dots;
376 for (j = 0; j < f->order; j++) {
377 int dot1 = f->dots[j] - g->dots;
378 dotpairs[dot0 * g->num_dots + dot1] = i;
379 dot0 = dot1;
384 * Now we can identify landlocked dots: they're the ones all of
385 * whose edges have a mirror-image counterpart in this matrix.
387 dots = snewn(g->num_dots, int);
388 for (i = 0; i < g->num_dots; i++) {
389 dots[i] = TRUE;
390 for (j = 0; j < g->num_dots; j++) {
391 if ((dotpairs[i*g->num_dots+j] >= 0) ^
392 (dotpairs[j*g->num_dots+i] >= 0))
393 dots[i] = FALSE; /* non-duplicated edge: coastal dot */
398 * Now identify connected pairs of landlocked dots, and form a dsf
399 * unifying them.
401 dsf = snew_dsf(g->num_dots);
402 for (i = 0; i < g->num_dots; i++)
403 for (j = 0; j < i; j++)
404 if (dots[i] && dots[j] &&
405 dotpairs[i*g->num_dots+j] >= 0 &&
406 dotpairs[j*g->num_dots+i] >= 0)
407 dsf_merge(dsf, i, j);
410 * Now look for the largest component.
412 size = 0;
413 j = -1;
414 for (i = 0; i < g->num_dots; i++) {
415 int newsize;
416 if (dots[i] && dsf_canonify(dsf, i) == i &&
417 (newsize = dsf_size(dsf, i)) > size) {
418 j = i;
419 size = newsize;
424 * Work out which faces we're going to keep (precisely those with
425 * at least one dot in the same connected component as j) and
426 * which dots (those required by any face we're keeping).
428 * At this point we reuse the 'dots' array to indicate the dots
429 * we're keeping, rather than the ones that are landlocked.
431 faces = snewn(g->num_faces, int);
432 for (i = 0; i < g->num_faces; i++)
433 faces[i] = 0;
434 for (i = 0; i < g->num_dots; i++)
435 dots[i] = 0;
436 for (i = 0; i < g->num_faces; i++) {
437 grid_face *f = g->faces + i;
438 int keep = FALSE;
439 for (k = 0; k < f->order; k++)
440 if (dsf_canonify(dsf, f->dots[k] - g->dots) == j)
441 keep = TRUE;
442 if (keep) {
443 faces[i] = TRUE;
444 for (k = 0; k < f->order; k++)
445 dots[f->dots[k]-g->dots] = TRUE;
450 * Work out the new indices of those faces and dots, when we
451 * compact the arrays containing them.
453 for (i = newfaces = 0; i < g->num_faces; i++)
454 faces[i] = (faces[i] ? newfaces++ : -1);
455 for (i = newdots = 0; i < g->num_dots; i++)
456 dots[i] = (dots[i] ? newdots++ : -1);
459 * Free the dynamically allocated 'dots' pointer lists in faces
460 * we're going to discard.
462 for (i = 0; i < g->num_faces; i++)
463 if (faces[i] < 0)
464 sfree(g->faces[i].dots);
467 * Go through and compact the arrays.
469 for (i = 0; i < g->num_dots; i++)
470 if (dots[i] >= 0) {
471 grid_dot *dnew = g->dots + dots[i], *dold = g->dots + i;
472 *dnew = *dold; /* structure copy */
474 for (i = 0; i < g->num_faces; i++)
475 if (faces[i] >= 0) {
476 grid_face *fnew = g->faces + faces[i], *fold = g->faces + i;
477 *fnew = *fold; /* structure copy */
478 for (j = 0; j < fnew->order; j++) {
480 * Reindex the dots in this face.
482 k = fnew->dots[j] - g->dots;
483 fnew->dots[j] = g->dots + dots[k];
486 g->num_faces = newfaces;
487 g->num_dots = newdots;
489 sfree(dotpairs);
490 sfree(dsf);
491 sfree(dots);
492 sfree(faces);
495 /* Input: grid has its dots and faces initialised:
496 * - dots have (optionally) x and y coordinates, but no edges or faces
497 * (pointers are NULL).
498 * - edges not initialised at all
499 * - faces initialised and know which dots they have (but no edges yet). The
500 * dots around each face are assumed to be clockwise.
502 * Output: grid is complete and valid with all relationships defined.
504 static void grid_make_consistent(grid *g)
506 int i;
507 tree234 *incomplete_edges;
508 grid_edge *next_new_edge; /* Where new edge will go into g->edges */
510 grid_debug_basic(g);
512 /* ====== Stage 1 ======
513 * Generate edges
516 /* We know how many dots and faces there are, so we can find the exact
517 * number of edges from Euler's polyhedral formula: F + V = E + 2 .
518 * We use "-1", not "-2" here, because Euler's formula includes the
519 * infinite face, which we don't count. */
520 g->num_edges = g->num_faces + g->num_dots - 1;
521 g->edges = snewn(g->num_edges, grid_edge);
522 next_new_edge = g->edges;
524 /* Iterate over faces, and over each face's dots, generating edges as we
525 * go. As we find each new edge, we can immediately fill in the edge's
526 * dots, but only one of the edge's faces. Later on in the iteration, we
527 * will find the same edge again (unless it's on the border), but we will
528 * know the other face.
529 * For efficiency, maintain a list of the incomplete edges, sorted by
530 * their dots. */
531 incomplete_edges = newtree234(grid_edge_bydots_cmpfn);
532 for (i = 0; i < g->num_faces; i++) {
533 grid_face *f = g->faces + i;
534 int j;
535 for (j = 0; j < f->order; j++) {
536 grid_edge e; /* fake edge for searching */
537 grid_edge *edge_found;
538 int j2 = j + 1;
539 if (j2 == f->order)
540 j2 = 0;
541 e.dot1 = f->dots[j];
542 e.dot2 = f->dots[j2];
543 /* Use del234 instead of find234, because we always want to
544 * remove the edge if found */
545 edge_found = del234(incomplete_edges, &e);
546 if (edge_found) {
547 /* This edge already added, so fill out missing face.
548 * Edge is already removed from incomplete_edges. */
549 edge_found->face2 = f;
550 } else {
551 assert(next_new_edge - g->edges < g->num_edges);
552 next_new_edge->dot1 = e.dot1;
553 next_new_edge->dot2 = e.dot2;
554 next_new_edge->face1 = f;
555 next_new_edge->face2 = NULL; /* potentially infinite face */
556 add234(incomplete_edges, next_new_edge);
557 ++next_new_edge;
561 freetree234(incomplete_edges);
563 /* ====== Stage 2 ======
564 * For each face, build its edge list.
567 /* Allocate space for each edge list. Can do this, because each face's
568 * edge-list is the same size as its dot-list. */
569 for (i = 0; i < g->num_faces; i++) {
570 grid_face *f = g->faces + i;
571 int j;
572 f->edges = snewn(f->order, grid_edge*);
573 /* Preload with NULLs, to help detect potential bugs. */
574 for (j = 0; j < f->order; j++)
575 f->edges[j] = NULL;
578 /* Iterate over each edge, and over both its faces. Add this edge to
579 * the face's edge-list, after finding where it should go in the
580 * sequence. */
581 for (i = 0; i < g->num_edges; i++) {
582 grid_edge *e = g->edges + i;
583 int j;
584 for (j = 0; j < 2; j++) {
585 grid_face *f = j ? e->face2 : e->face1;
586 int k, k2;
587 if (f == NULL) continue;
588 /* Find one of the dots around the face */
589 for (k = 0; k < f->order; k++) {
590 if (f->dots[k] == e->dot1)
591 break; /* found dot1 */
593 assert(k != f->order); /* Must find the dot around this face */
595 /* Labelling scheme: as we walk clockwise around the face,
596 * starting at dot0 (f->dots[0]), we hit:
597 * (dot0), edge0, dot1, edge1, dot2,...
600 * 0-----1
602 * |1
604 * 3-----2
607 * Therefore, edgeK joins dotK and dot{K+1}
610 /* Around this face, either the next dot or the previous dot
611 * must be e->dot2. Otherwise the edge is wrong. */
612 k2 = k + 1;
613 if (k2 == f->order)
614 k2 = 0;
615 if (f->dots[k2] == e->dot2) {
616 /* dot1(k) and dot2(k2) go clockwise around this face, so add
617 * this edge at position k (see diagram). */
618 assert(f->edges[k] == NULL);
619 f->edges[k] = e;
620 continue;
622 /* Try previous dot */
623 k2 = k - 1;
624 if (k2 == -1)
625 k2 = f->order - 1;
626 if (f->dots[k2] == e->dot2) {
627 /* dot1(k) and dot2(k2) go anticlockwise around this face. */
628 assert(f->edges[k2] == NULL);
629 f->edges[k2] = e;
630 continue;
632 assert(!"Grid broken: bad edge-face relationship");
636 /* ====== Stage 3 ======
637 * For each dot, build its edge-list and face-list.
640 /* We don't know how many edges/faces go around each dot, so we can't
641 * allocate the right space for these lists. Pre-compute the sizes by
642 * iterating over each edge and recording a tally against each dot. */
643 for (i = 0; i < g->num_dots; i++) {
644 g->dots[i].order = 0;
646 for (i = 0; i < g->num_edges; i++) {
647 grid_edge *e = g->edges + i;
648 ++(e->dot1->order);
649 ++(e->dot2->order);
651 /* Now we have the sizes, pre-allocate the edge and face lists. */
652 for (i = 0; i < g->num_dots; i++) {
653 grid_dot *d = g->dots + i;
654 int j;
655 assert(d->order >= 2); /* sanity check */
656 d->edges = snewn(d->order, grid_edge*);
657 d->faces = snewn(d->order, grid_face*);
658 for (j = 0; j < d->order; j++) {
659 d->edges[j] = NULL;
660 d->faces[j] = NULL;
663 /* For each dot, need to find a face that touches it, so we can seed
664 * the edge-face-edge-face process around each dot. */
665 for (i = 0; i < g->num_faces; i++) {
666 grid_face *f = g->faces + i;
667 int j;
668 for (j = 0; j < f->order; j++) {
669 grid_dot *d = f->dots[j];
670 d->faces[0] = f;
673 /* Each dot now has a face in its first slot. Generate the remaining
674 * faces and edges around the dot, by searching both clockwise and
675 * anticlockwise from the first face. Need to do both directions,
676 * because of the possibility of hitting the infinite face, which
677 * blocks progress. But there's only one such face, so we will
678 * succeed in finding every edge and face this way. */
679 for (i = 0; i < g->num_dots; i++) {
680 grid_dot *d = g->dots + i;
681 int current_face1 = 0; /* ascends clockwise */
682 int current_face2 = 0; /* descends anticlockwise */
684 /* Labelling scheme: as we walk clockwise around the dot, starting
685 * at face0 (d->faces[0]), we hit:
686 * (face0), edge0, face1, edge1, face2,...
690 * 0 | 1
692 * -----d-----1
694 * | 2
698 * So, for example, face1 should be joined to edge0 and edge1,
699 * and those edges should appear in an anticlockwise sense around
700 * that face (see diagram). */
702 /* clockwise search */
703 while (TRUE) {
704 grid_face *f = d->faces[current_face1];
705 grid_edge *e;
706 int j;
707 assert(f != NULL);
708 /* find dot around this face */
709 for (j = 0; j < f->order; j++) {
710 if (f->dots[j] == d)
711 break;
713 assert(j != f->order); /* must find dot */
715 /* Around f, required edge is anticlockwise from the dot. See
716 * the other labelling scheme higher up, for why we subtract 1
717 * from j. */
718 j--;
719 if (j == -1)
720 j = f->order - 1;
721 e = f->edges[j];
722 d->edges[current_face1] = e; /* set edge */
723 current_face1++;
724 if (current_face1 == d->order)
725 break;
726 else {
727 /* set face */
728 d->faces[current_face1] =
729 (e->face1 == f) ? e->face2 : e->face1;
730 if (d->faces[current_face1] == NULL)
731 break; /* cannot progress beyond infinite face */
734 /* If the clockwise search made it all the way round, don't need to
735 * bother with the anticlockwise search. */
736 if (current_face1 == d->order)
737 continue; /* this dot is complete, move on to next dot */
739 /* anticlockwise search */
740 while (TRUE) {
741 grid_face *f = d->faces[current_face2];
742 grid_edge *e;
743 int j;
744 assert(f != NULL);
745 /* find dot around this face */
746 for (j = 0; j < f->order; j++) {
747 if (f->dots[j] == d)
748 break;
750 assert(j != f->order); /* must find dot */
752 /* Around f, required edge is clockwise from the dot. */
753 e = f->edges[j];
755 current_face2--;
756 if (current_face2 == -1)
757 current_face2 = d->order - 1;
758 d->edges[current_face2] = e; /* set edge */
760 /* set face */
761 if (current_face2 == current_face1)
762 break;
763 d->faces[current_face2] =
764 (e->face1 == f) ? e->face2 : e->face1;
765 /* There's only 1 infinite face, so we must get all the way
766 * to current_face1 before we hit it. */
767 assert(d->faces[current_face2]);
771 /* ====== Stage 4 ======
772 * Compute other grid settings
775 /* Bounding rectangle */
776 for (i = 0; i < g->num_dots; i++) {
777 grid_dot *d = g->dots + i;
778 if (i == 0) {
779 g->lowest_x = g->highest_x = d->x;
780 g->lowest_y = g->highest_y = d->y;
781 } else {
782 g->lowest_x = min(g->lowest_x, d->x);
783 g->highest_x = max(g->highest_x, d->x);
784 g->lowest_y = min(g->lowest_y, d->y);
785 g->highest_y = max(g->highest_y, d->y);
789 grid_debug_derived(g);
792 /* Helpers for making grid-generation easier. These functions are only
793 * intended for use during grid generation. */
795 /* Comparison function for the (tree234) sorted dot list */
796 static int grid_point_cmp_fn(void *v1, void *v2)
798 grid_dot *p1 = v1;
799 grid_dot *p2 = v2;
800 if (p1->y != p2->y)
801 return p2->y - p1->y;
802 else
803 return p2->x - p1->x;
805 /* Add a new face to the grid, with its dot list allocated.
806 * Assumes there's enough space allocated for the new face in grid->faces */
807 static void grid_face_add_new(grid *g, int face_size)
809 int i;
810 grid_face *new_face = g->faces + g->num_faces;
811 new_face->order = face_size;
812 new_face->dots = snewn(face_size, grid_dot*);
813 for (i = 0; i < face_size; i++)
814 new_face->dots[i] = NULL;
815 new_face->edges = NULL;
816 new_face->has_incentre = FALSE;
817 g->num_faces++;
819 /* Assumes dot list has enough space */
820 static grid_dot *grid_dot_add_new(grid *g, int x, int y)
822 grid_dot *new_dot = g->dots + g->num_dots;
823 new_dot->order = 0;
824 new_dot->edges = NULL;
825 new_dot->faces = NULL;
826 new_dot->x = x;
827 new_dot->y = y;
828 g->num_dots++;
829 return new_dot;
831 /* Retrieve a dot with these (x,y) coordinates. Either return an existing dot
832 * in the dot_list, or add a new dot to the grid (and the dot_list) and
833 * return that.
834 * Assumes g->dots has enough capacity allocated */
835 static grid_dot *grid_get_dot(grid *g, tree234 *dot_list, int x, int y)
837 grid_dot test, *ret;
839 test.order = 0;
840 test.edges = NULL;
841 test.faces = NULL;
842 test.x = x;
843 test.y = y;
844 ret = find234(dot_list, &test, NULL);
845 if (ret)
846 return ret;
848 ret = grid_dot_add_new(g, x, y);
849 add234(dot_list, ret);
850 return ret;
853 /* Sets the last face of the grid to include this dot, at this position
854 * around the face. Assumes num_faces is at least 1 (a new face has
855 * previously been added, with the required number of dots allocated) */
856 static void grid_face_set_dot(grid *g, grid_dot *d, int position)
858 grid_face *last_face = g->faces + g->num_faces - 1;
859 last_face->dots[position] = d;
863 * Helper routines for grid_find_incentre.
865 static int solve_2x2_matrix(double mx[4], double vin[2], double vout[2])
867 double inv[4];
868 double det;
869 det = (mx[0]*mx[3] - mx[1]*mx[2]);
870 if (det == 0)
871 return FALSE;
873 inv[0] = mx[3] / det;
874 inv[1] = -mx[1] / det;
875 inv[2] = -mx[2] / det;
876 inv[3] = mx[0] / det;
878 vout[0] = inv[0]*vin[0] + inv[1]*vin[1];
879 vout[1] = inv[2]*vin[0] + inv[3]*vin[1];
881 return TRUE;
883 static int solve_3x3_matrix(double mx[9], double vin[3], double vout[3])
885 double inv[9];
886 double det;
888 det = (mx[0]*mx[4]*mx[8] + mx[1]*mx[5]*mx[6] + mx[2]*mx[3]*mx[7] -
889 mx[0]*mx[5]*mx[7] - mx[1]*mx[3]*mx[8] - mx[2]*mx[4]*mx[6]);
890 if (det == 0)
891 return FALSE;
893 inv[0] = (mx[4]*mx[8] - mx[5]*mx[7]) / det;
894 inv[1] = (mx[2]*mx[7] - mx[1]*mx[8]) / det;
895 inv[2] = (mx[1]*mx[5] - mx[2]*mx[4]) / det;
896 inv[3] = (mx[5]*mx[6] - mx[3]*mx[8]) / det;
897 inv[4] = (mx[0]*mx[8] - mx[2]*mx[6]) / det;
898 inv[5] = (mx[2]*mx[3] - mx[0]*mx[5]) / det;
899 inv[6] = (mx[3]*mx[7] - mx[4]*mx[6]) / det;
900 inv[7] = (mx[1]*mx[6] - mx[0]*mx[7]) / det;
901 inv[8] = (mx[0]*mx[4] - mx[1]*mx[3]) / det;
903 vout[0] = inv[0]*vin[0] + inv[1]*vin[1] + inv[2]*vin[2];
904 vout[1] = inv[3]*vin[0] + inv[4]*vin[1] + inv[5]*vin[2];
905 vout[2] = inv[6]*vin[0] + inv[7]*vin[1] + inv[8]*vin[2];
907 return TRUE;
910 void grid_find_incentre(grid_face *f)
912 double xbest, ybest, bestdist;
913 int i, j, k, m;
914 grid_dot *edgedot1[3], *edgedot2[3];
915 grid_dot *dots[3];
916 int nedges, ndots;
918 if (f->has_incentre)
919 return;
922 * Find the point in the polygon with the maximum distance to any
923 * edge or corner.
925 * Such a point must exist which is in contact with at least three
926 * edges and/or vertices. (Proof: if it's only in contact with two
927 * edges and/or vertices, it can't even be at a _local_ maximum -
928 * any such circle can always be expanded in some direction.) So
929 * we iterate through all 3-subsets of the combined set of edges
930 * and vertices; for each subset we generate one or two candidate
931 * points that might be the incentre, and then we vet each one to
932 * see if it's inside the polygon and what its maximum radius is.
934 * (There's one case which this algorithm will get noticeably
935 * wrong, and that's when a continuum of equally good answers
936 * exists due to parallel edges. Consider a long thin rectangle,
937 * for instance, or a parallelogram. This algorithm will pick a
938 * point near one end, and choose the end arbitrarily; obviously a
939 * nicer point to choose would be in the centre. To fix this I
940 * would have to introduce a special-case system which detected
941 * parallel edges in advance, set aside all candidate points
942 * generated using both edges in a parallel pair, and generated
943 * some additional candidate points half way between them. Also,
944 * of course, I'd have to cope with rounding error making such a
945 * point look worse than one of its endpoints. So I haven't done
946 * this for the moment, and will cross it if necessary when I come
947 * to it.)
949 * We don't actually iterate literally over _edges_, in the sense
950 * of grid_edge structures. Instead, we fill in edgedot1[] and
951 * edgedot2[] with a pair of dots adjacent in the face's list of
952 * vertices. This ensures that we get the edges in consistent
953 * orientation, which we could not do from the grid structure
954 * alone. (A moment's consideration of an order-3 vertex should
955 * make it clear that if a notional arrow was written on each
956 * edge, _at least one_ of the three faces bordering that vertex
957 * would have to have the two arrows tip-to-tip or tail-to-tail
958 * rather than tip-to-tail.)
960 nedges = ndots = 0;
961 bestdist = 0;
962 xbest = ybest = 0;
964 for (i = 0; i+2 < 2*f->order; i++) {
965 if (i < f->order) {
966 edgedot1[nedges] = f->dots[i];
967 edgedot2[nedges++] = f->dots[(i+1)%f->order];
968 } else
969 dots[ndots++] = f->dots[i - f->order];
971 for (j = i+1; j+1 < 2*f->order; j++) {
972 if (j < f->order) {
973 edgedot1[nedges] = f->dots[j];
974 edgedot2[nedges++] = f->dots[(j+1)%f->order];
975 } else
976 dots[ndots++] = f->dots[j - f->order];
978 for (k = j+1; k < 2*f->order; k++) {
979 double cx[2], cy[2]; /* candidate positions */
980 int cn = 0; /* number of candidates */
982 if (k < f->order) {
983 edgedot1[nedges] = f->dots[k];
984 edgedot2[nedges++] = f->dots[(k+1)%f->order];
985 } else
986 dots[ndots++] = f->dots[k - f->order];
989 * Find a point, or pair of points, equidistant from
990 * all the specified edges and/or vertices.
992 if (nedges == 3) {
994 * Three edges. This is a linear matrix equation:
995 * each row of the matrix represents the fact that
996 * the point (x,y) we seek is at distance r from
997 * that edge, and we solve three of those
998 * simultaneously to obtain x,y,r. (We ignore r.)
1000 double matrix[9], vector[3], vector2[3];
1001 int m;
1003 for (m = 0; m < 3; m++) {
1004 int x1 = edgedot1[m]->x, x2 = edgedot2[m]->x;
1005 int y1 = edgedot1[m]->y, y2 = edgedot2[m]->y;
1006 int dx = x2-x1, dy = y2-y1;
1009 * ((x,y) - (x1,y1)) . (dy,-dx) = r |(dx,dy)|
1011 * => x dy - y dx - r |(dx,dy)| = (x1 dy - y1 dx)
1013 matrix[3*m+0] = dy;
1014 matrix[3*m+1] = -dx;
1015 matrix[3*m+2] = -sqrt((double)dx*dx+(double)dy*dy);
1016 vector[m] = (double)x1*dy - (double)y1*dx;
1019 if (solve_3x3_matrix(matrix, vector, vector2)) {
1020 cx[cn] = vector2[0];
1021 cy[cn] = vector2[1];
1022 cn++;
1024 } else if (nedges == 2) {
1026 * Two edges and a dot. This will end up in a
1027 * quadratic equation.
1029 * First, look at the two edges. Having our point
1030 * be some distance r from both of them gives rise
1031 * to a pair of linear equations in x,y,r of the
1032 * form
1034 * (x-x1) dy - (y-y1) dx = r sqrt(dx^2+dy^2)
1036 * We eliminate r between those equations to give
1037 * us a single linear equation in x,y describing
1038 * the locus of points equidistant from both lines
1039 * - i.e. the angle bisector.
1041 * We then choose one of x,y to be a parameter t,
1042 * and derive linear formulae for x,y,r in terms
1043 * of t. This enables us to write down the
1044 * circular equation (x-xd)^2+(y-yd)^2=r^2 as a
1045 * quadratic in t; solving that and substituting
1046 * in for x,y gives us two candidate points.
1048 double eqs[2][4]; /* a,b,c,d : ax+by+cr=d */
1049 double eq[3]; /* a,b,c: ax+by=c */
1050 double xt[2], yt[2], rt[2]; /* a,b: {x,y,r}=at+b */
1051 double q[3]; /* a,b,c: at^2+bt+c=0 */
1052 double disc;
1054 /* Find equations of the two input lines. */
1055 for (m = 0; m < 2; m++) {
1056 int x1 = edgedot1[m]->x, x2 = edgedot2[m]->x;
1057 int y1 = edgedot1[m]->y, y2 = edgedot2[m]->y;
1058 int dx = x2-x1, dy = y2-y1;
1060 eqs[m][0] = dy;
1061 eqs[m][1] = -dx;
1062 eqs[m][2] = -sqrt(dx*dx+dy*dy);
1063 eqs[m][3] = x1*dy - y1*dx;
1066 /* Derive the angle bisector by eliminating r. */
1067 eq[0] = eqs[0][0]*eqs[1][2] - eqs[1][0]*eqs[0][2];
1068 eq[1] = eqs[0][1]*eqs[1][2] - eqs[1][1]*eqs[0][2];
1069 eq[2] = eqs[0][3]*eqs[1][2] - eqs[1][3]*eqs[0][2];
1071 /* Parametrise x and y in terms of some t. */
1072 if (abs(eq[0]) < abs(eq[1])) {
1073 /* Parameter is x. */
1074 xt[0] = 1; xt[1] = 0;
1075 yt[0] = -eq[0]/eq[1]; yt[1] = eq[2]/eq[1];
1076 } else {
1077 /* Parameter is y. */
1078 yt[0] = 1; yt[1] = 0;
1079 xt[0] = -eq[1]/eq[0]; xt[1] = eq[2]/eq[0];
1082 /* Find a linear representation of r using eqs[0]. */
1083 rt[0] = -(eqs[0][0]*xt[0] + eqs[0][1]*yt[0])/eqs[0][2];
1084 rt[1] = (eqs[0][3] - eqs[0][0]*xt[1] -
1085 eqs[0][1]*yt[1])/eqs[0][2];
1087 /* Construct the quadratic equation. */
1088 q[0] = -rt[0]*rt[0];
1089 q[1] = -2*rt[0]*rt[1];
1090 q[2] = -rt[1]*rt[1];
1091 q[0] += xt[0]*xt[0];
1092 q[1] += 2*xt[0]*(xt[1]-dots[0]->x);
1093 q[2] += (xt[1]-dots[0]->x)*(xt[1]-dots[0]->x);
1094 q[0] += yt[0]*yt[0];
1095 q[1] += 2*yt[0]*(yt[1]-dots[0]->y);
1096 q[2] += (yt[1]-dots[0]->y)*(yt[1]-dots[0]->y);
1098 /* And solve it. */
1099 disc = q[1]*q[1] - 4*q[0]*q[2];
1100 if (disc >= 0) {
1101 double t;
1103 disc = sqrt(disc);
1105 t = (-q[1] + disc) / (2*q[0]);
1106 cx[cn] = xt[0]*t + xt[1];
1107 cy[cn] = yt[0]*t + yt[1];
1108 cn++;
1110 t = (-q[1] - disc) / (2*q[0]);
1111 cx[cn] = xt[0]*t + xt[1];
1112 cy[cn] = yt[0]*t + yt[1];
1113 cn++;
1115 } else if (nedges == 1) {
1117 * Two dots and an edge. This one's another
1118 * quadratic equation.
1120 * The point we want must lie on the perpendicular
1121 * bisector of the two dots; that much is obvious.
1122 * So we can construct a parametrisation of that
1123 * bisecting line, giving linear formulae for x,y
1124 * in terms of t. We can also express the distance
1125 * from the edge as such a linear formula.
1127 * Then we set that equal to the radius of the
1128 * circle passing through the two points, which is
1129 * a Pythagoras exercise; that gives rise to a
1130 * quadratic in t, which we solve.
1132 double xt[2], yt[2], rt[2]; /* a,b: {x,y,r}=at+b */
1133 double q[3]; /* a,b,c: at^2+bt+c=0 */
1134 double disc;
1135 double halfsep;
1137 /* Find parametric formulae for x,y. */
1139 int x1 = dots[0]->x, x2 = dots[1]->x;
1140 int y1 = dots[0]->y, y2 = dots[1]->y;
1141 int dx = x2-x1, dy = y2-y1;
1142 double d = sqrt((double)dx*dx + (double)dy*dy);
1144 xt[1] = (x1+x2)/2.0;
1145 yt[1] = (y1+y2)/2.0;
1146 /* It's convenient if we have t at standard scale. */
1147 xt[0] = -dy/d;
1148 yt[0] = dx/d;
1150 /* Also note down half the separation between
1151 * the dots, for use in computing the circle radius. */
1152 halfsep = 0.5*d;
1155 /* Find a parametric formula for r. */
1157 int x1 = edgedot1[0]->x, x2 = edgedot2[0]->x;
1158 int y1 = edgedot1[0]->y, y2 = edgedot2[0]->y;
1159 int dx = x2-x1, dy = y2-y1;
1160 double d = sqrt((double)dx*dx + (double)dy*dy);
1161 rt[0] = (xt[0]*dy - yt[0]*dx) / d;
1162 rt[1] = ((xt[1]-x1)*dy - (yt[1]-y1)*dx) / d;
1165 /* Construct the quadratic equation. */
1166 q[0] = rt[0]*rt[0];
1167 q[1] = 2*rt[0]*rt[1];
1168 q[2] = rt[1]*rt[1];
1169 q[0] -= 1;
1170 q[2] -= halfsep*halfsep;
1172 /* And solve it. */
1173 disc = q[1]*q[1] - 4*q[0]*q[2];
1174 if (disc >= 0) {
1175 double t;
1177 disc = sqrt(disc);
1179 t = (-q[1] + disc) / (2*q[0]);
1180 cx[cn] = xt[0]*t + xt[1];
1181 cy[cn] = yt[0]*t + yt[1];
1182 cn++;
1184 t = (-q[1] - disc) / (2*q[0]);
1185 cx[cn] = xt[0]*t + xt[1];
1186 cy[cn] = yt[0]*t + yt[1];
1187 cn++;
1189 } else if (nedges == 0) {
1191 * Three dots. This is another linear matrix
1192 * equation, this time with each row of the matrix
1193 * representing the perpendicular bisector between
1194 * two of the points. Of course we only need two
1195 * such lines to find their intersection, so we
1196 * need only solve a 2x2 matrix equation.
1199 double matrix[4], vector[2], vector2[2];
1200 int m;
1202 for (m = 0; m < 2; m++) {
1203 int x1 = dots[m]->x, x2 = dots[m+1]->x;
1204 int y1 = dots[m]->y, y2 = dots[m+1]->y;
1205 int dx = x2-x1, dy = y2-y1;
1208 * ((x,y) - (x1,y1)) . (dx,dy) = 1/2 |(dx,dy)|^2
1210 * => 2x dx + 2y dy = dx^2+dy^2 + (2 x1 dx + 2 y1 dy)
1212 matrix[2*m+0] = 2*dx;
1213 matrix[2*m+1] = 2*dy;
1214 vector[m] = ((double)dx*dx + (double)dy*dy +
1215 2.0*x1*dx + 2.0*y1*dy);
1218 if (solve_2x2_matrix(matrix, vector, vector2)) {
1219 cx[cn] = vector2[0];
1220 cy[cn] = vector2[1];
1221 cn++;
1226 * Now go through our candidate points and see if any
1227 * of them are better than what we've got so far.
1229 for (m = 0; m < cn; m++) {
1230 double x = cx[m], y = cy[m];
1233 * First, disqualify the point if it's not inside
1234 * the polygon, which we work out by counting the
1235 * edges to the right of the point. (For
1236 * tiebreaking purposes when edges start or end on
1237 * our y-coordinate or go right through it, we
1238 * consider our point to be offset by a small
1239 * _positive_ epsilon in both the x- and
1240 * y-direction.)
1242 int e, in = 0;
1243 for (e = 0; e < f->order; e++) {
1244 int xs = f->edges[e]->dot1->x;
1245 int xe = f->edges[e]->dot2->x;
1246 int ys = f->edges[e]->dot1->y;
1247 int ye = f->edges[e]->dot2->y;
1248 if ((y >= ys && y < ye) || (y >= ye && y < ys)) {
1250 * The line goes past our y-position. Now we need
1251 * to know if its x-coordinate when it does so is
1252 * to our right.
1254 * The x-coordinate in question is mathematically
1255 * (y - ys) * (xe - xs) / (ye - ys), and we want
1256 * to know whether (x - xs) >= that. Of course we
1257 * avoid the division, so we can work in integers;
1258 * to do this we must multiply both sides of the
1259 * inequality by ye - ys, which means we must
1260 * first check that's not negative.
1262 int num = xe - xs, denom = ye - ys;
1263 if (denom < 0) {
1264 num = -num;
1265 denom = -denom;
1267 if ((x - xs) * denom >= (y - ys) * num)
1268 in ^= 1;
1272 if (in) {
1273 #ifdef HUGE_VAL
1274 double mindist = HUGE_VAL;
1275 #else
1276 #ifdef DBL_MAX
1277 double mindist = DBL_MAX;
1278 #else
1279 #error No way to get maximum floating-point number.
1280 #endif
1281 #endif
1282 int e, d;
1285 * This point is inside the polygon, so now we check
1286 * its minimum distance to every edge and corner.
1287 * First the corners ...
1289 for (d = 0; d < f->order; d++) {
1290 int xp = f->dots[d]->x;
1291 int yp = f->dots[d]->y;
1292 double dx = x - xp, dy = y - yp;
1293 double dist = dx*dx + dy*dy;
1294 if (mindist > dist)
1295 mindist = dist;
1299 * ... and now also check the perpendicular distance
1300 * to every edge, if the perpendicular lies between
1301 * the edge's endpoints.
1303 for (e = 0; e < f->order; e++) {
1304 int xs = f->edges[e]->dot1->x;
1305 int xe = f->edges[e]->dot2->x;
1306 int ys = f->edges[e]->dot1->y;
1307 int ye = f->edges[e]->dot2->y;
1310 * If s and e are our endpoints, and p our
1311 * candidate circle centre, the foot of a
1312 * perpendicular from p to the line se lies
1313 * between s and e if and only if (p-s).(e-s) lies
1314 * strictly between 0 and (e-s).(e-s).
1316 int edx = xe - xs, edy = ye - ys;
1317 double pdx = x - xs, pdy = y - ys;
1318 double pde = pdx * edx + pdy * edy;
1319 long ede = (long)edx * edx + (long)edy * edy;
1320 if (0 < pde && pde < ede) {
1322 * Yes, the nearest point on this edge is
1323 * closer than either endpoint, so we must
1324 * take it into account by measuring the
1325 * perpendicular distance to the edge and
1326 * checking its square against mindist.
1329 double pdre = pdx * edy - pdy * edx;
1330 double sqlen = pdre * pdre / ede;
1332 if (mindist > sqlen)
1333 mindist = sqlen;
1338 * Right. Now we know the biggest circle around this
1339 * point, so we can check it against bestdist.
1341 if (bestdist < mindist) {
1342 bestdist = mindist;
1343 xbest = x;
1344 ybest = y;
1349 if (k < f->order)
1350 nedges--;
1351 else
1352 ndots--;
1354 if (j < f->order)
1355 nedges--;
1356 else
1357 ndots--;
1359 if (i < f->order)
1360 nedges--;
1361 else
1362 ndots--;
1365 assert(bestdist > 0);
1367 f->has_incentre = TRUE;
1368 f->ix = xbest + 0.5; /* round to nearest */
1369 f->iy = ybest + 0.5;
1372 /* ------ Generate various types of grid ------ */
1374 /* General method is to generate faces, by calculating their dot coordinates.
1375 * As new faces are added, we keep track of all the dots so we can tell when
1376 * a new face reuses an existing dot. For example, two squares touching at an
1377 * edge would generate six unique dots: four dots from the first face, then
1378 * two additional dots for the second face, because we detect the other two
1379 * dots have already been taken up. This list is stored in a tree234
1380 * called "points". No extra memory-allocation needed here - we store the
1381 * actual grid_dot* pointers, which all point into the g->dots list.
1382 * For this reason, we have to calculate coordinates in such a way as to
1383 * eliminate any rounding errors, so we can detect when a dot on one
1384 * face precisely lands on a dot of a different face. No floating-point
1385 * arithmetic here!
1388 #define SQUARE_TILESIZE 20
1390 static void grid_size_square(int width, int height,
1391 int *tilesize, int *xextent, int *yextent)
1393 int a = SQUARE_TILESIZE;
1395 *tilesize = a;
1396 *xextent = width * a;
1397 *yextent = height * a;
1400 static grid *grid_new_square(int width, int height, char *desc)
1402 int x, y;
1403 /* Side length */
1404 int a = SQUARE_TILESIZE;
1406 /* Upper bounds - don't have to be exact */
1407 int max_faces = width * height;
1408 int max_dots = (width + 1) * (height + 1);
1410 tree234 *points;
1412 grid *g = grid_empty();
1413 g->tilesize = a;
1414 g->faces = snewn(max_faces, grid_face);
1415 g->dots = snewn(max_dots, grid_dot);
1417 points = newtree234(grid_point_cmp_fn);
1419 /* generate square faces */
1420 for (y = 0; y < height; y++) {
1421 for (x = 0; x < width; x++) {
1422 grid_dot *d;
1423 /* face position */
1424 int px = a * x;
1425 int py = a * y;
1427 grid_face_add_new(g, 4);
1428 d = grid_get_dot(g, points, px, py);
1429 grid_face_set_dot(g, d, 0);
1430 d = grid_get_dot(g, points, px + a, py);
1431 grid_face_set_dot(g, d, 1);
1432 d = grid_get_dot(g, points, px + a, py + a);
1433 grid_face_set_dot(g, d, 2);
1434 d = grid_get_dot(g, points, px, py + a);
1435 grid_face_set_dot(g, d, 3);
1439 freetree234(points);
1440 assert(g->num_faces <= max_faces);
1441 assert(g->num_dots <= max_dots);
1443 grid_make_consistent(g);
1444 return g;
1447 #define HONEY_TILESIZE 45
1448 /* Vector for side of hexagon - ratio is close to sqrt(3) */
1449 #define HONEY_A 15
1450 #define HONEY_B 26
1452 static void grid_size_honeycomb(int width, int height,
1453 int *tilesize, int *xextent, int *yextent)
1455 int a = HONEY_A;
1456 int b = HONEY_B;
1458 *tilesize = HONEY_TILESIZE;
1459 *xextent = (3 * a * (width-1)) + 4*a;
1460 *yextent = (2 * b * (height-1)) + 3*b;
1463 static grid *grid_new_honeycomb(int width, int height, char *desc)
1465 int x, y;
1466 int a = HONEY_A;
1467 int b = HONEY_B;
1469 /* Upper bounds - don't have to be exact */
1470 int max_faces = width * height;
1471 int max_dots = 2 * (width + 1) * (height + 1);
1473 tree234 *points;
1475 grid *g = grid_empty();
1476 g->tilesize = HONEY_TILESIZE;
1477 g->faces = snewn(max_faces, grid_face);
1478 g->dots = snewn(max_dots, grid_dot);
1480 points = newtree234(grid_point_cmp_fn);
1482 /* generate hexagonal faces */
1483 for (y = 0; y < height; y++) {
1484 for (x = 0; x < width; x++) {
1485 grid_dot *d;
1486 /* face centre */
1487 int cx = 3 * a * x;
1488 int cy = 2 * b * y;
1489 if (x % 2)
1490 cy += b;
1491 grid_face_add_new(g, 6);
1493 d = grid_get_dot(g, points, cx - a, cy - b);
1494 grid_face_set_dot(g, d, 0);
1495 d = grid_get_dot(g, points, cx + a, cy - b);
1496 grid_face_set_dot(g, d, 1);
1497 d = grid_get_dot(g, points, cx + 2*a, cy);
1498 grid_face_set_dot(g, d, 2);
1499 d = grid_get_dot(g, points, cx + a, cy + b);
1500 grid_face_set_dot(g, d, 3);
1501 d = grid_get_dot(g, points, cx - a, cy + b);
1502 grid_face_set_dot(g, d, 4);
1503 d = grid_get_dot(g, points, cx - 2*a, cy);
1504 grid_face_set_dot(g, d, 5);
1508 freetree234(points);
1509 assert(g->num_faces <= max_faces);
1510 assert(g->num_dots <= max_dots);
1512 grid_make_consistent(g);
1513 return g;
1516 #define TRIANGLE_TILESIZE 18
1517 /* Vector for side of triangle - ratio is close to sqrt(3) */
1518 #define TRIANGLE_VEC_X 15
1519 #define TRIANGLE_VEC_Y 26
1521 static void grid_size_triangular(int width, int height,
1522 int *tilesize, int *xextent, int *yextent)
1524 int vec_x = TRIANGLE_VEC_X;
1525 int vec_y = TRIANGLE_VEC_Y;
1527 *tilesize = TRIANGLE_TILESIZE;
1528 *xextent = width * 2 * vec_x + vec_x;
1529 *yextent = height * vec_y;
1532 /* Doesn't use the previous method of generation, it pre-dates it!
1533 * A triangular grid is just about simple enough to do by "brute force" */
1534 static grid *grid_new_triangular(int width, int height, char *desc)
1536 int x,y;
1538 /* Vector for side of triangle - ratio is close to sqrt(3) */
1539 int vec_x = TRIANGLE_VEC_X;
1540 int vec_y = TRIANGLE_VEC_Y;
1542 int index;
1544 /* convenient alias */
1545 int w = width + 1;
1547 grid *g = grid_empty();
1548 g->tilesize = TRIANGLE_TILESIZE;
1550 g->num_faces = width * height * 2;
1551 g->num_dots = (width + 1) * (height + 1);
1552 g->faces = snewn(g->num_faces, grid_face);
1553 g->dots = snewn(g->num_dots, grid_dot);
1555 /* generate dots */
1556 index = 0;
1557 for (y = 0; y <= height; y++) {
1558 for (x = 0; x <= width; x++) {
1559 grid_dot *d = g->dots + index;
1560 /* odd rows are offset to the right */
1561 d->order = 0;
1562 d->edges = NULL;
1563 d->faces = NULL;
1564 d->x = x * 2 * vec_x + ((y % 2) ? vec_x : 0);
1565 d->y = y * vec_y;
1566 index++;
1570 /* generate faces */
1571 index = 0;
1572 for (y = 0; y < height; y++) {
1573 for (x = 0; x < width; x++) {
1574 /* initialise two faces for this (x,y) */
1575 grid_face *f1 = g->faces + index;
1576 grid_face *f2 = f1 + 1;
1577 f1->edges = NULL;
1578 f1->order = 3;
1579 f1->dots = snewn(f1->order, grid_dot*);
1580 f1->has_incentre = FALSE;
1581 f2->edges = NULL;
1582 f2->order = 3;
1583 f2->dots = snewn(f2->order, grid_dot*);
1584 f2->has_incentre = FALSE;
1586 /* face descriptions depend on whether the row-number is
1587 * odd or even */
1588 if (y % 2) {
1589 f1->dots[0] = g->dots + y * w + x;
1590 f1->dots[1] = g->dots + (y + 1) * w + x + 1;
1591 f1->dots[2] = g->dots + (y + 1) * w + x;
1592 f2->dots[0] = g->dots + y * w + x;
1593 f2->dots[1] = g->dots + y * w + x + 1;
1594 f2->dots[2] = g->dots + (y + 1) * w + x + 1;
1595 } else {
1596 f1->dots[0] = g->dots + y * w + x;
1597 f1->dots[1] = g->dots + y * w + x + 1;
1598 f1->dots[2] = g->dots + (y + 1) * w + x;
1599 f2->dots[0] = g->dots + y * w + x + 1;
1600 f2->dots[1] = g->dots + (y + 1) * w + x + 1;
1601 f2->dots[2] = g->dots + (y + 1) * w + x;
1603 index += 2;
1607 grid_make_consistent(g);
1608 return g;
1611 #define SNUBSQUARE_TILESIZE 18
1612 /* Vector for side of triangle - ratio is close to sqrt(3) */
1613 #define SNUBSQUARE_A 15
1614 #define SNUBSQUARE_B 26
1616 static void grid_size_snubsquare(int width, int height,
1617 int *tilesize, int *xextent, int *yextent)
1619 int a = SNUBSQUARE_A;
1620 int b = SNUBSQUARE_B;
1622 *tilesize = SNUBSQUARE_TILESIZE;
1623 *xextent = (a+b) * (width-1) + a + b;
1624 *yextent = (a+b) * (height-1) + a + b;
1627 static grid *grid_new_snubsquare(int width, int height, char *desc)
1629 int x, y;
1630 int a = SNUBSQUARE_A;
1631 int b = SNUBSQUARE_B;
1633 /* Upper bounds - don't have to be exact */
1634 int max_faces = 3 * width * height;
1635 int max_dots = 2 * (width + 1) * (height + 1);
1637 tree234 *points;
1639 grid *g = grid_empty();
1640 g->tilesize = SNUBSQUARE_TILESIZE;
1641 g->faces = snewn(max_faces, grid_face);
1642 g->dots = snewn(max_dots, grid_dot);
1644 points = newtree234(grid_point_cmp_fn);
1646 for (y = 0; y < height; y++) {
1647 for (x = 0; x < width; x++) {
1648 grid_dot *d;
1649 /* face position */
1650 int px = (a + b) * x;
1651 int py = (a + b) * y;
1653 /* generate square faces */
1654 grid_face_add_new(g, 4);
1655 if ((x + y) % 2) {
1656 d = grid_get_dot(g, points, px + a, py);
1657 grid_face_set_dot(g, d, 0);
1658 d = grid_get_dot(g, points, px + a + b, py + a);
1659 grid_face_set_dot(g, d, 1);
1660 d = grid_get_dot(g, points, px + b, py + a + b);
1661 grid_face_set_dot(g, d, 2);
1662 d = grid_get_dot(g, points, px, py + b);
1663 grid_face_set_dot(g, d, 3);
1664 } else {
1665 d = grid_get_dot(g, points, px + b, py);
1666 grid_face_set_dot(g, d, 0);
1667 d = grid_get_dot(g, points, px + a + b, py + b);
1668 grid_face_set_dot(g, d, 1);
1669 d = grid_get_dot(g, points, px + a, py + a + b);
1670 grid_face_set_dot(g, d, 2);
1671 d = grid_get_dot(g, points, px, py + a);
1672 grid_face_set_dot(g, d, 3);
1675 /* generate up/down triangles */
1676 if (x > 0) {
1677 grid_face_add_new(g, 3);
1678 if ((x + y) % 2) {
1679 d = grid_get_dot(g, points, px + a, py);
1680 grid_face_set_dot(g, d, 0);
1681 d = grid_get_dot(g, points, px, py + b);
1682 grid_face_set_dot(g, d, 1);
1683 d = grid_get_dot(g, points, px - a, py);
1684 grid_face_set_dot(g, d, 2);
1685 } else {
1686 d = grid_get_dot(g, points, px, py + a);
1687 grid_face_set_dot(g, d, 0);
1688 d = grid_get_dot(g, points, px + a, py + a + b);
1689 grid_face_set_dot(g, d, 1);
1690 d = grid_get_dot(g, points, px - a, py + a + b);
1691 grid_face_set_dot(g, d, 2);
1695 /* generate left/right triangles */
1696 if (y > 0) {
1697 grid_face_add_new(g, 3);
1698 if ((x + y) % 2) {
1699 d = grid_get_dot(g, points, px + a, py);
1700 grid_face_set_dot(g, d, 0);
1701 d = grid_get_dot(g, points, px + a + b, py - a);
1702 grid_face_set_dot(g, d, 1);
1703 d = grid_get_dot(g, points, px + a + b, py + a);
1704 grid_face_set_dot(g, d, 2);
1705 } else {
1706 d = grid_get_dot(g, points, px, py - a);
1707 grid_face_set_dot(g, d, 0);
1708 d = grid_get_dot(g, points, px + b, py);
1709 grid_face_set_dot(g, d, 1);
1710 d = grid_get_dot(g, points, px, py + a);
1711 grid_face_set_dot(g, d, 2);
1717 freetree234(points);
1718 assert(g->num_faces <= max_faces);
1719 assert(g->num_dots <= max_dots);
1721 grid_make_consistent(g);
1722 return g;
1725 #define CAIRO_TILESIZE 40
1726 /* Vector for side of pentagon - ratio is close to (4+sqrt(7))/3 */
1727 #define CAIRO_A 14
1728 #define CAIRO_B 31
1730 static void grid_size_cairo(int width, int height,
1731 int *tilesize, int *xextent, int *yextent)
1733 int b = CAIRO_B; /* a unused in determining grid size. */
1735 *tilesize = CAIRO_TILESIZE;
1736 *xextent = 2*b*(width-1) + 2*b;
1737 *yextent = 2*b*(height-1) + 2*b;
1740 static grid *grid_new_cairo(int width, int height, char *desc)
1742 int x, y;
1743 int a = CAIRO_A;
1744 int b = CAIRO_B;
1746 /* Upper bounds - don't have to be exact */
1747 int max_faces = 2 * width * height;
1748 int max_dots = 3 * (width + 1) * (height + 1);
1750 tree234 *points;
1752 grid *g = grid_empty();
1753 g->tilesize = CAIRO_TILESIZE;
1754 g->faces = snewn(max_faces, grid_face);
1755 g->dots = snewn(max_dots, grid_dot);
1757 points = newtree234(grid_point_cmp_fn);
1759 for (y = 0; y < height; y++) {
1760 for (x = 0; x < width; x++) {
1761 grid_dot *d;
1762 /* cell position */
1763 int px = 2 * b * x;
1764 int py = 2 * b * y;
1766 /* horizontal pentagons */
1767 if (y > 0) {
1768 grid_face_add_new(g, 5);
1769 if ((x + y) % 2) {
1770 d = grid_get_dot(g, points, px + a, py - b);
1771 grid_face_set_dot(g, d, 0);
1772 d = grid_get_dot(g, points, px + 2*b - a, py - b);
1773 grid_face_set_dot(g, d, 1);
1774 d = grid_get_dot(g, points, px + 2*b, py);
1775 grid_face_set_dot(g, d, 2);
1776 d = grid_get_dot(g, points, px + b, py + a);
1777 grid_face_set_dot(g, d, 3);
1778 d = grid_get_dot(g, points, px, py);
1779 grid_face_set_dot(g, d, 4);
1780 } else {
1781 d = grid_get_dot(g, points, px, py);
1782 grid_face_set_dot(g, d, 0);
1783 d = grid_get_dot(g, points, px + b, py - a);
1784 grid_face_set_dot(g, d, 1);
1785 d = grid_get_dot(g, points, px + 2*b, py);
1786 grid_face_set_dot(g, d, 2);
1787 d = grid_get_dot(g, points, px + 2*b - a, py + b);
1788 grid_face_set_dot(g, d, 3);
1789 d = grid_get_dot(g, points, px + a, py + b);
1790 grid_face_set_dot(g, d, 4);
1793 /* vertical pentagons */
1794 if (x > 0) {
1795 grid_face_add_new(g, 5);
1796 if ((x + y) % 2) {
1797 d = grid_get_dot(g, points, px, py);
1798 grid_face_set_dot(g, d, 0);
1799 d = grid_get_dot(g, points, px + b, py + a);
1800 grid_face_set_dot(g, d, 1);
1801 d = grid_get_dot(g, points, px + b, py + 2*b - a);
1802 grid_face_set_dot(g, d, 2);
1803 d = grid_get_dot(g, points, px, py + 2*b);
1804 grid_face_set_dot(g, d, 3);
1805 d = grid_get_dot(g, points, px - a, py + b);
1806 grid_face_set_dot(g, d, 4);
1807 } else {
1808 d = grid_get_dot(g, points, px, py);
1809 grid_face_set_dot(g, d, 0);
1810 d = grid_get_dot(g, points, px + a, py + b);
1811 grid_face_set_dot(g, d, 1);
1812 d = grid_get_dot(g, points, px, py + 2*b);
1813 grid_face_set_dot(g, d, 2);
1814 d = grid_get_dot(g, points, px - b, py + 2*b - a);
1815 grid_face_set_dot(g, d, 3);
1816 d = grid_get_dot(g, points, px - b, py + a);
1817 grid_face_set_dot(g, d, 4);
1823 freetree234(points);
1824 assert(g->num_faces <= max_faces);
1825 assert(g->num_dots <= max_dots);
1827 grid_make_consistent(g);
1828 return g;
1831 #define GREATHEX_TILESIZE 18
1832 /* Vector for side of triangle - ratio is close to sqrt(3) */
1833 #define GREATHEX_A 15
1834 #define GREATHEX_B 26
1836 static void grid_size_greathexagonal(int width, int height,
1837 int *tilesize, int *xextent, int *yextent)
1839 int a = GREATHEX_A;
1840 int b = GREATHEX_B;
1842 *tilesize = GREATHEX_TILESIZE;
1843 *xextent = (3*a + b) * (width-1) + 4*a;
1844 *yextent = (2*a + 2*b) * (height-1) + 3*b + a;
1847 static grid *grid_new_greathexagonal(int width, int height, char *desc)
1849 int x, y;
1850 int a = GREATHEX_A;
1851 int b = GREATHEX_B;
1853 /* Upper bounds - don't have to be exact */
1854 int max_faces = 6 * (width + 1) * (height + 1);
1855 int max_dots = 6 * width * height;
1857 tree234 *points;
1859 grid *g = grid_empty();
1860 g->tilesize = GREATHEX_TILESIZE;
1861 g->faces = snewn(max_faces, grid_face);
1862 g->dots = snewn(max_dots, grid_dot);
1864 points = newtree234(grid_point_cmp_fn);
1866 for (y = 0; y < height; y++) {
1867 for (x = 0; x < width; x++) {
1868 grid_dot *d;
1869 /* centre of hexagon */
1870 int px = (3*a + b) * x;
1871 int py = (2*a + 2*b) * y;
1872 if (x % 2)
1873 py += a + b;
1875 /* hexagon */
1876 grid_face_add_new(g, 6);
1877 d = grid_get_dot(g, points, px - a, py - b);
1878 grid_face_set_dot(g, d, 0);
1879 d = grid_get_dot(g, points, px + a, py - b);
1880 grid_face_set_dot(g, d, 1);
1881 d = grid_get_dot(g, points, px + 2*a, py);
1882 grid_face_set_dot(g, d, 2);
1883 d = grid_get_dot(g, points, px + a, py + b);
1884 grid_face_set_dot(g, d, 3);
1885 d = grid_get_dot(g, points, px - a, py + b);
1886 grid_face_set_dot(g, d, 4);
1887 d = grid_get_dot(g, points, px - 2*a, py);
1888 grid_face_set_dot(g, d, 5);
1890 /* square below hexagon */
1891 if (y < height - 1) {
1892 grid_face_add_new(g, 4);
1893 d = grid_get_dot(g, points, px - a, py + b);
1894 grid_face_set_dot(g, d, 0);
1895 d = grid_get_dot(g, points, px + a, py + b);
1896 grid_face_set_dot(g, d, 1);
1897 d = grid_get_dot(g, points, px + a, py + 2*a + b);
1898 grid_face_set_dot(g, d, 2);
1899 d = grid_get_dot(g, points, px - a, py + 2*a + b);
1900 grid_face_set_dot(g, d, 3);
1903 /* square below right */
1904 if ((x < width - 1) && (((x % 2) == 0) || (y < height - 1))) {
1905 grid_face_add_new(g, 4);
1906 d = grid_get_dot(g, points, px + 2*a, py);
1907 grid_face_set_dot(g, d, 0);
1908 d = grid_get_dot(g, points, px + 2*a + b, py + a);
1909 grid_face_set_dot(g, d, 1);
1910 d = grid_get_dot(g, points, px + a + b, py + a + b);
1911 grid_face_set_dot(g, d, 2);
1912 d = grid_get_dot(g, points, px + a, py + b);
1913 grid_face_set_dot(g, d, 3);
1916 /* square below left */
1917 if ((x > 0) && (((x % 2) == 0) || (y < height - 1))) {
1918 grid_face_add_new(g, 4);
1919 d = grid_get_dot(g, points, px - 2*a, py);
1920 grid_face_set_dot(g, d, 0);
1921 d = grid_get_dot(g, points, px - a, py + b);
1922 grid_face_set_dot(g, d, 1);
1923 d = grid_get_dot(g, points, px - a - b, py + a + b);
1924 grid_face_set_dot(g, d, 2);
1925 d = grid_get_dot(g, points, px - 2*a - b, py + a);
1926 grid_face_set_dot(g, d, 3);
1929 /* Triangle below right */
1930 if ((x < width - 1) && (y < height - 1)) {
1931 grid_face_add_new(g, 3);
1932 d = grid_get_dot(g, points, px + a, py + b);
1933 grid_face_set_dot(g, d, 0);
1934 d = grid_get_dot(g, points, px + a + b, py + a + b);
1935 grid_face_set_dot(g, d, 1);
1936 d = grid_get_dot(g, points, px + a, py + 2*a + b);
1937 grid_face_set_dot(g, d, 2);
1940 /* Triangle below left */
1941 if ((x > 0) && (y < height - 1)) {
1942 grid_face_add_new(g, 3);
1943 d = grid_get_dot(g, points, px - a, py + b);
1944 grid_face_set_dot(g, d, 0);
1945 d = grid_get_dot(g, points, px - a, py + 2*a + b);
1946 grid_face_set_dot(g, d, 1);
1947 d = grid_get_dot(g, points, px - a - b, py + a + b);
1948 grid_face_set_dot(g, d, 2);
1953 freetree234(points);
1954 assert(g->num_faces <= max_faces);
1955 assert(g->num_dots <= max_dots);
1957 grid_make_consistent(g);
1958 return g;
1961 #define OCTAGONAL_TILESIZE 40
1962 /* b/a approx sqrt(2) */
1963 #define OCTAGONAL_A 29
1964 #define OCTAGONAL_B 41
1966 static void grid_size_octagonal(int width, int height,
1967 int *tilesize, int *xextent, int *yextent)
1969 int a = OCTAGONAL_A;
1970 int b = OCTAGONAL_B;
1972 *tilesize = OCTAGONAL_TILESIZE;
1973 *xextent = (2*a + b) * width;
1974 *yextent = (2*a + b) * height;
1977 static grid *grid_new_octagonal(int width, int height, char *desc)
1979 int x, y;
1980 int a = OCTAGONAL_A;
1981 int b = OCTAGONAL_B;
1983 /* Upper bounds - don't have to be exact */
1984 int max_faces = 2 * width * height;
1985 int max_dots = 4 * (width + 1) * (height + 1);
1987 tree234 *points;
1989 grid *g = grid_empty();
1990 g->tilesize = OCTAGONAL_TILESIZE;
1991 g->faces = snewn(max_faces, grid_face);
1992 g->dots = snewn(max_dots, grid_dot);
1994 points = newtree234(grid_point_cmp_fn);
1996 for (y = 0; y < height; y++) {
1997 for (x = 0; x < width; x++) {
1998 grid_dot *d;
1999 /* cell position */
2000 int px = (2*a + b) * x;
2001 int py = (2*a + b) * y;
2002 /* octagon */
2003 grid_face_add_new(g, 8);
2004 d = grid_get_dot(g, points, px + a, py);
2005 grid_face_set_dot(g, d, 0);
2006 d = grid_get_dot(g, points, px + a + b, py);
2007 grid_face_set_dot(g, d, 1);
2008 d = grid_get_dot(g, points, px + 2*a + b, py + a);
2009 grid_face_set_dot(g, d, 2);
2010 d = grid_get_dot(g, points, px + 2*a + b, py + a + b);
2011 grid_face_set_dot(g, d, 3);
2012 d = grid_get_dot(g, points, px + a + b, py + 2*a + b);
2013 grid_face_set_dot(g, d, 4);
2014 d = grid_get_dot(g, points, px + a, py + 2*a + b);
2015 grid_face_set_dot(g, d, 5);
2016 d = grid_get_dot(g, points, px, py + a + b);
2017 grid_face_set_dot(g, d, 6);
2018 d = grid_get_dot(g, points, px, py + a);
2019 grid_face_set_dot(g, d, 7);
2021 /* diamond */
2022 if ((x > 0) && (y > 0)) {
2023 grid_face_add_new(g, 4);
2024 d = grid_get_dot(g, points, px, py - a);
2025 grid_face_set_dot(g, d, 0);
2026 d = grid_get_dot(g, points, px + a, py);
2027 grid_face_set_dot(g, d, 1);
2028 d = grid_get_dot(g, points, px, py + a);
2029 grid_face_set_dot(g, d, 2);
2030 d = grid_get_dot(g, points, px - a, py);
2031 grid_face_set_dot(g, d, 3);
2036 freetree234(points);
2037 assert(g->num_faces <= max_faces);
2038 assert(g->num_dots <= max_dots);
2040 grid_make_consistent(g);
2041 return g;
2044 #define KITE_TILESIZE 40
2045 /* b/a approx sqrt(3) */
2046 #define KITE_A 15
2047 #define KITE_B 26
2049 static void grid_size_kites(int width, int height,
2050 int *tilesize, int *xextent, int *yextent)
2052 int a = KITE_A;
2053 int b = KITE_B;
2055 *tilesize = KITE_TILESIZE;
2056 *xextent = 4*b * width + 2*b;
2057 *yextent = 6*a * (height-1) + 8*a;
2060 static grid *grid_new_kites(int width, int height, char *desc)
2062 int x, y;
2063 int a = KITE_A;
2064 int b = KITE_B;
2066 /* Upper bounds - don't have to be exact */
2067 int max_faces = 6 * width * height;
2068 int max_dots = 6 * (width + 1) * (height + 1);
2070 tree234 *points;
2072 grid *g = grid_empty();
2073 g->tilesize = KITE_TILESIZE;
2074 g->faces = snewn(max_faces, grid_face);
2075 g->dots = snewn(max_dots, grid_dot);
2077 points = newtree234(grid_point_cmp_fn);
2079 for (y = 0; y < height; y++) {
2080 for (x = 0; x < width; x++) {
2081 grid_dot *d;
2082 /* position of order-6 dot */
2083 int px = 4*b * x;
2084 int py = 6*a * y;
2085 if (y % 2)
2086 px += 2*b;
2088 /* kite pointing up-left */
2089 grid_face_add_new(g, 4);
2090 d = grid_get_dot(g, points, px, py);
2091 grid_face_set_dot(g, d, 0);
2092 d = grid_get_dot(g, points, px + 2*b, py);
2093 grid_face_set_dot(g, d, 1);
2094 d = grid_get_dot(g, points, px + 2*b, py + 2*a);
2095 grid_face_set_dot(g, d, 2);
2096 d = grid_get_dot(g, points, px + b, py + 3*a);
2097 grid_face_set_dot(g, d, 3);
2099 /* kite pointing up */
2100 grid_face_add_new(g, 4);
2101 d = grid_get_dot(g, points, px, py);
2102 grid_face_set_dot(g, d, 0);
2103 d = grid_get_dot(g, points, px + b, py + 3*a);
2104 grid_face_set_dot(g, d, 1);
2105 d = grid_get_dot(g, points, px, py + 4*a);
2106 grid_face_set_dot(g, d, 2);
2107 d = grid_get_dot(g, points, px - b, py + 3*a);
2108 grid_face_set_dot(g, d, 3);
2110 /* kite pointing up-right */
2111 grid_face_add_new(g, 4);
2112 d = grid_get_dot(g, points, px, py);
2113 grid_face_set_dot(g, d, 0);
2114 d = grid_get_dot(g, points, px - b, py + 3*a);
2115 grid_face_set_dot(g, d, 1);
2116 d = grid_get_dot(g, points, px - 2*b, py + 2*a);
2117 grid_face_set_dot(g, d, 2);
2118 d = grid_get_dot(g, points, px - 2*b, py);
2119 grid_face_set_dot(g, d, 3);
2121 /* kite pointing down-right */
2122 grid_face_add_new(g, 4);
2123 d = grid_get_dot(g, points, px, py);
2124 grid_face_set_dot(g, d, 0);
2125 d = grid_get_dot(g, points, px - 2*b, py);
2126 grid_face_set_dot(g, d, 1);
2127 d = grid_get_dot(g, points, px - 2*b, py - 2*a);
2128 grid_face_set_dot(g, d, 2);
2129 d = grid_get_dot(g, points, px - b, py - 3*a);
2130 grid_face_set_dot(g, d, 3);
2132 /* kite pointing down */
2133 grid_face_add_new(g, 4);
2134 d = grid_get_dot(g, points, px, py);
2135 grid_face_set_dot(g, d, 0);
2136 d = grid_get_dot(g, points, px - b, py - 3*a);
2137 grid_face_set_dot(g, d, 1);
2138 d = grid_get_dot(g, points, px, py - 4*a);
2139 grid_face_set_dot(g, d, 2);
2140 d = grid_get_dot(g, points, px + b, py - 3*a);
2141 grid_face_set_dot(g, d, 3);
2143 /* kite pointing down-left */
2144 grid_face_add_new(g, 4);
2145 d = grid_get_dot(g, points, px, py);
2146 grid_face_set_dot(g, d, 0);
2147 d = grid_get_dot(g, points, px + b, py - 3*a);
2148 grid_face_set_dot(g, d, 1);
2149 d = grid_get_dot(g, points, px + 2*b, py - 2*a);
2150 grid_face_set_dot(g, d, 2);
2151 d = grid_get_dot(g, points, px + 2*b, py);
2152 grid_face_set_dot(g, d, 3);
2156 freetree234(points);
2157 assert(g->num_faces <= max_faces);
2158 assert(g->num_dots <= max_dots);
2160 grid_make_consistent(g);
2161 return g;
2164 #define FLORET_TILESIZE 150
2165 /* -py/px is close to tan(30 - atan(sqrt(3)/9))
2166 * using py=26 makes everything lean to the left, rather than right
2168 #define FLORET_PX 75
2169 #define FLORET_PY -26
2171 static void grid_size_floret(int width, int height,
2172 int *tilesize, int *xextent, int *yextent)
2174 int px = FLORET_PX, py = FLORET_PY; /* |( 75, -26)| = 79.43 */
2175 int qx = 4*px/5, qy = -py*2; /* |( 60, 52)| = 79.40 */
2176 int ry = qy-py;
2177 /* rx unused in determining grid size. */
2179 *tilesize = FLORET_TILESIZE;
2180 *xextent = (6*px+3*qx)/2 * (width-1) + 4*qx + 2*px;
2181 *yextent = (5*qy-4*py) * (height-1) + 4*qy + 2*ry;
2184 static grid *grid_new_floret(int width, int height, char *desc)
2186 int x, y;
2187 /* Vectors for sides; weird numbers needed to keep puzzle aligned with window
2188 * -py/px is close to tan(30 - atan(sqrt(3)/9))
2189 * using py=26 makes everything lean to the left, rather than right
2191 int px = FLORET_PX, py = FLORET_PY; /* |( 75, -26)| = 79.43 */
2192 int qx = 4*px/5, qy = -py*2; /* |( 60, 52)| = 79.40 */
2193 int rx = qx-px, ry = qy-py; /* |(-15, 78)| = 79.38 */
2195 /* Upper bounds - don't have to be exact */
2196 int max_faces = 6 * width * height;
2197 int max_dots = 9 * (width + 1) * (height + 1);
2199 tree234 *points;
2201 grid *g = grid_empty();
2202 g->tilesize = FLORET_TILESIZE;
2203 g->faces = snewn(max_faces, grid_face);
2204 g->dots = snewn(max_dots, grid_dot);
2206 points = newtree234(grid_point_cmp_fn);
2208 /* generate pentagonal faces */
2209 for (y = 0; y < height; y++) {
2210 for (x = 0; x < width; x++) {
2211 grid_dot *d;
2212 /* face centre */
2213 int cx = (6*px+3*qx)/2 * x;
2214 int cy = (4*py-5*qy) * y;
2215 if (x % 2)
2216 cy -= (4*py-5*qy)/2;
2217 else if (y && y == height-1)
2218 continue; /* make better looking grids? try 3x3 for instance */
2220 grid_face_add_new(g, 5);
2221 d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0);
2222 d = grid_get_dot(g, points, cx+2*rx , cy+2*ry ); grid_face_set_dot(g, d, 1);
2223 d = grid_get_dot(g, points, cx+2*rx+qx, cy+2*ry+qy); grid_face_set_dot(g, d, 2);
2224 d = grid_get_dot(g, points, cx+2*qx+rx, cy+2*qy+ry); grid_face_set_dot(g, d, 3);
2225 d = grid_get_dot(g, points, cx+2*qx , cy+2*qy ); grid_face_set_dot(g, d, 4);
2227 grid_face_add_new(g, 5);
2228 d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0);
2229 d = grid_get_dot(g, points, cx+2*qx , cy+2*qy ); grid_face_set_dot(g, d, 1);
2230 d = grid_get_dot(g, points, cx+2*qx+px, cy+2*qy+py); grid_face_set_dot(g, d, 2);
2231 d = grid_get_dot(g, points, cx+2*px+qx, cy+2*py+qy); grid_face_set_dot(g, d, 3);
2232 d = grid_get_dot(g, points, cx+2*px , cy+2*py ); grid_face_set_dot(g, d, 4);
2234 grid_face_add_new(g, 5);
2235 d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0);
2236 d = grid_get_dot(g, points, cx+2*px , cy+2*py ); grid_face_set_dot(g, d, 1);
2237 d = grid_get_dot(g, points, cx+2*px-rx, cy+2*py-ry); grid_face_set_dot(g, d, 2);
2238 d = grid_get_dot(g, points, cx-2*rx+px, cy-2*ry+py); grid_face_set_dot(g, d, 3);
2239 d = grid_get_dot(g, points, cx-2*rx , cy-2*ry ); grid_face_set_dot(g, d, 4);
2241 grid_face_add_new(g, 5);
2242 d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0);
2243 d = grid_get_dot(g, points, cx-2*rx , cy-2*ry ); grid_face_set_dot(g, d, 1);
2244 d = grid_get_dot(g, points, cx-2*rx-qx, cy-2*ry-qy); grid_face_set_dot(g, d, 2);
2245 d = grid_get_dot(g, points, cx-2*qx-rx, cy-2*qy-ry); grid_face_set_dot(g, d, 3);
2246 d = grid_get_dot(g, points, cx-2*qx , cy-2*qy ); grid_face_set_dot(g, d, 4);
2248 grid_face_add_new(g, 5);
2249 d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0);
2250 d = grid_get_dot(g, points, cx-2*qx , cy-2*qy ); grid_face_set_dot(g, d, 1);
2251 d = grid_get_dot(g, points, cx-2*qx-px, cy-2*qy-py); grid_face_set_dot(g, d, 2);
2252 d = grid_get_dot(g, points, cx-2*px-qx, cy-2*py-qy); grid_face_set_dot(g, d, 3);
2253 d = grid_get_dot(g, points, cx-2*px , cy-2*py ); grid_face_set_dot(g, d, 4);
2255 grid_face_add_new(g, 5);
2256 d = grid_get_dot(g, points, cx , cy ); grid_face_set_dot(g, d, 0);
2257 d = grid_get_dot(g, points, cx-2*px , cy-2*py ); grid_face_set_dot(g, d, 1);
2258 d = grid_get_dot(g, points, cx-2*px+rx, cy-2*py+ry); grid_face_set_dot(g, d, 2);
2259 d = grid_get_dot(g, points, cx+2*rx-px, cy+2*ry-py); grid_face_set_dot(g, d, 3);
2260 d = grid_get_dot(g, points, cx+2*rx , cy+2*ry ); grid_face_set_dot(g, d, 4);
2264 freetree234(points);
2265 assert(g->num_faces <= max_faces);
2266 assert(g->num_dots <= max_dots);
2268 grid_make_consistent(g);
2269 return g;
2272 /* DODEC_* are used for dodecagonal and great-dodecagonal grids. */
2273 #define DODEC_TILESIZE 26
2274 /* Vector for side of triangle - ratio is close to sqrt(3) */
2275 #define DODEC_A 15
2276 #define DODEC_B 26
2278 static void grid_size_dodecagonal(int width, int height,
2279 int *tilesize, int *xextent, int *yextent)
2281 int a = DODEC_A;
2282 int b = DODEC_B;
2284 *tilesize = DODEC_TILESIZE;
2285 *xextent = (4*a + 2*b) * (width-1) + 3*(2*a + b);
2286 *yextent = (3*a + 2*b) * (height-1) + 2*(2*a + b);
2289 static grid *grid_new_dodecagonal(int width, int height, char *desc)
2291 int x, y;
2292 int a = DODEC_A;
2293 int b = DODEC_B;
2295 /* Upper bounds - don't have to be exact */
2296 int max_faces = 3 * width * height;
2297 int max_dots = 14 * width * height;
2299 tree234 *points;
2301 grid *g = grid_empty();
2302 g->tilesize = DODEC_TILESIZE;
2303 g->faces = snewn(max_faces, grid_face);
2304 g->dots = snewn(max_dots, grid_dot);
2306 points = newtree234(grid_point_cmp_fn);
2308 for (y = 0; y < height; y++) {
2309 for (x = 0; x < width; x++) {
2310 grid_dot *d;
2311 /* centre of dodecagon */
2312 int px = (4*a + 2*b) * x;
2313 int py = (3*a + 2*b) * y;
2314 if (y % 2)
2315 px += 2*a + b;
2317 /* dodecagon */
2318 grid_face_add_new(g, 12);
2319 d = grid_get_dot(g, points, px + ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 0);
2320 d = grid_get_dot(g, points, px + ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 1);
2321 d = grid_get_dot(g, points, px + (2*a + b), py - ( a )); grid_face_set_dot(g, d, 2);
2322 d = grid_get_dot(g, points, px + (2*a + b), py + ( a )); grid_face_set_dot(g, d, 3);
2323 d = grid_get_dot(g, points, px + ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 4);
2324 d = grid_get_dot(g, points, px + ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 5);
2325 d = grid_get_dot(g, points, px - ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 6);
2326 d = grid_get_dot(g, points, px - ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 7);
2327 d = grid_get_dot(g, points, px - (2*a + b), py + ( a )); grid_face_set_dot(g, d, 8);
2328 d = grid_get_dot(g, points, px - (2*a + b), py - ( a )); grid_face_set_dot(g, d, 9);
2329 d = grid_get_dot(g, points, px - ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 10);
2330 d = grid_get_dot(g, points, px - ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 11);
2332 /* triangle below dodecagon */
2333 if ((y < height - 1 && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2)))) {
2334 grid_face_add_new(g, 3);
2335 d = grid_get_dot(g, points, px + a, py + (2*a + b)); grid_face_set_dot(g, d, 0);
2336 d = grid_get_dot(g, points, px , py + (2*a + 2*b)); grid_face_set_dot(g, d, 1);
2337 d = grid_get_dot(g, points, px - a, py + (2*a + b)); grid_face_set_dot(g, d, 2);
2340 /* triangle above dodecagon */
2341 if ((y && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2)))) {
2342 grid_face_add_new(g, 3);
2343 d = grid_get_dot(g, points, px - a, py - (2*a + b)); grid_face_set_dot(g, d, 0);
2344 d = grid_get_dot(g, points, px , py - (2*a + 2*b)); grid_face_set_dot(g, d, 1);
2345 d = grid_get_dot(g, points, px + a, py - (2*a + b)); grid_face_set_dot(g, d, 2);
2350 freetree234(points);
2351 assert(g->num_faces <= max_faces);
2352 assert(g->num_dots <= max_dots);
2354 grid_make_consistent(g);
2355 return g;
2358 static void grid_size_greatdodecagonal(int width, int height,
2359 int *tilesize, int *xextent, int *yextent)
2361 int a = DODEC_A;
2362 int b = DODEC_B;
2364 *tilesize = DODEC_TILESIZE;
2365 *xextent = (6*a + 2*b) * (width-1) + 2*(2*a + b) + 3*a + b;
2366 *yextent = (3*a + 3*b) * (height-1) + 2*(2*a + b);
2369 static grid *grid_new_greatdodecagonal(int width, int height, char *desc)
2371 int x, y;
2372 /* Vector for side of triangle - ratio is close to sqrt(3) */
2373 int a = DODEC_A;
2374 int b = DODEC_B;
2376 /* Upper bounds - don't have to be exact */
2377 int max_faces = 30 * width * height;
2378 int max_dots = 200 * width * height;
2380 tree234 *points;
2382 grid *g = grid_empty();
2383 g->tilesize = DODEC_TILESIZE;
2384 g->faces = snewn(max_faces, grid_face);
2385 g->dots = snewn(max_dots, grid_dot);
2387 points = newtree234(grid_point_cmp_fn);
2389 for (y = 0; y < height; y++) {
2390 for (x = 0; x < width; x++) {
2391 grid_dot *d;
2392 /* centre of dodecagon */
2393 int px = (6*a + 2*b) * x;
2394 int py = (3*a + 3*b) * y;
2395 if (y % 2)
2396 px += 3*a + b;
2398 /* dodecagon */
2399 grid_face_add_new(g, 12);
2400 d = grid_get_dot(g, points, px + ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 0);
2401 d = grid_get_dot(g, points, px + ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 1);
2402 d = grid_get_dot(g, points, px + (2*a + b), py - ( a )); grid_face_set_dot(g, d, 2);
2403 d = grid_get_dot(g, points, px + (2*a + b), py + ( a )); grid_face_set_dot(g, d, 3);
2404 d = grid_get_dot(g, points, px + ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 4);
2405 d = grid_get_dot(g, points, px + ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 5);
2406 d = grid_get_dot(g, points, px - ( a ), py + (2*a + b)); grid_face_set_dot(g, d, 6);
2407 d = grid_get_dot(g, points, px - ( a + b), py + ( a + b)); grid_face_set_dot(g, d, 7);
2408 d = grid_get_dot(g, points, px - (2*a + b), py + ( a )); grid_face_set_dot(g, d, 8);
2409 d = grid_get_dot(g, points, px - (2*a + b), py - ( a )); grid_face_set_dot(g, d, 9);
2410 d = grid_get_dot(g, points, px - ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 10);
2411 d = grid_get_dot(g, points, px - ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 11);
2413 /* hexagon below dodecagon */
2414 if (y < height - 1 && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2))) {
2415 grid_face_add_new(g, 6);
2416 d = grid_get_dot(g, points, px + a, py + (2*a + b)); grid_face_set_dot(g, d, 0);
2417 d = grid_get_dot(g, points, px + 2*a, py + (2*a + 2*b)); grid_face_set_dot(g, d, 1);
2418 d = grid_get_dot(g, points, px + a, py + (2*a + 3*b)); grid_face_set_dot(g, d, 2);
2419 d = grid_get_dot(g, points, px - a, py + (2*a + 3*b)); grid_face_set_dot(g, d, 3);
2420 d = grid_get_dot(g, points, px - 2*a, py + (2*a + 2*b)); grid_face_set_dot(g, d, 4);
2421 d = grid_get_dot(g, points, px - a, py + (2*a + b)); grid_face_set_dot(g, d, 5);
2424 /* hexagon above dodecagon */
2425 if (y && (x < width - 1 || !(y % 2)) && (x > 0 || (y % 2))) {
2426 grid_face_add_new(g, 6);
2427 d = grid_get_dot(g, points, px - a, py - (2*a + b)); grid_face_set_dot(g, d, 0);
2428 d = grid_get_dot(g, points, px - 2*a, py - (2*a + 2*b)); grid_face_set_dot(g, d, 1);
2429 d = grid_get_dot(g, points, px - a, py - (2*a + 3*b)); grid_face_set_dot(g, d, 2);
2430 d = grid_get_dot(g, points, px + a, py - (2*a + 3*b)); grid_face_set_dot(g, d, 3);
2431 d = grid_get_dot(g, points, px + 2*a, py - (2*a + 2*b)); grid_face_set_dot(g, d, 4);
2432 d = grid_get_dot(g, points, px + a, py - (2*a + b)); grid_face_set_dot(g, d, 5);
2435 /* square on right of dodecagon */
2436 if (x < width - 1) {
2437 grid_face_add_new(g, 4);
2438 d = grid_get_dot(g, points, px + 2*a + b, py - a); grid_face_set_dot(g, d, 0);
2439 d = grid_get_dot(g, points, px + 4*a + b, py - a); grid_face_set_dot(g, d, 1);
2440 d = grid_get_dot(g, points, px + 4*a + b, py + a); grid_face_set_dot(g, d, 2);
2441 d = grid_get_dot(g, points, px + 2*a + b, py + a); grid_face_set_dot(g, d, 3);
2444 /* square on top right of dodecagon */
2445 if (y && (x < width - 1 || !(y % 2))) {
2446 grid_face_add_new(g, 4);
2447 d = grid_get_dot(g, points, px + ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 0);
2448 d = grid_get_dot(g, points, px + (2*a ), py - (2*a + 2*b)); grid_face_set_dot(g, d, 1);
2449 d = grid_get_dot(g, points, px + (2*a + b), py - ( a + 2*b)); grid_face_set_dot(g, d, 2);
2450 d = grid_get_dot(g, points, px + ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 3);
2453 /* square on top left of dodecagon */
2454 if (y && (x || (y % 2))) {
2455 grid_face_add_new(g, 4);
2456 d = grid_get_dot(g, points, px - ( a + b), py - ( a + b)); grid_face_set_dot(g, d, 0);
2457 d = grid_get_dot(g, points, px - (2*a + b), py - ( a + 2*b)); grid_face_set_dot(g, d, 1);
2458 d = grid_get_dot(g, points, px - (2*a ), py - (2*a + 2*b)); grid_face_set_dot(g, d, 2);
2459 d = grid_get_dot(g, points, px - ( a ), py - (2*a + b)); grid_face_set_dot(g, d, 3);
2464 freetree234(points);
2465 assert(g->num_faces <= max_faces);
2466 assert(g->num_dots <= max_dots);
2468 grid_make_consistent(g);
2469 return g;
2472 typedef struct setface_ctx
2474 int xmin, xmax, ymin, ymax;
2476 grid *g;
2477 tree234 *points;
2478 } setface_ctx;
2480 static double round_int_nearest_away(double r)
2482 return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);
2485 static int set_faces(penrose_state *state, vector *vs, int n, int depth)
2487 setface_ctx *sf_ctx = (setface_ctx *)state->ctx;
2488 int i;
2489 int xs[4], ys[4];
2491 if (depth < state->max_depth) return 0;
2492 #ifdef DEBUG_PENROSE
2493 if (n != 4) return 0; /* triangles are sent as debugging. */
2494 #endif
2496 for (i = 0; i < n; i++) {
2497 double tx = v_x(vs, i), ty = v_y(vs, i);
2499 xs[i] = (int)round_int_nearest_away(tx);
2500 ys[i] = (int)round_int_nearest_away(ty);
2502 if (xs[i] < sf_ctx->xmin || xs[i] > sf_ctx->xmax) return 0;
2503 if (ys[i] < sf_ctx->ymin || ys[i] > sf_ctx->ymax) return 0;
2506 grid_face_add_new(sf_ctx->g, n);
2507 debug(("penrose: new face l=%f gen=%d...",
2508 penrose_side_length(state->start_size, depth), depth));
2509 for (i = 0; i < n; i++) {
2510 grid_dot *d = grid_get_dot(sf_ctx->g, sf_ctx->points,
2511 xs[i], ys[i]);
2512 grid_face_set_dot(sf_ctx->g, d, i);
2513 debug((" ... dot 0x%x (%d,%d) (was %2.2f,%2.2f)",
2514 d, d->x, d->y, v_x(vs, i), v_y(vs, i)));
2517 return 0;
2520 #define PENROSE_TILESIZE 100
2522 static void grid_size_penrose(int width, int height,
2523 int *tilesize, int *xextent, int *yextent)
2525 int l = PENROSE_TILESIZE;
2527 *tilesize = l;
2528 *xextent = l * width;
2529 *yextent = l * height;
2532 static char *grid_new_desc_penrose(grid_type type, int width, int height, random_state *rs)
2534 int tilesize = PENROSE_TILESIZE, startsz, depth, xoff, yoff, aoff;
2535 double outer_radius;
2536 int inner_radius;
2537 char gd[255];
2538 int which = (type == GRID_PENROSE_P2 ? PENROSE_P2 : PENROSE_P3);
2540 /* We want to produce a random bit of penrose tiling, so we calculate
2541 * a random offset (within the patch that penrose.c calculates for us)
2542 * and an angle (multiple of 36) to rotate the patch. */
2544 penrose_calculate_size(which, tilesize, width, height,
2545 &outer_radius, &startsz, &depth);
2547 /* Calculate radius of (circumcircle of) patch, subtract from
2548 * radius calculated. */
2549 inner_radius = (int)(outer_radius - sqrt(width*width + height*height));
2551 /* Pick a random offset (the easy way: choose within outer square,
2552 * discarding while it's outside the circle) */
2553 do {
2554 xoff = random_upto(rs, 2*inner_radius) - inner_radius;
2555 yoff = random_upto(rs, 2*inner_radius) - inner_radius;
2556 } while (sqrt(xoff*xoff+yoff*yoff) > inner_radius);
2558 aoff = random_upto(rs, 360/36) * 36;
2560 debug(("grid_desc: ts %d, %dx%d patch, orad %2.2f irad %d",
2561 tilesize, width, height, outer_radius, inner_radius));
2562 debug((" -> xoff %d yoff %d aoff %d", xoff, yoff, aoff));
2564 sprintf(gd, "G%d,%d,%d", xoff, yoff, aoff);
2566 return dupstr(gd);
2569 static char *grid_validate_desc_penrose(grid_type type, int width, int height, char *desc)
2571 int tilesize = PENROSE_TILESIZE, startsz, depth, xoff, yoff, aoff, inner_radius;
2572 double outer_radius;
2573 int which = (type == GRID_PENROSE_P2 ? PENROSE_P2 : PENROSE_P3);
2575 if (!desc)
2576 return "Missing grid description string.";
2578 penrose_calculate_size(which, tilesize, width, height,
2579 &outer_radius, &startsz, &depth);
2580 inner_radius = (int)(outer_radius - sqrt(width*width + height*height));
2582 if (sscanf(desc, "G%d,%d,%d", &xoff, &yoff, &aoff) != 3)
2583 return "Invalid format grid description string.";
2585 if (sqrt(xoff*xoff + yoff*yoff) > inner_radius)
2586 return "Patch offset out of bounds.";
2587 if ((aoff % 36) != 0 || aoff < 0 || aoff >= 360)
2588 return "Angle offset out of bounds.";
2590 return NULL;
2594 * We're asked for a grid of a particular size, and we generate enough
2595 * of the tiling so we can be sure to have enough random grid from which
2596 * to pick.
2599 static grid *grid_new_penrose(int width, int height, int which, char *desc)
2601 int max_faces, max_dots, tilesize = PENROSE_TILESIZE;
2602 int xsz, ysz, xoff, yoff, aoff;
2603 double rradius;
2605 tree234 *points;
2606 grid *g;
2608 penrose_state ps;
2609 setface_ctx sf_ctx;
2611 penrose_calculate_size(which, tilesize, width, height,
2612 &rradius, &ps.start_size, &ps.max_depth);
2614 debug(("penrose: w%d h%d, tile size %d, start size %d, depth %d",
2615 width, height, tilesize, ps.start_size, ps.max_depth));
2617 ps.new_tile = set_faces;
2618 ps.ctx = &sf_ctx;
2620 max_faces = (width*3) * (height*3); /* somewhat paranoid... */
2621 max_dots = max_faces * 4; /* ditto... */
2623 g = grid_empty();
2624 g->tilesize = tilesize;
2625 g->faces = snewn(max_faces, grid_face);
2626 g->dots = snewn(max_dots, grid_dot);
2628 points = newtree234(grid_point_cmp_fn);
2630 memset(&sf_ctx, 0, sizeof(sf_ctx));
2631 sf_ctx.g = g;
2632 sf_ctx.points = points;
2634 if (desc != NULL) {
2635 if (sscanf(desc, "G%d,%d,%d", &xoff, &yoff, &aoff) != 3)
2636 assert(!"Invalid grid description.");
2637 } else {
2638 xoff = yoff = 0;
2641 xsz = width * tilesize;
2642 ysz = height * tilesize;
2644 sf_ctx.xmin = xoff - xsz/2;
2645 sf_ctx.xmax = xoff + xsz/2;
2646 sf_ctx.ymin = yoff - ysz/2;
2647 sf_ctx.ymax = yoff + ysz/2;
2649 debug(("penrose: centre (%f, %f) xsz %f ysz %f",
2650 0.0, 0.0, xsz, ysz));
2651 debug(("penrose: x range (%f --> %f), y range (%f --> %f)",
2652 sf_ctx.xmin, sf_ctx.xmax, sf_ctx.ymin, sf_ctx.ymax));
2654 penrose(&ps, which, aoff);
2656 freetree234(points);
2657 assert(g->num_faces <= max_faces);
2658 assert(g->num_dots <= max_dots);
2660 debug(("penrose: %d faces total (equivalent to %d wide by %d high)",
2661 g->num_faces, g->num_faces/height, g->num_faces/width));
2663 grid_trim_vigorously(g);
2664 grid_make_consistent(g);
2667 * Centre the grid in its originally promised rectangle.
2669 g->lowest_x -= ((sf_ctx.xmax - sf_ctx.xmin) -
2670 (g->highest_x - g->lowest_x)) / 2;
2671 g->highest_x = g->lowest_x + (sf_ctx.xmax - sf_ctx.xmin);
2672 g->lowest_y -= ((sf_ctx.ymax - sf_ctx.ymin) -
2673 (g->highest_y - g->lowest_y)) / 2;
2674 g->highest_y = g->lowest_y + (sf_ctx.ymax - sf_ctx.ymin);
2676 return g;
2679 static void grid_size_penrose_p2_kite(int width, int height,
2680 int *tilesize, int *xextent, int *yextent)
2682 grid_size_penrose(width, height, tilesize, xextent, yextent);
2685 static void grid_size_penrose_p3_thick(int width, int height,
2686 int *tilesize, int *xextent, int *yextent)
2688 grid_size_penrose(width, height, tilesize, xextent, yextent);
2691 static grid *grid_new_penrose_p2_kite(int width, int height, char *desc)
2693 return grid_new_penrose(width, height, PENROSE_P2, desc);
2696 static grid *grid_new_penrose_p3_thick(int width, int height, char *desc)
2698 return grid_new_penrose(width, height, PENROSE_P3, desc);
2701 /* ----------- End of grid generators ------------- */
2703 #define FNNEW(upper,lower) &grid_new_ ## lower,
2704 #define FNSZ(upper,lower) &grid_size_ ## lower,
2706 static grid *(*(grid_news[]))(int, int, char*) = { GRIDGEN_LIST(FNNEW) };
2707 static void(*(grid_sizes[]))(int, int, int*, int*, int*) = { GRIDGEN_LIST(FNSZ) };
2709 char *grid_new_desc(grid_type type, int width, int height, random_state *rs)
2711 if (type != GRID_PENROSE_P2 && type != GRID_PENROSE_P3)
2712 return NULL;
2714 return grid_new_desc_penrose(type, width, height, rs);
2717 char *grid_validate_desc(grid_type type, int width, int height, char *desc)
2719 if (type != GRID_PENROSE_P2 && type != GRID_PENROSE_P3) {
2720 if (desc != NULL)
2721 return "Grid description strings not used with this grid type";
2722 return NULL;
2725 return grid_validate_desc_penrose(type, width, height, desc);
2728 grid *grid_new(grid_type type, int width, int height, char *desc)
2730 char *err = grid_validate_desc(type, width, height, desc);
2731 if (err) assert(!"Invalid grid description.");
2733 return grid_news[type](width, height, desc);
2736 void grid_compute_size(grid_type type, int width, int height,
2737 int *tilesize, int *xextent, int *yextent)
2739 grid_sizes[type](width, height, tilesize, xextent, yextent);
2742 /* ----------- End of grid helpers ------------- */
2744 /* vim: set shiftwidth=4 tabstop=8: */