WIP: hack to avoid install attempts of nullgame on Qtopia.
[sgt-puzzles/ydirson.git] / keen.c
blob3776283d7f41008f97d2c2254918efced8491596
1 /*
2 * keen.c: an implementation of the Times's 'KenKen' puzzle.
3 */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
12 #include "puzzles.h"
13 #include "latin.h"
16 * Difficulty levels. I do some macro ickery here to ensure that my
17 * enum and the various forms of my name list always match up.
19 #define DIFFLIST(A) \
20 A(EASY,Easy,solver_easy,e) \
21 A(NORMAL,Normal,solver_normal,n) \
22 A(HARD,Hard,solver_hard,h) \
23 A(EXTREME,Extreme,NULL,x) \
24 A(UNREASONABLE,Unreasonable,NULL,u)
25 #define ENUM(upper,title,func,lower) DIFF_ ## upper,
26 #define TITLE(upper,title,func,lower) #title,
27 #define ENCODE(upper,title,func,lower) #lower
28 #define CONFIG(upper,title,func,lower) ":" #title
29 enum { DIFFLIST(ENUM) DIFFCOUNT };
30 static char const *const keen_diffnames[] = { DIFFLIST(TITLE) };
31 static char const keen_diffchars[] = DIFFLIST(ENCODE);
32 #define DIFFCONFIG DIFFLIST(CONFIG)
35 * Clue notation. Important here that ADD and MUL come before SUB
36 * and DIV, and that DIV comes last.
38 #define C_ADD 0x00000000L
39 #define C_MUL 0x20000000L
40 #define C_SUB 0x40000000L
41 #define C_DIV 0x60000000L
42 #define CMASK 0x60000000L
43 #define CUNIT 0x20000000L
45 enum {
46 COL_BACKGROUND,
47 COL_GRID,
48 COL_USER,
49 COL_HIGHLIGHT,
50 COL_ERROR,
51 COL_PENCIL,
52 NCOLOURS
55 struct game_params {
56 int w, diff;
59 struct clues {
60 int refcount;
61 int w;
62 int *dsf;
63 long *clues;
66 struct game_state {
67 game_params par;
68 struct clues *clues;
69 digit *grid;
70 int *pencil; /* bitmaps using bits 1<<1..1<<n */
71 int completed, cheated;
74 static game_params *default_params(void)
76 game_params *ret = snew(game_params);
78 ret->w = 6;
79 ret->diff = DIFF_NORMAL;
81 return ret;
84 const static struct game_params keen_presets[] = {
85 { 4, DIFF_EASY },
86 { 5, DIFF_EASY },
87 { 6, DIFF_EASY },
88 { 6, DIFF_NORMAL },
89 { 6, DIFF_HARD },
90 { 6, DIFF_EXTREME },
91 { 6, DIFF_UNREASONABLE },
92 { 9, DIFF_NORMAL },
95 static int game_fetch_preset(int i, char **name, game_params **params)
97 game_params *ret;
98 char buf[80];
100 if (i < 0 || i >= lenof(keen_presets))
101 return FALSE;
103 ret = snew(game_params);
104 *ret = keen_presets[i]; /* structure copy */
106 sprintf(buf, "%dx%d %s", ret->w, ret->w, keen_diffnames[ret->diff]);
108 *name = dupstr(buf);
109 *params = ret;
110 return TRUE;
113 static void free_params(game_params *params)
115 sfree(params);
118 static game_params *dup_params(game_params *params)
120 game_params *ret = snew(game_params);
121 *ret = *params; /* structure copy */
122 return ret;
125 static void decode_params(game_params *params, char const *string)
127 char const *p = string;
129 params->w = atoi(p);
130 while (*p && isdigit((unsigned char)*p)) p++;
132 if (*p == 'd') {
133 int i;
134 p++;
135 params->diff = DIFFCOUNT+1; /* ...which is invalid */
136 if (*p) {
137 for (i = 0; i < DIFFCOUNT; i++) {
138 if (*p == keen_diffchars[i])
139 params->diff = i;
141 p++;
146 static char *encode_params(game_params *params, int full)
148 char ret[80];
150 sprintf(ret, "%d", params->w);
151 if (full)
152 sprintf(ret + strlen(ret), "d%c", keen_diffchars[params->diff]);
154 return dupstr(ret);
157 static config_item *game_configure(game_params *params)
159 config_item *ret;
160 char buf[80];
162 ret = snewn(3, config_item);
164 ret[0].name = "Grid size";
165 ret[0].type = C_STRING;
166 sprintf(buf, "%d", params->w);
167 ret[0].sval = dupstr(buf);
168 ret[0].ival = 0;
170 ret[1].name = "Difficulty";
171 ret[1].type = C_CHOICES;
172 ret[1].sval = DIFFCONFIG;
173 ret[1].ival = params->diff;
175 ret[2].name = NULL;
176 ret[2].type = C_END;
177 ret[2].sval = NULL;
178 ret[2].ival = 0;
180 return ret;
183 static game_params *custom_params(config_item *cfg)
185 game_params *ret = snew(game_params);
187 ret->w = atoi(cfg[0].sval);
188 ret->diff = cfg[1].ival;
190 return ret;
193 static char *validate_params(game_params *params, int full)
195 if (params->w < 3 || params->w > 9)
196 return "Grid size must be between 3 and 9";
197 if (params->diff >= DIFFCOUNT)
198 return "Unknown difficulty rating";
199 return NULL;
202 /* ----------------------------------------------------------------------
203 * Solver.
206 struct solver_ctx {
207 int w, diff;
208 int nboxes;
209 int *boxes, *boxlist, *whichbox;
210 long *clues;
211 digit *soln;
212 digit *dscratch;
213 int *iscratch;
216 static void solver_clue_candidate(struct solver_ctx *ctx, int diff, int box)
218 int w = ctx->w;
219 int n = ctx->boxes[box+1] - ctx->boxes[box];
220 int j;
223 * This function is called from the main clue-based solver
224 * routine when we discover a candidate layout for a given clue
225 * box consistent with everything we currently know about the
226 * digit constraints in that box. We expect to find the digits
227 * of the candidate layout in ctx->dscratch, and we update
228 * ctx->iscratch as appropriate.
230 if (diff == DIFF_EASY) {
231 unsigned mask = 0;
233 * Easy-mode clue deductions: we do not record information
234 * about which squares take which values, so we amalgamate
235 * all the values in dscratch and OR them all into
236 * everywhere.
238 for (j = 0; j < n; j++)
239 mask |= 1 << ctx->dscratch[j];
240 for (j = 0; j < n; j++)
241 ctx->iscratch[j] |= mask;
242 } else if (diff == DIFF_NORMAL) {
244 * Normal-mode deductions: we process the information in
245 * dscratch in the obvious way.
247 for (j = 0; j < n; j++)
248 ctx->iscratch[j] |= 1 << ctx->dscratch[j];
249 } else if (diff == DIFF_HARD) {
251 * Hard-mode deductions: instead of ruling things out
252 * _inside_ the clue box, we look for numbers which occur in
253 * a given row or column in all candidate layouts, and rule
254 * them out of all squares in that row or column that
255 * _aren't_ part of this clue box.
257 int *sq = ctx->boxlist + ctx->boxes[box];
259 for (j = 0; j < 2*w; j++)
260 ctx->iscratch[2*w+j] = 0;
261 for (j = 0; j < n; j++) {
262 int x = sq[j] / w, y = sq[j] % w;
263 ctx->iscratch[2*w+x] |= 1 << ctx->dscratch[j];
264 ctx->iscratch[3*w+y] |= 1 << ctx->dscratch[j];
266 for (j = 0; j < 2*w; j++)
267 ctx->iscratch[j] &= ctx->iscratch[2*w+j];
271 static int solver_common(struct latin_solver *solver, void *vctx, int diff)
273 struct solver_ctx *ctx = (struct solver_ctx *)vctx;
274 int w = ctx->w;
275 int box, i, j, k;
276 int ret = 0, total;
279 * Iterate over each clue box and deduce what we can.
281 for (box = 0; box < ctx->nboxes; box++) {
282 int *sq = ctx->boxlist + ctx->boxes[box];
283 int n = ctx->boxes[box+1] - ctx->boxes[box];
284 long value = ctx->clues[box] & ~CMASK;
285 long op = ctx->clues[box] & CMASK;
287 if (diff == DIFF_HARD) {
288 for (i = 0; i < n; i++)
289 ctx->iscratch[i] = (1 << (w+1)) - (1 << 1);
290 } else {
291 for (i = 0; i < n; i++)
292 ctx->iscratch[i] = 0;
295 switch (op) {
296 case C_SUB:
297 case C_DIV:
299 * These two clue types must always apply to a box of
300 * area 2. Also, the two digits in these boxes can never
301 * be the same (because any domino must have its two
302 * squares in either the same row or the same column).
303 * So we simply iterate over all possibilities for the
304 * two squares (both ways round), rule out any which are
305 * inconsistent with the digit constraints we already
306 * have, and update the digit constraints with any new
307 * information thus garnered.
309 assert(n == 2);
311 for (i = 1; i <= w; i++) {
312 j = (op == C_SUB ? i + value : i * value);
313 if (j > w) break;
315 /* (i,j) is a valid digit pair. Try it both ways round. */
317 if (solver->cube[sq[0]*w+i-1] &&
318 solver->cube[sq[1]*w+j-1]) {
319 ctx->dscratch[0] = i;
320 ctx->dscratch[1] = j;
321 solver_clue_candidate(ctx, diff, box);
324 if (solver->cube[sq[0]*w+j-1] &&
325 solver->cube[sq[1]*w+i-1]) {
326 ctx->dscratch[0] = j;
327 ctx->dscratch[1] = i;
328 solver_clue_candidate(ctx, diff, box);
332 break;
334 case C_ADD:
335 case C_MUL:
337 * For these clue types, I have no alternative but to go
338 * through all possible number combinations.
340 * Instead of a tedious physical recursion, I iterate in
341 * the scratch array through all possibilities. At any
342 * given moment, i indexes the element of the box that
343 * will next be incremented.
345 i = 0;
346 ctx->dscratch[i] = 0;
347 total = value; /* start with the identity */
348 while (1) {
349 if (i < n) {
351 * Find the next valid value for cell i.
353 for (j = ctx->dscratch[i] + 1; j <= w; j++) {
354 if (op == C_ADD ? (total < j) : (total % j != 0))
355 continue; /* this one won't fit */
356 if (!solver->cube[sq[i]*w+j-1])
357 continue; /* this one is ruled out already */
358 for (k = 0; k < i; k++)
359 if (ctx->dscratch[k] == j &&
360 (sq[k] % w == sq[i] % w ||
361 sq[k] / w == sq[i] / w))
362 break; /* clashes with another row/col */
363 if (k < i)
364 continue;
366 /* Found one. */
367 break;
370 if (j > w) {
371 /* No valid values left; drop back. */
372 i--;
373 if (i < 0)
374 break; /* overall iteration is finished */
375 if (op == C_ADD)
376 total += ctx->dscratch[i];
377 else
378 total *= ctx->dscratch[i];
379 } else {
380 /* Got a valid value; store it and move on. */
381 ctx->dscratch[i++] = j;
382 if (op == C_ADD)
383 total -= j;
384 else
385 total /= j;
386 ctx->dscratch[i] = 0;
388 } else {
389 if (total == (op == C_ADD ? 0 : 1))
390 solver_clue_candidate(ctx, diff, box);
391 i--;
392 if (op == C_ADD)
393 total += ctx->dscratch[i];
394 else
395 total *= ctx->dscratch[i];
399 break;
402 if (diff < DIFF_HARD) {
403 #ifdef STANDALONE_SOLVER
404 char prefix[256];
406 if (solver_show_working)
407 sprintf(prefix, "%*susing clue at (%d,%d):\n",
408 solver_recurse_depth*4, "",
409 sq[0]/w+1, sq[0]%w+1);
410 else
411 prefix[0] = '\0'; /* placate optimiser */
412 #endif
414 for (i = 0; i < n; i++)
415 for (j = 1; j <= w; j++) {
416 if (solver->cube[sq[i]*w+j-1] &&
417 !(ctx->iscratch[i] & (1 << j))) {
418 #ifdef STANDALONE_SOLVER
419 if (solver_show_working) {
420 printf("%s%*s ruling out %d at (%d,%d)\n",
421 prefix, solver_recurse_depth*4, "",
422 j, sq[i]/w+1, sq[i]%w+1);
423 prefix[0] = '\0';
425 #endif
426 solver->cube[sq[i]*w+j-1] = 0;
427 ret = 1;
430 } else {
431 #ifdef STANDALONE_SOLVER
432 char prefix[256];
434 if (solver_show_working)
435 sprintf(prefix, "%*susing clue at (%d,%d):\n",
436 solver_recurse_depth*4, "",
437 sq[0]/w+1, sq[0]%w+1);
438 else
439 prefix[0] = '\0'; /* placate optimiser */
440 #endif
442 for (i = 0; i < 2*w; i++) {
443 int start = (i < w ? i*w : i-w);
444 int step = (i < w ? 1 : w);
445 for (j = 1; j <= w; j++) if (ctx->iscratch[i] & (1 << j)) {
446 #ifdef STANDALONE_SOLVER
447 char prefix2[256];
449 if (solver_show_working)
450 sprintf(prefix2, "%*s this clue requires %d in"
451 " %s %d:\n", solver_recurse_depth*4, "",
452 j, i < w ? "column" : "row", i%w+1);
453 else
454 prefix2[0] = '\0'; /* placate optimiser */
455 #endif
457 for (k = 0; k < w; k++) {
458 int pos = start + k*step;
459 if (ctx->whichbox[pos] != box &&
460 solver->cube[pos*w+j-1]) {
461 #ifdef STANDALONE_SOLVER
462 if (solver_show_working) {
463 printf("%s%s%*s ruling out %d at (%d,%d)\n",
464 prefix, prefix2,
465 solver_recurse_depth*4, "",
466 j, pos/w+1, pos%w+1);
467 prefix[0] = prefix2[0] = '\0';
469 #endif
470 solver->cube[pos*w+j-1] = 0;
471 ret = 1;
478 * Once we find one block we can do something with in
479 * this way, revert to trying easier deductions, so as
480 * not to generate solver diagnostics that make the
481 * problem look harder than it is. (We have to do this
482 * for the Hard deductions but not the Easy/Normal ones,
483 * because only the Hard deductions are cross-box.)
485 if (ret)
486 return ret;
490 return ret;
493 static int solver_easy(struct latin_solver *solver, void *vctx)
496 * Omit the EASY deductions when solving at NORMAL level, since
497 * the NORMAL deductions are a superset of them anyway and it
498 * saves on time and confusing solver diagnostics.
500 * Note that this breaks the natural semantics of the return
501 * value of latin_solver. Without this hack, you could determine
502 * a puzzle's difficulty in one go by trying to solve it at
503 * maximum difficulty and seeing what difficulty value was
504 * returned; but with this hack, solving an Easy puzzle on
505 * Normal difficulty will typically return Normal. Hence the
506 * uses of the solver to determine difficulty are all arranged
507 * so as to double-check by re-solving at the next difficulty
508 * level down and making sure it failed.
510 struct solver_ctx *ctx = (struct solver_ctx *)vctx;
511 if (ctx->diff > DIFF_EASY)
512 return 0;
513 return solver_common(solver, vctx, DIFF_EASY);
516 static int solver_normal(struct latin_solver *solver, void *vctx)
518 return solver_common(solver, vctx, DIFF_NORMAL);
521 static int solver_hard(struct latin_solver *solver, void *vctx)
523 return solver_common(solver, vctx, DIFF_HARD);
526 #define SOLVER(upper,title,func,lower) func,
527 static usersolver_t const keen_solvers[] = { DIFFLIST(SOLVER) };
529 static int solver(int w, int *dsf, long *clues, digit *soln, int maxdiff)
531 int a = w*w;
532 struct solver_ctx ctx;
533 int ret;
534 int i, j, n, m;
536 ctx.w = w;
537 ctx.soln = soln;
538 ctx.diff = maxdiff;
541 * Transform the dsf-formatted clue list into one over which we
542 * can iterate more easily.
544 * Also transpose the x- and y-coordinates at this point,
545 * because the 'cube' array in the general Latin square solver
546 * puts x first (oops).
548 for (ctx.nboxes = i = 0; i < a; i++)
549 if (dsf_canonify(dsf, i) == i)
550 ctx.nboxes++;
551 ctx.boxlist = snewn(a, int);
552 ctx.boxes = snewn(ctx.nboxes+1, int);
553 ctx.clues = snewn(ctx.nboxes, long);
554 ctx.whichbox = snewn(a, int);
555 for (n = m = i = 0; i < a; i++)
556 if (dsf_canonify(dsf, i) == i) {
557 ctx.clues[n] = clues[i];
558 ctx.boxes[n] = m;
559 for (j = 0; j < a; j++)
560 if (dsf_canonify(dsf, j) == i) {
561 ctx.boxlist[m++] = (j % w) * w + (j / w); /* transpose */
562 ctx.whichbox[ctx.boxlist[m-1]] = n;
564 n++;
566 assert(n == ctx.nboxes);
567 assert(m == a);
568 ctx.boxes[n] = m;
570 ctx.dscratch = snewn(a+1, digit);
571 ctx.iscratch = snewn(max(a+1, 4*w), int);
573 ret = latin_solver(soln, w, maxdiff,
574 DIFF_EASY, DIFF_HARD, DIFF_EXTREME,
575 DIFF_EXTREME, DIFF_UNREASONABLE,
576 keen_solvers, &ctx, NULL, NULL);
578 sfree(ctx.dscratch);
579 sfree(ctx.iscratch);
580 sfree(ctx.whichbox);
581 sfree(ctx.boxlist);
582 sfree(ctx.boxes);
583 sfree(ctx.clues);
585 return ret;
588 /* ----------------------------------------------------------------------
589 * Grid generation.
592 static char *encode_block_structure(char *p, int w, int *dsf)
594 int i, currrun = 0;
595 char *orig, *q, *r, c;
597 orig = p;
600 * Encode the block structure. We do this by encoding the
601 * pattern of dividing lines: first we iterate over the w*(w-1)
602 * internal vertical grid lines in ordinary reading order, then
603 * over the w*(w-1) internal horizontal ones in transposed
604 * reading order.
606 * We encode the number of non-lines between the lines; _ means
607 * zero (two adjacent divisions), a means 1, ..., y means 25,
608 * and z means 25 non-lines _and no following line_ (so that za
609 * means 26, zb 27 etc).
611 for (i = 0; i <= 2*w*(w-1); i++) {
612 int x, y, p0, p1, edge;
614 if (i == 2*w*(w-1)) {
615 edge = TRUE; /* terminating virtual edge */
616 } else {
617 if (i < w*(w-1)) {
618 y = i/(w-1);
619 x = i%(w-1);
620 p0 = y*w+x;
621 p1 = y*w+x+1;
622 } else {
623 x = i/(w-1) - w;
624 y = i%(w-1);
625 p0 = y*w+x;
626 p1 = (y+1)*w+x;
628 edge = (dsf_canonify(dsf, p0) != dsf_canonify(dsf, p1));
631 if (edge) {
632 while (currrun > 25)
633 *p++ = 'z', currrun -= 25;
634 if (currrun)
635 *p++ = 'a'-1 + currrun;
636 else
637 *p++ = '_';
638 currrun = 0;
639 } else
640 currrun++;
644 * Now go through and compress the string by replacing runs of
645 * the same letter with a single copy of that letter followed by
646 * a repeat count, where that makes it shorter. (This puzzle
647 * seems to generate enough long strings of _ to make this a
648 * worthwhile step.)
650 for (q = r = orig; r < p ;) {
651 *q++ = c = *r;
653 for (i = 0; r+i < p && r[i] == c; i++);
654 r += i;
656 if (i == 2) {
657 *q++ = c;
658 } else if (i > 2) {
659 q += sprintf(q, "%d", i);
663 return q;
666 static char *parse_block_structure(const char **p, int w, int *dsf)
668 int a = w*w;
669 int pos = 0;
670 int repc = 0, repn = 0;
672 dsf_init(dsf, a);
674 while (**p && (repn > 0 || **p != ',')) {
675 int c, adv;
677 if (repn > 0) {
678 repn--;
679 c = repc;
680 } else if (**p == '_' || (**p >= 'a' && **p <= 'z')) {
681 c = (**p == '_' ? 0 : **p - 'a' + 1);
682 (*p)++;
683 if (**p && isdigit((unsigned char)**p)) {
684 repc = c;
685 repn = atoi(*p)-1;
686 while (**p && isdigit((unsigned char)**p)) (*p)++;
688 } else
689 return "Invalid character in game description";
691 adv = (c != 25); /* 'z' is a special case */
693 while (c-- > 0) {
694 int p0, p1;
697 * Non-edge; merge the two dsf classes on either
698 * side of it.
700 if (pos >= 2*w*(w-1))
701 return "Too much data in block structure specification";
702 if (pos < w*(w-1)) {
703 int y = pos/(w-1);
704 int x = pos%(w-1);
705 p0 = y*w+x;
706 p1 = y*w+x+1;
707 } else {
708 int x = pos/(w-1) - w;
709 int y = pos%(w-1);
710 p0 = y*w+x;
711 p1 = (y+1)*w+x;
713 dsf_merge(dsf, p0, p1);
715 pos++;
717 if (adv) {
718 pos++;
719 if (pos > 2*w*(w-1)+1)
720 return "Too much data in block structure specification";
725 * When desc is exhausted, we expect to have gone exactly
726 * one space _past_ the end of the grid, due to the dummy
727 * edge at the end.
729 if (pos != 2*w*(w-1)+1)
730 return "Not enough data in block structure specification";
732 return NULL;
735 static char *new_game_desc(game_params *params, random_state *rs,
736 char **aux, int interactive)
738 int w = params->w, a = w*w;
739 digit *grid, *soln;
740 int *order, *revorder, *singletons, *dsf;
741 long *clues, *cluevals;
742 int i, j, k, n, x, y, ret;
743 int diff = params->diff;
744 char *desc, *p;
747 * Difficulty exceptions: 3x3 puzzles at difficulty Hard or
748 * higher are currently not generable - the generator will spin
749 * forever looking for puzzles of the appropriate difficulty. We
750 * dial each of these down to the next lower difficulty.
752 * Remember to re-test this whenever a change is made to the
753 * solver logic!
755 * I tested it using the following shell command:
757 for d in e n h x u; do
758 for i in {3..9}; do
759 echo ./keen --generate 1 ${i}d${d}
760 perl -e 'alarm 30; exec @ARGV' ./keen --generate 5 ${i}d${d} >/dev/null \
761 || echo broken
762 done
763 done
765 * Of course, it's better to do that after taking the exceptions
766 * _out_, so as to detect exceptions that should be removed as
767 * well as those which should be added.
769 if (w == 3 && diff > DIFF_NORMAL)
770 diff = DIFF_NORMAL;
772 grid = NULL;
774 order = snewn(a, int);
775 revorder = snewn(a, int);
776 singletons = snewn(a, int);
777 dsf = snew_dsf(a);
778 clues = snewn(a, long);
779 cluevals = snewn(a, long);
780 soln = snewn(a, digit);
782 while (1) {
784 * First construct a latin square to be the solution.
786 sfree(grid);
787 grid = latin_generate(w, rs);
790 * Divide the grid into arbitrarily sized blocks, but so as
791 * to arrange plenty of dominoes which can be SUB/DIV clues.
792 * We do this by first placing dominoes at random for a
793 * while, then tying the remaining singletons one by one
794 * into neighbouring blocks.
796 for (i = 0; i < a; i++)
797 order[i] = i;
798 shuffle(order, a, sizeof(*order), rs);
799 for (i = 0; i < a; i++)
800 revorder[order[i]] = i;
802 for (i = 0; i < a; i++)
803 singletons[i] = TRUE;
805 dsf_init(dsf, a);
807 /* Place dominoes. */
808 for (i = 0; i < a; i++) {
809 if (singletons[i]) {
810 int best = -1;
812 x = i % w;
813 y = i / w;
815 if (x > 0 && singletons[i-1] &&
816 (best == -1 || revorder[i-1] < revorder[best]))
817 best = i-1;
818 if (x+1 < w && singletons[i+1] &&
819 (best == -1 || revorder[i+1] < revorder[best]))
820 best = i+1;
821 if (y > 0 && singletons[i-w] &&
822 (best == -1 || revorder[i-w] < revorder[best]))
823 best = i-w;
824 if (y+1 < w && singletons[i+w] &&
825 (best == -1 || revorder[i+w] < revorder[best]))
826 best = i+w;
829 * When we find a potential domino, we place it with
830 * probability 3/4, which seems to strike a decent
831 * balance between plenty of dominoes and leaving
832 * enough singletons to make interesting larger
833 * shapes.
835 if (best >= 0 && random_upto(rs, 4)) {
836 singletons[i] = singletons[best] = FALSE;
837 dsf_merge(dsf, i, best);
842 /* Fold in singletons. */
843 for (i = 0; i < a; i++) {
844 if (singletons[i]) {
845 int best = -1;
847 x = i % w;
848 y = i / w;
850 if (x > 0 &&
851 (best == -1 || revorder[i-1] < revorder[best]))
852 best = i-1;
853 if (x+1 < w &&
854 (best == -1 || revorder[i+1] < revorder[best]))
855 best = i+1;
856 if (y > 0 &&
857 (best == -1 || revorder[i-w] < revorder[best]))
858 best = i-w;
859 if (y+1 < w &&
860 (best == -1 || revorder[i+w] < revorder[best]))
861 best = i+w;
863 if (best >= 0) {
864 singletons[i] = FALSE;
865 dsf_merge(dsf, i, best);
871 * Decide what would be acceptable clues for each block.
873 * Blocks larger than 2 have free choice of ADD or MUL;
874 * blocks of size 2 can be anything in principle (except
875 * that they can only be DIV if the two numbers have an
876 * integer quotient, of course), but we rule out (or try to
877 * avoid) some clues because they're of low quality.
879 * Hence, we iterate once over the grid, stopping at the
880 * canonical element of every >2 block and the _non_-
881 * canonical element of every 2-block; the latter means that
882 * we can make our decision about a 2-block in the knowledge
883 * of both numbers in it.
885 * We reuse the 'singletons' array (finished with in the
886 * above loop) to hold information about which blocks are
887 * suitable for what.
889 #define F_ADD 0x01
890 #define F_SUB 0x02
891 #define F_MUL 0x04
892 #define F_DIV 0x08
893 #define BAD_SHIFT 4
895 for (i = 0; i < a; i++) {
896 singletons[i] = 0;
897 j = dsf_canonify(dsf, i);
898 k = dsf_size(dsf, j);
899 if (j == i && k > 2) {
900 singletons[j] |= F_ADD | F_MUL;
901 } else if (j != i && k == 2) {
902 /* Fetch the two numbers and sort them into order. */
903 int p = grid[j], q = grid[i], v;
904 if (p < q) {
905 int t = p; p = q; q = t;
909 * Addition clues are always allowed, but we try to
910 * avoid sums of 3, 4, (2w-1) and (2w-2) if we can,
911 * because they're too easy - they only leave one
912 * option for the pair of numbers involved.
914 v = p + q;
915 if (v > 4 && v < 2*w-2)
916 singletons[j] |= F_ADD;
917 else
918 singletons[j] |= F_ADD << BAD_SHIFT;
921 * Multiplication clues: above Normal difficulty, we
922 * prefer (but don't absolutely insist on) clues of
923 * this type which leave multiple options open.
925 v = p * q;
926 n = 0;
927 for (k = 1; k <= w; k++)
928 if (v % k == 0 && v / k <= w && v / k != k)
929 n++;
930 if (n <= 2 && diff > DIFF_NORMAL)
931 singletons[j] |= F_MUL << BAD_SHIFT;
932 else
933 singletons[j] |= F_MUL;
936 * Subtraction: we completely avoid a difference of
937 * w-1.
939 v = p - q;
940 if (v < w-1)
941 singletons[j] |= F_SUB;
944 * Division: for a start, the quotient must be an
945 * integer or the clue type is impossible. Also, we
946 * never use quotients strictly greater than w/2,
947 * because they're not only too easy but also
948 * inelegant.
950 if (p % q == 0 && 2 * (p / q) <= w)
951 singletons[j] |= F_DIV;
956 * Actually choose a clue for each block, trying to keep the
957 * numbers of each type even, and starting with the
958 * preferred candidates for each type where possible.
960 * I'm sure there should be a faster algorithm for doing
961 * this, but I can't be bothered: O(N^2) is good enough when
962 * N is at most the number of dominoes that fits into a 9x9
963 * square.
965 shuffle(order, a, sizeof(*order), rs);
966 for (i = 0; i < a; i++)
967 clues[i] = 0;
968 while (1) {
969 int done_something = FALSE;
971 for (k = 0; k < 4; k++) {
972 long clue;
973 int good, bad;
974 switch (k) {
975 case 0: clue = C_DIV; good = F_DIV; break;
976 case 1: clue = C_SUB; good = F_SUB; break;
977 case 2: clue = C_MUL; good = F_MUL; break;
978 default /* case 3 */ : clue = C_ADD; good = F_ADD; break;
981 for (i = 0; i < a; i++) {
982 j = order[i];
983 if (singletons[j] & good) {
984 clues[j] = clue;
985 singletons[j] = 0;
986 break;
989 if (i == a) {
990 /* didn't find a nice one, use a nasty one */
991 bad = good << BAD_SHIFT;
992 for (i = 0; i < a; i++) {
993 j = order[i];
994 if (singletons[j] & bad) {
995 clues[j] = clue;
996 singletons[j] = 0;
997 break;
1001 if (i < a)
1002 done_something = TRUE;
1005 if (!done_something)
1006 break;
1008 #undef F_ADD
1009 #undef F_SUB
1010 #undef F_MUL
1011 #undef F_DIV
1012 #undef BAD_SHIFT
1015 * Having chosen the clue types, calculate the clue values.
1017 for (i = 0; i < a; i++) {
1018 j = dsf_canonify(dsf, i);
1019 if (j == i) {
1020 cluevals[j] = grid[i];
1021 } else {
1022 switch (clues[j]) {
1023 case C_ADD:
1024 cluevals[j] += grid[i];
1025 break;
1026 case C_MUL:
1027 cluevals[j] *= grid[i];
1028 break;
1029 case C_SUB:
1030 cluevals[j] = abs(cluevals[j] - grid[i]);
1031 break;
1032 case C_DIV:
1034 int d1 = cluevals[j], d2 = grid[i];
1035 if (d1 == 0 || d2 == 0)
1036 cluevals[j] = 0;
1037 else
1038 cluevals[j] = d2/d1 + d1/d2;/* one is 0 :-) */
1040 break;
1045 for (i = 0; i < a; i++) {
1046 j = dsf_canonify(dsf, i);
1047 if (j == i) {
1048 clues[j] |= cluevals[j];
1053 * See if the game can be solved at the specified difficulty
1054 * level, but not at the one below.
1056 if (diff > 0) {
1057 memset(soln, 0, a);
1058 ret = solver(w, dsf, clues, soln, diff-1);
1059 if (ret <= diff-1)
1060 continue;
1062 memset(soln, 0, a);
1063 ret = solver(w, dsf, clues, soln, diff);
1064 if (ret != diff)
1065 continue; /* go round again */
1068 * I wondered if at this point it would be worth trying to
1069 * merge adjacent blocks together, to make the puzzle
1070 * gradually more difficult if it's currently easier than
1071 * specced, increasing the chance of a given generation run
1072 * being successful.
1074 * It doesn't seem to be critical for the generation speed,
1075 * though, so for the moment I'm leaving it out.
1079 * We've got a usable puzzle!
1081 break;
1085 * Encode the puzzle description.
1087 desc = snewn(40*a, char);
1088 p = desc;
1089 p = encode_block_structure(p, w, dsf);
1090 *p++ = ',';
1091 for (i = 0; i < a; i++) {
1092 j = dsf_canonify(dsf, i);
1093 if (j == i) {
1094 switch (clues[j] & CMASK) {
1095 case C_ADD: *p++ = 'a'; break;
1096 case C_SUB: *p++ = 's'; break;
1097 case C_MUL: *p++ = 'm'; break;
1098 case C_DIV: *p++ = 'd'; break;
1100 p += sprintf(p, "%ld", clues[j] & ~CMASK);
1103 *p++ = '\0';
1104 desc = sresize(desc, p - desc, char);
1107 * Encode the solution.
1109 assert(memcmp(soln, grid, a) == 0);
1110 *aux = snewn(a+2, char);
1111 (*aux)[0] = 'S';
1112 for (i = 0; i < a; i++)
1113 (*aux)[i+1] = '0' + soln[i];
1114 (*aux)[a+1] = '\0';
1116 sfree(grid);
1117 sfree(order);
1118 sfree(revorder);
1119 sfree(singletons);
1120 sfree(dsf);
1121 sfree(clues);
1122 sfree(cluevals);
1123 sfree(soln);
1125 return desc;
1128 /* ----------------------------------------------------------------------
1129 * Gameplay.
1132 static char *validate_desc(game_params *params, char *desc)
1134 int w = params->w, a = w*w;
1135 int *dsf;
1136 char *ret;
1137 const char *p = desc;
1138 int i;
1141 * Verify that the block structure makes sense.
1143 dsf = snew_dsf(a);
1144 ret = parse_block_structure(&p, w, dsf);
1145 if (ret) {
1146 sfree(dsf);
1147 return ret;
1150 if (*p != ',')
1151 return "Expected ',' after block structure description";
1152 p++;
1155 * Verify that the right number of clues are given, and that SUB
1156 * and DIV clues don't apply to blocks of the wrong size.
1158 for (i = 0; i < a; i++) {
1159 if (dsf_canonify(dsf, i) == i) {
1160 if (*p == 'a' || *p == 'm') {
1161 /* these clues need no validation */
1162 } else if (*p == 'd' || *p == 's') {
1163 if (dsf_size(dsf, i) != 2)
1164 return "Subtraction and division blocks must have area 2";
1165 } else if (!*p) {
1166 return "Too few clues for block structure";
1167 } else {
1168 return "Unrecognised clue type";
1170 p++;
1171 while (*p && isdigit((unsigned char)*p)) p++;
1174 if (*p)
1175 return "Too many clues for block structure";
1177 return NULL;
1180 static game_state *new_game(midend *me, game_params *params, char *desc)
1182 int w = params->w, a = w*w;
1183 game_state *state = snew(game_state);
1184 const char *p = desc;
1185 int i;
1187 state->par = *params; /* structure copy */
1188 state->clues = snew(struct clues);
1189 state->clues->refcount = 1;
1190 state->clues->w = w;
1191 state->clues->dsf = snew_dsf(a);
1192 parse_block_structure(&p, w, state->clues->dsf);
1194 assert(*p == ',');
1195 p++;
1197 state->clues->clues = snewn(a, long);
1198 for (i = 0; i < a; i++) {
1199 if (dsf_canonify(state->clues->dsf, i) == i) {
1200 long clue = 0;
1201 switch (*p) {
1202 case 'a':
1203 clue = C_ADD;
1204 break;
1205 case 'm':
1206 clue = C_MUL;
1207 break;
1208 case 's':
1209 clue = C_SUB;
1210 assert(dsf_size(state->clues->dsf, i) == 2);
1211 break;
1212 case 'd':
1213 clue = C_DIV;
1214 assert(dsf_size(state->clues->dsf, i) == 2);
1215 break;
1216 default:
1217 assert(!"Bad description in new_game");
1219 p++;
1220 clue |= atol(p);
1221 while (*p && isdigit((unsigned char)*p)) p++;
1222 state->clues->clues[i] = clue;
1223 } else
1224 state->clues->clues[i] = 0;
1227 state->grid = snewn(a, digit);
1228 state->pencil = snewn(a, int);
1229 for (i = 0; i < a; i++) {
1230 state->grid[i] = 0;
1231 state->pencil[i] = 0;
1234 state->completed = state->cheated = FALSE;
1236 return state;
1239 static game_state *dup_game(game_state *state)
1241 int w = state->par.w, a = w*w;
1242 game_state *ret = snew(game_state);
1244 ret->par = state->par; /* structure copy */
1246 ret->clues = state->clues;
1247 ret->clues->refcount++;
1249 ret->grid = snewn(a, digit);
1250 ret->pencil = snewn(a, int);
1251 memcpy(ret->grid, state->grid, a*sizeof(digit));
1252 memcpy(ret->pencil, state->pencil, a*sizeof(int));
1254 ret->completed = state->completed;
1255 ret->cheated = state->cheated;
1257 return ret;
1260 static void free_game(game_state *state)
1262 sfree(state->grid);
1263 sfree(state->pencil);
1264 if (--state->clues->refcount <= 0) {
1265 sfree(state->clues->dsf);
1266 sfree(state->clues->clues);
1267 sfree(state->clues);
1269 sfree(state);
1272 static char *solve_game(game_state *state, game_state *currstate,
1273 char *aux, char **error)
1275 int w = state->par.w, a = w*w;
1276 int i, ret;
1277 digit *soln;
1278 char *out;
1280 if (aux)
1281 return dupstr(aux);
1283 soln = snewn(a, digit);
1284 memset(soln, 0, a);
1286 ret = solver(w, state->clues->dsf, state->clues->clues,
1287 soln, DIFFCOUNT-1);
1289 if (ret == diff_impossible) {
1290 *error = "No solution exists for this puzzle";
1291 out = NULL;
1292 } else if (ret == diff_ambiguous) {
1293 *error = "Multiple solutions exist for this puzzle";
1294 out = NULL;
1295 } else {
1296 out = snewn(a+2, char);
1297 out[0] = 'S';
1298 for (i = 0; i < a; i++)
1299 out[i+1] = '0' + soln[i];
1300 out[a+1] = '\0';
1303 sfree(soln);
1304 return out;
1307 static int game_can_format_as_text_now(game_params *params)
1309 return TRUE;
1312 static char *game_text_format(game_state *state)
1314 return NULL;
1317 struct game_ui {
1319 * These are the coordinates of the currently highlighted
1320 * square on the grid, if hshow = 1.
1322 int hx, hy;
1324 * This indicates whether the current highlight is a
1325 * pencil-mark one or a real one.
1327 int hpencil;
1329 * This indicates whether or not we're showing the highlight
1330 * (used to be hx = hy = -1); important so that when we're
1331 * using the cursor keys it doesn't keep coming back at a
1332 * fixed position. When hshow = 1, pressing a valid number
1333 * or letter key or Space will enter that number or letter in the grid.
1335 int hshow;
1337 * This indicates whether we're using the highlight as a cursor;
1338 * it means that it doesn't vanish on a keypress, and that it is
1339 * allowed on immutable squares.
1341 int hcursor;
1344 static game_ui *new_ui(game_state *state)
1346 game_ui *ui = snew(game_ui);
1348 ui->hx = ui->hy = 0;
1349 ui->hpencil = ui->hshow = ui->hcursor = 0;
1351 return ui;
1354 static void free_ui(game_ui *ui)
1356 sfree(ui);
1359 static char *encode_ui(game_ui *ui)
1361 return NULL;
1364 static void decode_ui(game_ui *ui, char *encoding)
1368 static void game_changed_state(game_ui *ui, game_state *oldstate,
1369 game_state *newstate)
1371 int w = newstate->par.w;
1373 * We prevent pencil-mode highlighting of a filled square, unless
1374 * we're using the cursor keys. So if the user has just filled in
1375 * a square which we had a pencil-mode highlight in (by Undo, or
1376 * by Redo, or by Solve), then we cancel the highlight.
1378 if (ui->hshow && ui->hpencil && !ui->hcursor &&
1379 newstate->grid[ui->hy * w + ui->hx] != 0) {
1380 ui->hshow = 0;
1384 #define PREFERRED_TILESIZE 48
1385 #define TILESIZE (ds->tilesize)
1386 #define BORDER (TILESIZE / 2)
1387 #define GRIDEXTRA max((TILESIZE / 32),1)
1388 #define COORD(x) ((x)*TILESIZE + BORDER)
1389 #define FROMCOORD(x) (((x)+(TILESIZE-BORDER)) / TILESIZE - 1)
1391 #define FLASH_TIME 0.4F
1393 #define DF_PENCIL_SHIFT 16
1394 #define DF_ERR_LATIN 0x8000
1395 #define DF_ERR_CLUE 0x4000
1396 #define DF_HIGHLIGHT 0x2000
1397 #define DF_HIGHLIGHT_PENCIL 0x1000
1398 #define DF_DIGIT_MASK 0x000F
1400 struct game_drawstate {
1401 int tilesize;
1402 int started;
1403 long *tiles;
1404 long *errors;
1405 char *minus_sign, *times_sign, *divide_sign;
1408 static int check_errors(game_state *state, long *errors)
1410 int w = state->par.w, a = w*w;
1411 int i, j, x, y, errs = FALSE;
1412 long *cluevals;
1413 int *full;
1415 cluevals = snewn(a, long);
1416 full = snewn(a, int);
1418 if (errors)
1419 for (i = 0; i < a; i++) {
1420 errors[i] = 0;
1421 full[i] = TRUE;
1424 for (i = 0; i < a; i++) {
1425 long clue;
1427 j = dsf_canonify(state->clues->dsf, i);
1428 if (j == i) {
1429 cluevals[i] = state->grid[i];
1430 } else {
1431 clue = state->clues->clues[j] & CMASK;
1433 switch (clue) {
1434 case C_ADD:
1435 cluevals[j] += state->grid[i];
1436 break;
1437 case C_MUL:
1438 cluevals[j] *= state->grid[i];
1439 break;
1440 case C_SUB:
1441 cluevals[j] = abs(cluevals[j] - state->grid[i]);
1442 break;
1443 case C_DIV:
1445 int d1 = min(cluevals[j], state->grid[i]);
1446 int d2 = max(cluevals[j], state->grid[i]);
1447 if (d1 == 0 || d2 % d1 != 0)
1448 cluevals[j] = 0;
1449 else
1450 cluevals[j] = d2 / d1;
1452 break;
1456 if (!state->grid[i])
1457 full[j] = FALSE;
1460 for (i = 0; i < a; i++) {
1461 j = dsf_canonify(state->clues->dsf, i);
1462 if (j == i) {
1463 if ((state->clues->clues[j] & ~CMASK) != cluevals[i]) {
1464 errs = TRUE;
1465 if (errors && full[j])
1466 errors[j] |= DF_ERR_CLUE;
1471 sfree(cluevals);
1472 sfree(full);
1474 for (y = 0; y < w; y++) {
1475 int mask = 0, errmask = 0;
1476 for (x = 0; x < w; x++) {
1477 int bit = 1 << state->grid[y*w+x];
1478 errmask |= (mask & bit);
1479 mask |= bit;
1482 if (mask != (1 << (w+1)) - (1 << 1)) {
1483 errs = TRUE;
1484 errmask &= ~1;
1485 if (errors) {
1486 for (x = 0; x < w; x++)
1487 if (errmask & (1 << state->grid[y*w+x]))
1488 errors[y*w+x] |= DF_ERR_LATIN;
1493 for (x = 0; x < w; x++) {
1494 int mask = 0, errmask = 0;
1495 for (y = 0; y < w; y++) {
1496 int bit = 1 << state->grid[y*w+x];
1497 errmask |= (mask & bit);
1498 mask |= bit;
1501 if (mask != (1 << (w+1)) - (1 << 1)) {
1502 errs = TRUE;
1503 errmask &= ~1;
1504 if (errors) {
1505 for (y = 0; y < w; y++)
1506 if (errmask & (1 << state->grid[y*w+x]))
1507 errors[y*w+x] |= DF_ERR_LATIN;
1512 return errs;
1515 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1516 int x, int y, int button)
1518 int w = state->par.w;
1519 int tx, ty;
1520 char buf[80];
1522 button &= ~MOD_MASK;
1524 tx = FROMCOORD(x);
1525 ty = FROMCOORD(y);
1527 if (tx >= 0 && tx < w && ty >= 0 && ty < w) {
1528 if (button == LEFT_BUTTON) {
1529 if (tx == ui->hx && ty == ui->hy &&
1530 ui->hshow && ui->hpencil == 0) {
1531 ui->hshow = 0;
1532 } else {
1533 ui->hx = tx;
1534 ui->hy = ty;
1535 ui->hshow = 1;
1536 ui->hpencil = 0;
1538 ui->hcursor = 0;
1539 return ""; /* UI activity occurred */
1541 if (button == RIGHT_BUTTON) {
1543 * Pencil-mode highlighting for non filled squares.
1545 if (state->grid[ty*w+tx] == 0) {
1546 if (tx == ui->hx && ty == ui->hy &&
1547 ui->hshow && ui->hpencil) {
1548 ui->hshow = 0;
1549 } else {
1550 ui->hpencil = 1;
1551 ui->hx = tx;
1552 ui->hy = ty;
1553 ui->hshow = 1;
1555 } else {
1556 ui->hshow = 0;
1558 ui->hcursor = 0;
1559 return ""; /* UI activity occurred */
1562 if (IS_CURSOR_MOVE(button)) {
1563 move_cursor(button, &ui->hx, &ui->hy, w, w, 0);
1564 ui->hshow = ui->hcursor = 1;
1565 return "";
1567 if (ui->hshow &&
1568 (button == CURSOR_SELECT)) {
1569 ui->hpencil = 1 - ui->hpencil;
1570 ui->hcursor = 1;
1571 return "";
1574 if (ui->hshow &&
1575 ((button >= '0' && button <= '9' && button - '0' <= w) ||
1576 button == CURSOR_SELECT2 || button == '\b')) {
1577 int n = button - '0';
1578 if (button == CURSOR_SELECT2 || button == '\b')
1579 n = 0;
1582 * Can't make pencil marks in a filled square. This can only
1583 * become highlighted if we're using cursor keys.
1585 if (ui->hpencil && state->grid[ui->hy*w+ui->hx])
1586 return NULL;
1588 sprintf(buf, "%c%d,%d,%d",
1589 (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
1591 if (!ui->hcursor) ui->hshow = 0;
1593 return dupstr(buf);
1596 if (button == 'M' || button == 'm')
1597 return dupstr("M");
1599 return NULL;
1602 static game_state *execute_move(game_state *from, char *move)
1604 int w = from->par.w, a = w*w;
1605 game_state *ret;
1606 int x, y, i, n;
1608 if (move[0] == 'S') {
1609 ret = dup_game(from);
1610 ret->completed = ret->cheated = TRUE;
1612 for (i = 0; i < a; i++) {
1613 if (move[i+1] < '1' || move[i+1] > '0'+w) {
1614 free_game(ret);
1615 return NULL;
1617 ret->grid[i] = move[i+1] - '0';
1618 ret->pencil[i] = 0;
1621 if (move[a+1] != '\0') {
1622 free_game(ret);
1623 return NULL;
1626 return ret;
1627 } else if ((move[0] == 'P' || move[0] == 'R') &&
1628 sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
1629 x >= 0 && x < w && y >= 0 && y < w && n >= 0 && n <= w) {
1631 ret = dup_game(from);
1632 if (move[0] == 'P' && n > 0) {
1633 ret->pencil[y*w+x] ^= 1 << n;
1634 } else {
1635 ret->grid[y*w+x] = n;
1636 ret->pencil[y*w+x] = 0;
1638 if (!ret->completed && !check_errors(ret, NULL))
1639 ret->completed = TRUE;
1641 return ret;
1642 } else if (move[0] == 'M') {
1644 * Fill in absolutely all pencil marks everywhere. (I
1645 * wouldn't use this for actual play, but it's a handy
1646 * starting point when following through a set of
1647 * diagnostics output by the standalone solver.)
1649 ret = dup_game(from);
1650 for (i = 0; i < a; i++) {
1651 if (!ret->grid[i])
1652 ret->pencil[i] = (1 << (w+1)) - (1 << 1);
1654 return ret;
1655 } else
1656 return NULL; /* couldn't parse move string */
1659 /* ----------------------------------------------------------------------
1660 * Drawing routines.
1663 #define SIZE(w) ((w) * TILESIZE + 2*BORDER)
1665 static void game_compute_size(game_params *params, int tilesize,
1666 int *x, int *y)
1668 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1669 struct { int tilesize; } ads, *ds = &ads;
1670 ads.tilesize = tilesize;
1672 *x = *y = SIZE(params->w);
1675 static void game_set_size(drawing *dr, game_drawstate *ds,
1676 game_params *params, int tilesize)
1678 ds->tilesize = tilesize;
1681 static float *game_colours(frontend *fe, int *ncolours)
1683 float *ret = snewn(3 * NCOLOURS, float);
1685 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1687 ret[COL_GRID * 3 + 0] = 0.0F;
1688 ret[COL_GRID * 3 + 1] = 0.0F;
1689 ret[COL_GRID * 3 + 2] = 0.0F;
1691 ret[COL_USER * 3 + 0] = 0.0F;
1692 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1693 ret[COL_USER * 3 + 2] = 0.0F;
1695 ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
1696 ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
1697 ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
1699 ret[COL_ERROR * 3 + 0] = 1.0F;
1700 ret[COL_ERROR * 3 + 1] = 0.0F;
1701 ret[COL_ERROR * 3 + 2] = 0.0F;
1703 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1704 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1705 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
1707 *ncolours = NCOLOURS;
1708 return ret;
1711 static const char *const minus_signs[] = { "\xE2\x88\x92", "-" };
1712 static const char *const times_signs[] = { "\xC3\x97", "*" };
1713 static const char *const divide_signs[] = { "\xC3\xB7", "/" };
1715 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1717 int w = state->par.w, a = w*w;
1718 struct game_drawstate *ds = snew(struct game_drawstate);
1719 int i;
1721 ds->tilesize = 0;
1722 ds->started = FALSE;
1723 ds->tiles = snewn(a, long);
1724 for (i = 0; i < a; i++)
1725 ds->tiles[i] = -1;
1726 ds->errors = snewn(a, long);
1727 ds->minus_sign = text_fallback(dr, minus_signs, lenof(minus_signs));
1728 ds->times_sign = text_fallback(dr, times_signs, lenof(times_signs));
1729 ds->divide_sign = text_fallback(dr, divide_signs, lenof(divide_signs));
1731 return ds;
1734 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1736 sfree(ds->tiles);
1737 sfree(ds->errors);
1738 sfree(ds->minus_sign);
1739 sfree(ds->times_sign);
1740 sfree(ds->divide_sign);
1741 sfree(ds);
1744 static void draw_tile(drawing *dr, game_drawstate *ds, struct clues *clues,
1745 int x, int y, long tile)
1747 int w = clues->w /* , a = w*w */;
1748 int tx, ty, tw, th;
1749 int cx, cy, cw, ch;
1750 char str[64];
1752 tx = BORDER + x * TILESIZE + 1 + GRIDEXTRA;
1753 ty = BORDER + y * TILESIZE + 1 + GRIDEXTRA;
1755 cx = tx;
1756 cy = ty;
1757 cw = tw = TILESIZE-1-2*GRIDEXTRA;
1758 ch = th = TILESIZE-1-2*GRIDEXTRA;
1760 if (x > 0 && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, y*w+x-1))
1761 cx -= GRIDEXTRA, cw += GRIDEXTRA;
1762 if (x+1 < w && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, y*w+x+1))
1763 cw += GRIDEXTRA;
1764 if (y > 0 && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, (y-1)*w+x))
1765 cy -= GRIDEXTRA, ch += GRIDEXTRA;
1766 if (y+1 < w && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, (y+1)*w+x))
1767 ch += GRIDEXTRA;
1769 clip(dr, cx, cy, cw, ch);
1771 /* background needs erasing */
1772 draw_rect(dr, cx, cy, cw, ch,
1773 (tile & DF_HIGHLIGHT) ? COL_HIGHLIGHT : COL_BACKGROUND);
1776 * Draw the corners of thick lines in corner-adjacent squares,
1777 * which jut into this square by one pixel.
1779 if (x > 0 && y > 0 && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y-1)*w+x-1))
1780 draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1781 if (x+1 < w && y > 0 && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y-1)*w+x+1))
1782 draw_rect(dr, tx+TILESIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1783 if (x > 0 && y+1 < w && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y+1)*w+x-1))
1784 draw_rect(dr, tx-GRIDEXTRA, ty+TILESIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1785 if (x+1 < w && y+1 < w && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y+1)*w+x+1))
1786 draw_rect(dr, tx+TILESIZE-1-2*GRIDEXTRA, ty+TILESIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1788 /* pencil-mode highlight */
1789 if (tile & DF_HIGHLIGHT_PENCIL) {
1790 int coords[6];
1791 coords[0] = cx;
1792 coords[1] = cy;
1793 coords[2] = cx+cw/2;
1794 coords[3] = cy;
1795 coords[4] = cx;
1796 coords[5] = cy+ch/2;
1797 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1800 /* Draw the box clue. */
1801 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1802 long clue = clues->clues[y*w+x];
1803 long cluetype = clue & CMASK, clueval = clue & ~CMASK;
1804 int size = dsf_size(clues->dsf, y*w+x);
1806 * Special case of clue-drawing: a box with only one square
1807 * is written as just the number, with no operation, because
1808 * it doesn't matter whether the operation is ADD or MUL.
1809 * The generation code above should never produce puzzles
1810 * containing such a thing - I think they're inelegant - but
1811 * it's possible to type in game IDs from elsewhere, so I
1812 * want to display them right if so.
1814 sprintf (str, "%ld%s", clueval,
1815 (size == 1 ? "" :
1816 cluetype == C_ADD ? "+" :
1817 cluetype == C_SUB ? ds->minus_sign :
1818 cluetype == C_MUL ? ds->times_sign :
1819 /* cluetype == C_DIV ? */ ds->divide_sign));
1820 draw_text(dr, tx + GRIDEXTRA * 2, ty + GRIDEXTRA * 2 + TILESIZE/4,
1821 FONT_VARIABLE, TILESIZE/4, ALIGN_VNORMAL | ALIGN_HLEFT,
1822 (tile & DF_ERR_CLUE ? COL_ERROR : COL_GRID), str);
1825 /* new number needs drawing? */
1826 if (tile & DF_DIGIT_MASK) {
1827 str[1] = '\0';
1828 str[0] = (tile & DF_DIGIT_MASK) + '0';
1829 draw_text(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1830 FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
1831 (tile & DF_ERR_LATIN) ? COL_ERROR : COL_USER, str);
1832 } else {
1833 int i, j, npencil;
1834 int pl, pr, pt, pb;
1835 float bestsize;
1836 int pw, ph, minph, pbest, fontsize;
1838 /* Count the pencil marks required. */
1839 for (i = 1, npencil = 0; i <= w; i++)
1840 if (tile & (1L << (i + DF_PENCIL_SHIFT)))
1841 npencil++;
1842 if (npencil) {
1844 minph = 2;
1847 * Determine the bounding rectangle within which we're going
1848 * to put the pencil marks.
1850 /* Start with the whole square */
1851 pl = tx + GRIDEXTRA;
1852 pr = pl + TILESIZE - GRIDEXTRA;
1853 pt = ty + GRIDEXTRA;
1854 pb = pt + TILESIZE - GRIDEXTRA;
1855 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1857 * Make space for the clue text.
1859 pt += TILESIZE/4;
1860 /* minph--; */
1864 * We arrange our pencil marks in a grid layout, with
1865 * the number of rows and columns adjusted to allow the
1866 * maximum font size.
1868 * So now we work out what the grid size ought to be.
1870 bestsize = 0.0;
1871 pbest = 0;
1872 /* Minimum */
1873 for (pw = 3; pw < max(npencil,4); pw++) {
1874 float fw, fh, fs;
1876 ph = (npencil + pw - 1) / pw;
1877 ph = max(ph, minph);
1878 fw = (pr - pl) / (float)pw;
1879 fh = (pb - pt) / (float)ph;
1880 fs = min(fw, fh);
1881 if (fs > bestsize) {
1882 bestsize = fs;
1883 pbest = pw;
1886 assert(pbest > 0);
1887 pw = pbest;
1888 ph = (npencil + pw - 1) / pw;
1889 ph = max(ph, minph);
1892 * Now we've got our grid dimensions, work out the pixel
1893 * size of a grid element, and round it to the nearest
1894 * pixel. (We don't want rounding errors to make the
1895 * grid look uneven at low pixel sizes.)
1897 fontsize = min((pr - pl) / pw, (pb - pt) / ph);
1900 * Centre the resulting figure in the square.
1902 pl = tx + (TILESIZE - fontsize * pw) / 2;
1903 pt = ty + (TILESIZE - fontsize * ph) / 2;
1906 * And move it down a bit if it's collided with some
1907 * clue text.
1909 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1910 pt = max(pt, ty + GRIDEXTRA * 3 + TILESIZE/4);
1914 * Now actually draw the pencil marks.
1916 for (i = 1, j = 0; i <= w; i++)
1917 if (tile & (1L << (i + DF_PENCIL_SHIFT))) {
1918 int dx = j % pw, dy = j / pw;
1920 str[1] = '\0';
1921 str[0] = i + '0';
1922 draw_text(dr, pl + fontsize * (2*dx+1) / 2,
1923 pt + fontsize * (2*dy+1) / 2,
1924 FONT_VARIABLE, fontsize,
1925 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
1926 j++;
1931 unclip(dr);
1933 draw_update(dr, cx, cy, cw, ch);
1936 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1937 game_state *state, int dir, game_ui *ui,
1938 float animtime, float flashtime)
1940 int w = state->par.w /*, a = w*w */;
1941 int x, y;
1943 if (!ds->started) {
1945 * The initial contents of the window are not guaranteed and
1946 * can vary with front ends. To be on the safe side, all
1947 * games should start by drawing a big background-colour
1948 * rectangle covering the whole window.
1950 draw_rect(dr, 0, 0, SIZE(w), SIZE(w), COL_BACKGROUND);
1953 * Big containing rectangle.
1955 draw_rect(dr, COORD(0) - GRIDEXTRA, COORD(0) - GRIDEXTRA,
1956 w*TILESIZE+1+GRIDEXTRA*2, w*TILESIZE+1+GRIDEXTRA*2,
1957 COL_GRID);
1959 draw_update(dr, 0, 0, SIZE(w), SIZE(w));
1961 ds->started = TRUE;
1964 check_errors(state, ds->errors);
1966 for (y = 0; y < w; y++) {
1967 for (x = 0; x < w; x++) {
1968 long tile = 0L;
1970 if (state->grid[y*w+x])
1971 tile = state->grid[y*w+x];
1972 else
1973 tile = (long)state->pencil[y*w+x] << DF_PENCIL_SHIFT;
1975 if (ui->hshow && ui->hx == x && ui->hy == y)
1976 tile |= (ui->hpencil ? DF_HIGHLIGHT_PENCIL : DF_HIGHLIGHT);
1978 if (flashtime > 0 &&
1979 (flashtime <= FLASH_TIME/3 ||
1980 flashtime >= FLASH_TIME*2/3))
1981 tile |= DF_HIGHLIGHT; /* completion flash */
1983 tile |= ds->errors[y*w+x];
1985 if (ds->tiles[y*w+x] != tile) {
1986 ds->tiles[y*w+x] = tile;
1987 draw_tile(dr, ds, state->clues, x, y, tile);
1993 static float game_anim_length(game_state *oldstate, game_state *newstate,
1994 int dir, game_ui *ui)
1996 return 0.0F;
1999 static float game_flash_length(game_state *oldstate, game_state *newstate,
2000 int dir, game_ui *ui)
2002 if (!oldstate->completed && newstate->completed &&
2003 !oldstate->cheated && !newstate->cheated)
2004 return FLASH_TIME;
2005 return 0.0F;
2008 static int game_status(game_state *state)
2010 return state->completed ? +1 : 0;
2013 static int game_timing_state(game_state *state, game_ui *ui)
2015 if (state->completed)
2016 return FALSE;
2017 return TRUE;
2020 static void game_print_size(game_params *params, float *x, float *y)
2022 int pw, ph;
2025 * We use 9mm squares by default, like Solo.
2027 game_compute_size(params, 900, &pw, &ph);
2028 *x = pw / 100.0F;
2029 *y = ph / 100.0F;
2033 * Subfunction to draw the thick lines between cells. In order to do
2034 * this using the line-drawing rather than rectangle-drawing API (so
2035 * as to get line thicknesses to scale correctly) and yet have
2036 * correctly mitred joins between lines, we must do this by tracing
2037 * the boundary of each sub-block and drawing it in one go as a
2038 * single polygon.
2040 static void outline_block_structure(drawing *dr, game_drawstate *ds,
2041 int w, int *dsf, int ink)
2043 int a = w*w;
2044 int *coords;
2045 int i, n;
2046 int x, y, dx, dy, sx, sy, sdx, sdy;
2048 coords = snewn(4*a, int);
2051 * Iterate over all the blocks.
2053 for (i = 0; i < a; i++) {
2054 if (dsf_canonify(dsf, i) != i)
2055 continue;
2058 * For each block, we need a starting square within it which
2059 * has a boundary at the left. Conveniently, we have one
2060 * right here, by construction.
2062 x = i % w;
2063 y = i / w;
2064 dx = -1;
2065 dy = 0;
2068 * Now begin tracing round the perimeter. At all
2069 * times, (x,y) describes some square within the
2070 * block, and (x+dx,y+dy) is some adjacent square
2071 * outside it; so the edge between those two squares
2072 * is always an edge of the block.
2074 sx = x, sy = y, sdx = dx, sdy = dy; /* save starting position */
2075 n = 0;
2076 do {
2077 int cx, cy, tx, ty, nin;
2080 * Advance to the next edge, by looking at the two
2081 * squares beyond it. If they're both outside the block,
2082 * we turn right (by leaving x,y the same and rotating
2083 * dx,dy clockwise); if they're both inside, we turn
2084 * left (by rotating dx,dy anticlockwise and contriving
2085 * to leave x+dx,y+dy unchanged); if one of each, we go
2086 * straight on (and may enforce by assertion that
2087 * they're one of each the _right_ way round).
2089 nin = 0;
2090 tx = x - dy + dx;
2091 ty = y + dx + dy;
2092 nin += (tx >= 0 && tx < w && ty >= 0 && ty < w &&
2093 dsf_canonify(dsf, ty*w+tx) == i);
2094 tx = x - dy;
2095 ty = y + dx;
2096 nin += (tx >= 0 && tx < w && ty >= 0 && ty < w &&
2097 dsf_canonify(dsf, ty*w+tx) == i);
2098 if (nin == 0) {
2100 * Turn right.
2102 int tmp;
2103 tmp = dx;
2104 dx = -dy;
2105 dy = tmp;
2106 } else if (nin == 2) {
2108 * Turn left.
2110 int tmp;
2112 x += dx;
2113 y += dy;
2115 tmp = dx;
2116 dx = dy;
2117 dy = -tmp;
2119 x -= dx;
2120 y -= dy;
2121 } else {
2123 * Go straight on.
2125 x -= dy;
2126 y += dx;
2130 * Now enforce by assertion that we ended up
2131 * somewhere sensible.
2133 assert(x >= 0 && x < w && y >= 0 && y < w &&
2134 dsf_canonify(dsf, y*w+x) == i);
2135 assert(x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= w ||
2136 dsf_canonify(dsf, (y+dy)*w+(x+dx)) != i);
2139 * Record the point we just went past at one end of the
2140 * edge. To do this, we translate (x,y) down and right
2141 * by half a unit (so they're describing a point in the
2142 * _centre_ of the square) and then translate back again
2143 * in a manner rotated by dy and dx.
2145 assert(n < 2*w+2);
2146 cx = ((2*x+1) + dy + dx) / 2;
2147 cy = ((2*y+1) - dx + dy) / 2;
2148 coords[2*n+0] = BORDER + cx * TILESIZE;
2149 coords[2*n+1] = BORDER + cy * TILESIZE;
2150 n++;
2152 } while (x != sx || y != sy || dx != sdx || dy != sdy);
2155 * That's our polygon; now draw it.
2157 draw_polygon(dr, coords, n, -1, ink);
2160 sfree(coords);
2163 static void game_print(drawing *dr, game_state *state, int tilesize)
2165 int w = state->par.w;
2166 int ink = print_mono_colour(dr, 0);
2167 int x, y;
2168 char *minus_sign, *times_sign, *divide_sign;
2170 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2171 game_drawstate ads, *ds = &ads;
2172 game_set_size(dr, ds, NULL, tilesize);
2174 minus_sign = text_fallback(dr, minus_signs, lenof(minus_signs));
2175 times_sign = text_fallback(dr, times_signs, lenof(times_signs));
2176 divide_sign = text_fallback(dr, divide_signs, lenof(divide_signs));
2179 * Border.
2181 print_line_width(dr, 3 * TILESIZE / 40);
2182 draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, w*TILESIZE, ink);
2185 * Main grid.
2187 for (x = 1; x < w; x++) {
2188 print_line_width(dr, TILESIZE / 40);
2189 draw_line(dr, BORDER+x*TILESIZE, BORDER,
2190 BORDER+x*TILESIZE, BORDER+w*TILESIZE, ink);
2192 for (y = 1; y < w; y++) {
2193 print_line_width(dr, TILESIZE / 40);
2194 draw_line(dr, BORDER, BORDER+y*TILESIZE,
2195 BORDER+w*TILESIZE, BORDER+y*TILESIZE, ink);
2199 * Thick lines between cells.
2201 print_line_width(dr, 3 * TILESIZE / 40);
2202 outline_block_structure(dr, ds, w, state->clues->dsf, ink);
2205 * Clues.
2207 for (y = 0; y < w; y++)
2208 for (x = 0; x < w; x++)
2209 if (dsf_canonify(state->clues->dsf, y*w+x) == y*w+x) {
2210 long clue = state->clues->clues[y*w+x];
2211 long cluetype = clue & CMASK, clueval = clue & ~CMASK;
2212 int size = dsf_size(state->clues->dsf, y*w+x);
2213 char str[64];
2216 * As in the drawing code, we omit the operator for
2217 * blocks of area 1.
2219 sprintf (str, "%ld%s", clueval,
2220 (size == 1 ? "" :
2221 cluetype == C_ADD ? "+" :
2222 cluetype == C_SUB ? minus_sign :
2223 cluetype == C_MUL ? times_sign :
2224 /* cluetype == C_DIV ? */ divide_sign));
2226 draw_text(dr,
2227 BORDER+x*TILESIZE + 5*TILESIZE/80,
2228 BORDER+y*TILESIZE + 20*TILESIZE/80,
2229 FONT_VARIABLE, TILESIZE/4,
2230 ALIGN_VNORMAL | ALIGN_HLEFT,
2231 ink, str);
2235 * Numbers for the solution, if any.
2237 for (y = 0; y < w; y++)
2238 for (x = 0; x < w; x++)
2239 if (state->grid[y*w+x]) {
2240 char str[2];
2241 str[1] = '\0';
2242 str[0] = state->grid[y*w+x] + '0';
2243 draw_text(dr, BORDER + x*TILESIZE + TILESIZE/2,
2244 BORDER + y*TILESIZE + TILESIZE/2,
2245 FONT_VARIABLE, TILESIZE/2,
2246 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
2249 sfree(minus_sign);
2250 sfree(times_sign);
2251 sfree(divide_sign);
2254 #ifdef COMBINED
2255 #define thegame keen
2256 #endif
2258 const struct game thegame = {
2259 "Keen", "games.keen", "keen",
2260 default_params,
2261 game_fetch_preset,
2262 decode_params,
2263 encode_params,
2264 free_params,
2265 dup_params,
2266 TRUE, game_configure, custom_params,
2267 validate_params,
2268 new_game_desc,
2269 validate_desc,
2270 new_game,
2271 dup_game,
2272 free_game,
2273 TRUE, solve_game,
2274 FALSE, game_can_format_as_text_now, game_text_format,
2275 new_ui,
2276 free_ui,
2277 encode_ui,
2278 decode_ui,
2279 game_changed_state,
2280 interpret_move,
2281 execute_move,
2282 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2283 game_colours,
2284 game_new_drawstate,
2285 game_free_drawstate,
2286 game_redraw,
2287 game_anim_length,
2288 game_flash_length,
2289 game_status,
2290 TRUE, FALSE, game_print_size, game_print,
2291 FALSE, /* wants_statusbar */
2292 FALSE, game_timing_state,
2293 REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */
2296 #ifdef STANDALONE_SOLVER
2298 #include <stdarg.h>
2300 int main(int argc, char **argv)
2302 game_params *p;
2303 game_state *s;
2304 char *id = NULL, *desc, *err;
2305 int grade = FALSE;
2306 int ret, diff, really_show_working = FALSE;
2308 while (--argc > 0) {
2309 char *p = *++argv;
2310 if (!strcmp(p, "-v")) {
2311 really_show_working = TRUE;
2312 } else if (!strcmp(p, "-g")) {
2313 grade = TRUE;
2314 } else if (*p == '-') {
2315 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2316 return 1;
2317 } else {
2318 id = p;
2322 if (!id) {
2323 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2324 return 1;
2327 desc = strchr(id, ':');
2328 if (!desc) {
2329 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2330 return 1;
2332 *desc++ = '\0';
2334 p = default_params();
2335 decode_params(p, id);
2336 err = validate_desc(p, desc);
2337 if (err) {
2338 fprintf(stderr, "%s: %s\n", argv[0], err);
2339 return 1;
2341 s = new_game(NULL, p, desc);
2344 * When solving an Easy puzzle, we don't want to bother the
2345 * user with Hard-level deductions. For this reason, we grade
2346 * the puzzle internally before doing anything else.
2348 ret = -1; /* placate optimiser */
2349 solver_show_working = FALSE;
2350 for (diff = 0; diff < DIFFCOUNT; diff++) {
2351 memset(s->grid, 0, p->w * p->w);
2352 ret = solver(p->w, s->clues->dsf, s->clues->clues,
2353 s->grid, diff);
2354 if (ret <= diff)
2355 break;
2358 if (diff == DIFFCOUNT) {
2359 if (grade)
2360 printf("Difficulty rating: ambiguous\n");
2361 else
2362 printf("Unable to find a unique solution\n");
2363 } else {
2364 if (grade) {
2365 if (ret == diff_impossible)
2366 printf("Difficulty rating: impossible (no solution exists)\n");
2367 else
2368 printf("Difficulty rating: %s\n", keen_diffnames[ret]);
2369 } else {
2370 solver_show_working = really_show_working;
2371 memset(s->grid, 0, p->w * p->w);
2372 ret = solver(p->w, s->clues->dsf, s->clues->clues,
2373 s->grid, diff);
2374 if (ret != diff)
2375 printf("Puzzle is inconsistent\n");
2376 else {
2378 * We don't have a game_text_format for this game,
2379 * so we have to output the solution manually.
2381 int x, y;
2382 for (y = 0; y < p->w; y++) {
2383 for (x = 0; x < p->w; x++) {
2384 printf("%s%c", x>0?" ":"", '0' + s->grid[y*p->w+x]);
2386 putchar('\n');
2392 return 0;
2395 #endif
2397 /* vim: set shiftwidth=4 tabstop=8: */