Imported Upstream version 9411
[sgt-puzzles/ydirson.git] / cube.c
blobcac464076e047069edfeecaf48427df03774fa37
1 /*
2 * cube.c: Cube game.
3 */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
12 #include "puzzles.h"
14 #define MAXVERTICES 20
15 #define MAXFACES 20
16 #define MAXORDER 4
17 struct solid {
18 int nvertices;
19 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
20 int order;
21 int nfaces;
22 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
23 float normals[MAXFACES * 3]; /* 3*npoints vector components */
24 float shear; /* isometric shear for nice drawing */
25 float border; /* border required around arena */
28 static const struct solid s_tetrahedron = {
31 0.0F, -0.57735026919F, -0.20412414523F,
32 -0.5F, 0.28867513459F, -0.20412414523F,
33 0.0F, -0.0F, 0.6123724357F,
34 0.5F, 0.28867513459F, -0.20412414523F,
36 3, 4,
38 0,2,1, 3,1,2, 2,0,3, 1,3,0
41 -0.816496580928F, -0.471404520791F, 0.333333333334F,
42 0.0F, 0.942809041583F, 0.333333333333F,
43 0.816496580928F, -0.471404520791F, 0.333333333334F,
44 0.0F, 0.0F, -1.0F,
46 0.0F, 0.3F
49 static const struct solid s_cube = {
52 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
53 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
54 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
55 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
57 4, 6,
59 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
62 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
63 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
64 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
66 0.3F, 0.5F
69 static const struct solid s_octahedron = {
72 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
73 0.5F, 0.28867513459472505F, -0.4082482904638664F,
74 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
75 0.5F, -0.28867513459472505F, 0.4082482904638664F,
76 0.0F, -0.57735026918945009F, -0.4082482904638664F,
77 0.0F, 0.57735026918945009F, 0.4082482904638664F,
79 3, 8,
81 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
84 -0.816496580928F, -0.471404520791F, -0.333333333334F,
85 -0.816496580928F, 0.471404520791F, 0.333333333334F,
86 0.0F, -0.942809041583F, 0.333333333333F,
87 0.0F, 0.0F, 1.0F,
88 0.0F, 0.0F, -1.0F,
89 0.0F, 0.942809041583F, -0.333333333333F,
90 0.816496580928F, -0.471404520791F, -0.333333333334F,
91 0.816496580928F, 0.471404520791F, 0.333333333334F,
93 0.0F, 0.5F
96 static const struct solid s_icosahedron = {
97 12,
99 0.0F, 0.57735026919F, 0.75576131408F,
100 0.0F, -0.93417235896F, 0.17841104489F,
101 0.0F, 0.93417235896F, -0.17841104489F,
102 0.0F, -0.57735026919F, -0.75576131408F,
103 -0.5F, -0.28867513459F, 0.75576131408F,
104 -0.5F, 0.28867513459F, -0.75576131408F,
105 0.5F, -0.28867513459F, 0.75576131408F,
106 0.5F, 0.28867513459F, -0.75576131408F,
107 -0.80901699437F, 0.46708617948F, 0.17841104489F,
108 0.80901699437F, 0.46708617948F, 0.17841104489F,
109 -0.80901699437F, -0.46708617948F, -0.17841104489F,
110 0.80901699437F, -0.46708617948F, -0.17841104489F,
112 3, 20,
114 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
115 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
116 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
117 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
120 -0.356822089773F, 0.87267799625F, 0.333333333333F,
121 0.356822089773F, 0.87267799625F, 0.333333333333F,
122 -0.356822089773F, -0.87267799625F, -0.333333333333F,
123 0.356822089773F, -0.87267799625F, -0.333333333333F,
124 -0.0F, 0.0F, 1.0F,
125 0.0F, -0.666666666667F, 0.745355992501F,
126 0.0F, 0.666666666667F, -0.745355992501F,
127 0.0F, 0.0F, -1.0F,
128 -0.934172358963F, -0.12732200375F, 0.333333333333F,
129 -0.934172358963F, 0.12732200375F, -0.333333333333F,
130 0.934172358963F, -0.12732200375F, 0.333333333333F,
131 0.934172358963F, 0.12732200375F, -0.333333333333F,
132 -0.57735026919F, 0.333333333334F, 0.745355992501F,
133 0.57735026919F, 0.333333333334F, 0.745355992501F,
134 -0.57735026919F, -0.745355992501F, 0.333333333334F,
135 0.57735026919F, -0.745355992501F, 0.333333333334F,
136 -0.57735026919F, 0.745355992501F, -0.333333333334F,
137 0.57735026919F, 0.745355992501F, -0.333333333334F,
138 -0.57735026919F, -0.333333333334F, -0.745355992501F,
139 0.57735026919F, -0.333333333334F, -0.745355992501F,
141 0.0F, 0.8F
144 enum {
145 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
147 static const struct solid *solids[] = {
148 &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
151 enum {
152 COL_BACKGROUND,
153 COL_BORDER,
154 COL_BLUE,
155 NCOLOURS
158 enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
160 #define PREFERRED_GRID_SCALE 48
161 #define GRID_SCALE (ds->gridscale)
162 #define ROLLTIME 0.13F
164 #define SQ(x) ( (x) * (x) )
166 #define MATMUL(ra,m,a) do { \
167 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
168 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
169 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
170 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
171 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
172 } while (0)
174 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
176 struct grid_square {
177 float x, y;
178 int npoints;
179 float points[8]; /* maximum */
180 int directions[8]; /* bit masks showing point pairs */
181 int flip;
182 int tetra_class;
185 struct game_params {
186 int solid;
188 * Grid dimensions. For a square grid these are width and
189 * height respectively; otherwise the grid is a hexagon, with
190 * the top side and the two lower diagonals having length d1
191 * and the remaining three sides having length d2 (so that
192 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
194 int d1, d2;
197 typedef struct game_grid game_grid;
198 struct game_grid {
199 int refcount;
200 struct grid_square *squares;
201 int nsquares;
204 #define SET_SQUARE(state, i, val) \
205 ((state)->bluemask[(i)/32] &= ~(1 << ((i)%32)), \
206 (state)->bluemask[(i)/32] |= ((!!val) << ((i)%32)))
207 #define GET_SQUARE(state, i) \
208 (((state)->bluemask[(i)/32] >> ((i)%32)) & 1)
210 struct game_state {
211 struct game_params params;
212 const struct solid *solid;
213 int *facecolours;
214 game_grid *grid;
215 unsigned long *bluemask;
216 int current; /* index of current grid square */
217 int sgkey[2]; /* key-point indices into grid sq */
218 int dgkey[2]; /* key-point indices into grid sq */
219 int spkey[2]; /* key-point indices into polyhedron */
220 int dpkey[2]; /* key-point indices into polyhedron */
221 int previous;
222 float angle;
223 int completed;
224 int movecount;
227 static game_params *default_params(void)
229 game_params *ret = snew(game_params);
231 ret->solid = CUBE;
232 ret->d1 = 4;
233 ret->d2 = 4;
235 return ret;
238 static int game_fetch_preset(int i, char **name, game_params **params)
240 game_params *ret = snew(game_params);
241 char *str;
243 switch (i) {
244 case 0:
245 str = "Cube";
246 ret->solid = CUBE;
247 ret->d1 = 4;
248 ret->d2 = 4;
249 break;
250 case 1:
251 str = "Tetrahedron";
252 ret->solid = TETRAHEDRON;
253 ret->d1 = 1;
254 ret->d2 = 2;
255 break;
256 case 2:
257 str = "Octahedron";
258 ret->solid = OCTAHEDRON;
259 ret->d1 = 2;
260 ret->d2 = 2;
261 break;
262 case 3:
263 str = "Icosahedron";
264 ret->solid = ICOSAHEDRON;
265 ret->d1 = 3;
266 ret->d2 = 3;
267 break;
268 default:
269 sfree(ret);
270 return FALSE;
273 *name = dupstr(str);
274 *params = ret;
275 return TRUE;
278 static void free_params(game_params *params)
280 sfree(params);
283 static game_params *dup_params(game_params *params)
285 game_params *ret = snew(game_params);
286 *ret = *params; /* structure copy */
287 return ret;
290 static void decode_params(game_params *ret, char const *string)
292 switch (*string) {
293 case 't': ret->solid = TETRAHEDRON; string++; break;
294 case 'c': ret->solid = CUBE; string++; break;
295 case 'o': ret->solid = OCTAHEDRON; string++; break;
296 case 'i': ret->solid = ICOSAHEDRON; string++; break;
297 default: break;
299 ret->d1 = ret->d2 = atoi(string);
300 while (*string && isdigit((unsigned char)*string)) string++;
301 if (*string == 'x') {
302 string++;
303 ret->d2 = atoi(string);
307 static char *encode_params(game_params *params, int full)
309 char data[256];
311 assert(params->solid >= 0 && params->solid < 4);
312 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
314 return dupstr(data);
316 typedef void (*egc_callback)(void *, struct grid_square *);
318 static void enum_grid_squares(game_params *params, egc_callback callback, void *ctx)
320 const struct solid *solid = solids[params->solid];
322 if (solid->order == 4) {
323 int x, y;
325 for (y = 0; y < params->d2; y++)
326 for (x = 0; x < params->d1; x++) {
327 struct grid_square sq;
329 sq.x = (float)x;
330 sq.y = (float)y;
331 sq.points[0] = x - 0.5F;
332 sq.points[1] = y - 0.5F;
333 sq.points[2] = x - 0.5F;
334 sq.points[3] = y + 0.5F;
335 sq.points[4] = x + 0.5F;
336 sq.points[5] = y + 0.5F;
337 sq.points[6] = x + 0.5F;
338 sq.points[7] = y - 0.5F;
339 sq.npoints = 4;
341 sq.directions[LEFT] = 0x03; /* 0,1 */
342 sq.directions[RIGHT] = 0x0C; /* 2,3 */
343 sq.directions[UP] = 0x09; /* 0,3 */
344 sq.directions[DOWN] = 0x06; /* 1,2 */
345 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
346 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
347 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
348 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
350 sq.flip = FALSE;
353 * This is supremely irrelevant, but just to avoid
354 * having any uninitialised structure members...
356 sq.tetra_class = 0;
358 callback(ctx, &sq);
360 } else {
361 int row, rowlen, other, i, firstix = -1;
362 float theight = (float)(sqrt(3) / 2.0);
364 for (row = 0; row < params->d1 + params->d2; row++) {
365 if (row < params->d2) {
366 other = +1;
367 rowlen = row + params->d1;
368 } else {
369 other = -1;
370 rowlen = 2*params->d2 + params->d1 - row;
374 * There are `rowlen' down-pointing triangles.
376 for (i = 0; i < rowlen; i++) {
377 struct grid_square sq;
378 int ix;
379 float x, y;
381 ix = (2 * i - (rowlen-1));
382 x = ix * 0.5F;
383 y = theight * row;
384 sq.x = x;
385 sq.y = y + theight / 3;
386 sq.points[0] = x - 0.5F;
387 sq.points[1] = y;
388 sq.points[2] = x;
389 sq.points[3] = y + theight;
390 sq.points[4] = x + 0.5F;
391 sq.points[5] = y;
392 sq.npoints = 3;
394 sq.directions[LEFT] = 0x03; /* 0,1 */
395 sq.directions[RIGHT] = 0x06; /* 1,2 */
396 sq.directions[UP] = 0x05; /* 0,2 */
397 sq.directions[DOWN] = 0; /* invalid move */
400 * Down-pointing triangle: both the up diagonals go
401 * up, and the down ones go left and right.
403 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
404 sq.directions[UP];
405 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
406 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
408 sq.flip = TRUE;
410 if (firstix < 0)
411 firstix = ix & 3;
412 ix -= firstix;
413 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
415 callback(ctx, &sq);
419 * There are `rowlen+other' up-pointing triangles.
421 for (i = 0; i < rowlen+other; i++) {
422 struct grid_square sq;
423 int ix;
424 float x, y;
426 ix = (2 * i - (rowlen+other-1));
427 x = ix * 0.5F;
428 y = theight * row;
429 sq.x = x;
430 sq.y = y + 2*theight / 3;
431 sq.points[0] = x + 0.5F;
432 sq.points[1] = y + theight;
433 sq.points[2] = x;
434 sq.points[3] = y;
435 sq.points[4] = x - 0.5F;
436 sq.points[5] = y + theight;
437 sq.npoints = 3;
439 sq.directions[LEFT] = 0x06; /* 1,2 */
440 sq.directions[RIGHT] = 0x03; /* 0,1 */
441 sq.directions[DOWN] = 0x05; /* 0,2 */
442 sq.directions[UP] = 0; /* invalid move */
445 * Up-pointing triangle: both the down diagonals go
446 * down, and the up ones go left and right.
448 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
449 sq.directions[DOWN];
450 sq.directions[UP_LEFT] = sq.directions[LEFT];
451 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
453 sq.flip = FALSE;
455 if (firstix < 0)
456 firstix = (ix - 1) & 3;
457 ix -= firstix;
458 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
460 callback(ctx, &sq);
466 static int grid_area(int d1, int d2, int order)
469 * An NxM grid of squares has NM squares in it.
471 * A grid of triangles with dimensions A and B has a total of
472 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
473 * a side-A triangle containing A^2 subtriangles, a side-B
474 * triangle containing B^2, and two congruent parallelograms,
475 * each with side lengths A and B, each therefore containing AB
476 * two-triangle rhombuses.)
478 if (order == 4)
479 return d1 * d2;
480 else
481 return d1*d1 + d2*d2 + 4*d1*d2;
484 static config_item *game_configure(game_params *params)
486 config_item *ret = snewn(4, config_item);
487 char buf[80];
489 ret[0].name = "Type of solid";
490 ret[0].type = C_CHOICES;
491 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
492 ret[0].ival = params->solid;
494 ret[1].name = "Width / top";
495 ret[1].type = C_STRING;
496 sprintf(buf, "%d", params->d1);
497 ret[1].sval = dupstr(buf);
498 ret[1].ival = 0;
500 ret[2].name = "Height / bottom";
501 ret[2].type = C_STRING;
502 sprintf(buf, "%d", params->d2);
503 ret[2].sval = dupstr(buf);
504 ret[2].ival = 0;
506 ret[3].name = NULL;
507 ret[3].type = C_END;
508 ret[3].sval = NULL;
509 ret[3].ival = 0;
511 return ret;
514 static game_params *custom_params(config_item *cfg)
516 game_params *ret = snew(game_params);
518 ret->solid = cfg[0].ival;
519 ret->d1 = atoi(cfg[1].sval);
520 ret->d2 = atoi(cfg[2].sval);
522 return ret;
525 static void count_grid_square_callback(void *ctx, struct grid_square *sq)
527 int *classes = (int *)ctx;
528 int thisclass;
530 if (classes[4] == 4)
531 thisclass = sq->tetra_class;
532 else if (classes[4] == 2)
533 thisclass = sq->flip;
534 else
535 thisclass = 0;
537 classes[thisclass]++;
540 static char *validate_params(game_params *params, int full)
542 int classes[5];
543 int i;
545 if (params->solid < 0 || params->solid >= lenof(solids))
546 return "Unrecognised solid type";
548 if (solids[params->solid]->order == 4) {
549 if (params->d1 <= 0 || params->d2 <= 0)
550 return "Both grid dimensions must be greater than zero";
551 } else {
552 if (params->d1 <= 0 && params->d2 <= 0)
553 return "At least one grid dimension must be greater than zero";
556 for (i = 0; i < 4; i++)
557 classes[i] = 0;
558 if (params->solid == TETRAHEDRON)
559 classes[4] = 4;
560 else if (params->solid == OCTAHEDRON)
561 classes[4] = 2;
562 else
563 classes[4] = 1;
564 enum_grid_squares(params, count_grid_square_callback, classes);
566 for (i = 0; i < classes[4]; i++)
567 if (classes[i] < solids[params->solid]->nfaces / classes[4])
568 return "Not enough grid space to place all blue faces";
570 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
571 solids[params->solid]->nfaces + 1)
572 return "Not enough space to place the solid on an empty square";
574 return NULL;
577 struct grid_data {
578 int *gridptrs[4];
579 int nsquares[4];
580 int nclasses;
581 int squareindex;
584 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
586 struct grid_data *data = (struct grid_data *)ctx;
587 int thisclass;
589 if (data->nclasses == 4)
590 thisclass = sq->tetra_class;
591 else if (data->nclasses == 2)
592 thisclass = sq->flip;
593 else
594 thisclass = 0;
596 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
597 data->squareindex++;
600 static char *new_game_desc(game_params *params, random_state *rs,
601 char **aux, int interactive)
603 struct grid_data data;
604 int i, j, k, m, area, facesperclass;
605 int *flags;
606 char *desc, *p;
609 * Enumerate the grid squares, dividing them into equivalence
610 * classes as appropriate. (For the tetrahedron, there is one
611 * equivalence class for each face; for the octahedron there
612 * are two classes; for the other two solids there's only one.)
615 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
616 if (params->solid == TETRAHEDRON)
617 data.nclasses = 4;
618 else if (params->solid == OCTAHEDRON)
619 data.nclasses = 2;
620 else
621 data.nclasses = 1;
622 data.gridptrs[0] = snewn(data.nclasses * area, int);
623 for (i = 0; i < data.nclasses; i++) {
624 data.gridptrs[i] = data.gridptrs[0] + i * area;
625 data.nsquares[i] = 0;
627 data.squareindex = 0;
628 enum_grid_squares(params, classify_grid_square_callback, &data);
630 facesperclass = solids[params->solid]->nfaces / data.nclasses;
632 for (i = 0; i < data.nclasses; i++)
633 assert(data.nsquares[i] >= facesperclass);
634 assert(data.squareindex == area);
637 * So now we know how many faces to allocate in each class. Get
638 * on with it.
640 flags = snewn(area, int);
641 for (i = 0; i < area; i++)
642 flags[i] = FALSE;
644 for (i = 0; i < data.nclasses; i++) {
645 for (j = 0; j < facesperclass; j++) {
646 int n = random_upto(rs, data.nsquares[i]);
648 assert(!flags[data.gridptrs[i][n]]);
649 flags[data.gridptrs[i][n]] = TRUE;
652 * Move everything else up the array. I ought to use a
653 * better data structure for this, but for such small
654 * numbers it hardly seems worth the effort.
656 while (n < data.nsquares[i]-1) {
657 data.gridptrs[i][n] = data.gridptrs[i][n+1];
658 n++;
660 data.nsquares[i]--;
665 * Now we know precisely which squares are blue. Encode this
666 * information in hex. While we're looping over this, collect
667 * the non-blue squares into a list in the now-unused gridptrs
668 * array.
670 desc = snewn(area / 4 + 40, char);
671 p = desc;
672 j = 0;
673 k = 8;
674 m = 0;
675 for (i = 0; i < area; i++) {
676 if (flags[i]) {
677 j |= k;
678 } else {
679 data.gridptrs[0][m++] = i;
681 k >>= 1;
682 if (!k) {
683 *p++ = "0123456789ABCDEF"[j];
684 k = 8;
685 j = 0;
688 if (k != 8)
689 *p++ = "0123456789ABCDEF"[j];
692 * Choose a non-blue square for the polyhedron.
694 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
696 sfree(data.gridptrs[0]);
697 sfree(flags);
699 return desc;
702 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
704 game_grid *grid = (game_grid *)ctx;
706 grid->squares[grid->nsquares++] = *sq; /* structure copy */
709 static int lowest_face(const struct solid *solid)
711 int i, j, best;
712 float zmin;
714 best = 0;
715 zmin = 0.0;
716 for (i = 0; i < solid->nfaces; i++) {
717 float z = 0;
719 for (j = 0; j < solid->order; j++) {
720 int f = solid->faces[i*solid->order + j];
721 z += solid->vertices[f*3+2];
724 if (i == 0 || zmin > z) {
725 zmin = z;
726 best = i;
730 return best;
733 static int align_poly(const struct solid *solid, struct grid_square *sq,
734 int *pkey)
736 float zmin;
737 int i, j;
738 int flip = (sq->flip ? -1 : +1);
741 * First, find the lowest z-coordinate present in the solid.
743 zmin = 0.0;
744 for (i = 0; i < solid->nvertices; i++)
745 if (zmin > solid->vertices[i*3+2])
746 zmin = solid->vertices[i*3+2];
749 * Now go round the grid square. For each point in the grid
750 * square, we're looking for a point of the polyhedron with the
751 * same x- and y-coordinates (relative to the square's centre),
752 * and z-coordinate equal to zmin (near enough).
754 for (j = 0; j < sq->npoints; j++) {
755 int matches, index;
757 matches = 0;
758 index = -1;
760 for (i = 0; i < solid->nvertices; i++) {
761 float dist = 0;
763 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
764 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
765 dist += SQ(solid->vertices[i*3+2] - zmin);
767 if (dist < 0.1) {
768 matches++;
769 index = i;
773 if (matches != 1 || index < 0)
774 return FALSE;
775 pkey[j] = index;
778 return TRUE;
781 static void flip_poly(struct solid *solid, int flip)
783 int i;
785 if (flip) {
786 for (i = 0; i < solid->nvertices; i++) {
787 solid->vertices[i*3+0] *= -1;
788 solid->vertices[i*3+1] *= -1;
790 for (i = 0; i < solid->nfaces; i++) {
791 solid->normals[i*3+0] *= -1;
792 solid->normals[i*3+1] *= -1;
797 static struct solid *transform_poly(const struct solid *solid, int flip,
798 int key0, int key1, float angle)
800 struct solid *ret = snew(struct solid);
801 float vx, vy, ax, ay;
802 float vmatrix[9], amatrix[9], vmatrix2[9];
803 int i;
805 *ret = *solid; /* structure copy */
807 flip_poly(ret, flip);
810 * Now rotate the polyhedron through the given angle. We must
811 * rotate about the Z-axis to bring the two vertices key0 and
812 * key1 into horizontal alignment, then rotate about the
813 * X-axis, then rotate back again.
815 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
816 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
817 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
819 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
820 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
821 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
823 ax = (float)cos(angle);
824 ay = (float)sin(angle);
826 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
827 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
828 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
830 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
831 vmatrix2[1] = vy;
832 vmatrix2[3] = -vy;
834 for (i = 0; i < ret->nvertices; i++) {
835 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
836 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
837 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
839 for (i = 0; i < ret->nfaces; i++) {
840 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
841 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
842 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
845 return ret;
848 static char *validate_desc(game_params *params, char *desc)
850 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
851 int i, j;
853 i = (area + 3) / 4;
854 for (j = 0; j < i; j++) {
855 int c = desc[j];
856 if (c >= '0' && c <= '9') continue;
857 if (c >= 'A' && c <= 'F') continue;
858 if (c >= 'a' && c <= 'f') continue;
859 return "Not enough hex digits at start of string";
860 /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
863 if (desc[i] != ',')
864 return "Expected ',' after hex digits";
866 i++;
867 do {
868 if (desc[i] < '0' || desc[i] > '9')
869 return "Expected decimal integer after ','";
870 i++;
871 } while (desc[i]);
873 return NULL;
876 static game_state *new_game(midend *me, game_params *params, char *desc)
878 game_grid *grid = snew(game_grid);
879 game_state *state = snew(game_state);
880 int area;
882 state->params = *params; /* structure copy */
883 state->solid = solids[params->solid];
885 area = grid_area(params->d1, params->d2, state->solid->order);
886 grid->squares = snewn(area, struct grid_square);
887 grid->nsquares = 0;
888 enum_grid_squares(params, add_grid_square_callback, grid);
889 assert(grid->nsquares == area);
890 state->grid = grid;
891 grid->refcount = 1;
893 state->facecolours = snewn(state->solid->nfaces, int);
894 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
896 state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long);
897 memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 *
898 sizeof(unsigned long));
901 * Set up the blue squares and polyhedron position according to
902 * the game description.
905 char *p = desc;
906 int i, j, v;
908 j = 8;
909 v = 0;
910 for (i = 0; i < state->grid->nsquares; i++) {
911 if (j == 8) {
912 v = *p++;
913 if (v >= '0' && v <= '9')
914 v -= '0';
915 else if (v >= 'A' && v <= 'F')
916 v -= 'A' - 10;
917 else if (v >= 'a' && v <= 'f')
918 v -= 'a' - 10;
919 else
920 break;
922 if (v & j)
923 SET_SQUARE(state, i, TRUE);
924 j >>= 1;
925 if (j == 0)
926 j = 8;
929 if (*p == ',')
930 p++;
932 state->current = atoi(p);
933 if (state->current < 0 || state->current >= state->grid->nsquares)
934 state->current = 0; /* got to do _something_ */
938 * Align the polyhedron with its grid square and determine
939 * initial key points.
942 int pkey[4];
943 int ret;
945 ret = align_poly(state->solid, &state->grid->squares[state->current], pkey);
946 assert(ret);
948 state->dpkey[0] = state->spkey[0] = pkey[0];
949 state->dpkey[1] = state->spkey[0] = pkey[1];
950 state->dgkey[0] = state->sgkey[0] = 0;
951 state->dgkey[1] = state->sgkey[0] = 1;
954 state->previous = state->current;
955 state->angle = 0.0;
956 state->completed = 0;
957 state->movecount = 0;
959 return state;
962 static game_state *dup_game(game_state *state)
964 game_state *ret = snew(game_state);
966 ret->params = state->params; /* structure copy */
967 ret->solid = state->solid;
968 ret->facecolours = snewn(ret->solid->nfaces, int);
969 memcpy(ret->facecolours, state->facecolours,
970 ret->solid->nfaces * sizeof(int));
971 ret->current = state->current;
972 ret->grid = state->grid;
973 ret->grid->refcount++;
974 ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long);
975 memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 *
976 sizeof(unsigned long));
977 ret->dpkey[0] = state->dpkey[0];
978 ret->dpkey[1] = state->dpkey[1];
979 ret->dgkey[0] = state->dgkey[0];
980 ret->dgkey[1] = state->dgkey[1];
981 ret->spkey[0] = state->spkey[0];
982 ret->spkey[1] = state->spkey[1];
983 ret->sgkey[0] = state->sgkey[0];
984 ret->sgkey[1] = state->sgkey[1];
985 ret->previous = state->previous;
986 ret->angle = state->angle;
987 ret->completed = state->completed;
988 ret->movecount = state->movecount;
990 return ret;
993 static void free_game(game_state *state)
995 if (--state->grid->refcount <= 0) {
996 sfree(state->grid->squares);
997 sfree(state->grid);
999 sfree(state->bluemask);
1000 sfree(state->facecolours);
1001 sfree(state);
1004 static char *solve_game(game_state *state, game_state *currstate,
1005 char *aux, char **error)
1007 return NULL;
1010 static int game_can_format_as_text_now(game_params *params)
1012 return TRUE;
1015 static char *game_text_format(game_state *state)
1017 return NULL;
1020 static game_ui *new_ui(game_state *state)
1022 return NULL;
1025 static void free_ui(game_ui *ui)
1029 static char *encode_ui(game_ui *ui)
1031 return NULL;
1034 static void decode_ui(game_ui *ui, char *encoding)
1038 static void game_changed_state(game_ui *ui, game_state *oldstate,
1039 game_state *newstate)
1043 struct game_drawstate {
1044 float gridscale;
1045 int ox, oy; /* pixel position of float origin */
1049 * Code shared between interpret_move() and execute_move().
1051 static int find_move_dest(game_state *from, int direction,
1052 int *skey, int *dkey)
1054 int mask, dest, i, j;
1055 float points[4];
1058 * Find the two points in the current grid square which
1059 * correspond to this move.
1061 mask = from->grid->squares[from->current].directions[direction];
1062 if (mask == 0)
1063 return -1;
1064 for (i = j = 0; i < from->grid->squares[from->current].npoints; i++)
1065 if (mask & (1 << i)) {
1066 points[j*2] = from->grid->squares[from->current].points[i*2];
1067 points[j*2+1] = from->grid->squares[from->current].points[i*2+1];
1068 skey[j] = i;
1069 j++;
1071 assert(j == 2);
1074 * Now find the other grid square which shares those points.
1075 * This is our move destination.
1077 dest = -1;
1078 for (i = 0; i < from->grid->nsquares; i++)
1079 if (i != from->current) {
1080 int match = 0;
1081 float dist;
1083 for (j = 0; j < from->grid->squares[i].npoints; j++) {
1084 dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) +
1085 SQ(from->grid->squares[i].points[j*2+1] - points[1]));
1086 if (dist < 0.1)
1087 dkey[match++] = j;
1088 dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) +
1089 SQ(from->grid->squares[i].points[j*2+1] - points[3]));
1090 if (dist < 0.1)
1091 dkey[match++] = j;
1094 if (match == 2) {
1095 dest = i;
1096 break;
1100 return dest;
1103 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1104 int x, int y, int button)
1106 int direction, mask, i;
1107 int skey[2], dkey[2];
1109 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
1112 * Moves can be made with the cursor keys or numeric keypad, or
1113 * alternatively you can left-click and the polyhedron will
1114 * move in the general direction of the mouse pointer.
1116 if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1117 direction = UP;
1118 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1119 direction = DOWN;
1120 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1121 direction = LEFT;
1122 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1123 direction = RIGHT;
1124 else if (button == (MOD_NUM_KEYPAD | '7'))
1125 direction = UP_LEFT;
1126 else if (button == (MOD_NUM_KEYPAD | '1'))
1127 direction = DOWN_LEFT;
1128 else if (button == (MOD_NUM_KEYPAD | '9'))
1129 direction = UP_RIGHT;
1130 else if (button == (MOD_NUM_KEYPAD | '3'))
1131 direction = DOWN_RIGHT;
1132 else if (button == LEFT_BUTTON) {
1134 * Find the bearing of the click point from the current
1135 * square's centre.
1137 int cx, cy;
1138 double angle;
1140 cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox;
1141 cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy;
1143 if (x == cx && y == cy)
1144 return NULL; /* clicked in exact centre! */
1145 angle = atan2(y - cy, x - cx);
1148 * There are three possibilities.
1150 * - This square is a square, so we choose between UP,
1151 * DOWN, LEFT and RIGHT by dividing the available angle
1152 * at the 45-degree points.
1154 * - This square is an up-pointing triangle, so we choose
1155 * between DOWN, LEFT and RIGHT by dividing into
1156 * 120-degree arcs.
1158 * - This square is a down-pointing triangle, so we choose
1159 * between UP, LEFT and RIGHT in the inverse manner.
1161 * Don't forget that since our y-coordinates increase
1162 * downwards, `angle' is measured _clockwise_ from the
1163 * x-axis, not anticlockwise as most mathematicians would
1164 * instinctively assume.
1166 if (state->grid->squares[state->current].npoints == 4) {
1167 /* Square. */
1168 if (fabs(angle) > 3*PI/4)
1169 direction = LEFT;
1170 else if (fabs(angle) < PI/4)
1171 direction = RIGHT;
1172 else if (angle > 0)
1173 direction = DOWN;
1174 else
1175 direction = UP;
1176 } else if (state->grid->squares[state->current].directions[UP] == 0) {
1177 /* Up-pointing triangle. */
1178 if (angle < -PI/2 || angle > 5*PI/6)
1179 direction = LEFT;
1180 else if (angle > PI/6)
1181 direction = DOWN;
1182 else
1183 direction = RIGHT;
1184 } else {
1185 /* Down-pointing triangle. */
1186 assert(state->grid->squares[state->current].directions[DOWN] == 0);
1187 if (angle > PI/2 || angle < -5*PI/6)
1188 direction = LEFT;
1189 else if (angle < -PI/6)
1190 direction = UP;
1191 else
1192 direction = RIGHT;
1194 } else
1195 return NULL;
1197 mask = state->grid->squares[state->current].directions[direction];
1198 if (mask == 0)
1199 return NULL;
1202 * Translate diagonal directions into orthogonal ones.
1204 if (direction > DOWN) {
1205 for (i = LEFT; i <= DOWN; i++)
1206 if (state->grid->squares[state->current].directions[i] == mask) {
1207 direction = i;
1208 break;
1210 assert(direction <= DOWN);
1213 if (find_move_dest(state, direction, skey, dkey) < 0)
1214 return NULL;
1216 if (direction == LEFT) return dupstr("L");
1217 if (direction == RIGHT) return dupstr("R");
1218 if (direction == UP) return dupstr("U");
1219 if (direction == DOWN) return dupstr("D");
1221 return NULL; /* should never happen */
1224 static game_state *execute_move(game_state *from, char *move)
1226 game_state *ret;
1227 float angle;
1228 struct solid *poly;
1229 int pkey[2];
1230 int skey[2], dkey[2];
1231 int i, j, dest;
1232 int direction;
1234 switch (*move) {
1235 case 'L': direction = LEFT; break;
1236 case 'R': direction = RIGHT; break;
1237 case 'U': direction = UP; break;
1238 case 'D': direction = DOWN; break;
1239 default: return NULL;
1242 dest = find_move_dest(from, direction, skey, dkey);
1243 if (dest < 0)
1244 return NULL;
1246 ret = dup_game(from);
1247 ret->current = dest;
1250 * So we know what grid square we're aiming for, and we also
1251 * know the two key points (as indices in both the source and
1252 * destination grid squares) which are invariant between source
1253 * and destination.
1255 * Next we must roll the polyhedron on to that square. So we
1256 * find the indices of the key points within the polyhedron's
1257 * vertex array, then use those in a call to transform_poly,
1258 * and align the result on the new grid square.
1261 int all_pkey[4];
1262 align_poly(from->solid, &from->grid->squares[from->current], all_pkey);
1263 pkey[0] = all_pkey[skey[0]];
1264 pkey[1] = all_pkey[skey[1]];
1266 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1267 * likewise [1].
1272 * Now find the angle through which to rotate the polyhedron.
1273 * Do this by finding the two faces that share the two vertices
1274 * we've found, and taking the dot product of their normals.
1277 int f[2], nf = 0;
1278 float dp;
1280 for (i = 0; i < from->solid->nfaces; i++) {
1281 int match = 0;
1282 for (j = 0; j < from->solid->order; j++)
1283 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1284 from->solid->faces[i*from->solid->order + j] == pkey[1])
1285 match++;
1286 if (match == 2) {
1287 assert(nf < 2);
1288 f[nf++] = i;
1292 assert(nf == 2);
1294 dp = 0;
1295 for (i = 0; i < 3; i++)
1296 dp += (from->solid->normals[f[0]*3+i] *
1297 from->solid->normals[f[1]*3+i]);
1298 angle = (float)acos(dp);
1302 * Now transform the polyhedron. We aren't entirely sure
1303 * whether we need to rotate through angle or -angle, and the
1304 * simplest way round this is to try both and see which one
1305 * aligns successfully!
1307 * Unfortunately, _both_ will align successfully if this is a
1308 * cube, which won't tell us anything much. So for that
1309 * particular case, I resort to gross hackery: I simply negate
1310 * the angle before trying the alignment, depending on the
1311 * direction. Which directions work which way is determined by
1312 * pure trial and error. I said it was gross :-/
1315 int all_pkey[4];
1316 int success;
1318 if (from->solid->order == 4 && direction == UP)
1319 angle = -angle; /* HACK */
1321 poly = transform_poly(from->solid,
1322 from->grid->squares[from->current].flip,
1323 pkey[0], pkey[1], angle);
1324 flip_poly(poly, from->grid->squares[ret->current].flip);
1325 success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1327 if (!success) {
1328 sfree(poly);
1329 angle = -angle;
1330 poly = transform_poly(from->solid,
1331 from->grid->squares[from->current].flip,
1332 pkey[0], pkey[1], angle);
1333 flip_poly(poly, from->grid->squares[ret->current].flip);
1334 success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
1337 assert(success);
1341 * Now we have our rotated polyhedron, which we expect to be
1342 * exactly congruent to the one we started with - but with the
1343 * faces permuted. So we map that congruence and thereby figure
1344 * out how to permute the faces as a result of the polyhedron
1345 * having rolled.
1348 int *newcolours = snewn(from->solid->nfaces, int);
1350 for (i = 0; i < from->solid->nfaces; i++)
1351 newcolours[i] = -1;
1353 for (i = 0; i < from->solid->nfaces; i++) {
1354 int nmatch = 0;
1357 * Now go through the transformed polyhedron's faces
1358 * and figure out which one's normal is approximately
1359 * equal to this one.
1361 for (j = 0; j < poly->nfaces; j++) {
1362 float dist;
1363 int k;
1365 dist = 0;
1367 for (k = 0; k < 3; k++)
1368 dist += SQ(poly->normals[j*3+k] -
1369 from->solid->normals[i*3+k]);
1371 if (APPROXEQ(dist, 0)) {
1372 nmatch++;
1373 newcolours[i] = ret->facecolours[j];
1377 assert(nmatch == 1);
1380 for (i = 0; i < from->solid->nfaces; i++)
1381 assert(newcolours[i] != -1);
1383 sfree(ret->facecolours);
1384 ret->facecolours = newcolours;
1387 ret->movecount++;
1390 * And finally, swap the colour between the bottom face of the
1391 * polyhedron and the face we've just landed on.
1393 * We don't do this if the game is already complete, since we
1394 * allow the user to roll the fully blue polyhedron around the
1395 * grid as a feeble reward.
1397 if (!ret->completed) {
1398 i = lowest_face(from->solid);
1399 j = ret->facecolours[i];
1400 ret->facecolours[i] = GET_SQUARE(ret, ret->current);
1401 SET_SQUARE(ret, ret->current, j);
1404 * Detect game completion.
1406 j = 0;
1407 for (i = 0; i < ret->solid->nfaces; i++)
1408 if (ret->facecolours[i])
1409 j++;
1410 if (j == ret->solid->nfaces)
1411 ret->completed = ret->movecount;
1414 sfree(poly);
1417 * Align the normal polyhedron with its grid square, to get key
1418 * points for non-animated display.
1421 int pkey[4];
1422 int success;
1424 success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey);
1425 assert(success);
1427 ret->dpkey[0] = pkey[0];
1428 ret->dpkey[1] = pkey[1];
1429 ret->dgkey[0] = 0;
1430 ret->dgkey[1] = 1;
1434 ret->spkey[0] = pkey[0];
1435 ret->spkey[1] = pkey[1];
1436 ret->sgkey[0] = skey[0];
1437 ret->sgkey[1] = skey[1];
1438 ret->previous = from->current;
1439 ret->angle = angle;
1441 return ret;
1444 /* ----------------------------------------------------------------------
1445 * Drawing routines.
1448 struct bbox {
1449 float l, r, u, d;
1452 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1454 struct bbox *bb = (struct bbox *)ctx;
1455 int i;
1457 for (i = 0; i < sq->npoints; i++) {
1458 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1459 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1460 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1461 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1465 static struct bbox find_bbox(game_params *params)
1467 struct bbox bb;
1470 * These should be hugely more than the real bounding box will
1471 * be.
1473 bb.l = 2.0F * (params->d1 + params->d2);
1474 bb.r = -2.0F * (params->d1 + params->d2);
1475 bb.u = 2.0F * (params->d1 + params->d2);
1476 bb.d = -2.0F * (params->d1 + params->d2);
1477 enum_grid_squares(params, find_bbox_callback, &bb);
1479 return bb;
1482 #define XSIZE(gs, bb, solid) \
1483 ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
1484 #define YSIZE(gs, bb, solid) \
1485 ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
1487 static void game_compute_size(game_params *params, int tilesize,
1488 int *x, int *y)
1490 struct bbox bb = find_bbox(params);
1492 *x = XSIZE(tilesize, bb, solids[params->solid]);
1493 *y = YSIZE(tilesize, bb, solids[params->solid]);
1496 static void game_set_size(drawing *dr, game_drawstate *ds,
1497 game_params *params, int tilesize)
1499 struct bbox bb = find_bbox(params);
1501 ds->gridscale = (float)tilesize;
1502 ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale);
1503 ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale);
1506 static float *game_colours(frontend *fe, int *ncolours)
1508 float *ret = snewn(3 * NCOLOURS, float);
1510 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1512 ret[COL_BORDER * 3 + 0] = 0.0;
1513 ret[COL_BORDER * 3 + 1] = 0.0;
1514 ret[COL_BORDER * 3 + 2] = 0.0;
1516 ret[COL_BLUE * 3 + 0] = 0.0;
1517 ret[COL_BLUE * 3 + 1] = 0.0;
1518 ret[COL_BLUE * 3 + 2] = 1.0;
1520 *ncolours = NCOLOURS;
1521 return ret;
1524 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1526 struct game_drawstate *ds = snew(struct game_drawstate);
1528 ds->ox = ds->oy = 0;
1529 ds->gridscale = 0.0F; /* not decided yet */
1531 return ds;
1534 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1536 sfree(ds);
1539 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1540 game_state *state, int dir, game_ui *ui,
1541 float animtime, float flashtime)
1543 int i, j;
1544 struct bbox bb = find_bbox(&state->params);
1545 struct solid *poly;
1546 int *pkey, *gkey;
1547 float t[3];
1548 float angle;
1549 int square;
1551 draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1552 YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND);
1554 if (dir < 0) {
1555 game_state *t;
1558 * This is an Undo. So reverse the order of the states, and
1559 * run the roll timer backwards.
1561 assert(oldstate);
1563 t = oldstate;
1564 oldstate = state;
1565 state = t;
1567 animtime = ROLLTIME - animtime;
1570 if (!oldstate) {
1571 oldstate = state;
1572 angle = 0.0;
1573 square = state->current;
1574 pkey = state->dpkey;
1575 gkey = state->dgkey;
1576 } else {
1577 angle = state->angle * animtime / ROLLTIME;
1578 square = state->previous;
1579 pkey = state->spkey;
1580 gkey = state->sgkey;
1582 state = oldstate;
1584 for (i = 0; i < state->grid->nsquares; i++) {
1585 int coords[8];
1587 for (j = 0; j < state->grid->squares[i].npoints; j++) {
1588 coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE)
1589 + ds->ox);
1590 coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE)
1591 + ds->oy);
1594 draw_polygon(dr, coords, state->grid->squares[i].npoints,
1595 GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND,
1596 COL_BORDER);
1600 * Now compute and draw the polyhedron.
1602 poly = transform_poly(state->solid, state->grid->squares[square].flip,
1603 pkey[0], pkey[1], angle);
1606 * Compute the translation required to align the two key points
1607 * on the polyhedron with the same key points on the current
1608 * face.
1610 for (i = 0; i < 3; i++) {
1611 float tc = 0.0;
1613 for (j = 0; j < 2; j++) {
1614 float grid_coord;
1616 if (i < 2) {
1617 grid_coord =
1618 state->grid->squares[square].points[gkey[j]*2+i];
1619 } else {
1620 grid_coord = 0.0;
1623 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1626 t[i] = tc / 2;
1628 for (i = 0; i < poly->nvertices; i++)
1629 for (j = 0; j < 3; j++)
1630 poly->vertices[i*3+j] += t[j];
1633 * Now actually draw each face.
1635 for (i = 0; i < poly->nfaces; i++) {
1636 float points[8];
1637 int coords[8];
1639 for (j = 0; j < poly->order; j++) {
1640 int f = poly->faces[i*poly->order + j];
1641 points[j*2] = (poly->vertices[f*3+0] -
1642 poly->vertices[f*3+2] * poly->shear);
1643 points[j*2+1] = (poly->vertices[f*3+1] -
1644 poly->vertices[f*3+2] * poly->shear);
1647 for (j = 0; j < poly->order; j++) {
1648 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1649 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1653 * Find out whether these points are in a clockwise or
1654 * anticlockwise arrangement. If the latter, discard the
1655 * face because it's facing away from the viewer.
1657 * This would involve fiddly winding-number stuff for a
1658 * general polygon, but for the simple parallelograms we'll
1659 * be seeing here, all we have to do is check whether the
1660 * corners turn right or left. So we'll take the vector
1661 * from point 0 to point 1, turn it right 90 degrees,
1662 * and check the sign of the dot product with that and the
1663 * next vector (point 1 to point 2).
1666 float v1x = points[2]-points[0];
1667 float v1y = points[3]-points[1];
1668 float v2x = points[4]-points[2];
1669 float v2y = points[5]-points[3];
1670 float dp = v1x * v2y - v1y * v2x;
1672 if (dp <= 0)
1673 continue;
1676 draw_polygon(dr, coords, poly->order,
1677 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND,
1678 COL_BORDER);
1680 sfree(poly);
1682 draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1683 YSIZE(GRID_SCALE, bb, state->solid));
1686 * Update the status bar.
1689 char statusbuf[256];
1691 sprintf(statusbuf, "%sMoves: %d",
1692 (state->completed ? "COMPLETED! " : ""),
1693 (state->completed ? state->completed : state->movecount));
1695 status_bar(dr, statusbuf);
1699 static float game_anim_length(game_state *oldstate,
1700 game_state *newstate, int dir, game_ui *ui)
1702 return ROLLTIME;
1705 static float game_flash_length(game_state *oldstate,
1706 game_state *newstate, int dir, game_ui *ui)
1708 return 0.0F;
1711 static int game_status(game_state *state)
1713 return state->completed ? +1 : 0;
1716 static int game_timing_state(game_state *state, game_ui *ui)
1718 return TRUE;
1721 static void game_print_size(game_params *params, float *x, float *y)
1725 static void game_print(drawing *dr, game_state *state, int tilesize)
1729 #ifdef COMBINED
1730 #define thegame cube
1731 #endif
1733 const struct game thegame = {
1734 "Cube", "games.cube", "cube",
1735 default_params,
1736 game_fetch_preset,
1737 decode_params,
1738 encode_params,
1739 free_params,
1740 dup_params,
1741 TRUE, game_configure, custom_params,
1742 validate_params,
1743 new_game_desc,
1744 validate_desc,
1745 new_game,
1746 dup_game,
1747 free_game,
1748 FALSE, solve_game,
1749 FALSE, game_can_format_as_text_now, game_text_format,
1750 new_ui,
1751 free_ui,
1752 encode_ui,
1753 decode_ui,
1754 game_changed_state,
1755 interpret_move,
1756 execute_move,
1757 PREFERRED_GRID_SCALE, game_compute_size, game_set_size,
1758 game_colours,
1759 game_new_drawstate,
1760 game_free_drawstate,
1761 game_redraw,
1762 game_anim_length,
1763 game_flash_length,
1764 game_status,
1765 FALSE, FALSE, game_print_size, game_print,
1766 TRUE, /* wants_statusbar */
1767 FALSE, game_timing_state,
1768 0, /* flags */