4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
9 * vim: set shiftwidth=4 :set textwidth=80:
13 * Possible future solver enhancements:
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
87 /* Debugging options */
95 /* ----------------------------------------------------------------------
96 * Struct, enum and function declarations
111 grid
*game_grid
; /* ref-counted (internally) */
113 /* Put -1 in a face that doesn't get a clue */
116 /* Array of line states, to store whether each line is
117 * YES, NO or UNKNOWN */
120 unsigned char *line_errors
;
125 /* Used in game_text_format(), so that it knows what type of
126 * grid it's trying to render as ASCII text. */
131 SOLVER_SOLVED
, /* This is the only solution the solver could find */
132 SOLVER_MISTAKE
, /* This is definitely not a solution */
133 SOLVER_AMBIGUOUS
, /* This _might_ be an ambiguous solution */
134 SOLVER_INCOMPLETE
/* This may be a partial solution */
137 /* ------ Solver state ------ */
138 typedef struct solver_state
{
140 enum solver_status solver_status
;
141 /* NB looplen is the number of dots that are joined together at a point, ie a
142 * looplen of 1 means there are no lines to a particular dot */
145 /* Difficulty level of solver. Used by solver functions that want to
146 * vary their behaviour depending on the requested difficulty level. */
152 char *face_yes_count
;
154 char *dot_solved
, *face_solved
;
157 /* Information for Normal level deductions:
158 * For each dline, store a bitmask for whether we know:
159 * (bit 0) at least one is YES
160 * (bit 1) at most one is YES */
163 /* Hard level information */
168 * Difficulty levels. I do some macro ickery here to ensure that my
169 * enum and the various forms of my name list always match up.
172 #define DIFFLIST(A) \
177 #define ENUM(upper,title,lower) DIFF_ ## upper,
178 #define TITLE(upper,title,lower) #title,
179 #define ENCODE(upper,title,lower) #lower
180 #define CONFIG(upper,title,lower) ":" #title
181 enum { DIFFLIST(ENUM
) DIFF_MAX
};
182 static char const *const diffnames
[] = { DIFFLIST(TITLE
) };
183 static char const diffchars
[] = DIFFLIST(ENCODE
);
184 #define DIFFCONFIG DIFFLIST(CONFIG)
187 * Solver routines, sorted roughly in order of computational cost.
188 * The solver will run the faster deductions first, and slower deductions are
189 * only invoked when the faster deductions are unable to make progress.
190 * Each function is associated with a difficulty level, so that the generated
191 * puzzles are solvable by applying only the functions with the chosen
192 * difficulty level or lower.
194 #define SOLVERLIST(A) \
195 A(trivial_deductions, DIFF_EASY) \
196 A(dline_deductions, DIFF_NORMAL) \
197 A(linedsf_deductions, DIFF_HARD) \
198 A(loop_deductions, DIFF_EASY)
199 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
200 #define SOLVER_FN(fn,diff) &fn,
201 #define SOLVER_DIFF(fn,diff) diff,
202 SOLVERLIST(SOLVER_FN_DECL
)
203 static int (*(solver_fns
[]))(solver_state
*) = { SOLVERLIST(SOLVER_FN
) };
204 static int const solver_diffs
[] = { SOLVERLIST(SOLVER_DIFF
) };
205 static const int NUM_SOLVERS
= sizeof(solver_diffs
)/sizeof(*solver_diffs
);
213 /* line_drawstate is the same as line_state, but with the extra ERROR
214 * possibility. The drawing code copies line_state to line_drawstate,
215 * except in the case that the line is an error. */
216 enum line_state
{ LINE_YES
, LINE_UNKNOWN
, LINE_NO
};
217 enum line_drawstate
{ DS_LINE_YES
, DS_LINE_UNKNOWN
,
218 DS_LINE_NO
, DS_LINE_ERROR
};
220 #define OPP(line_state) \
224 struct game_drawstate
{
231 char *clue_satisfied
;
234 static char *validate_desc(game_params
*params
, char *desc
);
235 static int dot_order(const game_state
* state
, int i
, char line_type
);
236 static int face_order(const game_state
* state
, int i
, char line_type
);
237 static solver_state
*solve_game_rec(const solver_state
*sstate
);
240 static void check_caches(const solver_state
* sstate
);
242 #define check_caches(s)
245 /* ------- List of grid generators ------- */
246 #define GRIDLIST(A) \
247 A(Squares,GRID_SQUARE,3,3) \
248 A(Triangular,GRID_TRIANGULAR,3,3) \
249 A(Honeycomb,GRID_HONEYCOMB,3,3) \
250 A(Snub-Square,GRID_SNUBSQUARE,3,3) \
251 A(Cairo,GRID_CAIRO,3,4) \
252 A(Great-Hexagonal,GRID_GREATHEXAGONAL,3,3) \
253 A(Octagonal,GRID_OCTAGONAL,3,3) \
254 A(Kites,GRID_KITE,3,3) \
255 A(Floret,GRID_FLORET,1,2) \
256 A(Dodecagonal,GRID_DODECAGONAL,2,2) \
257 A(Great-Dodecagonal,GRID_GREATDODECAGONAL,2,2) \
258 A(Penrose (kite/dart),GRID_PENROSE_P2,3,3) \
259 A(Penrose (rhombs),GRID_PENROSE_P3,3,3)
261 #define GRID_NAME(title,type,amin,omin) #title,
262 #define GRID_CONFIG(title,type,amin,omin) ":" #title
263 #define GRID_TYPE(title,type,amin,omin) type,
264 #define GRID_SIZES(title,type,amin,omin) \
266 "Width and height for this grid type must both be at least " #amin, \
267 "At least one of width and height for this grid type must be at least " #omin,},
268 static char const *const gridnames
[] = { GRIDLIST(GRID_NAME
) };
269 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
270 static grid_type grid_types
[] = { GRIDLIST(GRID_TYPE
) };
271 #define NUM_GRID_TYPES (sizeof(grid_types) / sizeof(grid_types[0]))
272 static const struct {
275 } grid_size_limits
[] = { GRIDLIST(GRID_SIZES
) };
277 /* Generates a (dynamically allocated) new grid, according to the
278 * type and size requested in params. Does nothing if the grid is already
280 static grid
*loopy_generate_grid(game_params
*params
, char *grid_desc
)
282 return grid_new(grid_types
[params
->type
], params
->w
, params
->h
, grid_desc
);
285 /* ----------------------------------------------------------------------
289 /* General constants */
290 #define PREFERRED_TILE_SIZE 32
291 #define BORDER(tilesize) ((tilesize) / 2)
292 #define FLASH_TIME 0.5F
294 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
296 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
297 ((field) |= (1<<(bit)), TRUE))
299 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
300 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
302 #define CLUE2CHAR(c) \
303 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
305 /* ----------------------------------------------------------------------
306 * General struct manipulation and other straightforward code
309 static game_state
*dup_game(game_state
*state
)
311 game_state
*ret
= snew(game_state
);
313 ret
->game_grid
= state
->game_grid
;
314 ret
->game_grid
->refcount
++;
316 ret
->solved
= state
->solved
;
317 ret
->cheated
= state
->cheated
;
319 ret
->clues
= snewn(state
->game_grid
->num_faces
, signed char);
320 memcpy(ret
->clues
, state
->clues
, state
->game_grid
->num_faces
);
322 ret
->lines
= snewn(state
->game_grid
->num_edges
, char);
323 memcpy(ret
->lines
, state
->lines
, state
->game_grid
->num_edges
);
325 ret
->line_errors
= snewn(state
->game_grid
->num_edges
, unsigned char);
326 memcpy(ret
->line_errors
, state
->line_errors
, state
->game_grid
->num_edges
);
328 ret
->grid_type
= state
->grid_type
;
332 static void free_game(game_state
*state
)
335 grid_free(state
->game_grid
);
338 sfree(state
->line_errors
);
343 static solver_state
*new_solver_state(game_state
*state
, int diff
) {
345 int num_dots
= state
->game_grid
->num_dots
;
346 int num_faces
= state
->game_grid
->num_faces
;
347 int num_edges
= state
->game_grid
->num_edges
;
348 solver_state
*ret
= snew(solver_state
);
350 ret
->state
= dup_game(state
);
352 ret
->solver_status
= SOLVER_INCOMPLETE
;
355 ret
->dotdsf
= snew_dsf(num_dots
);
356 ret
->looplen
= snewn(num_dots
, int);
358 for (i
= 0; i
< num_dots
; i
++) {
362 ret
->dot_solved
= snewn(num_dots
, char);
363 ret
->face_solved
= snewn(num_faces
, char);
364 memset(ret
->dot_solved
, FALSE
, num_dots
);
365 memset(ret
->face_solved
, FALSE
, num_faces
);
367 ret
->dot_yes_count
= snewn(num_dots
, char);
368 memset(ret
->dot_yes_count
, 0, num_dots
);
369 ret
->dot_no_count
= snewn(num_dots
, char);
370 memset(ret
->dot_no_count
, 0, num_dots
);
371 ret
->face_yes_count
= snewn(num_faces
, char);
372 memset(ret
->face_yes_count
, 0, num_faces
);
373 ret
->face_no_count
= snewn(num_faces
, char);
374 memset(ret
->face_no_count
, 0, num_faces
);
376 if (diff
< DIFF_NORMAL
) {
379 ret
->dlines
= snewn(2*num_edges
, char);
380 memset(ret
->dlines
, 0, 2*num_edges
);
383 if (diff
< DIFF_HARD
) {
386 ret
->linedsf
= snew_dsf(state
->game_grid
->num_edges
);
392 static void free_solver_state(solver_state
*sstate
) {
394 free_game(sstate
->state
);
395 sfree(sstate
->dotdsf
);
396 sfree(sstate
->looplen
);
397 sfree(sstate
->dot_solved
);
398 sfree(sstate
->face_solved
);
399 sfree(sstate
->dot_yes_count
);
400 sfree(sstate
->dot_no_count
);
401 sfree(sstate
->face_yes_count
);
402 sfree(sstate
->face_no_count
);
404 /* OK, because sfree(NULL) is a no-op */
405 sfree(sstate
->dlines
);
406 sfree(sstate
->linedsf
);
412 static solver_state
*dup_solver_state(const solver_state
*sstate
) {
413 game_state
*state
= sstate
->state
;
414 int num_dots
= state
->game_grid
->num_dots
;
415 int num_faces
= state
->game_grid
->num_faces
;
416 int num_edges
= state
->game_grid
->num_edges
;
417 solver_state
*ret
= snew(solver_state
);
419 ret
->state
= state
= dup_game(sstate
->state
);
421 ret
->solver_status
= sstate
->solver_status
;
422 ret
->diff
= sstate
->diff
;
424 ret
->dotdsf
= snewn(num_dots
, int);
425 ret
->looplen
= snewn(num_dots
, int);
426 memcpy(ret
->dotdsf
, sstate
->dotdsf
,
427 num_dots
* sizeof(int));
428 memcpy(ret
->looplen
, sstate
->looplen
,
429 num_dots
* sizeof(int));
431 ret
->dot_solved
= snewn(num_dots
, char);
432 ret
->face_solved
= snewn(num_faces
, char);
433 memcpy(ret
->dot_solved
, sstate
->dot_solved
, num_dots
);
434 memcpy(ret
->face_solved
, sstate
->face_solved
, num_faces
);
436 ret
->dot_yes_count
= snewn(num_dots
, char);
437 memcpy(ret
->dot_yes_count
, sstate
->dot_yes_count
, num_dots
);
438 ret
->dot_no_count
= snewn(num_dots
, char);
439 memcpy(ret
->dot_no_count
, sstate
->dot_no_count
, num_dots
);
441 ret
->face_yes_count
= snewn(num_faces
, char);
442 memcpy(ret
->face_yes_count
, sstate
->face_yes_count
, num_faces
);
443 ret
->face_no_count
= snewn(num_faces
, char);
444 memcpy(ret
->face_no_count
, sstate
->face_no_count
, num_faces
);
446 if (sstate
->dlines
) {
447 ret
->dlines
= snewn(2*num_edges
, char);
448 memcpy(ret
->dlines
, sstate
->dlines
,
454 if (sstate
->linedsf
) {
455 ret
->linedsf
= snewn(num_edges
, int);
456 memcpy(ret
->linedsf
, sstate
->linedsf
,
457 num_edges
* sizeof(int));
465 static game_params
*default_params(void)
467 game_params
*ret
= snew(game_params
);
476 ret
->diff
= DIFF_EASY
;
482 static game_params
*dup_params(game_params
*params
)
484 game_params
*ret
= snew(game_params
);
486 *ret
= *params
; /* structure copy */
490 static const game_params presets
[] = {
492 { 7, 7, DIFF_EASY
, 0 },
493 { 7, 7, DIFF_NORMAL
, 0 },
494 { 7, 7, DIFF_HARD
, 0 },
495 { 7, 7, DIFF_HARD
, 1 },
496 { 7, 7, DIFF_HARD
, 2 },
497 { 5, 5, DIFF_HARD
, 3 },
498 { 7, 7, DIFF_HARD
, 4 },
499 { 5, 4, DIFF_HARD
, 5 },
500 { 5, 5, DIFF_HARD
, 6 },
501 { 5, 5, DIFF_HARD
, 7 },
502 { 3, 3, DIFF_HARD
, 8 },
503 { 3, 3, DIFF_HARD
, 9 },
504 { 3, 3, DIFF_HARD
, 10 },
505 { 6, 6, DIFF_HARD
, 11 },
506 { 6, 6, DIFF_HARD
, 12 },
508 { 7, 7, DIFF_EASY
, 0 },
509 { 10, 10, DIFF_EASY
, 0 },
510 { 7, 7, DIFF_NORMAL
, 0 },
511 { 10, 10, DIFF_NORMAL
, 0 },
512 { 7, 7, DIFF_HARD
, 0 },
513 { 10, 10, DIFF_HARD
, 0 },
514 { 10, 10, DIFF_HARD
, 1 },
515 { 12, 10, DIFF_HARD
, 2 },
516 { 7, 7, DIFF_HARD
, 3 },
517 { 9, 9, DIFF_HARD
, 4 },
518 { 5, 4, DIFF_HARD
, 5 },
519 { 7, 7, DIFF_HARD
, 6 },
520 { 5, 5, DIFF_HARD
, 7 },
521 { 5, 5, DIFF_HARD
, 8 },
522 { 5, 4, DIFF_HARD
, 9 },
523 { 5, 4, DIFF_HARD
, 10 },
524 { 10, 10, DIFF_HARD
, 11 },
525 { 10, 10, DIFF_HARD
, 12 }
529 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
534 if (i
< 0 || i
>= lenof(presets
))
537 tmppar
= snew(game_params
);
538 *tmppar
= presets
[i
];
540 sprintf(buf
, "%dx%d %s - %s", tmppar
->h
, tmppar
->w
,
541 gridnames
[tmppar
->type
], diffnames
[tmppar
->diff
]);
547 static void free_params(game_params
*params
)
552 static void decode_params(game_params
*params
, char const *string
)
554 params
->h
= params
->w
= atoi(string
);
555 params
->diff
= DIFF_EASY
;
556 while (*string
&& isdigit((unsigned char)*string
)) string
++;
557 if (*string
== 'x') {
559 params
->h
= atoi(string
);
560 while (*string
&& isdigit((unsigned char)*string
)) string
++;
562 if (*string
== 't') {
564 params
->type
= atoi(string
);
565 while (*string
&& isdigit((unsigned char)*string
)) string
++;
567 if (*string
== 'd') {
570 for (i
= 0; i
< DIFF_MAX
; i
++)
571 if (*string
== diffchars
[i
])
573 if (*string
) string
++;
577 static char *encode_params(game_params
*params
, int full
)
580 sprintf(str
, "%dx%dt%d", params
->w
, params
->h
, params
->type
);
582 sprintf(str
+ strlen(str
), "d%c", diffchars
[params
->diff
]);
586 static config_item
*game_configure(game_params
*params
)
591 ret
= snewn(5, config_item
);
593 ret
[0].name
= "Width";
594 ret
[0].type
= C_STRING
;
595 sprintf(buf
, "%d", params
->w
);
596 ret
[0].sval
= dupstr(buf
);
599 ret
[1].name
= "Height";
600 ret
[1].type
= C_STRING
;
601 sprintf(buf
, "%d", params
->h
);
602 ret
[1].sval
= dupstr(buf
);
605 ret
[2].name
= "Grid type";
606 ret
[2].type
= C_CHOICES
;
607 ret
[2].sval
= GRID_CONFIGS
;
608 ret
[2].ival
= params
->type
;
610 ret
[3].name
= "Difficulty";
611 ret
[3].type
= C_CHOICES
;
612 ret
[3].sval
= DIFFCONFIG
;
613 ret
[3].ival
= params
->diff
;
623 static game_params
*custom_params(config_item
*cfg
)
625 game_params
*ret
= snew(game_params
);
627 ret
->w
= atoi(cfg
[0].sval
);
628 ret
->h
= atoi(cfg
[1].sval
);
629 ret
->type
= cfg
[2].ival
;
630 ret
->diff
= cfg
[3].ival
;
635 static char *validate_params(game_params
*params
, int full
)
637 if (params
->type
< 0 || params
->type
>= NUM_GRID_TYPES
)
638 return "Illegal grid type";
639 if (params
->w
< grid_size_limits
[params
->type
].amin
||
640 params
->h
< grid_size_limits
[params
->type
].amin
)
641 return grid_size_limits
[params
->type
].aerr
;
642 if (params
->w
< grid_size_limits
[params
->type
].omin
&&
643 params
->h
< grid_size_limits
[params
->type
].omin
)
644 return grid_size_limits
[params
->type
].oerr
;
647 * This shouldn't be able to happen at all, since decode_params
648 * and custom_params will never generate anything that isn't
651 assert(params
->diff
< DIFF_MAX
);
656 /* Returns a newly allocated string describing the current puzzle */
657 static char *state_to_text(const game_state
*state
)
659 grid
*g
= state
->game_grid
;
661 int num_faces
= g
->num_faces
;
662 char *description
= snewn(num_faces
+ 1, char);
663 char *dp
= description
;
667 for (i
= 0; i
< num_faces
; i
++) {
668 if (state
->clues
[i
] < 0) {
669 if (empty_count
> 25) {
670 dp
+= sprintf(dp
, "%c", (int)(empty_count
+ 'a' - 1));
676 dp
+= sprintf(dp
, "%c", (int)(empty_count
+ 'a' - 1));
679 dp
+= sprintf(dp
, "%c", (int)CLUE2CHAR(state
->clues
[i
]));
684 dp
+= sprintf(dp
, "%c", (int)(empty_count
+ 'a' - 1));
686 retval
= dupstr(description
);
692 #define GRID_DESC_SEP '_'
694 /* Splits up a (optional) grid_desc from the game desc. Returns the
695 * grid_desc (which needs freeing) and updates the desc pointer to
696 * start of real desc, or returns NULL if no desc. */
697 static char *extract_grid_desc(char **desc
)
699 char *sep
= strchr(*desc
, GRID_DESC_SEP
), *gd
;
702 if (!sep
) return NULL
;
704 gd_len
= sep
- (*desc
);
705 gd
= snewn(gd_len
+1, char);
706 memcpy(gd
, *desc
, gd_len
);
714 /* We require that the params pass the test in validate_params and that the
715 * description fills the entire game area */
716 static char *validate_desc(game_params
*params
, char *desc
)
720 char *grid_desc
, *ret
;
722 /* It's pretty inefficient to do this just for validation. All we need to
723 * know is the precise number of faces. */
724 grid_desc
= extract_grid_desc(&desc
);
725 ret
= grid_validate_desc(grid_types
[params
->type
], params
->w
, params
->h
, grid_desc
);
728 g
= loopy_generate_grid(params
, grid_desc
);
729 if (grid_desc
) sfree(grid_desc
);
731 for (; *desc
; ++desc
) {
732 if ((*desc
>= '0' && *desc
<= '9') || (*desc
>= 'A' && *desc
<= 'Z')) {
737 count
+= *desc
- 'a' + 1;
740 return "Unknown character in description";
743 if (count
< g
->num_faces
)
744 return "Description too short for board size";
745 if (count
> g
->num_faces
)
746 return "Description too long for board size";
753 /* Sums the lengths of the numbers in range [0,n) */
754 /* See equivalent function in solo.c for justification of this. */
755 static int len_0_to_n(int n
)
757 int len
= 1; /* Counting 0 as a bit of a special case */
760 for (i
= 1; i
< n
; i
*= 10) {
761 len
+= max(n
- i
, 0);
767 static char *encode_solve_move(const game_state
*state
)
772 int num_edges
= state
->game_grid
->num_edges
;
774 /* This is going to return a string representing the moves needed to set
775 * every line in a grid to be the same as the ones in 'state'. The exact
776 * length of this string is predictable. */
778 len
= 1; /* Count the 'S' prefix */
779 /* Numbers in all lines */
780 len
+= len_0_to_n(num_edges
);
781 /* For each line we also have a letter */
784 ret
= snewn(len
+ 1, char);
787 p
+= sprintf(p
, "S");
789 for (i
= 0; i
< num_edges
; i
++) {
790 switch (state
->lines
[i
]) {
792 p
+= sprintf(p
, "%dy", i
);
795 p
+= sprintf(p
, "%dn", i
);
800 /* No point in doing sums like that if they're going to be wrong */
801 assert(strlen(ret
) <= (size_t)len
);
805 static game_ui
*new_ui(game_state
*state
)
810 static void free_ui(game_ui
*ui
)
814 static char *encode_ui(game_ui
*ui
)
819 static void decode_ui(game_ui
*ui
, char *encoding
)
823 static void game_changed_state(game_ui
*ui
, game_state
*oldstate
,
824 game_state
*newstate
)
828 static void game_compute_size(game_params
*params
, int tilesize
,
831 int grid_width
, grid_height
, rendered_width
, rendered_height
;
834 grid_compute_size(grid_types
[params
->type
], params
->w
, params
->h
,
835 &g_tilesize
, &grid_width
, &grid_height
);
837 /* multiply first to minimise rounding error on integer division */
838 rendered_width
= grid_width
* tilesize
/ g_tilesize
;
839 rendered_height
= grid_height
* tilesize
/ g_tilesize
;
840 *x
= rendered_width
+ 2 * BORDER(tilesize
) + 1;
841 *y
= rendered_height
+ 2 * BORDER(tilesize
) + 1;
844 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
845 game_params
*params
, int tilesize
)
847 ds
->tilesize
= tilesize
;
850 static float *game_colours(frontend
*fe
, int *ncolours
)
852 float *ret
= snewn(4 * NCOLOURS
, float);
854 frontend_default_colour(fe
, &ret
[COL_BACKGROUND
* 3]);
856 ret
[COL_FOREGROUND
* 3 + 0] = 0.0F
;
857 ret
[COL_FOREGROUND
* 3 + 1] = 0.0F
;
858 ret
[COL_FOREGROUND
* 3 + 2] = 0.0F
;
861 * We want COL_LINEUNKNOWN to be a yellow which is a bit darker
862 * than the background. (I previously set it to 0.8,0.8,0, but
863 * found that this went badly with the 0.8,0.8,0.8 favoured as a
864 * background by the Java frontend.)
866 ret
[COL_LINEUNKNOWN
* 3 + 0] = ret
[COL_BACKGROUND
* 3 + 0] * 0.9F
;
867 ret
[COL_LINEUNKNOWN
* 3 + 1] = ret
[COL_BACKGROUND
* 3 + 1] * 0.9F
;
868 ret
[COL_LINEUNKNOWN
* 3 + 2] = 0.0F
;
870 ret
[COL_HIGHLIGHT
* 3 + 0] = 1.0F
;
871 ret
[COL_HIGHLIGHT
* 3 + 1] = 1.0F
;
872 ret
[COL_HIGHLIGHT
* 3 + 2] = 1.0F
;
874 ret
[COL_MISTAKE
* 3 + 0] = 1.0F
;
875 ret
[COL_MISTAKE
* 3 + 1] = 0.0F
;
876 ret
[COL_MISTAKE
* 3 + 2] = 0.0F
;
878 ret
[COL_SATISFIED
* 3 + 0] = 0.0F
;
879 ret
[COL_SATISFIED
* 3 + 1] = 0.0F
;
880 ret
[COL_SATISFIED
* 3 + 2] = 0.0F
;
882 /* We want the faint lines to be a bit darker than the background.
883 * Except if the background is pretty dark already; then it ought to be a
884 * bit lighter. Oy vey.
886 ret
[COL_FAINT
* 3 + 0] = ret
[COL_BACKGROUND
* 3 + 0] * 0.9F
;
887 ret
[COL_FAINT
* 3 + 1] = ret
[COL_BACKGROUND
* 3 + 1] * 0.9F
;
888 ret
[COL_FAINT
* 3 + 2] = ret
[COL_BACKGROUND
* 3 + 2] * 0.9F
;
890 *ncolours
= NCOLOURS
;
894 static game_drawstate
*game_new_drawstate(drawing
*dr
, game_state
*state
)
896 struct game_drawstate
*ds
= snew(struct game_drawstate
);
897 int num_faces
= state
->game_grid
->num_faces
;
898 int num_edges
= state
->game_grid
->num_edges
;
903 ds
->lines
= snewn(num_edges
, char);
904 ds
->clue_error
= snewn(num_faces
, char);
905 ds
->clue_satisfied
= snewn(num_faces
, char);
906 ds
->textx
= snewn(num_faces
, int);
907 ds
->texty
= snewn(num_faces
, int);
910 memset(ds
->lines
, LINE_UNKNOWN
, num_edges
);
911 memset(ds
->clue_error
, 0, num_faces
);
912 memset(ds
->clue_satisfied
, 0, num_faces
);
913 for (i
= 0; i
< num_faces
; i
++)
914 ds
->textx
[i
] = ds
->texty
[i
] = -1;
919 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
923 sfree(ds
->clue_error
);
924 sfree(ds
->clue_satisfied
);
929 static int game_timing_state(game_state
*state
, game_ui
*ui
)
934 static float game_anim_length(game_state
*oldstate
, game_state
*newstate
,
935 int dir
, game_ui
*ui
)
940 static int game_can_format_as_text_now(game_params
*params
)
942 if (params
->type
!= 0)
947 static char *game_text_format(game_state
*state
)
953 grid
*g
= state
->game_grid
;
956 assert(state
->grid_type
== 0);
958 /* Work out the basic size unit */
959 f
= g
->faces
; /* first face */
960 assert(f
->order
== 4);
961 /* The dots are ordered clockwise, so the two opposite
962 * corners are guaranteed to span the square */
963 cell_size
= abs(f
->dots
[0]->x
- f
->dots
[2]->x
);
965 w
= (g
->highest_x
- g
->lowest_x
) / cell_size
;
966 h
= (g
->highest_y
- g
->lowest_y
) / cell_size
;
968 /* Create a blank "canvas" to "draw" on */
971 ret
= snewn(W
* H
+ 1, char);
972 for (y
= 0; y
< H
; y
++) {
973 for (x
= 0; x
< W
-1; x
++) {
976 ret
[y
*W
+ W
-1] = '\n';
980 /* Fill in edge info */
981 for (i
= 0; i
< g
->num_edges
; i
++) {
982 grid_edge
*e
= g
->edges
+ i
;
983 /* Cell coordinates, from (0,0) to (w-1,h-1) */
984 int x1
= (e
->dot1
->x
- g
->lowest_x
) / cell_size
;
985 int x2
= (e
->dot2
->x
- g
->lowest_x
) / cell_size
;
986 int y1
= (e
->dot1
->y
- g
->lowest_y
) / cell_size
;
987 int y2
= (e
->dot2
->y
- g
->lowest_y
) / cell_size
;
988 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
989 * cell coordinates) */
992 switch (state
->lines
[i
]) {
994 ret
[y
*W
+ x
] = (y1
== y2
) ? '-' : '|';
1000 break; /* already a space */
1002 assert(!"Illegal line state");
1007 for (i
= 0; i
< g
->num_faces
; i
++) {
1011 assert(f
->order
== 4);
1012 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1013 x1
= (f
->dots
[0]->x
- g
->lowest_x
) / cell_size
;
1014 x2
= (f
->dots
[2]->x
- g
->lowest_x
) / cell_size
;
1015 y1
= (f
->dots
[0]->y
- g
->lowest_y
) / cell_size
;
1016 y2
= (f
->dots
[2]->y
- g
->lowest_y
) / cell_size
;
1017 /* Midpoint, in canvas coordinates */
1020 ret
[y
*W
+ x
] = CLUE2CHAR(state
->clues
[i
]);
1025 /* ----------------------------------------------------------------------
1030 static void check_caches(const solver_state
* sstate
)
1033 const game_state
*state
= sstate
->state
;
1034 const grid
*g
= state
->game_grid
;
1036 for (i
= 0; i
< g
->num_dots
; i
++) {
1037 assert(dot_order(state
, i
, LINE_YES
) == sstate
->dot_yes_count
[i
]);
1038 assert(dot_order(state
, i
, LINE_NO
) == sstate
->dot_no_count
[i
]);
1041 for (i
= 0; i
< g
->num_faces
; i
++) {
1042 assert(face_order(state
, i
, LINE_YES
) == sstate
->face_yes_count
[i
]);
1043 assert(face_order(state
, i
, LINE_NO
) == sstate
->face_no_count
[i
]);
1048 #define check_caches(s) \
1050 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1054 #endif /* DEBUG_CACHES */
1056 /* ----------------------------------------------------------------------
1057 * Solver utility functions
1060 /* Sets the line (with index i) to the new state 'line_new', and updates
1061 * the cached counts of any affected faces and dots.
1062 * Returns TRUE if this actually changed the line's state. */
1063 static int solver_set_line(solver_state
*sstate
, int i
,
1064 enum line_state line_new
1066 , const char *reason
1070 game_state
*state
= sstate
->state
;
1074 assert(line_new
!= LINE_UNKNOWN
);
1076 check_caches(sstate
);
1078 if (state
->lines
[i
] == line_new
) {
1079 return FALSE
; /* nothing changed */
1081 state
->lines
[i
] = line_new
;
1084 fprintf(stderr
, "solver: set line [%d] to %s (%s)\n",
1085 i
, line_new
== LINE_YES
? "YES" : "NO",
1089 g
= state
->game_grid
;
1092 /* Update the cache for both dots and both faces affected by this. */
1093 if (line_new
== LINE_YES
) {
1094 sstate
->dot_yes_count
[e
->dot1
- g
->dots
]++;
1095 sstate
->dot_yes_count
[e
->dot2
- g
->dots
]++;
1097 sstate
->face_yes_count
[e
->face1
- g
->faces
]++;
1100 sstate
->face_yes_count
[e
->face2
- g
->faces
]++;
1103 sstate
->dot_no_count
[e
->dot1
- g
->dots
]++;
1104 sstate
->dot_no_count
[e
->dot2
- g
->dots
]++;
1106 sstate
->face_no_count
[e
->face1
- g
->faces
]++;
1109 sstate
->face_no_count
[e
->face2
- g
->faces
]++;
1113 check_caches(sstate
);
1118 #define solver_set_line(a, b, c) \
1119 solver_set_line(a, b, c, __FUNCTION__)
1123 * Merge two dots due to the existence of an edge between them.
1124 * Updates the dsf tracking equivalence classes, and keeps track of
1125 * the length of path each dot is currently a part of.
1126 * Returns TRUE if the dots were already linked, ie if they are part of a
1127 * closed loop, and false otherwise.
1129 static int merge_dots(solver_state
*sstate
, int edge_index
)
1132 grid
*g
= sstate
->state
->game_grid
;
1133 grid_edge
*e
= g
->edges
+ edge_index
;
1135 i
= e
->dot1
- g
->dots
;
1136 j
= e
->dot2
- g
->dots
;
1138 i
= dsf_canonify(sstate
->dotdsf
, i
);
1139 j
= dsf_canonify(sstate
->dotdsf
, j
);
1144 len
= sstate
->looplen
[i
] + sstate
->looplen
[j
];
1145 dsf_merge(sstate
->dotdsf
, i
, j
);
1146 i
= dsf_canonify(sstate
->dotdsf
, i
);
1147 sstate
->looplen
[i
] = len
;
1152 /* Merge two lines because the solver has deduced that they must be either
1153 * identical or opposite. Returns TRUE if this is new information, otherwise
1155 static int merge_lines(solver_state
*sstate
, int i
, int j
, int inverse
1157 , const char *reason
1163 assert(i
< sstate
->state
->game_grid
->num_edges
);
1164 assert(j
< sstate
->state
->game_grid
->num_edges
);
1166 i
= edsf_canonify(sstate
->linedsf
, i
, &inv_tmp
);
1168 j
= edsf_canonify(sstate
->linedsf
, j
, &inv_tmp
);
1171 edsf_merge(sstate
->linedsf
, i
, j
, inverse
);
1175 fprintf(stderr
, "%s [%d] [%d] %s(%s)\n",
1177 inverse
? "inverse " : "", reason
);
1184 #define merge_lines(a, b, c, d) \
1185 merge_lines(a, b, c, d, __FUNCTION__)
1188 /* Count the number of lines of a particular type currently going into the
1190 static int dot_order(const game_state
* state
, int dot
, char line_type
)
1193 grid
*g
= state
->game_grid
;
1194 grid_dot
*d
= g
->dots
+ dot
;
1197 for (i
= 0; i
< d
->order
; i
++) {
1198 grid_edge
*e
= d
->edges
[i
];
1199 if (state
->lines
[e
- g
->edges
] == line_type
)
1205 /* Count the number of lines of a particular type currently surrounding the
1207 static int face_order(const game_state
* state
, int face
, char line_type
)
1210 grid
*g
= state
->game_grid
;
1211 grid_face
*f
= g
->faces
+ face
;
1214 for (i
= 0; i
< f
->order
; i
++) {
1215 grid_edge
*e
= f
->edges
[i
];
1216 if (state
->lines
[e
- g
->edges
] == line_type
)
1222 /* Set all lines bordering a dot of type old_type to type new_type
1223 * Return value tells caller whether this function actually did anything */
1224 static int dot_setall(solver_state
*sstate
, int dot
,
1225 char old_type
, char new_type
)
1227 int retval
= FALSE
, r
;
1228 game_state
*state
= sstate
->state
;
1233 if (old_type
== new_type
)
1236 g
= state
->game_grid
;
1239 for (i
= 0; i
< d
->order
; i
++) {
1240 int line_index
= d
->edges
[i
] - g
->edges
;
1241 if (state
->lines
[line_index
] == old_type
) {
1242 r
= solver_set_line(sstate
, line_index
, new_type
);
1250 /* Set all lines bordering a face of type old_type to type new_type */
1251 static int face_setall(solver_state
*sstate
, int face
,
1252 char old_type
, char new_type
)
1254 int retval
= FALSE
, r
;
1255 game_state
*state
= sstate
->state
;
1260 if (old_type
== new_type
)
1263 g
= state
->game_grid
;
1264 f
= g
->faces
+ face
;
1266 for (i
= 0; i
< f
->order
; i
++) {
1267 int line_index
= f
->edges
[i
] - g
->edges
;
1268 if (state
->lines
[line_index
] == old_type
) {
1269 r
= solver_set_line(sstate
, line_index
, new_type
);
1277 /* ----------------------------------------------------------------------
1278 * Loop generation and clue removal
1281 static void add_full_clues(game_state
*state
, random_state
*rs
)
1283 signed char *clues
= state
->clues
;
1284 grid
*g
= state
->game_grid
;
1285 char *board
= snewn(g
->num_faces
, char);
1288 generate_loop(g
, board
, rs
, NULL
, NULL
);
1290 /* Fill out all the clues by initialising to 0, then iterating over
1291 * all edges and incrementing each clue as we find edges that border
1292 * between BLACK/WHITE faces. While we're at it, we verify that the
1293 * algorithm does work, and there aren't any GREY faces still there. */
1294 memset(clues
, 0, g
->num_faces
);
1295 for (i
= 0; i
< g
->num_edges
; i
++) {
1296 grid_edge
*e
= g
->edges
+ i
;
1297 grid_face
*f1
= e
->face1
;
1298 grid_face
*f2
= e
->face2
;
1299 enum face_colour c1
= FACE_COLOUR(f1
);
1300 enum face_colour c2
= FACE_COLOUR(f2
);
1301 assert(c1
!= FACE_GREY
);
1302 assert(c2
!= FACE_GREY
);
1304 if (f1
) clues
[f1
- g
->faces
]++;
1305 if (f2
) clues
[f2
- g
->faces
]++;
1312 static int game_has_unique_soln(const game_state
*state
, int diff
)
1315 solver_state
*sstate_new
;
1316 solver_state
*sstate
= new_solver_state((game_state
*)state
, diff
);
1318 sstate_new
= solve_game_rec(sstate
);
1320 assert(sstate_new
->solver_status
!= SOLVER_MISTAKE
);
1321 ret
= (sstate_new
->solver_status
== SOLVER_SOLVED
);
1323 free_solver_state(sstate_new
);
1324 free_solver_state(sstate
);
1330 /* Remove clues one at a time at random. */
1331 static game_state
*remove_clues(game_state
*state
, random_state
*rs
,
1335 int num_faces
= state
->game_grid
->num_faces
;
1336 game_state
*ret
= dup_game(state
), *saved_ret
;
1339 /* We need to remove some clues. We'll do this by forming a list of all
1340 * available clues, shuffling it, then going along one at a
1341 * time clearing each clue in turn for which doing so doesn't render the
1342 * board unsolvable. */
1343 face_list
= snewn(num_faces
, int);
1344 for (n
= 0; n
< num_faces
; ++n
) {
1348 shuffle(face_list
, num_faces
, sizeof(int), rs
);
1350 for (n
= 0; n
< num_faces
; ++n
) {
1351 saved_ret
= dup_game(ret
);
1352 ret
->clues
[face_list
[n
]] = -1;
1354 if (game_has_unique_soln(ret
, diff
)) {
1355 free_game(saved_ret
);
1367 static char *new_game_desc(game_params
*params
, random_state
*rs
,
1368 char **aux
, int interactive
)
1370 /* solution and description both use run-length encoding in obvious ways */
1371 char *retval
, *game_desc
, *grid_desc
;
1373 game_state
*state
= snew(game_state
);
1374 game_state
*state_new
;
1376 grid_desc
= grid_new_desc(grid_types
[params
->type
], params
->w
, params
->h
, rs
);
1377 state
->game_grid
= g
= loopy_generate_grid(params
, grid_desc
);
1379 state
->clues
= snewn(g
->num_faces
, signed char);
1380 state
->lines
= snewn(g
->num_edges
, char);
1381 state
->line_errors
= snewn(g
->num_edges
, unsigned char);
1383 state
->grid_type
= params
->type
;
1387 memset(state
->lines
, LINE_UNKNOWN
, g
->num_edges
);
1388 memset(state
->line_errors
, 0, g
->num_edges
);
1390 state
->solved
= state
->cheated
= FALSE
;
1392 /* Get a new random solvable board with all its clues filled in. Yes, this
1393 * can loop for ever if the params are suitably unfavourable, but
1394 * preventing games smaller than 4x4 seems to stop this happening */
1396 add_full_clues(state
, rs
);
1397 } while (!game_has_unique_soln(state
, params
->diff
));
1399 state_new
= remove_clues(state
, rs
, params
->diff
);
1404 if (params
->diff
> 0 && game_has_unique_soln(state
, params
->diff
-1)) {
1406 fprintf(stderr
, "Rejecting board, it is too easy\n");
1408 goto newboard_please
;
1411 game_desc
= state_to_text(state
);
1416 retval
= snewn(strlen(grid_desc
) + 1 + strlen(game_desc
) + 1, char);
1417 sprintf(retval
, "%s%c%s", grid_desc
, (int)GRID_DESC_SEP
, game_desc
);
1424 assert(!validate_desc(params
, retval
));
1429 static game_state
*new_game(midend
*me
, game_params
*params
, char *desc
)
1432 game_state
*state
= snew(game_state
);
1433 int empties_to_make
= 0;
1438 int num_faces
, num_edges
;
1440 grid_desc
= extract_grid_desc(&desc
);
1441 state
->game_grid
= g
= loopy_generate_grid(params
, grid_desc
);
1442 if (grid_desc
) sfree(grid_desc
);
1446 num_faces
= g
->num_faces
;
1447 num_edges
= g
->num_edges
;
1449 state
->clues
= snewn(num_faces
, signed char);
1450 state
->lines
= snewn(num_edges
, char);
1451 state
->line_errors
= snewn(num_edges
, unsigned char);
1453 state
->solved
= state
->cheated
= FALSE
;
1455 state
->grid_type
= params
->type
;
1457 for (i
= 0; i
< num_faces
; i
++) {
1458 if (empties_to_make
) {
1460 state
->clues
[i
] = -1;
1466 n2
= *dp
- 'A' + 10;
1467 if (n
>= 0 && n
< 10) {
1468 state
->clues
[i
] = n
;
1469 } else if (n2
>= 10 && n2
< 36) {
1470 state
->clues
[i
] = n2
;
1474 state
->clues
[i
] = -1;
1475 empties_to_make
= n
- 1;
1480 memset(state
->lines
, LINE_UNKNOWN
, num_edges
);
1481 memset(state
->line_errors
, 0, num_edges
);
1485 /* Calculates the line_errors data, and checks if the current state is a
1487 static int check_completion(game_state
*state
)
1489 grid
*g
= state
->game_grid
;
1491 int num_faces
= g
->num_faces
;
1493 int infinite_area
, finite_area
;
1494 int loops_found
= 0;
1495 int found_edge_not_in_loop
= FALSE
;
1497 memset(state
->line_errors
, 0, g
->num_edges
);
1499 /* LL implementation of SGT's idea:
1500 * A loop will partition the grid into an inside and an outside.
1501 * If there is more than one loop, the grid will be partitioned into
1502 * even more distinct regions. We can therefore track equivalence of
1503 * faces, by saying that two faces are equivalent when there is a non-YES
1504 * edge between them.
1505 * We could keep track of the number of connected components, by counting
1506 * the number of dsf-merges that aren't no-ops.
1507 * But we're only interested in 3 separate cases:
1508 * no loops, one loop, more than one loop.
1510 * No loops: all faces are equivalent to the infinite face.
1511 * One loop: only two equivalence classes - finite and infinite.
1512 * >= 2 loops: there are 2 distinct finite regions.
1514 * So we simply make two passes through all the edges.
1515 * In the first pass, we dsf-merge the two faces bordering each non-YES
1517 * In the second pass, we look for YES-edges bordering:
1518 * a) two non-equivalent faces.
1519 * b) two non-equivalent faces, and one of them is part of a different
1520 * finite area from the first finite area we've seen.
1522 * An occurrence of a) means there is at least one loop.
1523 * An occurrence of b) means there is more than one loop.
1524 * Edges satisfying a) are marked as errors.
1526 * While we're at it, we set a flag if we find a YES edge that is not
1528 * This information will help decide, if there's a single loop, whether it
1529 * is a candidate for being a solution (that is, all YES edges are part of
1532 * If there is a candidate loop, we then go through all clues and check
1533 * they are all satisfied. If so, we have found a solution and we can
1534 * unmark all line_errors.
1537 /* Infinite face is at the end - its index is num_faces.
1538 * This macro is just to make this obvious! */
1539 #define INF_FACE num_faces
1540 dsf
= snewn(num_faces
+ 1, int);
1541 dsf_init(dsf
, num_faces
+ 1);
1544 for (i
= 0; i
< g
->num_edges
; i
++) {
1545 grid_edge
*e
= g
->edges
+ i
;
1546 int f1
= e
->face1
? e
->face1
- g
->faces
: INF_FACE
;
1547 int f2
= e
->face2
? e
->face2
- g
->faces
: INF_FACE
;
1548 if (state
->lines
[i
] != LINE_YES
)
1549 dsf_merge(dsf
, f1
, f2
);
1553 infinite_area
= dsf_canonify(dsf
, INF_FACE
);
1555 for (i
= 0; i
< g
->num_edges
; i
++) {
1556 grid_edge
*e
= g
->edges
+ i
;
1557 int f1
= e
->face1
? e
->face1
- g
->faces
: INF_FACE
;
1558 int can1
= dsf_canonify(dsf
, f1
);
1559 int f2
= e
->face2
? e
->face2
- g
->faces
: INF_FACE
;
1560 int can2
= dsf_canonify(dsf
, f2
);
1561 if (state
->lines
[i
] != LINE_YES
) continue;
1564 /* Faces are equivalent, so this edge not part of a loop */
1565 found_edge_not_in_loop
= TRUE
;
1568 state
->line_errors
[i
] = TRUE
;
1569 if (loops_found
== 0) loops_found
= 1;
1571 /* Don't bother with further checks if we've already found 2 loops */
1572 if (loops_found
== 2) continue;
1574 if (finite_area
== -1) {
1575 /* Found our first finite area */
1576 if (can1
!= infinite_area
)
1582 /* Have we found a second area? */
1583 if (finite_area
!= -1) {
1584 if (can1
!= infinite_area
&& can1
!= finite_area
) {
1588 if (can2
!= infinite_area
&& can2
!= finite_area
) {
1595 printf("loops_found = %d\n", loops_found);
1596 printf("found_edge_not_in_loop = %s\n",
1597 found_edge_not_in_loop ? "TRUE" : "FALSE");
1600 sfree(dsf
); /* No longer need the dsf */
1602 /* Have we found a candidate loop? */
1603 if (loops_found
== 1 && !found_edge_not_in_loop
) {
1604 /* Yes, so check all clues are satisfied */
1605 int found_clue_violation
= FALSE
;
1606 for (i
= 0; i
< num_faces
; i
++) {
1607 int c
= state
->clues
[i
];
1609 if (face_order(state
, i
, LINE_YES
) != c
) {
1610 found_clue_violation
= TRUE
;
1616 if (!found_clue_violation
) {
1617 /* The loop is good */
1618 memset(state
->line_errors
, 0, g
->num_edges
);
1619 return TRUE
; /* No need to bother checking for dot violations */
1623 /* Check for dot violations */
1624 for (i
= 0; i
< g
->num_dots
; i
++) {
1625 int yes
= dot_order(state
, i
, LINE_YES
);
1626 int unknown
= dot_order(state
, i
, LINE_UNKNOWN
);
1627 if ((yes
== 1 && unknown
== 0) || (yes
>= 3)) {
1628 /* violation, so mark all YES edges as errors */
1629 grid_dot
*d
= g
->dots
+ i
;
1631 for (j
= 0; j
< d
->order
; j
++) {
1632 int e
= d
->edges
[j
] - g
->edges
;
1633 if (state
->lines
[e
] == LINE_YES
)
1634 state
->line_errors
[e
] = TRUE
;
1641 /* ----------------------------------------------------------------------
1644 * Our solver modes operate as follows. Each mode also uses the modes above it.
1647 * Just implement the rules of the game.
1649 * Normal and Tricky Modes
1650 * For each (adjacent) pair of lines through each dot we store a bit for
1651 * whether at least one of them is on and whether at most one is on. (If we
1652 * know both or neither is on that's already stored more directly.)
1655 * Use edsf data structure to make equivalence classes of lines that are
1656 * known identical to or opposite to one another.
1661 * For general grids, we consider "dlines" to be pairs of lines joined
1662 * at a dot. The lines must be adjacent around the dot, so we can think of
1663 * a dline as being a dot+face combination. Or, a dot+edge combination where
1664 * the second edge is taken to be the next clockwise edge from the dot.
1665 * Original loopy code didn't have this extra restriction of the lines being
1666 * adjacent. From my tests with square grids, this extra restriction seems to
1667 * take little, if anything, away from the quality of the puzzles.
1668 * A dline can be uniquely identified by an edge/dot combination, given that
1669 * a dline-pair always goes clockwise around its common dot. The edge/dot
1670 * combination can be represented by an edge/bool combination - if bool is
1671 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
1672 * exactly twice the number of edges in the grid - although the dlines
1673 * spanning the infinite face are not all that useful to the solver.
1674 * Note that, by convention, a dline goes clockwise around its common dot,
1675 * which means the dline goes anti-clockwise around its common face.
1678 /* Helper functions for obtaining an index into an array of dlines, given
1679 * various information. We assume the grid layout conventions about how
1680 * the various lists are interleaved - see grid_make_consistent() for
1683 /* i points to the first edge of the dline pair, reading clockwise around
1685 static int dline_index_from_dot(grid
*g
, grid_dot
*d
, int i
)
1687 grid_edge
*e
= d
->edges
[i
];
1692 if (i2
== d
->order
) i2
= 0;
1695 ret
= 2 * (e
- g
->edges
) + ((e
->dot1
== d
) ? 1 : 0);
1697 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
1698 (int)(d
- g
->dots
), i
, (int)(e
- g
->edges
),
1699 (int)(e2
- g
->edges
), ret
);
1703 /* i points to the second edge of the dline pair, reading clockwise around
1704 * the face. That is, the edges of the dline, starting at edge{i}, read
1705 * anti-clockwise around the face. By layout conventions, the common dot
1706 * of the dline will be f->dots[i] */
1707 static int dline_index_from_face(grid
*g
, grid_face
*f
, int i
)
1709 grid_edge
*e
= f
->edges
[i
];
1710 grid_dot
*d
= f
->dots
[i
];
1715 if (i2
< 0) i2
+= f
->order
;
1718 ret
= 2 * (e
- g
->edges
) + ((e
->dot1
== d
) ? 1 : 0);
1720 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
1721 (int)(f
- g
->faces
), i
, (int)(e
- g
->edges
),
1722 (int)(e2
- g
->edges
), ret
);
1726 static int is_atleastone(const char *dline_array
, int index
)
1728 return BIT_SET(dline_array
[index
], 0);
1730 static int set_atleastone(char *dline_array
, int index
)
1732 return SET_BIT(dline_array
[index
], 0);
1734 static int is_atmostone(const char *dline_array
, int index
)
1736 return BIT_SET(dline_array
[index
], 1);
1738 static int set_atmostone(char *dline_array
, int index
)
1740 return SET_BIT(dline_array
[index
], 1);
1743 static void array_setall(char *array
, char from
, char to
, int len
)
1745 char *p
= array
, *p_old
= p
;
1746 int len_remaining
= len
;
1748 while ((p
= memchr(p
, from
, len_remaining
))) {
1750 len_remaining
-= p
- p_old
;
1755 /* Helper, called when doing dline dot deductions, in the case where we
1756 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
1757 * them (because of dline atmostone/atleastone).
1758 * On entry, edge points to the first of these two UNKNOWNs. This function
1759 * will find the opposite UNKNOWNS (if they are adjacent to one another)
1760 * and set their corresponding dline to atleastone. (Setting atmostone
1761 * already happens in earlier dline deductions) */
1762 static int dline_set_opp_atleastone(solver_state
*sstate
,
1763 grid_dot
*d
, int edge
)
1765 game_state
*state
= sstate
->state
;
1766 grid
*g
= state
->game_grid
;
1769 for (opp
= 0; opp
< N
; opp
++) {
1770 int opp_dline_index
;
1771 if (opp
== edge
|| opp
== edge
+1 || opp
== edge
-1)
1773 if (opp
== 0 && edge
== N
-1)
1775 if (opp
== N
-1 && edge
== 0)
1778 if (opp2
== N
) opp2
= 0;
1779 /* Check if opp, opp2 point to LINE_UNKNOWNs */
1780 if (state
->lines
[d
->edges
[opp
] - g
->edges
] != LINE_UNKNOWN
)
1782 if (state
->lines
[d
->edges
[opp2
] - g
->edges
] != LINE_UNKNOWN
)
1784 /* Found opposite UNKNOWNS and they're next to each other */
1785 opp_dline_index
= dline_index_from_dot(g
, d
, opp
);
1786 return set_atleastone(sstate
->dlines
, opp_dline_index
);
1792 /* Set pairs of lines around this face which are known to be identical, to
1793 * the given line_state */
1794 static int face_setall_identical(solver_state
*sstate
, int face_index
,
1795 enum line_state line_new
)
1797 /* can[dir] contains the canonical line associated with the line in
1798 * direction dir from the square in question. Similarly inv[dir] is
1799 * whether or not the line in question is inverse to its canonical
1802 game_state
*state
= sstate
->state
;
1803 grid
*g
= state
->game_grid
;
1804 grid_face
*f
= g
->faces
+ face_index
;
1807 int can1
, can2
, inv1
, inv2
;
1809 for (i
= 0; i
< N
; i
++) {
1810 int line1_index
= f
->edges
[i
] - g
->edges
;
1811 if (state
->lines
[line1_index
] != LINE_UNKNOWN
)
1813 for (j
= i
+ 1; j
< N
; j
++) {
1814 int line2_index
= f
->edges
[j
] - g
->edges
;
1815 if (state
->lines
[line2_index
] != LINE_UNKNOWN
)
1818 /* Found two UNKNOWNS */
1819 can1
= edsf_canonify(sstate
->linedsf
, line1_index
, &inv1
);
1820 can2
= edsf_canonify(sstate
->linedsf
, line2_index
, &inv2
);
1821 if (can1
== can2
&& inv1
== inv2
) {
1822 solver_set_line(sstate
, line1_index
, line_new
);
1823 solver_set_line(sstate
, line2_index
, line_new
);
1830 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
1831 * return the edge indices into e. */
1832 static void find_unknowns(game_state
*state
,
1833 grid_edge
**edge_list
, /* Edge list to search (from a face or a dot) */
1834 int expected_count
, /* Number of UNKNOWNs (comes from solver's cache) */
1835 int *e
/* Returned edge indices */)
1838 grid
*g
= state
->game_grid
;
1839 while (c
< expected_count
) {
1840 int line_index
= *edge_list
- g
->edges
;
1841 if (state
->lines
[line_index
] == LINE_UNKNOWN
) {
1849 /* If we have a list of edges, and we know whether the number of YESs should
1850 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
1851 * linedsf deductions. This can be used for both face and dot deductions.
1852 * Returns the difficulty level of the next solver that should be used,
1853 * or DIFF_MAX if no progress was made. */
1854 static int parity_deductions(solver_state
*sstate
,
1855 grid_edge
**edge_list
, /* Edge list (from a face or a dot) */
1856 int total_parity
, /* Expected number of YESs modulo 2 (either 0 or 1) */
1859 game_state
*state
= sstate
->state
;
1860 int diff
= DIFF_MAX
;
1861 int *linedsf
= sstate
->linedsf
;
1863 if (unknown_count
== 2) {
1864 /* Lines are known alike/opposite, depending on inv. */
1866 find_unknowns(state
, edge_list
, 2, e
);
1867 if (merge_lines(sstate
, e
[0], e
[1], total_parity
))
1868 diff
= min(diff
, DIFF_HARD
);
1869 } else if (unknown_count
== 3) {
1871 int can
[3]; /* canonical edges */
1872 int inv
[3]; /* whether can[x] is inverse to e[x] */
1873 find_unknowns(state
, edge_list
, 3, e
);
1874 can
[0] = edsf_canonify(linedsf
, e
[0], inv
);
1875 can
[1] = edsf_canonify(linedsf
, e
[1], inv
+1);
1876 can
[2] = edsf_canonify(linedsf
, e
[2], inv
+2);
1877 if (can
[0] == can
[1]) {
1878 if (solver_set_line(sstate
, e
[2], (total_parity
^inv
[0]^inv
[1]) ?
1879 LINE_YES
: LINE_NO
))
1880 diff
= min(diff
, DIFF_EASY
);
1882 if (can
[0] == can
[2]) {
1883 if (solver_set_line(sstate
, e
[1], (total_parity
^inv
[0]^inv
[2]) ?
1884 LINE_YES
: LINE_NO
))
1885 diff
= min(diff
, DIFF_EASY
);
1887 if (can
[1] == can
[2]) {
1888 if (solver_set_line(sstate
, e
[0], (total_parity
^inv
[1]^inv
[2]) ?
1889 LINE_YES
: LINE_NO
))
1890 diff
= min(diff
, DIFF_EASY
);
1892 } else if (unknown_count
== 4) {
1894 int can
[4]; /* canonical edges */
1895 int inv
[4]; /* whether can[x] is inverse to e[x] */
1896 find_unknowns(state
, edge_list
, 4, e
);
1897 can
[0] = edsf_canonify(linedsf
, e
[0], inv
);
1898 can
[1] = edsf_canonify(linedsf
, e
[1], inv
+1);
1899 can
[2] = edsf_canonify(linedsf
, e
[2], inv
+2);
1900 can
[3] = edsf_canonify(linedsf
, e
[3], inv
+3);
1901 if (can
[0] == can
[1]) {
1902 if (merge_lines(sstate
, e
[2], e
[3], total_parity
^inv
[0]^inv
[1]))
1903 diff
= min(diff
, DIFF_HARD
);
1904 } else if (can
[0] == can
[2]) {
1905 if (merge_lines(sstate
, e
[1], e
[3], total_parity
^inv
[0]^inv
[2]))
1906 diff
= min(diff
, DIFF_HARD
);
1907 } else if (can
[0] == can
[3]) {
1908 if (merge_lines(sstate
, e
[1], e
[2], total_parity
^inv
[0]^inv
[3]))
1909 diff
= min(diff
, DIFF_HARD
);
1910 } else if (can
[1] == can
[2]) {
1911 if (merge_lines(sstate
, e
[0], e
[3], total_parity
^inv
[1]^inv
[2]))
1912 diff
= min(diff
, DIFF_HARD
);
1913 } else if (can
[1] == can
[3]) {
1914 if (merge_lines(sstate
, e
[0], e
[2], total_parity
^inv
[1]^inv
[3]))
1915 diff
= min(diff
, DIFF_HARD
);
1916 } else if (can
[2] == can
[3]) {
1917 if (merge_lines(sstate
, e
[0], e
[1], total_parity
^inv
[2]^inv
[3]))
1918 diff
= min(diff
, DIFF_HARD
);
1926 * These are the main solver functions.
1928 * Their return values are diff values corresponding to the lowest mode solver
1929 * that would notice the work that they have done. For example if the normal
1930 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
1931 * easy mode solver might be able to make progress using that. It doesn't make
1932 * sense for one of them to return a diff value higher than that of the
1935 * Each function returns the lowest value it can, as early as possible, in
1936 * order to try and pass as much work as possible back to the lower level
1937 * solvers which progress more quickly.
1940 /* PROPOSED NEW DESIGN:
1941 * We have a work queue consisting of 'events' notifying us that something has
1942 * happened that a particular solver mode might be interested in. For example
1943 * the hard mode solver might do something that helps the normal mode solver at
1944 * dot [x,y] in which case it will enqueue an event recording this fact. Then
1945 * we pull events off the work queue, and hand each in turn to the solver that
1946 * is interested in them. If a solver reports that it failed we pass the same
1947 * event on to progressively more advanced solvers and the loop detector. Once
1948 * we've exhausted an event, or it has helped us progress, we drop it and
1949 * continue to the next one. The events are sorted first in order of solver
1950 * complexity (easy first) then order of insertion (oldest first).
1951 * Once we run out of events we loop over each permitted solver in turn
1952 * (easiest first) until either a deduction is made (and an event therefore
1953 * emerges) or no further deductions can be made (in which case we've failed).
1956 * * How do we 'loop over' a solver when both dots and squares are concerned.
1957 * Answer: first all squares then all dots.
1960 static int trivial_deductions(solver_state
*sstate
)
1962 int i
, current_yes
, current_no
;
1963 game_state
*state
= sstate
->state
;
1964 grid
*g
= state
->game_grid
;
1965 int diff
= DIFF_MAX
;
1967 /* Per-face deductions */
1968 for (i
= 0; i
< g
->num_faces
; i
++) {
1969 grid_face
*f
= g
->faces
+ i
;
1971 if (sstate
->face_solved
[i
])
1974 current_yes
= sstate
->face_yes_count
[i
];
1975 current_no
= sstate
->face_no_count
[i
];
1977 if (current_yes
+ current_no
== f
->order
) {
1978 sstate
->face_solved
[i
] = TRUE
;
1982 if (state
->clues
[i
] < 0)
1986 * This code checks whether the numeric clue on a face is so
1987 * large as to permit all its remaining LINE_UNKNOWNs to be
1988 * filled in as LINE_YES, or alternatively so small as to
1989 * permit them all to be filled in as LINE_NO.
1992 if (state
->clues
[i
] < current_yes
) {
1993 sstate
->solver_status
= SOLVER_MISTAKE
;
1996 if (state
->clues
[i
] == current_yes
) {
1997 if (face_setall(sstate
, i
, LINE_UNKNOWN
, LINE_NO
))
1998 diff
= min(diff
, DIFF_EASY
);
1999 sstate
->face_solved
[i
] = TRUE
;
2003 if (f
->order
- state
->clues
[i
] < current_no
) {
2004 sstate
->solver_status
= SOLVER_MISTAKE
;
2007 if (f
->order
- state
->clues
[i
] == current_no
) {
2008 if (face_setall(sstate
, i
, LINE_UNKNOWN
, LINE_YES
))
2009 diff
= min(diff
, DIFF_EASY
);
2010 sstate
->face_solved
[i
] = TRUE
;
2014 if (f
->order
- state
->clues
[i
] == current_no
+ 1 &&
2015 f
->order
- current_yes
- current_no
> 2) {
2017 * One small refinement to the above: we also look for any
2018 * adjacent pair of LINE_UNKNOWNs around the face with
2019 * some LINE_YES incident on it from elsewhere. If we find
2020 * one, then we know that pair of LINE_UNKNOWNs can't
2021 * _both_ be LINE_YES, and hence that pushes us one line
2022 * closer to being able to determine all the rest.
2024 int j
, k
, e1
, e2
, e
, d
;
2026 for (j
= 0; j
< f
->order
; j
++) {
2027 e1
= f
->edges
[j
] - g
->edges
;
2028 e2
= f
->edges
[j
+1 < f
->order
? j
+1 : 0] - g
->edges
;
2030 if (g
->edges
[e1
].dot1
== g
->edges
[e2
].dot1
||
2031 g
->edges
[e1
].dot1
== g
->edges
[e2
].dot2
) {
2032 d
= g
->edges
[e1
].dot1
- g
->dots
;
2034 assert(g
->edges
[e1
].dot2
== g
->edges
[e2
].dot1
||
2035 g
->edges
[e1
].dot2
== g
->edges
[e2
].dot2
);
2036 d
= g
->edges
[e1
].dot2
- g
->dots
;
2039 if (state
->lines
[e1
] == LINE_UNKNOWN
&&
2040 state
->lines
[e2
] == LINE_UNKNOWN
) {
2041 for (k
= 0; k
< g
->dots
[d
].order
; k
++) {
2042 int e
= g
->dots
[d
].edges
[k
] - g
->edges
;
2043 if (state
->lines
[e
] == LINE_YES
)
2044 goto found
; /* multi-level break */
2052 * If we get here, we've found such a pair of edges, and
2053 * they're e1 and e2.
2055 for (j
= 0; j
< f
->order
; j
++) {
2056 e
= f
->edges
[j
] - g
->edges
;
2057 if (state
->lines
[e
] == LINE_UNKNOWN
&& e
!= e1
&& e
!= e2
) {
2058 int r
= solver_set_line(sstate
, e
, LINE_YES
);
2060 diff
= min(diff
, DIFF_EASY
);
2066 check_caches(sstate
);
2068 /* Per-dot deductions */
2069 for (i
= 0; i
< g
->num_dots
; i
++) {
2070 grid_dot
*d
= g
->dots
+ i
;
2071 int yes
, no
, unknown
;
2073 if (sstate
->dot_solved
[i
])
2076 yes
= sstate
->dot_yes_count
[i
];
2077 no
= sstate
->dot_no_count
[i
];
2078 unknown
= d
->order
- yes
- no
;
2082 sstate
->dot_solved
[i
] = TRUE
;
2083 } else if (unknown
== 1) {
2084 dot_setall(sstate
, i
, LINE_UNKNOWN
, LINE_NO
);
2085 diff
= min(diff
, DIFF_EASY
);
2086 sstate
->dot_solved
[i
] = TRUE
;
2088 } else if (yes
== 1) {
2090 sstate
->solver_status
= SOLVER_MISTAKE
;
2092 } else if (unknown
== 1) {
2093 dot_setall(sstate
, i
, LINE_UNKNOWN
, LINE_YES
);
2094 diff
= min(diff
, DIFF_EASY
);
2096 } else if (yes
== 2) {
2098 dot_setall(sstate
, i
, LINE_UNKNOWN
, LINE_NO
);
2099 diff
= min(diff
, DIFF_EASY
);
2101 sstate
->dot_solved
[i
] = TRUE
;
2103 sstate
->solver_status
= SOLVER_MISTAKE
;
2108 check_caches(sstate
);
2113 static int dline_deductions(solver_state
*sstate
)
2115 game_state
*state
= sstate
->state
;
2116 grid
*g
= state
->game_grid
;
2117 char *dlines
= sstate
->dlines
;
2119 int diff
= DIFF_MAX
;
2121 /* ------ Face deductions ------ */
2123 /* Given a set of dline atmostone/atleastone constraints, need to figure
2124 * out if we can deduce any further info. For more general faces than
2125 * squares, this turns out to be a tricky problem.
2126 * The approach taken here is to define (per face) NxN matrices:
2127 * "maxs" and "mins".
2128 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2129 * for the possible number of edges that are YES between positions j and k
2130 * going clockwise around the face. Can think of j and k as marking dots
2131 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2132 * edge1 joins dot1 to dot2 etc).
2133 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2134 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2135 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2136 * the dline atmostone/atleastone status for edges j and j+1.
2138 * Then we calculate the remaining entries recursively. We definitely
2140 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2141 * This is because any valid placement of YESs between j and k must give
2142 * a valid placement between j and u, and also between u and k.
2143 * I believe it's sufficient to use just the two values of u:
2144 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2145 * are rigorous, even if they might not be best-possible.
2147 * Once we have maxs and mins calculated, we can make inferences about
2148 * each dline{j,j+1} by looking at the possible complementary edge-counts
2149 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2150 * As well as dlines, we can make similar inferences about single edges.
2151 * For example, consider a pentagon with clue 3, and we know at most one
2152 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2153 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2154 * that final edge would have to be YES to make the count up to 3.
2157 /* Much quicker to allocate arrays on the stack than the heap, so
2158 * define the largest possible face size, and base our array allocations
2159 * on that. We check this with an assertion, in case someone decides to
2160 * make a grid which has larger faces than this. Note, this algorithm
2161 * could get quite expensive if there are many large faces. */
2162 #define MAX_FACE_SIZE 12
2164 for (i
= 0; i
< g
->num_faces
; i
++) {
2165 int maxs
[MAX_FACE_SIZE
][MAX_FACE_SIZE
];
2166 int mins
[MAX_FACE_SIZE
][MAX_FACE_SIZE
];
2167 grid_face
*f
= g
->faces
+ i
;
2170 int clue
= state
->clues
[i
];
2171 assert(N
<= MAX_FACE_SIZE
);
2172 if (sstate
->face_solved
[i
])
2174 if (clue
< 0) continue;
2176 /* Calculate the (j,j+1) entries */
2177 for (j
= 0; j
< N
; j
++) {
2178 int edge_index
= f
->edges
[j
] - g
->edges
;
2180 enum line_state line1
= state
->lines
[edge_index
];
2181 enum line_state line2
;
2185 maxs
[j
][k
] = (line1
== LINE_NO
) ? 0 : 1;
2186 mins
[j
][k
] = (line1
== LINE_YES
) ? 1 : 0;
2187 /* Calculate the (j,j+2) entries */
2188 dline_index
= dline_index_from_face(g
, f
, k
);
2189 edge_index
= f
->edges
[k
] - g
->edges
;
2190 line2
= state
->lines
[edge_index
];
2196 if (line1
== LINE_NO
) tmp
--;
2197 if (line2
== LINE_NO
) tmp
--;
2198 if (tmp
== 2 && is_atmostone(dlines
, dline_index
))
2204 if (line1
== LINE_YES
) tmp
++;
2205 if (line2
== LINE_YES
) tmp
++;
2206 if (tmp
== 0 && is_atleastone(dlines
, dline_index
))
2211 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2212 for (m
= 3; m
< N
; m
++) {
2213 for (j
= 0; j
< N
; j
++) {
2221 maxs
[j
][k
] = maxs
[j
][u
] + maxs
[u
][k
];
2222 mins
[j
][k
] = mins
[j
][u
] + mins
[u
][k
];
2223 tmp
= maxs
[j
][v
] + maxs
[v
][k
];
2224 maxs
[j
][k
] = min(maxs
[j
][k
], tmp
);
2225 tmp
= mins
[j
][v
] + mins
[v
][k
];
2226 mins
[j
][k
] = max(mins
[j
][k
], tmp
);
2230 /* See if we can make any deductions */
2231 for (j
= 0; j
< N
; j
++) {
2233 grid_edge
*e
= f
->edges
[j
];
2234 int line_index
= e
- g
->edges
;
2237 if (state
->lines
[line_index
] != LINE_UNKNOWN
)
2242 /* minimum YESs in the complement of this edge */
2243 if (mins
[k
][j
] > clue
) {
2244 sstate
->solver_status
= SOLVER_MISTAKE
;
2247 if (mins
[k
][j
] == clue
) {
2248 /* setting this edge to YES would make at least
2249 * (clue+1) edges - contradiction */
2250 solver_set_line(sstate
, line_index
, LINE_NO
);
2251 diff
= min(diff
, DIFF_EASY
);
2253 if (maxs
[k
][j
] < clue
- 1) {
2254 sstate
->solver_status
= SOLVER_MISTAKE
;
2257 if (maxs
[k
][j
] == clue
- 1) {
2258 /* Only way to satisfy the clue is to set edge{j} as YES */
2259 solver_set_line(sstate
, line_index
, LINE_YES
);
2260 diff
= min(diff
, DIFF_EASY
);
2263 /* More advanced deduction that allows propagation along diagonal
2264 * chains of faces connected by dots, for example, 3-2-...-2-3
2265 * in square grids. */
2266 if (sstate
->diff
>= DIFF_TRICKY
) {
2267 /* Now see if we can make dline deduction for edges{j,j+1} */
2269 if (state
->lines
[e
- g
->edges
] != LINE_UNKNOWN
)
2270 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2271 * Dlines where one of the edges is known, are handled in the
2275 dline_index
= dline_index_from_face(g
, f
, k
);
2279 /* minimum YESs in the complement of this dline */
2280 if (mins
[k
][j
] > clue
- 2) {
2281 /* Adding 2 YESs would break the clue */
2282 if (set_atmostone(dlines
, dline_index
))
2283 diff
= min(diff
, DIFF_NORMAL
);
2285 /* maximum YESs in the complement of this dline */
2286 if (maxs
[k
][j
] < clue
) {
2287 /* Adding 2 NOs would mean not enough YESs */
2288 if (set_atleastone(dlines
, dline_index
))
2289 diff
= min(diff
, DIFF_NORMAL
);
2295 if (diff
< DIFF_NORMAL
)
2298 /* ------ Dot deductions ------ */
2300 for (i
= 0; i
< g
->num_dots
; i
++) {
2301 grid_dot
*d
= g
->dots
+ i
;
2303 int yes
, no
, unknown
;
2305 if (sstate
->dot_solved
[i
])
2307 yes
= sstate
->dot_yes_count
[i
];
2308 no
= sstate
->dot_no_count
[i
];
2309 unknown
= N
- yes
- no
;
2311 for (j
= 0; j
< N
; j
++) {
2314 int line1_index
, line2_index
;
2315 enum line_state line1
, line2
;
2318 dline_index
= dline_index_from_dot(g
, d
, j
);
2319 line1_index
= d
->edges
[j
] - g
->edges
;
2320 line2_index
= d
->edges
[k
] - g
->edges
;
2321 line1
= state
->lines
[line1_index
];
2322 line2
= state
->lines
[line2_index
];
2324 /* Infer dline state from line state */
2325 if (line1
== LINE_NO
|| line2
== LINE_NO
) {
2326 if (set_atmostone(dlines
, dline_index
))
2327 diff
= min(diff
, DIFF_NORMAL
);
2329 if (line1
== LINE_YES
|| line2
== LINE_YES
) {
2330 if (set_atleastone(dlines
, dline_index
))
2331 diff
= min(diff
, DIFF_NORMAL
);
2333 /* Infer line state from dline state */
2334 if (is_atmostone(dlines
, dline_index
)) {
2335 if (line1
== LINE_YES
&& line2
== LINE_UNKNOWN
) {
2336 solver_set_line(sstate
, line2_index
, LINE_NO
);
2337 diff
= min(diff
, DIFF_EASY
);
2339 if (line2
== LINE_YES
&& line1
== LINE_UNKNOWN
) {
2340 solver_set_line(sstate
, line1_index
, LINE_NO
);
2341 diff
= min(diff
, DIFF_EASY
);
2344 if (is_atleastone(dlines
, dline_index
)) {
2345 if (line1
== LINE_NO
&& line2
== LINE_UNKNOWN
) {
2346 solver_set_line(sstate
, line2_index
, LINE_YES
);
2347 diff
= min(diff
, DIFF_EASY
);
2349 if (line2
== LINE_NO
&& line1
== LINE_UNKNOWN
) {
2350 solver_set_line(sstate
, line1_index
, LINE_YES
);
2351 diff
= min(diff
, DIFF_EASY
);
2354 /* Deductions that depend on the numbers of lines.
2355 * Only bother if both lines are UNKNOWN, otherwise the
2356 * easy-mode solver (or deductions above) would have taken
2358 if (line1
!= LINE_UNKNOWN
|| line2
!= LINE_UNKNOWN
)
2361 if (yes
== 0 && unknown
== 2) {
2362 /* Both these unknowns must be identical. If we know
2363 * atmostone or atleastone, we can make progress. */
2364 if (is_atmostone(dlines
, dline_index
)) {
2365 solver_set_line(sstate
, line1_index
, LINE_NO
);
2366 solver_set_line(sstate
, line2_index
, LINE_NO
);
2367 diff
= min(diff
, DIFF_EASY
);
2369 if (is_atleastone(dlines
, dline_index
)) {
2370 solver_set_line(sstate
, line1_index
, LINE_YES
);
2371 solver_set_line(sstate
, line2_index
, LINE_YES
);
2372 diff
= min(diff
, DIFF_EASY
);
2376 if (set_atmostone(dlines
, dline_index
))
2377 diff
= min(diff
, DIFF_NORMAL
);
2379 if (set_atleastone(dlines
, dline_index
))
2380 diff
= min(diff
, DIFF_NORMAL
);
2384 /* More advanced deduction that allows propagation along diagonal
2385 * chains of faces connected by dots, for example: 3-2-...-2-3
2386 * in square grids. */
2387 if (sstate
->diff
>= DIFF_TRICKY
) {
2388 /* If we have atleastone set for this dline, infer
2389 * atmostone for each "opposite" dline (that is, each
2390 * dline without edges in common with this one).
2391 * Again, this test is only worth doing if both these
2392 * lines are UNKNOWN. For if one of these lines were YES,
2393 * the (yes == 1) test above would kick in instead. */
2394 if (is_atleastone(dlines
, dline_index
)) {
2396 for (opp
= 0; opp
< N
; opp
++) {
2397 int opp_dline_index
;
2398 if (opp
== j
|| opp
== j
+1 || opp
== j
-1)
2400 if (j
== 0 && opp
== N
-1)
2402 if (j
== N
-1 && opp
== 0)
2404 opp_dline_index
= dline_index_from_dot(g
, d
, opp
);
2405 if (set_atmostone(dlines
, opp_dline_index
))
2406 diff
= min(diff
, DIFF_NORMAL
);
2408 if (yes
== 0 && is_atmostone(dlines
, dline_index
)) {
2409 /* This dline has *exactly* one YES and there are no
2410 * other YESs. This allows more deductions. */
2412 /* Third unknown must be YES */
2413 for (opp
= 0; opp
< N
; opp
++) {
2415 if (opp
== j
|| opp
== k
)
2417 opp_index
= d
->edges
[opp
] - g
->edges
;
2418 if (state
->lines
[opp_index
] == LINE_UNKNOWN
) {
2419 solver_set_line(sstate
, opp_index
,
2421 diff
= min(diff
, DIFF_EASY
);
2424 } else if (unknown
== 4) {
2425 /* Exactly one of opposite UNKNOWNS is YES. We've
2426 * already set atmostone, so set atleastone as
2429 if (dline_set_opp_atleastone(sstate
, d
, j
))
2430 diff
= min(diff
, DIFF_NORMAL
);
2440 static int linedsf_deductions(solver_state
*sstate
)
2442 game_state
*state
= sstate
->state
;
2443 grid
*g
= state
->game_grid
;
2444 char *dlines
= sstate
->dlines
;
2446 int diff
= DIFF_MAX
;
2449 /* ------ Face deductions ------ */
2451 /* A fully-general linedsf deduction seems overly complicated
2452 * (I suspect the problem is NP-complete, though in practice it might just
2453 * be doable because faces are limited in size).
2454 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2455 * known to be identical. If setting them both to YES (or NO) would break
2456 * the clue, set them to NO (or YES). */
2458 for (i
= 0; i
< g
->num_faces
; i
++) {
2459 int N
, yes
, no
, unknown
;
2462 if (sstate
->face_solved
[i
])
2464 clue
= state
->clues
[i
];
2468 N
= g
->faces
[i
].order
;
2469 yes
= sstate
->face_yes_count
[i
];
2470 if (yes
+ 1 == clue
) {
2471 if (face_setall_identical(sstate
, i
, LINE_NO
))
2472 diff
= min(diff
, DIFF_EASY
);
2474 no
= sstate
->face_no_count
[i
];
2475 if (no
+ 1 == N
- clue
) {
2476 if (face_setall_identical(sstate
, i
, LINE_YES
))
2477 diff
= min(diff
, DIFF_EASY
);
2480 /* Reload YES count, it might have changed */
2481 yes
= sstate
->face_yes_count
[i
];
2482 unknown
= N
- no
- yes
;
2484 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2485 * parity of lines. */
2486 diff_tmp
= parity_deductions(sstate
, g
->faces
[i
].edges
,
2487 (clue
- yes
) % 2, unknown
);
2488 diff
= min(diff
, diff_tmp
);
2491 /* ------ Dot deductions ------ */
2492 for (i
= 0; i
< g
->num_dots
; i
++) {
2493 grid_dot
*d
= g
->dots
+ i
;
2496 int yes
, no
, unknown
;
2497 /* Go through dlines, and do any dline<->linedsf deductions wherever
2498 * we find two UNKNOWNS. */
2499 for (j
= 0; j
< N
; j
++) {
2500 int dline_index
= dline_index_from_dot(g
, d
, j
);
2503 int can1
, can2
, inv1
, inv2
;
2505 line1_index
= d
->edges
[j
] - g
->edges
;
2506 if (state
->lines
[line1_index
] != LINE_UNKNOWN
)
2509 if (j2
== N
) j2
= 0;
2510 line2_index
= d
->edges
[j2
] - g
->edges
;
2511 if (state
->lines
[line2_index
] != LINE_UNKNOWN
)
2513 /* Infer dline flags from linedsf */
2514 can1
= edsf_canonify(sstate
->linedsf
, line1_index
, &inv1
);
2515 can2
= edsf_canonify(sstate
->linedsf
, line2_index
, &inv2
);
2516 if (can1
== can2
&& inv1
!= inv2
) {
2517 /* These are opposites, so set dline atmostone/atleastone */
2518 if (set_atmostone(dlines
, dline_index
))
2519 diff
= min(diff
, DIFF_NORMAL
);
2520 if (set_atleastone(dlines
, dline_index
))
2521 diff
= min(diff
, DIFF_NORMAL
);
2524 /* Infer linedsf from dline flags */
2525 if (is_atmostone(dlines
, dline_index
)
2526 && is_atleastone(dlines
, dline_index
)) {
2527 if (merge_lines(sstate
, line1_index
, line2_index
, 1))
2528 diff
= min(diff
, DIFF_HARD
);
2532 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2533 * parity of lines. */
2534 yes
= sstate
->dot_yes_count
[i
];
2535 no
= sstate
->dot_no_count
[i
];
2536 unknown
= N
- yes
- no
;
2537 diff_tmp
= parity_deductions(sstate
, d
->edges
,
2539 diff
= min(diff
, diff_tmp
);
2542 /* ------ Edge dsf deductions ------ */
2544 /* If the state of a line is known, deduce the state of its canonical line
2545 * too, and vice versa. */
2546 for (i
= 0; i
< g
->num_edges
; i
++) {
2549 can
= edsf_canonify(sstate
->linedsf
, i
, &inv
);
2552 s
= sstate
->state
->lines
[can
];
2553 if (s
!= LINE_UNKNOWN
) {
2554 if (solver_set_line(sstate
, i
, inv
? OPP(s
) : s
))
2555 diff
= min(diff
, DIFF_EASY
);
2557 s
= sstate
->state
->lines
[i
];
2558 if (s
!= LINE_UNKNOWN
) {
2559 if (solver_set_line(sstate
, can
, inv
? OPP(s
) : s
))
2560 diff
= min(diff
, DIFF_EASY
);
2568 static int loop_deductions(solver_state
*sstate
)
2570 int edgecount
= 0, clues
= 0, satclues
= 0, sm1clues
= 0;
2571 game_state
*state
= sstate
->state
;
2572 grid
*g
= state
->game_grid
;
2573 int shortest_chainlen
= g
->num_dots
;
2574 int loop_found
= FALSE
;
2576 int progress
= FALSE
;
2580 * Go through the grid and update for all the new edges.
2581 * Since merge_dots() is idempotent, the simplest way to
2582 * do this is just to update for _all_ the edges.
2583 * Also, while we're here, we count the edges.
2585 for (i
= 0; i
< g
->num_edges
; i
++) {
2586 if (state
->lines
[i
] == LINE_YES
) {
2587 loop_found
|= merge_dots(sstate
, i
);
2593 * Count the clues, count the satisfied clues, and count the
2594 * satisfied-minus-one clues.
2596 for (i
= 0; i
< g
->num_faces
; i
++) {
2597 int c
= state
->clues
[i
];
2599 int o
= sstate
->face_yes_count
[i
];
2608 for (i
= 0; i
< g
->num_dots
; ++i
) {
2610 sstate
->looplen
[dsf_canonify(sstate
->dotdsf
, i
)];
2611 if (dots_connected
> 1)
2612 shortest_chainlen
= min(shortest_chainlen
, dots_connected
);
2615 assert(sstate
->solver_status
== SOLVER_INCOMPLETE
);
2617 if (satclues
== clues
&& shortest_chainlen
== edgecount
) {
2618 sstate
->solver_status
= SOLVER_SOLVED
;
2619 /* This discovery clearly counts as progress, even if we haven't
2620 * just added any lines or anything */
2622 goto finished_loop_deductionsing
;
2626 * Now go through looking for LINE_UNKNOWN edges which
2627 * connect two dots that are already in the same
2628 * equivalence class. If we find one, test to see if the
2629 * loop it would create is a solution.
2631 for (i
= 0; i
< g
->num_edges
; i
++) {
2632 grid_edge
*e
= g
->edges
+ i
;
2633 int d1
= e
->dot1
- g
->dots
;
2634 int d2
= e
->dot2
- g
->dots
;
2636 if (state
->lines
[i
] != LINE_UNKNOWN
)
2639 eqclass
= dsf_canonify(sstate
->dotdsf
, d1
);
2640 if (eqclass
!= dsf_canonify(sstate
->dotdsf
, d2
))
2643 val
= LINE_NO
; /* loop is bad until proven otherwise */
2646 * This edge would form a loop. Next
2647 * question: how long would the loop be?
2648 * Would it equal the total number of edges
2649 * (plus the one we'd be adding if we added
2652 if (sstate
->looplen
[eqclass
] == edgecount
+ 1) {
2656 * This edge would form a loop which
2657 * took in all the edges in the entire
2658 * grid. So now we need to work out
2659 * whether it would be a valid solution
2660 * to the puzzle, which means we have to
2661 * check if it satisfies all the clues.
2662 * This means that every clue must be
2663 * either satisfied or satisfied-minus-
2664 * 1, and also that the number of
2665 * satisfied-minus-1 clues must be at
2666 * most two and they must lie on either
2667 * side of this edge.
2671 int f
= e
->face1
- g
->faces
;
2672 int c
= state
->clues
[f
];
2673 if (c
>= 0 && sstate
->face_yes_count
[f
] == c
- 1)
2677 int f
= e
->face2
- g
->faces
;
2678 int c
= state
->clues
[f
];
2679 if (c
>= 0 && sstate
->face_yes_count
[f
] == c
- 1)
2682 if (sm1clues
== sm1_nearby
&&
2683 sm1clues
+ satclues
== clues
) {
2684 val
= LINE_YES
; /* loop is good! */
2689 * Right. Now we know that adding this edge
2690 * would form a loop, and we know whether
2691 * that loop would be a viable solution or
2694 * If adding this edge produces a solution,
2695 * then we know we've found _a_ solution but
2696 * we don't know that it's _the_ solution -
2697 * if it were provably the solution then
2698 * we'd have deduced this edge some time ago
2699 * without the need to do loop detection. So
2700 * in this state we return SOLVER_AMBIGUOUS,
2701 * which has the effect that hitting Solve
2702 * on a user-provided puzzle will fill in a
2703 * solution but using the solver to
2704 * construct new puzzles won't consider this
2705 * a reasonable deduction for the user to
2708 progress
= solver_set_line(sstate
, i
, val
);
2709 assert(progress
== TRUE
);
2710 if (val
== LINE_YES
) {
2711 sstate
->solver_status
= SOLVER_AMBIGUOUS
;
2712 goto finished_loop_deductionsing
;
2716 finished_loop_deductionsing
:
2717 return progress
? DIFF_EASY
: DIFF_MAX
;
2720 /* This will return a dynamically allocated solver_state containing the (more)
2722 static solver_state
*solve_game_rec(const solver_state
*sstate_start
)
2724 solver_state
*sstate
;
2726 /* Index of the solver we should call next. */
2729 /* As a speed-optimisation, we avoid re-running solvers that we know
2730 * won't make any progress. This happens when a high-difficulty
2731 * solver makes a deduction that can only help other high-difficulty
2733 * For example: if a new 'dline' flag is set by dline_deductions, the
2734 * trivial_deductions solver cannot do anything with this information.
2735 * If we've already run the trivial_deductions solver (because it's
2736 * earlier in the list), there's no point running it again.
2738 * Therefore: if a solver is earlier in the list than "threshold_index",
2739 * we don't bother running it if it's difficulty level is less than
2742 int threshold_diff
= 0;
2743 int threshold_index
= 0;
2745 sstate
= dup_solver_state(sstate_start
);
2747 check_caches(sstate
);
2749 while (i
< NUM_SOLVERS
) {
2750 if (sstate
->solver_status
== SOLVER_MISTAKE
)
2752 if (sstate
->solver_status
== SOLVER_SOLVED
||
2753 sstate
->solver_status
== SOLVER_AMBIGUOUS
) {
2754 /* solver finished */
2758 if ((solver_diffs
[i
] >= threshold_diff
|| i
>= threshold_index
)
2759 && solver_diffs
[i
] <= sstate
->diff
) {
2760 /* current_solver is eligible, so use it */
2761 int next_diff
= solver_fns
[i
](sstate
);
2762 if (next_diff
!= DIFF_MAX
) {
2763 /* solver made progress, so use new thresholds and
2764 * start again at top of list. */
2765 threshold_diff
= next_diff
;
2766 threshold_index
= i
;
2771 /* current_solver is ineligible, or failed to make progress, so
2772 * go to the next solver in the list */
2776 if (sstate
->solver_status
== SOLVER_SOLVED
||
2777 sstate
->solver_status
== SOLVER_AMBIGUOUS
) {
2778 /* s/LINE_UNKNOWN/LINE_NO/g */
2779 array_setall(sstate
->state
->lines
, LINE_UNKNOWN
, LINE_NO
,
2780 sstate
->state
->game_grid
->num_edges
);
2787 static char *solve_game(game_state
*state
, game_state
*currstate
,
2788 char *aux
, char **error
)
2791 solver_state
*sstate
, *new_sstate
;
2793 sstate
= new_solver_state(state
, DIFF_MAX
);
2794 new_sstate
= solve_game_rec(sstate
);
2796 if (new_sstate
->solver_status
== SOLVER_SOLVED
) {
2797 soln
= encode_solve_move(new_sstate
->state
);
2798 } else if (new_sstate
->solver_status
== SOLVER_AMBIGUOUS
) {
2799 soln
= encode_solve_move(new_sstate
->state
);
2800 /**error = "Solver found ambiguous solutions"; */
2802 soln
= encode_solve_move(new_sstate
->state
);
2803 /**error = "Solver failed"; */
2806 free_solver_state(new_sstate
);
2807 free_solver_state(sstate
);
2812 /* ----------------------------------------------------------------------
2813 * Drawing and mouse-handling
2816 static char *interpret_move(game_state
*state
, game_ui
*ui
, game_drawstate
*ds
,
2817 int x
, int y
, int button
)
2819 grid
*g
= state
->game_grid
;
2823 char button_char
= ' ';
2824 enum line_state old_state
;
2826 button
&= ~MOD_MASK
;
2828 /* Convert mouse-click (x,y) to grid coordinates */
2829 x
-= BORDER(ds
->tilesize
);
2830 y
-= BORDER(ds
->tilesize
);
2831 x
= x
* g
->tilesize
/ ds
->tilesize
;
2832 y
= y
* g
->tilesize
/ ds
->tilesize
;
2836 e
= grid_nearest_edge(g
, x
, y
);
2842 /* I think it's only possible to play this game with mouse clicks, sorry */
2843 /* Maybe will add mouse drag support some time */
2844 old_state
= state
->lines
[i
];
2848 switch (old_state
) {
2866 switch (old_state
) {
2885 sprintf(buf
, "%d%c", i
, (int)button_char
);
2891 static game_state
*execute_move(game_state
*state
, char *move
)
2894 game_state
*newstate
= dup_game(state
);
2896 if (move
[0] == 'S') {
2898 newstate
->cheated
= TRUE
;
2903 if (i
< 0 || i
>= newstate
->game_grid
->num_edges
)
2905 move
+= strspn(move
, "1234567890");
2906 switch (*(move
++)) {
2908 newstate
->lines
[i
] = LINE_YES
;
2911 newstate
->lines
[i
] = LINE_NO
;
2914 newstate
->lines
[i
] = LINE_UNKNOWN
;
2922 * Check for completion.
2924 if (check_completion(newstate
))
2925 newstate
->solved
= TRUE
;
2930 free_game(newstate
);
2934 /* ----------------------------------------------------------------------
2938 /* Convert from grid coordinates to screen coordinates */
2939 static void grid_to_screen(const game_drawstate
*ds
, const grid
*g
,
2940 int grid_x
, int grid_y
, int *x
, int *y
)
2942 *x
= grid_x
- g
->lowest_x
;
2943 *y
= grid_y
- g
->lowest_y
;
2944 *x
= *x
* ds
->tilesize
/ g
->tilesize
;
2945 *y
= *y
* ds
->tilesize
/ g
->tilesize
;
2946 *x
+= BORDER(ds
->tilesize
);
2947 *y
+= BORDER(ds
->tilesize
);
2950 /* Returns (into x,y) position of centre of face for rendering the text clue.
2952 static void face_text_pos(const game_drawstate
*ds
, const grid
*g
,
2953 grid_face
*f
, int *xret
, int *yret
)
2955 int faceindex
= f
- g
->faces
;
2958 * Return the cached position for this face, if we've already
2961 if (ds
->textx
[faceindex
] >= 0) {
2962 *xret
= ds
->textx
[faceindex
];
2963 *yret
= ds
->texty
[faceindex
];
2968 * Otherwise, use the incentre computed by grid.c and convert it
2969 * to screen coordinates.
2971 grid_find_incentre(f
);
2972 grid_to_screen(ds
, g
, f
->ix
, f
->iy
,
2973 &ds
->textx
[faceindex
], &ds
->texty
[faceindex
]);
2975 *xret
= ds
->textx
[faceindex
];
2976 *yret
= ds
->texty
[faceindex
];
2979 static void face_text_bbox(game_drawstate
*ds
, grid
*g
, grid_face
*f
,
2980 int *x
, int *y
, int *w
, int *h
)
2983 face_text_pos(ds
, g
, f
, &xx
, &yy
);
2985 /* There seems to be a certain amount of trial-and-error involved
2986 * in working out the correct bounding-box for the text. */
2988 *x
= xx
- ds
->tilesize
/4 - 1;
2989 *y
= yy
- ds
->tilesize
/4 - 3;
2990 *w
= ds
->tilesize
/2 + 2;
2991 *h
= ds
->tilesize
/2 + 5;
2994 static void game_redraw_clue(drawing
*dr
, game_drawstate
*ds
,
2995 game_state
*state
, int i
)
2997 grid
*g
= state
->game_grid
;
2998 grid_face
*f
= g
->faces
+ i
;
3002 if (state
->clues
[i
] < 10) {
3003 c
[0] = CLUE2CHAR(state
->clues
[i
]);
3006 sprintf(c
, "%d", state
->clues
[i
]);
3009 face_text_pos(ds
, g
, f
, &x
, &y
);
3011 FONT_VARIABLE
, ds
->tilesize
/2,
3012 ALIGN_VCENTRE
| ALIGN_HCENTRE
,
3013 ds
->clue_error
[i
] ? COL_MISTAKE
:
3014 ds
->clue_satisfied
[i
] ? COL_SATISFIED
: COL_FOREGROUND
, c
);
3017 static void edge_bbox(game_drawstate
*ds
, grid
*g
, grid_edge
*e
,
3018 int *x
, int *y
, int *w
, int *h
)
3020 int x1
= e
->dot1
->x
;
3021 int y1
= e
->dot1
->y
;
3022 int x2
= e
->dot2
->x
;
3023 int y2
= e
->dot2
->y
;
3024 int xmin
, xmax
, ymin
, ymax
;
3026 grid_to_screen(ds
, g
, x1
, y1
, &x1
, &y1
);
3027 grid_to_screen(ds
, g
, x2
, y2
, &x2
, &y2
);
3028 /* Allow extra margin for dots, and thickness of lines */
3029 xmin
= min(x1
, x2
) - 2;
3030 xmax
= max(x1
, x2
) + 2;
3031 ymin
= min(y1
, y2
) - 2;
3032 ymax
= max(y1
, y2
) + 2;
3036 *w
= xmax
- xmin
+ 1;
3037 *h
= ymax
- ymin
+ 1;
3040 static void dot_bbox(game_drawstate
*ds
, grid
*g
, grid_dot
*d
,
3041 int *x
, int *y
, int *w
, int *h
)
3045 grid_to_screen(ds
, g
, d
->x
, d
->y
, &x1
, &y1
);
3053 static const int loopy_line_redraw_phases
[] = {
3054 COL_FAINT
, COL_LINEUNKNOWN
, COL_FOREGROUND
, COL_HIGHLIGHT
, COL_MISTAKE
3056 #define NPHASES lenof(loopy_line_redraw_phases)
3058 static void game_redraw_line(drawing
*dr
, game_drawstate
*ds
,
3059 game_state
*state
, int i
, int phase
)
3061 grid
*g
= state
->game_grid
;
3062 grid_edge
*e
= g
->edges
+ i
;
3066 if (state
->line_errors
[i
])
3067 line_colour
= COL_MISTAKE
;
3068 else if (state
->lines
[i
] == LINE_UNKNOWN
)
3069 line_colour
= COL_LINEUNKNOWN
;
3070 else if (state
->lines
[i
] == LINE_NO
)
3071 line_colour
= COL_FAINT
;
3072 else if (ds
->flashing
)
3073 line_colour
= COL_HIGHLIGHT
;
3075 line_colour
= COL_FOREGROUND
;
3076 if (line_colour
!= loopy_line_redraw_phases
[phase
])
3079 /* Convert from grid to screen coordinates */
3080 grid_to_screen(ds
, g
, e
->dot1
->x
, e
->dot1
->y
, &x1
, &y1
);
3081 grid_to_screen(ds
, g
, e
->dot2
->x
, e
->dot2
->y
, &x2
, &y2
);
3083 if (line_colour
== COL_FAINT
) {
3084 static int draw_faint_lines
= -1;
3085 if (draw_faint_lines
< 0) {
3086 char *env
= getenv("LOOPY_FAINT_LINES");
3087 draw_faint_lines
= (!env
|| (env
[0] == 'y' ||
3090 if (draw_faint_lines
)
3091 draw_line(dr
, x1
, y1
, x2
, y2
, line_colour
);
3093 draw_thick_line(dr
, 3.0,
3100 static void game_redraw_dot(drawing
*dr
, game_drawstate
*ds
,
3101 game_state
*state
, int i
)
3103 grid
*g
= state
->game_grid
;
3104 grid_dot
*d
= g
->dots
+ i
;
3107 grid_to_screen(ds
, g
, d
->x
, d
->y
, &x
, &y
);
3108 draw_circle(dr
, x
, y
, 2, COL_FOREGROUND
, COL_FOREGROUND
);
3111 static int boxes_intersect(int x0
, int y0
, int w0
, int h0
,
3112 int x1
, int y1
, int w1
, int h1
)
3115 * Two intervals intersect iff neither is wholly on one side of
3116 * the other. Two boxes intersect iff their horizontal and
3117 * vertical intervals both intersect.
3119 return (x0
< x1
+w1
&& x1
< x0
+w0
&& y0
< y1
+h1
&& y1
< y0
+h0
);
3122 static void game_redraw_in_rect(drawing
*dr
, game_drawstate
*ds
,
3123 game_state
*state
, int x
, int y
, int w
, int h
)
3125 grid
*g
= state
->game_grid
;
3129 clip(dr
, x
, y
, w
, h
);
3130 draw_rect(dr
, x
, y
, w
, h
, COL_BACKGROUND
);
3132 for (i
= 0; i
< g
->num_faces
; i
++) {
3133 if (state
->clues
[i
] >= 0) {
3134 face_text_bbox(ds
, g
, &g
->faces
[i
], &bx
, &by
, &bw
, &bh
);
3135 if (boxes_intersect(x
, y
, w
, h
, bx
, by
, bw
, bh
))
3136 game_redraw_clue(dr
, ds
, state
, i
);
3139 for (phase
= 0; phase
< NPHASES
; phase
++) {
3140 for (i
= 0; i
< g
->num_edges
; i
++) {
3141 edge_bbox(ds
, g
, &g
->edges
[i
], &bx
, &by
, &bw
, &bh
);
3142 if (boxes_intersect(x
, y
, w
, h
, bx
, by
, bw
, bh
))
3143 game_redraw_line(dr
, ds
, state
, i
, phase
);
3146 for (i
= 0; i
< g
->num_dots
; i
++) {
3147 dot_bbox(ds
, g
, &g
->dots
[i
], &bx
, &by
, &bw
, &bh
);
3148 if (boxes_intersect(x
, y
, w
, h
, bx
, by
, bw
, bh
))
3149 game_redraw_dot(dr
, ds
, state
, i
);
3153 draw_update(dr
, x
, y
, w
, h
);
3156 static void game_redraw(drawing
*dr
, game_drawstate
*ds
, game_state
*oldstate
,
3157 game_state
*state
, int dir
, game_ui
*ui
,
3158 float animtime
, float flashtime
)
3160 #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3162 grid
*g
= state
->game_grid
;
3163 int border
= BORDER(ds
->tilesize
);
3166 int redraw_everything
= FALSE
;
3168 int edges
[REDRAW_OBJECTS_LIMIT
], nedges
= 0;
3169 int faces
[REDRAW_OBJECTS_LIMIT
], nfaces
= 0;
3171 /* Redrawing is somewhat involved.
3173 * An update can theoretically affect an arbitrary number of edges
3174 * (consider, for example, completing or breaking a cycle which doesn't
3175 * satisfy all the clues -- we'll switch many edges between error and
3176 * normal states). On the other hand, redrawing the whole grid takes a
3177 * while, making the game feel sluggish, and many updates are actually
3178 * quite well localized.
3180 * This redraw algorithm attempts to cope with both situations gracefully
3181 * and correctly. For localized changes, we set a clip rectangle, fill
3182 * it with background, and then redraw (a plausible but conservative
3183 * guess at) the objects which intersect the rectangle; if several
3184 * objects need redrawing, we'll do them individually. However, if lots
3185 * of objects are affected, we'll just redraw everything.
3187 * The reason for all of this is that it's just not safe to do the redraw
3188 * piecemeal. If you try to draw an antialiased diagonal line over
3189 * itself, you get a slightly thicker antialiased diagonal line, which
3190 * looks rather ugly after a while.
3192 * So, we take two passes over the grid. The first attempts to work out
3193 * what needs doing, and the second actually does it.
3197 redraw_everything
= TRUE
;
3200 /* First, trundle through the faces. */
3201 for (i
= 0; i
< g
->num_faces
; i
++) {
3202 grid_face
*f
= g
->faces
+ i
;
3203 int sides
= f
->order
;
3206 int n
= state
->clues
[i
];
3210 clue_mistake
= (face_order(state
, i
, LINE_YES
) > n
||
3211 face_order(state
, i
, LINE_NO
) > (sides
-n
));
3212 clue_satisfied
= (face_order(state
, i
, LINE_YES
) == n
&&
3213 face_order(state
, i
, LINE_NO
) == (sides
-n
));
3215 if (clue_mistake
!= ds
->clue_error
[i
] ||
3216 clue_satisfied
!= ds
->clue_satisfied
[i
]) {
3217 ds
->clue_error
[i
] = clue_mistake
;
3218 ds
->clue_satisfied
[i
] = clue_satisfied
;
3219 if (nfaces
== REDRAW_OBJECTS_LIMIT
)
3220 redraw_everything
= TRUE
;
3222 faces
[nfaces
++] = i
;
3226 /* Work out what the flash state needs to be. */
3227 if (flashtime
> 0 &&
3228 (flashtime
<= FLASH_TIME
/3 ||
3229 flashtime
>= FLASH_TIME
*2/3)) {
3230 flash_changed
= !ds
->flashing
;
3231 ds
->flashing
= TRUE
;
3233 flash_changed
= ds
->flashing
;
3234 ds
->flashing
= FALSE
;
3237 /* Now, trundle through the edges. */
3238 for (i
= 0; i
< g
->num_edges
; i
++) {
3240 state
->line_errors
[i
] ? DS_LINE_ERROR
: state
->lines
[i
];
3241 if (new_ds
!= ds
->lines
[i
] ||
3242 (flash_changed
&& state
->lines
[i
] == LINE_YES
)) {
3243 ds
->lines
[i
] = new_ds
;
3244 if (nedges
== REDRAW_OBJECTS_LIMIT
)
3245 redraw_everything
= TRUE
;
3247 edges
[nedges
++] = i
;
3252 /* Pass one is now done. Now we do the actual drawing. */
3253 if (redraw_everything
) {
3254 int grid_width
= g
->highest_x
- g
->lowest_x
;
3255 int grid_height
= g
->highest_y
- g
->lowest_y
;
3256 int w
= grid_width
* ds
->tilesize
/ g
->tilesize
;
3257 int h
= grid_height
* ds
->tilesize
/ g
->tilesize
;
3259 game_redraw_in_rect(dr
, ds
, state
,
3260 0, 0, w
+ 2*border
+ 1, h
+ 2*border
+ 1);
3263 /* Right. Now we roll up our sleeves. */
3265 for (i
= 0; i
< nfaces
; i
++) {
3266 grid_face
*f
= g
->faces
+ faces
[i
];
3269 face_text_bbox(ds
, g
, f
, &x
, &y
, &w
, &h
);
3270 game_redraw_in_rect(dr
, ds
, state
, x
, y
, w
, h
);
3273 for (i
= 0; i
< nedges
; i
++) {
3274 grid_edge
*e
= g
->edges
+ edges
[i
];
3277 edge_bbox(ds
, g
, e
, &x
, &y
, &w
, &h
);
3278 game_redraw_in_rect(dr
, ds
, state
, x
, y
, w
, h
);
3285 static float game_flash_length(game_state
*oldstate
, game_state
*newstate
,
3286 int dir
, game_ui
*ui
)
3288 if (!oldstate
->solved
&& newstate
->solved
&&
3289 !oldstate
->cheated
&& !newstate
->cheated
) {
3296 static int game_status(game_state
*state
)
3298 return state
->solved
? +1 : 0;
3301 static void game_print_size(game_params
*params
, float *x
, float *y
)
3306 * I'll use 7mm "squares" by default.
3308 game_compute_size(params
, 700, &pw
, &ph
);
3313 static void game_print(drawing
*dr
, game_state
*state
, int tilesize
)
3315 int ink
= print_mono_colour(dr
, 0);
3317 game_drawstate ads
, *ds
= &ads
;
3318 grid
*g
= state
->game_grid
;
3320 ds
->tilesize
= tilesize
;
3321 ds
->textx
= snewn(g
->num_faces
, int);
3322 ds
->texty
= snewn(g
->num_faces
, int);
3323 for (i
= 0; i
< g
->num_faces
; i
++)
3324 ds
->textx
[i
] = ds
->texty
[i
] = -1;
3326 for (i
= 0; i
< g
->num_dots
; i
++) {
3328 grid_to_screen(ds
, g
, g
->dots
[i
].x
, g
->dots
[i
].y
, &x
, &y
);
3329 draw_circle(dr
, x
, y
, ds
->tilesize
/ 15, ink
, ink
);
3335 for (i
= 0; i
< g
->num_faces
; i
++) {
3336 grid_face
*f
= g
->faces
+ i
;
3337 int clue
= state
->clues
[i
];
3341 c
[0] = CLUE2CHAR(clue
);
3343 face_text_pos(ds
, g
, f
, &x
, &y
);
3345 FONT_VARIABLE
, ds
->tilesize
/ 2,
3346 ALIGN_VCENTRE
| ALIGN_HCENTRE
, ink
, c
);
3353 for (i
= 0; i
< g
->num_edges
; i
++) {
3354 int thickness
= (state
->lines
[i
] == LINE_YES
) ? 30 : 150;
3355 grid_edge
*e
= g
->edges
+ i
;
3357 grid_to_screen(ds
, g
, e
->dot1
->x
, e
->dot1
->y
, &x1
, &y1
);
3358 grid_to_screen(ds
, g
, e
->dot2
->x
, e
->dot2
->y
, &x2
, &y2
);
3359 if (state
->lines
[i
] == LINE_YES
)
3361 /* (dx, dy) points from (x1, y1) to (x2, y2).
3362 * The line is then "fattened" in a perpendicular
3363 * direction to create a thin rectangle. */
3364 double d
= sqrt(SQ((double)x1
- x2
) + SQ((double)y1
- y2
));
3365 double dx
= (x2
- x1
) / d
;
3366 double dy
= (y2
- y1
) / d
;
3369 dx
= (dx
* ds
->tilesize
) / thickness
;
3370 dy
= (dy
* ds
->tilesize
) / thickness
;
3371 points
[0] = x1
+ (int)dy
;
3372 points
[1] = y1
- (int)dx
;
3373 points
[2] = x1
- (int)dy
;
3374 points
[3] = y1
+ (int)dx
;
3375 points
[4] = x2
- (int)dy
;
3376 points
[5] = y2
+ (int)dx
;
3377 points
[6] = x2
+ (int)dy
;
3378 points
[7] = y2
- (int)dx
;
3379 draw_polygon(dr
, points
, 4, ink
, ink
);
3383 /* Draw a dotted line */
3386 for (j
= 1; j
< divisions
; j
++) {
3387 /* Weighted average */
3388 int x
= (x1
* (divisions
-j
) + x2
* j
) / divisions
;
3389 int y
= (y1
* (divisions
-j
) + y2
* j
) / divisions
;
3390 draw_circle(dr
, x
, y
, ds
->tilesize
/ thickness
, ink
, ink
);
3400 #define thegame loopy
3403 const struct game thegame
= {
3404 "Loopy", "games.loopy", "loopy",
3411 TRUE
, game_configure
, custom_params
,
3419 TRUE
, game_can_format_as_text_now
, game_text_format
,
3427 PREFERRED_TILE_SIZE
, game_compute_size
, game_set_size
,
3430 game_free_drawstate
,
3435 TRUE
, FALSE
, game_print_size
, game_print
,
3436 FALSE
/* wants_statusbar */,
3437 FALSE
, game_timing_state
,
3438 0, /* mouse_priorities */
3441 #ifdef STANDALONE_SOLVER
3444 * Half-hearted standalone solver. It can't output the solution to
3445 * anything but a square puzzle, and it can't log the deductions
3446 * it makes either. But it can solve square puzzles, and more
3447 * importantly it can use its solver to grade the difficulty of
3448 * any puzzle you give it.
3453 int main(int argc
, char **argv
)
3457 char *id
= NULL
, *desc
, *err
;
3460 #if 0 /* verbose solver not supported here (yet) */
3461 int really_verbose
= FALSE
;
3464 while (--argc
> 0) {
3466 #if 0 /* verbose solver not supported here (yet) */
3467 if (!strcmp(p
, "-v")) {
3468 really_verbose
= TRUE
;
3471 if (!strcmp(p
, "-g")) {
3473 } else if (*p
== '-') {
3474 fprintf(stderr
, "%s: unrecognised option `%s'\n", argv
[0], p
);
3482 fprintf(stderr
, "usage: %s [-g | -v] <game_id>\n", argv
[0]);
3486 desc
= strchr(id
, ':');
3488 fprintf(stderr
, "%s: game id expects a colon in it\n", argv
[0]);
3493 p
= default_params();
3494 decode_params(p
, id
);
3495 err
= validate_desc(p
, desc
);
3497 fprintf(stderr
, "%s: %s\n", argv
[0], err
);
3500 s
= new_game(NULL
, p
, desc
);
3503 * When solving an Easy puzzle, we don't want to bother the
3504 * user with Hard-level deductions. For this reason, we grade
3505 * the puzzle internally before doing anything else.
3507 ret
= -1; /* placate optimiser */
3508 for (diff
= 0; diff
< DIFF_MAX
; diff
++) {
3509 solver_state
*sstate_new
;
3510 solver_state
*sstate
= new_solver_state((game_state
*)s
, diff
);
3512 sstate_new
= solve_game_rec(sstate
);
3514 if (sstate_new
->solver_status
== SOLVER_MISTAKE
)
3516 else if (sstate_new
->solver_status
== SOLVER_SOLVED
)
3521 free_solver_state(sstate_new
);
3522 free_solver_state(sstate
);
3528 if (diff
== DIFF_MAX
) {
3530 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3532 printf("Unable to find a unique solution\n");
3536 printf("Difficulty rating: impossible (no solution exists)\n");
3538 printf("Difficulty rating: %s\n", diffnames
[diff
]);
3540 solver_state
*sstate_new
;
3541 solver_state
*sstate
= new_solver_state((game_state
*)s
, diff
);
3543 /* If we supported a verbose solver, we'd set verbosity here */
3545 sstate_new
= solve_game_rec(sstate
);
3547 if (sstate_new
->solver_status
== SOLVER_MISTAKE
)
3548 printf("Puzzle is inconsistent\n");
3550 assert(sstate_new
->solver_status
== SOLVER_SOLVED
);
3551 if (s
->grid_type
== 0) {
3552 fputs(game_text_format(sstate_new
->state
), stdout
);
3554 printf("Unable to output non-square grids\n");
3558 free_solver_state(sstate_new
);
3559 free_solver_state(sstate
);
3568 /* vim: set shiftwidth=4 tabstop=8: */