Imported Upstream version 9411
[sgt-puzzles/ydirson.git] / magnets.c
blobe49b7a51216bd7a00a2ed850be0a050f0d4531a0
1 /*
2 * magnets.c: implementation of janko.at 'magnets puzzle' game.
4 * http://64.233.179.104/translate_c?hl=en&u=http://www.janko.at/Raetsel/Magnete/Beispiel.htm
6 * Puzzle definition is just the size, and then the list of + (across then
7 * down) and - (across then down) present, then domino edges.
9 * An example:
11 * + 2 0 1
12 * +-----+
13 * 1|+ -| |1
14 * |-+-+ |
15 * 0|-|#| |1
16 * | +-+-|
17 * 2|+|- +|1
18 * +-----+
19 * 1 2 0 -
21 * 3x3:201,102,120,111,LRTT*BBLR
23 * 'Zotmeister' examples:
24 * 5x5:.2..1,3..1.,.2..2,2..2.,LRLRTTLRTBBT*BTTBLRBBLRLR
25 * 9x9:3.51...33,.2..23.13,..33.33.2,12...5.3.,**TLRTLR*,*TBLRBTLR,TBLRLRBTT,BLRTLRTBB,LRTB*TBLR,LRBLRBLRT,TTTLRLRTB,BBBTLRTB*,*LRBLRB**
27 * Janko 6x6 with solution:
28 * 6x6:322223,323132,232223,232223,LRTLRTTTBLRBBBTTLRLRBBLRTTLRTTBBLRBB
30 * janko 8x8:
31 * 8x8:34131323,23131334,43122323,21332243,LRTLRLRT,LRBTTTTB,LRTBBBBT,TTBTLRTB,BBTBTTBT,TTBTBBTB,BBTBLRBT,LRBLRLRB
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <assert.h>
38 #include <ctype.h>
39 #include <math.h>
41 #include "puzzles.h"
43 #ifdef STANDALONE_SOLVER
44 int verbose = 0;
45 #endif
47 enum {
48 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
49 COL_TEXT, COL_ERROR, COL_CURSOR,
50 COL_NEUTRAL, COL_NEGATIVE, COL_POSITIVE, COL_NOT,
51 NCOLOURS
54 /* Cell states. */
55 enum { EMPTY = 0, NEUTRAL = EMPTY, POSITIVE = 1, NEGATIVE = 2 };
57 #if defined DEBUGGING || defined STANDALONE_SOLVER
58 static const char *cellnames[3] = { "neutral", "positive", "negative" };
59 #define NAME(w) ( ((w) < 0 || (w) > 2) ? "(out of range)" : cellnames[(w)] )
60 #endif
62 #define GRID2CHAR(g) ( ((g) >= 0 && (g) <= 2) ? ".+-"[(g)] : '?' )
63 #define CHAR2GRID(c) ( (c) == '+' ? POSITIVE : (c) == '-' ? NEGATIVE : NEUTRAL )
65 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
67 #define OPPOSITE(x) ( ((x)*2) % 3 ) /* 0 --> 0,
68 1 --> 2,
69 2 --> 4 --> 1 */
71 #define FLASH_TIME 0.7F
73 /* Macro ickery copied from slant.c */
74 #define DIFFLIST(A) \
75 A(EASY,Easy,e) \
76 A(TRICKY,Tricky,t)
77 #define ENUM(upper,title,lower) DIFF_ ## upper,
78 #define TITLE(upper,title,lower) #title,
79 #define ENCODE(upper,title,lower) #lower
80 #define CONFIG(upper,title,lower) ":" #title
81 enum { DIFFLIST(ENUM) DIFFCOUNT };
82 static char const *const magnets_diffnames[] = { DIFFLIST(TITLE) "(count)" };
83 static char const magnets_diffchars[] = DIFFLIST(ENCODE);
84 #define DIFFCONFIG DIFFLIST(CONFIG)
87 /* --------------------------------------------------------------- */
88 /* Game parameter functions. */
90 struct game_params {
91 int w, h, diff, stripclues;
94 #define DEFAULT_PRESET 2
96 static const struct game_params magnets_presets[] = {
97 {6, 5, DIFF_EASY, 0},
98 {6, 5, DIFF_TRICKY, 0},
99 {6, 5, DIFF_TRICKY, 1},
100 {8, 7, DIFF_EASY, 0},
101 {8, 7, DIFF_TRICKY, 0},
102 {8, 7, DIFF_TRICKY, 1},
103 {10, 9, DIFF_TRICKY, 0},
104 {10, 9, DIFF_TRICKY, 1}
107 static game_params *default_params(void)
109 game_params *ret = snew(game_params);
111 *ret = magnets_presets[DEFAULT_PRESET];
113 return ret;
116 static int game_fetch_preset(int i, char **name, game_params **params)
118 game_params *ret;
119 char buf[64];
121 if (i < 0 || i >= lenof(magnets_presets)) return FALSE;
123 ret = default_params();
124 *ret = magnets_presets[i]; /* struct copy */
125 *params = ret;
127 sprintf(buf, "%dx%d %s%s",
128 magnets_presets[i].w, magnets_presets[i].h,
129 magnets_diffnames[magnets_presets[i].diff],
130 magnets_presets[i].stripclues ? ", strip clues" : "");
131 *name = dupstr(buf);
133 return TRUE;
136 static void free_params(game_params *params)
138 sfree(params);
141 static game_params *dup_params(game_params *params)
143 game_params *ret = snew(game_params);
144 *ret = *params; /* structure copy */
145 return ret;
148 static void decode_params(game_params *ret, char const *string)
150 ret->w = ret->h = atoi(string);
151 while (*string && isdigit((unsigned char) *string)) ++string;
152 if (*string == 'x') {
153 string++;
154 ret->h = atoi(string);
155 while (*string && isdigit((unsigned char)*string)) string++;
158 ret->diff = DIFF_EASY;
159 if (*string == 'd') {
160 int i;
161 string++;
162 for (i = 0; i < DIFFCOUNT; i++)
163 if (*string == magnets_diffchars[i])
164 ret->diff = i;
165 if (*string) string++;
168 ret->stripclues = 0;
169 if (*string == 'S') {
170 string++;
171 ret->stripclues = 1;
175 static char *encode_params(game_params *params, int full)
177 char buf[256];
178 sprintf(buf, "%dx%d", params->w, params->h);
179 if (full)
180 sprintf(buf + strlen(buf), "d%c%s",
181 magnets_diffchars[params->diff],
182 params->stripclues ? "S" : "");
183 return dupstr(buf);
186 static config_item *game_configure(game_params *params)
188 config_item *ret;
189 char buf[64];
191 ret = snewn(5, config_item);
193 ret[0].name = "Width";
194 ret[0].type = C_STRING;
195 sprintf(buf, "%d", params->w);
196 ret[0].sval = dupstr(buf);
197 ret[0].ival = 0;
199 ret[1].name = "Height";
200 ret[1].type = C_STRING;
201 sprintf(buf, "%d", params->h);
202 ret[1].sval = dupstr(buf);
203 ret[1].ival = 0;
205 ret[2].name = "Difficulty";
206 ret[2].type = C_CHOICES;
207 ret[2].sval = DIFFCONFIG;
208 ret[2].ival = params->diff;
210 ret[3].name = "Strip clues";
211 ret[3].type = C_BOOLEAN;
212 ret[3].sval = NULL;
213 ret[3].ival = params->stripclues;
215 ret[4].name = NULL;
216 ret[4].type = C_END;
217 ret[4].sval = NULL;
218 ret[4].ival = 0;
220 return ret;
223 static game_params *custom_params(config_item *cfg)
225 game_params *ret = snew(game_params);
227 ret->w = atoi(cfg[0].sval);
228 ret->h = atoi(cfg[1].sval);
229 ret->diff = cfg[2].ival;
230 ret->stripclues = cfg[3].ival;
232 return ret;
235 static char *validate_params(game_params *params, int full)
237 if (params->w < 2) return "Width must be at least one";
238 if (params->h < 2) return "Height must be at least one";
239 if (params->diff < 0 || params->diff >= DIFFCOUNT)
240 return "Unknown difficulty level";
242 return NULL;
245 /* --------------------------------------------------------------- */
246 /* Game state allocation, deallocation. */
248 struct game_common {
249 int *dominoes; /* size w*h, dominoes[i] points to other end of domino. */
250 int *rowcount; /* size 3*h, array of [plus, minus, neutral] counts */
251 int *colcount; /* size 3*w, ditto */
252 int refcount;
255 #define GS_ERROR 1
256 #define GS_SET 2
257 #define GS_NOTPOSITIVE 4
258 #define GS_NOTNEGATIVE 8
259 #define GS_NOTNEUTRAL 16
260 #define GS_MARK 32
262 #define GS_NOTMASK (GS_NOTPOSITIVE|GS_NOTNEGATIVE|GS_NOTNEUTRAL)
264 #define NOTFLAG(w) ( (w) == NEUTRAL ? GS_NOTNEUTRAL : \
265 (w) == POSITIVE ? GS_NOTPOSITIVE : \
266 (w) == NEGATIVE ? GS_NOTNEGATIVE : \
269 #define POSSIBLE(f,w) (!(state->flags[(f)] & NOTFLAG(w)))
271 struct game_state {
272 int w, h, wh;
273 int *grid; /* size w*h, for cell state (pos/neg) */
274 unsigned int *flags; /* size w*h */
275 int solved, completed, numbered;
277 struct game_common *common; /* domino layout never changes. */
280 static void clear_state(game_state *ret)
282 int i;
284 ret->solved = ret->completed = ret->numbered = 0;
286 memset(ret->common->rowcount, 0, ret->h*3*sizeof(int));
287 memset(ret->common->colcount, 0, ret->w*3*sizeof(int));
289 for (i = 0; i < ret->wh; i++) {
290 ret->grid[i] = EMPTY;
291 ret->flags[i] = 0;
292 ret->common->dominoes[i] = i;
296 static game_state *new_state(int w, int h)
298 game_state *ret = snew(game_state);
300 memset(ret, 0, sizeof(game_state));
301 ret->w = w;
302 ret->h = h;
303 ret->wh = w*h;
305 ret->grid = snewn(ret->wh, int);
306 ret->flags = snewn(ret->wh, unsigned int);
308 ret->common = snew(struct game_common);
309 ret->common->refcount = 1;
311 ret->common->dominoes = snewn(ret->wh, int);
312 ret->common->rowcount = snewn(ret->h*3, int);
313 ret->common->colcount = snewn(ret->w*3, int);
315 clear_state(ret);
317 return ret;
320 static game_state *dup_game(game_state *src)
322 game_state *dest = snew(game_state);
324 dest->w = src->w;
325 dest->h = src->h;
326 dest->wh = src->wh;
328 dest->solved = src->solved;
329 dest->completed = src->completed;
330 dest->numbered = src->numbered;
332 dest->common = src->common;
333 dest->common->refcount++;
335 dest->grid = snewn(dest->wh, int);
336 memcpy(dest->grid, src->grid, dest->wh*sizeof(int));
338 dest->flags = snewn(dest->wh, unsigned int);
339 memcpy(dest->flags, src->flags, dest->wh*sizeof(unsigned int));
341 return dest;
344 static void free_game(game_state *state)
346 state->common->refcount--;
347 if (state->common->refcount == 0) {
348 sfree(state->common->dominoes);
349 sfree(state->common->rowcount);
350 sfree(state->common->colcount);
351 sfree(state->common);
353 sfree(state->flags);
354 sfree(state->grid);
355 sfree(state);
358 /* --------------------------------------------------------------- */
359 /* Game generation and reading. */
361 /* For a game of size w*h the game description is:
362 * w-sized string of column + numbers (L-R), or '.' for none
363 * semicolon
364 * h-sized string of row + numbers (T-B), or '.'
365 * semicolon
366 * w-sized string of column - numbers (L-R), or '.'
367 * semicolon
368 * h-sized string of row - numbers (T-B), or '.'
369 * semicolon
370 * w*h-sized string of 'L', 'R', 'U', 'D' for domino associations,
371 * or '*' for a black singleton square.
373 * for a total length of 2w + 2h + wh + 4.
376 static char n2c(int num) { /* XXX cloned from singles.c */
377 if (num == -1)
378 return '.';
379 if (num < 10)
380 return '0' + num;
381 else if (num < 10+26)
382 return 'a' + num - 10;
383 else
384 return 'A' + num - 10 - 26;
385 return '?';
388 static int c2n(char c) { /* XXX cloned from singles.c */
389 if (isdigit((unsigned char)c))
390 return (int)(c - '0');
391 else if (c >= 'a' && c <= 'z')
392 return (int)(c - 'a' + 10);
393 else if (c >= 'A' && c <= 'Z')
394 return (int)(c - 'A' + 10 + 26);
395 return -1;
398 static char *readrow(char *desc, int n, int *array, int off, const char **prob)
400 int i, num;
401 char c;
403 for (i = 0; i < n; i++) {
404 c = *desc++;
405 if (c == 0) goto badchar;
406 if (c == '.')
407 num = -1;
408 else {
409 num = c2n(c);
410 if (num < 0) goto badchar;
412 array[i*3+off] = num;
414 c = *desc++;
415 if (c != ',') goto badchar;
416 return desc;
418 badchar:
419 *prob = (c == 0) ?
420 "Game description too short" :
421 "Game description contained unexpected characters";
422 return NULL;
425 static game_state *new_game_int(game_params *params, char *desc, const char **prob)
427 game_state *state = new_state(params->w, params->h);
428 int x, y, idx, *count;
429 char c;
431 *prob = NULL;
433 /* top row, left-to-right */
434 desc = readrow(desc, state->w, state->common->colcount, POSITIVE, prob);
435 if (*prob) goto done;
437 /* left column, top-to-bottom */
438 desc = readrow(desc, state->h, state->common->rowcount, POSITIVE, prob);
439 if (*prob) goto done;
441 /* bottom row, left-to-right */
442 desc = readrow(desc, state->w, state->common->colcount, NEGATIVE, prob);
443 if (*prob) goto done;
445 /* right column, top-to-bottom */
446 desc = readrow(desc, state->h, state->common->rowcount, NEGATIVE, prob);
447 if (*prob) goto done;
449 /* Add neutral counts (== size - pos - neg) to columns and rows.
450 * Any singleton cells will just be treated as permanently neutral. */
451 count = state->common->colcount;
452 for (x = 0; x < state->w; x++) {
453 if (count[x*3+POSITIVE] < 0 || count[x*3+NEGATIVE] < 0)
454 count[x*3+NEUTRAL] = -1;
455 else {
456 count[x*3+NEUTRAL] =
457 state->h - count[x*3+POSITIVE] - count[x*3+NEGATIVE];
458 if (count[x*3+NEUTRAL] < 0) {
459 *prob = "Column counts inconsistent";
460 goto done;
464 count = state->common->rowcount;
465 for (y = 0; y < state->h; y++) {
466 if (count[y*3+POSITIVE] < 0 || count[y*3+NEGATIVE] < 0)
467 count[y*3+NEUTRAL] = -1;
468 else {
469 count[y*3+NEUTRAL] =
470 state->w - count[y*3+POSITIVE] - count[y*3+NEGATIVE];
471 if (count[y*3+NEUTRAL] < 0) {
472 *prob = "Row counts inconsistent";
473 goto done;
479 for (y = 0; y < state->h; y++) {
480 for (x = 0; x < state->w; x++) {
481 idx = y*state->w + x;
482 nextchar:
483 c = *desc++;
485 if (c == 'L') /* this square is LHS of a domino */
486 state->common->dominoes[idx] = idx+1;
487 else if (c == 'R') /* ... RHS of a domino */
488 state->common->dominoes[idx] = idx-1;
489 else if (c == 'T') /* ... top of a domino */
490 state->common->dominoes[idx] = idx+state->w;
491 else if (c == 'B') /* ... bottom of a domino */
492 state->common->dominoes[idx] = idx-state->w;
493 else if (c == '*') /* singleton */
494 state->common->dominoes[idx] = idx;
495 else if (c == ',') /* spacer, ignore */
496 goto nextchar;
497 else goto badchar;
501 /* Check dominoes as input are sensibly consistent
502 * (i.e. each end points to the other) */
503 for (idx = 0; idx < state->wh; idx++) {
504 if (state->common->dominoes[idx] < 0 ||
505 state->common->dominoes[idx] > state->wh ||
506 state->common->dominoes[state->common->dominoes[idx]] != idx) {
507 *prob = "Domino descriptions inconsistent";
508 goto done;
510 if (state->common->dominoes[idx] == idx) {
511 state->grid[idx] = NEUTRAL;
512 state->flags[idx] |= GS_SET;
515 /* Success. */
516 state->numbered = 1;
517 goto done;
519 badchar:
520 *prob = (c == 0) ?
521 "Game description too short" :
522 "Game description contained unexpected characters";
524 done:
525 if (*prob) {
526 free_game(state);
527 return NULL;
529 return state;
532 static char *validate_desc(game_params *params, char *desc)
534 const char *prob;
535 game_state *st = new_game_int(params, desc, &prob);
536 if (!st) return (char*)prob;
537 free_game(st);
538 return NULL;
541 static game_state *new_game(midend *me, game_params *params, char *desc)
543 const char *prob;
544 game_state *st = new_game_int(params, desc, &prob);
545 assert(st);
546 return st;
549 static char *generate_desc(game_state *new)
551 int x, y, idx, other, w = new->w, h = new->h;
552 char *desc = snewn(new->wh + 2*(w + h) + 5, char), *p = desc;
554 for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+POSITIVE]);
555 *p++ = ',';
556 for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+POSITIVE]);
557 *p++ = ',';
559 for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+NEGATIVE]);
560 *p++ = ',';
561 for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+NEGATIVE]);
562 *p++ = ',';
564 for (y = 0; y < h; y++) {
565 for (x = 0; x < w; x++) {
566 idx = y*w + x;
567 other = new->common->dominoes[idx];
569 if (other == idx) *p++ = '*';
570 else if (other == idx+1) *p++ = 'L';
571 else if (other == idx-1) *p++ = 'R';
572 else if (other == idx+w) *p++ = 'T';
573 else if (other == idx-w) *p++ = 'B';
574 else assert(!"mad domino orientation");
577 *p = '\0';
579 return desc;
582 static void game_text_hborder(game_state *state, char **p_r)
584 char *p = *p_r;
585 int x;
587 *p++ = ' ';
588 *p++ = '+';
589 for (x = 0; x < state->w*2-1; x++) *p++ = '-';
590 *p++ = '+';
591 *p++ = '\n';
593 *p_r = p;
596 static int game_can_format_as_text_now(game_params *params)
598 return TRUE;
601 static char *game_text_format(game_state *state)
603 int len, x, y, i;
604 char *ret, *p;
606 len = ((state->w*2)+4) * ((state->h*2)+4) + 2;
607 p = ret = snewn(len, char);
609 /* top row: '+' then column totals for plus. */
610 *p++ = '+';
611 for (x = 0; x < state->w; x++) {
612 *p++ = ' ';
613 *p++ = n2c(state->common->colcount[x*3+POSITIVE]);
615 *p++ = '\n';
617 /* top border. */
618 game_text_hborder(state, &p);
620 for (y = 0; y < state->h; y++) {
621 *p++ = n2c(state->common->rowcount[y*3+POSITIVE]);
622 *p++ = '|';
623 for (x = 0; x < state->w; x++) {
624 i = y*state->w+x;
625 *p++ = state->common->dominoes[i] == i ? '#' :
626 state->grid[i] == POSITIVE ? '+' :
627 state->grid[i] == NEGATIVE ? '-' :
628 state->flags[i] & GS_SET ? '*' : ' ';
629 if (x < (state->w-1))
630 *p++ = state->common->dominoes[i] == i+1 ? ' ' : '|';
632 *p++ = '|';
633 *p++ = n2c(state->common->rowcount[y*3+NEGATIVE]);
634 *p++ = '\n';
636 if (y < (state->h-1)) {
637 *p++ = ' ';
638 *p++ = '|';
639 for (x = 0; x < state->w; x++) {
640 i = y*state->w+x;
641 *p++ = state->common->dominoes[i] == i+state->w ? ' ' : '-';
642 if (x < (state->w-1))
643 *p++ = '+';
645 *p++ = '|';
646 *p++ = '\n';
650 /* bottom border. */
651 game_text_hborder(state, &p);
653 /* bottom row: column totals for minus then '-'. */
654 *p++ = ' ';
655 for (x = 0; x < state->w; x++) {
656 *p++ = ' ';
657 *p++ = n2c(state->common->colcount[x*3+NEGATIVE]);
659 *p++ = ' ';
660 *p++ = '-';
661 *p++ = '\n';
662 *p++ = '\0';
664 return ret;
667 static void game_debug(game_state *state, const char *desc)
669 char *fmt = game_text_format(state);
670 debug(("%s:\n%s\n", desc, fmt));
671 sfree(fmt);
674 enum { ROW, COLUMN };
676 typedef struct rowcol {
677 int i, di, n, roworcol, num;
678 int *targets;
679 const char *name;
680 } rowcol;
682 static rowcol mkrowcol(game_state *state, int num, int roworcol)
684 rowcol rc;
686 rc.roworcol = roworcol;
687 rc.num = num;
689 if (roworcol == ROW) {
690 rc.i = num * state->w;
691 rc.di = 1;
692 rc.n = state->w;
693 rc.targets = &(state->common->rowcount[num*3]);
694 rc.name = "row";
695 } else if (roworcol == COLUMN) {
696 rc.i = num;
697 rc.di = state->w;
698 rc.n = state->h;
699 rc.targets = &(state->common->colcount[num*3]);
700 rc.name = "column";
701 } else {
702 assert(!"unknown roworcol");
704 return rc;
707 static int count_rowcol(game_state *state, int num, int roworcol, int which)
709 int i, count = 0;
710 rowcol rc = mkrowcol(state, num, roworcol);
712 for (i = 0; i < rc.n; i++, rc.i += rc.di) {
713 if (which < 0) {
714 if (state->grid[rc.i] == EMPTY &&
715 !(state->flags[rc.i] & GS_SET))
716 count++;
717 } else if (state->grid[rc.i] == which)
718 count++;
720 return count;
723 static void check_rowcol(game_state *state, int num, int roworcol, int which,
724 int *wrong, int *incomplete)
726 int count, target = mkrowcol(state, num, roworcol).targets[which];
728 if (target == -1) return; /* no number to check against. */
730 count = count_rowcol(state, num, roworcol, which);
731 if (count < target) *incomplete = 1;
732 if (count > target) *wrong = 1;
735 static int check_completion(game_state *state)
737 int i, j, x, y, idx, w = state->w, h = state->h;
738 int which = POSITIVE, wrong = 0, incomplete = 0;
740 /* Check row and column counts for magnets. */
741 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
742 for (i = 0; i < w; i++)
743 check_rowcol(state, i, COLUMN, which, &wrong, &incomplete);
745 for (i = 0; i < h; i++)
746 check_rowcol(state, i, ROW, which, &wrong, &incomplete);
748 /* Check each domino has been filled, and that we don't have
749 * touching identical terminals. */
750 for (i = 0; i < state->wh; i++) state->flags[i] &= ~GS_ERROR;
751 for (x = 0; x < w; x++) {
752 for (y = 0; y < h; y++) {
753 idx = y*w + x;
754 if (state->common->dominoes[idx] == idx)
755 continue; /* no domino here */
757 if (!(state->flags[idx] & GS_SET))
758 incomplete = 1;
760 which = state->grid[idx];
761 if (which != NEUTRAL) {
762 #define CHECK(xx,yy) do { \
763 if (INGRID(state,xx,yy) && \
764 (state->grid[(yy)*w+(xx)] == which)) { \
765 wrong = 1; \
766 state->flags[(yy)*w+(xx)] |= GS_ERROR; \
767 state->flags[y*w+x] |= GS_ERROR; \
769 } while(0)
770 CHECK(x,y-1);
771 CHECK(x,y+1);
772 CHECK(x-1,y);
773 CHECK(x+1,y);
774 #undef CHECK
778 return wrong ? -1 : incomplete ? 0 : 1;
781 static const int dx[4] = {-1, 1, 0, 0};
782 static const int dy[4] = {0, 0, -1, 1};
784 static void solve_clearflags(game_state *state)
786 int i;
788 for (i = 0; i < state->wh; i++) {
789 state->flags[i] &= ~GS_NOTMASK;
790 if (state->common->dominoes[i] != i)
791 state->flags[i] &= ~GS_SET;
795 /* Knowing a given cell cannot be a certain colour also tells us
796 * something about the other cell in that domino. */
797 static int solve_unflag(game_state *state, int i, int which,
798 const char *why, rowcol *rc)
800 int ii, ret = 0;
801 #if defined DEBUGGING || defined STANDALONE_SOLVER
802 int w = state->w;
803 #endif
805 assert(i >= 0 && i < state->wh);
806 ii = state->common->dominoes[i];
807 if (ii == i) return 0;
809 if (rc)
810 debug(("solve_unflag: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
812 if ((state->flags[i] & GS_SET) && (state->grid[i] == which)) {
813 debug(("solve_unflag: (%d,%d) already %s, cannot unflag (for %s).",
814 i%w, i/w, NAME(which), why));
815 return -1;
817 if ((state->flags[ii] & GS_SET) && (state->grid[ii] == OPPOSITE(which))) {
818 debug(("solve_unflag: (%d,%d) opposite already %s, cannot unflag (for %s).",
819 ii%w, ii/w, NAME(OPPOSITE(which)), why));
820 return -1;
822 if (POSSIBLE(i, which)) {
823 state->flags[i] |= NOTFLAG(which);
824 ret++;
825 debug(("solve_unflag: (%d,%d) CANNOT be %s (%s)",
826 i%w, i/w, NAME(which), why));
828 if (POSSIBLE(ii, OPPOSITE(which))) {
829 state->flags[ii] |= NOTFLAG(OPPOSITE(which));
830 ret++;
831 debug(("solve_unflag: (%d,%d) CANNOT be %s (%s, other half)",
832 ii%w, ii/w, NAME(OPPOSITE(which)), why));
834 #ifdef STANDALONE_SOLVER
835 if (verbose && ret) {
836 printf("(%d,%d)", i%w, i/w);
837 if (rc) printf(" in %s %d", rc->name, rc->num);
838 printf(" cannot be %s (%s); opposite (%d,%d) not %s.\n",
839 NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
841 #endif
842 return ret;
845 static int solve_unflag_surrounds(game_state *state, int i, int which)
847 int x = i%state->w, y = i/state->w, xx, yy, j, ii;
849 assert(INGRID(state, x, y));
851 for (j = 0; j < 4; j++) {
852 xx = x+dx[j]; yy = y+dy[j];
853 if (!INGRID(state, xx, yy)) continue;
855 ii = yy*state->w+xx;
856 if (solve_unflag(state, ii, which, "adjacent to set cell", NULL) < 0)
857 return -1;
859 return 0;
862 /* Sets a cell to a particular colour, and also perform other
863 * housekeeping around that. */
864 static int solve_set(game_state *state, int i, int which,
865 const char *why, rowcol *rc)
867 int ii;
868 #if defined DEBUGGING || defined STANDALONE_SOLVER
869 int w = state->w;
870 #endif
872 ii = state->common->dominoes[i];
874 if (state->flags[i] & GS_SET) {
875 if (state->grid[i] == which) {
876 return 0; /* was already set and held, do nothing. */
877 } else {
878 debug(("solve_set: (%d,%d) is held and %s, cannot set to %s",
879 i%w, i/w, NAME(state->grid[i]), NAME(which)));
880 return -1;
883 if ((state->flags[ii] & GS_SET) && state->grid[ii] != OPPOSITE(which)) {
884 debug(("solve_set: (%d,%d) opposite is held and %s, cannot set to %s",
885 ii%w, ii/w, NAME(state->grid[ii]), NAME(OPPOSITE(which))));
886 return -1;
888 if (!POSSIBLE(i, which)) {
889 debug(("solve_set: (%d,%d) NOT %s, cannot set.", i%w, i/w, NAME(which)));
890 return -1;
892 if (!POSSIBLE(ii, OPPOSITE(which))) {
893 debug(("solve_set: (%d,%d) NOT %s, cannot set (%d,%d).",
894 ii%w, ii/w, NAME(OPPOSITE(which)), i%w, i/w));
895 return -1;
898 #ifdef STANDALONE_SOLVER
899 if (verbose) {
900 printf("(%d,%d)", i%w, i/w);
901 if (rc) printf(" in %s %d", rc->name, rc->num);
902 printf(" set to %s (%s), opposite (%d,%d) set to %s.\n",
903 NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
905 #endif
906 if (rc)
907 debug(("solve_set: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
908 debug(("solve_set: (%d,%d) setting to %s (%s), surrounds first:",
909 i%w, i/w, NAME(which), why));
911 if (which != NEUTRAL) {
912 if (solve_unflag_surrounds(state, i, which) < 0)
913 return -1;
914 if (solve_unflag_surrounds(state, ii, OPPOSITE(which)) < 0)
915 return -1;
918 state->grid[i] = which;
919 state->grid[ii] = OPPOSITE(which);
921 state->flags[i] |= GS_SET;
922 state->flags[ii] |= GS_SET;
924 debug(("solve_set: (%d,%d) set to %s (%s)", i%w, i/w, NAME(which), why));
926 return 1;
929 /* counts should be int[4]. */
930 static void solve_counts(game_state *state, rowcol rc, int *counts, int *unset)
932 int i, j, which;
934 assert(counts);
935 for (i = 0; i < 4; i++) {
936 counts[i] = 0;
937 if (unset) unset[i] = 0;
940 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
941 if (state->flags[i] & GS_SET) {
942 assert(state->grid[i] < 3);
943 counts[state->grid[i]]++;
944 } else if (unset) {
945 for (which = 0; which <= 2; which++) {
946 if (POSSIBLE(i, which))
947 unset[which]++;
953 static int solve_checkfull(game_state *state, rowcol rc, int *counts)
955 int starti = rc.i, j, which, didsth = 0, target;
956 int unset[4];
958 assert(state->numbered); /* only useful (should only be called) if numbered. */
960 solve_counts(state, rc, counts, unset);
962 for (which = 0; which <= 2; which++) {
963 target = rc.targets[which];
964 if (target == -1) continue;
966 /*debug(("%s %d for %s: target %d, count %d, unset %d",
967 rc.name, rc.num, NAME(which),
968 target, counts[which], unset[which]));*/
970 if (target < counts[which]) {
971 debug(("%s %d has too many (%d) %s squares (target %d), impossible!",
972 rc.name, rc.num, counts[which], NAME(which), target));
973 return -1;
975 if (target == counts[which]) {
976 /* We have the correct no. of the colour in this row/column
977 * already; unflag all the rest. */
978 for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
979 if (state->flags[rc.i] & GS_SET) continue;
980 if (!POSSIBLE(rc.i, which)) continue;
982 if (solve_unflag(state, rc.i, which, "row/col full", &rc) < 0)
983 return -1;
984 didsth = 1;
986 } else if ((target - counts[which]) == unset[which]) {
987 /* We need all the remaining unset squares for this colour;
988 * set them all. */
989 for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
990 if (state->flags[rc.i] & GS_SET) continue;
991 if (!POSSIBLE(rc.i, which)) continue;
993 if (solve_set(state, rc.i, which, "row/col needs all unset", &rc) < 0)
994 return -1;
995 didsth = 1;
999 return didsth;
1002 static int solve_startflags(game_state *state)
1004 int x, y, i;
1006 for (x = 0; x < state->w; x++) {
1007 for (y = 0; y < state->h; y++) {
1008 i = y*state->w+x;
1009 if (state->common->dominoes[i] == i) continue;
1010 if (state->grid[i] != NEUTRAL ||
1011 state->flags[i] & GS_SET) {
1012 if (solve_set(state, i, state->grid[i], "initial set-and-hold", NULL) < 0)
1013 return -1;
1017 return 0;
1020 typedef int (*rowcolfn)(game_state *state, rowcol rc, int *counts);
1022 static int solve_rowcols(game_state *state, rowcolfn fn)
1024 int x, y, didsth = 0, ret;
1025 rowcol rc;
1026 int counts[4];
1028 for (x = 0; x < state->w; x++) {
1029 rc = mkrowcol(state, x, COLUMN);
1030 solve_counts(state, rc, counts, NULL);
1032 ret = fn(state, rc, counts);
1033 if (ret < 0) return ret;
1034 didsth += ret;
1036 for (y = 0; y < state->h; y++) {
1037 rc = mkrowcol(state, y, ROW);
1038 solve_counts(state, rc, counts, NULL);
1040 ret = fn(state, rc, counts);
1041 if (ret < 0) return ret;
1042 didsth += ret;
1044 return didsth;
1047 static int solve_force(game_state *state)
1049 int i, which, didsth = 0;
1050 unsigned long f;
1052 for (i = 0; i < state->wh; i++) {
1053 if (state->flags[i] & GS_SET) continue;
1054 if (state->common->dominoes[i] == i) continue;
1056 f = state->flags[i] & GS_NOTMASK;
1057 which = -1;
1058 if (f == (GS_NOTPOSITIVE|GS_NOTNEGATIVE))
1059 which = NEUTRAL;
1060 if (f == (GS_NOTPOSITIVE|GS_NOTNEUTRAL))
1061 which = NEGATIVE;
1062 if (f == (GS_NOTNEGATIVE|GS_NOTNEUTRAL))
1063 which = POSITIVE;
1064 if (which != -1) {
1065 if (solve_set(state, i, which, "forced by flags", NULL) < 0)
1066 return -1;
1067 didsth = 1;
1070 return didsth;
1073 static int solve_neither(game_state *state)
1075 int i, j, didsth = 0;
1077 for (i = 0; i < state->wh; i++) {
1078 if (state->flags[i] & GS_SET) continue;
1079 j = state->common->dominoes[i];
1080 if (i == j) continue;
1082 if (((state->flags[i] & GS_NOTPOSITIVE) &&
1083 (state->flags[j] & GS_NOTPOSITIVE)) ||
1084 ((state->flags[i] & GS_NOTNEGATIVE) &&
1085 (state->flags[j] & GS_NOTNEGATIVE))) {
1086 if (solve_set(state, i, NEUTRAL, "neither tile magnet", NULL) < 0)
1087 return -1;
1088 didsth = 1;
1091 return didsth;
1094 static int solve_advancedfull(game_state *state, rowcol rc, int *counts)
1096 int i, j, nfound = 0, clearpos = 0, clearneg = 0, ret = 0;
1098 /* For this row/col, look for a domino entirely within the row where
1099 * both ends can only be + or - (but isn't held).
1100 * The +/- counts can thus be decremented by 1 each, and the 'unset'
1101 * count by 2.
1103 * Once that's done for all such dominoes (and they're marked), try
1104 * and made usual deductions about rest of the row based on new totals. */
1106 if (rc.targets[POSITIVE] == -1 && rc.targets[NEGATIVE] == -1)
1107 return 0; /* don't have a target for either colour, nothing to do. */
1108 if ((rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) &&
1109 (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]))
1110 return 0; /* both colours are full up already, nothing to do. */
1112 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++)
1113 state->flags[i] &= ~GS_MARK;
1115 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1116 if (state->flags[i] & GS_SET) continue;
1118 /* We're looking for a domino in our row/col, thus if
1119 * dominoes[i] -> i+di we've found one. */
1120 if (state->common->dominoes[i] != i+rc.di) continue;
1122 /* We need both squares of this domino to be either + or -
1123 * (i.e. both NOTNEUTRAL only). */
1124 if (((state->flags[i] & GS_NOTMASK) != GS_NOTNEUTRAL) ||
1125 ((state->flags[i+rc.di] & GS_NOTMASK) != GS_NOTNEUTRAL))
1126 continue;
1128 debug(("Domino in %s %d at (%d,%d) must be polarised.",
1129 rc.name, rc.num, i%state->w, i/state->w));
1130 state->flags[i] |= GS_MARK;
1131 state->flags[i+rc.di] |= GS_MARK;
1132 nfound++;
1134 if (nfound == 0) return 0;
1136 /* nfound is #dominoes we matched, which will all be marked. */
1137 counts[POSITIVE] += nfound;
1138 counts[NEGATIVE] += nfound;
1140 if (rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) {
1141 debug(("%s %d has now filled POSITIVE:", rc.name, rc.num));
1142 clearpos = 1;
1144 if (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]) {
1145 debug(("%s %d has now filled NEGATIVE:", rc.name, rc.num));
1146 clearneg = 1;
1149 if (!clearpos && !clearneg) return 0;
1151 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1152 if (state->flags[i] & GS_SET) continue;
1153 if (state->flags[i] & GS_MARK) continue;
1155 if (clearpos && !(state->flags[i] & GS_NOTPOSITIVE)) {
1156 if (solve_unflag(state, i, POSITIVE, "row/col full (+ve) [tricky]", &rc) < 0)
1157 return -1;
1158 ret++;
1160 if (clearneg && !(state->flags[i] & GS_NOTNEGATIVE)) {
1161 if (solve_unflag(state, i, NEGATIVE, "row/col full (-ve) [tricky]", &rc) < 0)
1162 return -1;
1163 ret++;
1167 return ret;
1170 /* If we only have one neutral still to place on a row/column then no
1171 dominoes entirely in that row/column can be neutral. */
1172 static int solve_nonneutral(game_state *state, rowcol rc, int *counts)
1174 int i, j, ret = 0;
1176 if (rc.targets[NEUTRAL] != counts[NEUTRAL]+1)
1177 return 0;
1179 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1180 if (state->flags[i] & GS_SET) continue;
1181 if (state->common->dominoes[i] != i+rc.di) continue;
1183 if (!(state->flags[i] & GS_NOTNEUTRAL)) {
1184 if (solve_unflag(state, i, NEUTRAL, "single neutral in row/col [tricky]", &rc) < 0)
1185 return -1;
1186 ret++;
1189 return ret;
1192 /* If we need to fill all unfilled cells with +-, and we need 1 more of
1193 * one than the other, and we have a single odd-numbered region of unfilled
1194 * cells, that odd-numbered region must start and end with the extra number. */
1195 static int solve_oddlength(game_state *state, rowcol rc, int *counts)
1197 int i, j, ret = 0, extra, tpos, tneg;
1198 int start = -1, length = 0, inempty = 0, startodd = -1;
1200 /* need zero neutral cells still to find... */
1201 if (rc.targets[NEUTRAL] != counts[NEUTRAL])
1202 return 0;
1204 /* ...and #positive and #negative to differ by one. */
1205 tpos = rc.targets[POSITIVE] - counts[POSITIVE];
1206 tneg = rc.targets[NEGATIVE] - counts[NEGATIVE];
1207 if (tpos == tneg+1)
1208 extra = POSITIVE;
1209 else if (tneg == tpos+1)
1210 extra = NEGATIVE;
1211 else return 0;
1213 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1214 if (state->flags[i] & GS_SET) {
1215 if (inempty) {
1216 if (length % 2) {
1217 /* we've just finished an odd-length section. */
1218 if (startodd != -1) goto twoodd;
1219 startodd = start;
1221 inempty = 0;
1223 } else {
1224 if (inempty)
1225 length++;
1226 else {
1227 start = i;
1228 length = 1;
1229 inempty = 1;
1233 if (inempty && (length % 2)) {
1234 if (startodd != -1) goto twoodd;
1235 startodd = start;
1237 if (startodd != -1)
1238 ret = solve_set(state, startodd, extra, "odd-length section start", &rc);
1240 return ret;
1242 twoodd:
1243 debug(("%s %d has >1 odd-length sections, starting at %d,%d and %d,%d.",
1244 rc.name, rc.num,
1245 startodd%state->w, startodd/state->w,
1246 start%state->w, start/state->w));
1247 return 0;
1250 /* Count the number of remaining empty dominoes in any row/col.
1251 * If that number is equal to the #remaining positive,
1252 * or to the #remaining negative, no empty cells can be neutral. */
1253 static int solve_countdominoes_neutral(game_state *state, rowcol rc, int *counts)
1255 int i, j, ndom = 0, nonn = 0, ret = 0;
1257 if ((rc.targets[POSITIVE] == -1) && (rc.targets[NEGATIVE] == -1))
1258 return 0; /* need at least one target to compare. */
1260 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1261 if (state->flags[i] & GS_SET) continue;
1262 assert(state->grid[i] == EMPTY);
1264 /* Skip solo cells, or second cell in domino. */
1265 if ((state->common->dominoes[i] == i) ||
1266 (state->common->dominoes[i] == i-rc.di))
1267 continue;
1269 ndom++;
1272 if ((rc.targets[POSITIVE] != -1) &&
1273 (rc.targets[POSITIVE]-counts[POSITIVE] == ndom))
1274 nonn = 1;
1275 if ((rc.targets[NEGATIVE] != -1) &&
1276 (rc.targets[NEGATIVE]-counts[NEGATIVE] == ndom))
1277 nonn = 1;
1279 if (!nonn) return 0;
1281 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1282 if (state->flags[i] & GS_SET) continue;
1284 if (!(state->flags[i] & GS_NOTNEUTRAL)) {
1285 if (solve_unflag(state, i, NEUTRAL, "all dominoes +/- [tricky]", &rc) < 0)
1286 return -1;
1287 ret++;
1290 return ret;
1293 static int solve_domino_count(game_state *state, rowcol rc, int i, int which)
1295 int nposs = 0;
1297 /* Skip solo cells or 2nd in domino. */
1298 if ((state->common->dominoes[i] == i) ||
1299 (state->common->dominoes[i] == i-rc.di))
1300 return 0;
1302 if (state->flags[i] & GS_SET)
1303 return 0;
1305 if (POSSIBLE(i, which))
1306 nposs++;
1308 if (state->common->dominoes[i] == i+rc.di) {
1309 /* second cell of domino is on our row: test that too. */
1310 if (POSSIBLE(i+rc.di, which))
1311 nposs++;
1313 return nposs;
1316 /* Count number of dominoes we could put each of + and - into. If it is equal
1317 * to the #left, any domino we can only put + or - in one cell of must have it. */
1318 static int solve_countdominoes_nonneutral(game_state *state, rowcol rc, int *counts)
1320 int which, w, i, j, ndom = 0, didsth = 0, toset;
1322 for (which = POSITIVE, w = 0; w < 2; which = OPPOSITE(which), w++) {
1323 if (rc.targets[which] == -1) continue;
1325 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1326 if (solve_domino_count(state, rc, i, which) > 0)
1327 ndom++;
1330 if ((rc.targets[which] - counts[which]) != ndom)
1331 continue;
1333 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1334 if (solve_domino_count(state, rc, i, which) == 1) {
1335 if (POSSIBLE(i, which))
1336 toset = i;
1337 else {
1338 /* paranoia, should have been checked by solve_domino_count. */
1339 assert(state->common->dominoes[i] == i+rc.di);
1340 assert(POSSIBLE(i+rc.di, which));
1341 toset = i+rc.di;
1343 if (solve_set(state, toset, which, "all empty dominoes need +/- [tricky]", &rc) < 0)
1344 return -1;
1345 didsth++;
1349 return didsth;
1352 /* danger, evil macro. can't use the do { ... } while(0) trick because
1353 * the continue breaks. */
1354 #define SOLVE_FOR_ROWCOLS(fn) \
1355 ret = solve_rowcols(state, fn); \
1356 if (ret < 0) { debug(("%s said impossible, cannot solve", #fn)); return -1; } \
1357 if (ret > 0) continue
1359 static int solve_state(game_state *state, int diff)
1361 int ret;
1363 debug(("solve_state, difficulty %s", magnets_diffnames[diff]));
1365 solve_clearflags(state);
1366 if (solve_startflags(state) < 0) return -1;
1368 while (1) {
1369 ret = solve_force(state);
1370 if (ret > 0) continue;
1371 if (ret < 0) return -1;
1373 ret = solve_neither(state);
1374 if (ret > 0) continue;
1375 if (ret < 0) return -1;
1377 SOLVE_FOR_ROWCOLS(solve_checkfull);
1378 SOLVE_FOR_ROWCOLS(solve_oddlength);
1380 if (diff < DIFF_TRICKY) break;
1382 SOLVE_FOR_ROWCOLS(solve_advancedfull);
1383 SOLVE_FOR_ROWCOLS(solve_nonneutral);
1384 SOLVE_FOR_ROWCOLS(solve_countdominoes_neutral);
1385 SOLVE_FOR_ROWCOLS(solve_countdominoes_nonneutral);
1387 /* more ... */
1389 break;
1391 return check_completion(state);
1395 static char *game_state_diff(game_state *src, game_state *dst, int issolve)
1397 char *ret = NULL, buf[80], c;
1398 int retlen = 0, x, y, i, k;
1400 assert(src->w == dst->w && src->h == dst->h);
1402 if (issolve) {
1403 ret = sresize(ret, 3, char);
1404 ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0';
1405 retlen += 2;
1407 for (x = 0; x < dst->w; x++) {
1408 for (y = 0; y < dst->h; y++) {
1409 i = y*dst->w+x;
1411 if (src->common->dominoes[i] == i) continue;
1413 #define APPEND do { \
1414 ret = sresize(ret, retlen + k + 1, char); \
1415 strcpy(ret + retlen, buf); \
1416 retlen += k; \
1417 } while(0)
1419 if ((src->grid[i] != dst->grid[i]) ||
1420 ((src->flags[i] & GS_SET) != (dst->flags[i] & GS_SET))) {
1421 if (dst->grid[i] == EMPTY && !(dst->flags[i] & GS_SET))
1422 c = ' ';
1423 else
1424 c = GRID2CHAR(dst->grid[i]);
1425 k = sprintf(buf, "%c%d,%d;", (int)c, x, y);
1426 APPEND;
1430 debug(("game_state_diff returns %s", ret));
1431 return ret;
1434 static void solve_from_aux(game_state *state, char *aux)
1436 int i;
1437 assert(strlen(aux) == state->wh);
1438 for (i = 0; i < state->wh; i++) {
1439 state->grid[i] = CHAR2GRID(aux[i]);
1440 state->flags[i] |= GS_SET;
1444 static char *solve_game(game_state *state, game_state *currstate,
1445 char *aux, char **error)
1447 game_state *solved = dup_game(currstate);
1448 char *move = NULL;
1449 int ret;
1451 if (aux && strlen(aux) == state->wh) {
1452 solve_from_aux(solved, aux);
1453 goto solved;
1456 if (solve_state(solved, DIFFCOUNT) > 0) goto solved;
1457 free_game(solved);
1459 solved = dup_game(state);
1460 ret = solve_state(solved, DIFFCOUNT);
1461 if (ret > 0) goto solved;
1462 free_game(solved);
1464 *error = (ret < 0) ? "Puzzle is impossible." : "Unable to solve puzzle.";
1465 return NULL;
1467 solved:
1468 move = game_state_diff(currstate, solved, 1);
1469 free_game(solved);
1470 return move;
1473 static int solve_unnumbered(game_state *state)
1475 int i, ret;
1476 while (1) {
1477 ret = solve_force(state);
1478 if (ret > 0) continue;
1479 if (ret < 0) return -1;
1481 ret = solve_neither(state);
1482 if (ret > 0) continue;
1483 if (ret < 0) return -1;
1485 break;
1487 for (i = 0; i < state->wh; i++) {
1488 if (!(state->flags[i] & GS_SET)) return 0;
1490 return 1;
1493 static int lay_dominoes(game_state *state, random_state *rs, int *scratch)
1495 int n, i, ret = 0, nlaid = 0, n_initial_neutral;
1497 for (i = 0; i < state->wh; i++) {
1498 scratch[i] = i;
1499 state->grid[i] = EMPTY;
1500 state->flags[i] = (state->common->dominoes[i] == i) ? GS_SET : 0;
1502 shuffle(scratch, state->wh, sizeof(int), rs);
1504 n_initial_neutral = (state->wh > 100) ? 5 : (state->wh / 10);
1506 for (n = 0; n < state->wh; n++) {
1507 /* Find a space ... */
1509 i = scratch[n];
1510 if (state->flags[i] & GS_SET) continue; /* already laid here. */
1512 /* ...and lay a domino if we can. */
1514 debug(("Laying domino at i:%d, (%d,%d)\n", i, i%state->w, i/state->w));
1516 /* The choice of which type of domino to lay here leads to subtle differences
1517 * in the sorts of boards that get produced. Too much bias towards magnets
1518 * leads to games that are too easy.
1520 * Currently, it lays a small set of dominoes at random as neutral, and
1521 * then lays the rest preferring to be magnets -- however, if the
1522 * current layout is such that a magnet won't go there, then it lays
1523 * another neutral.
1525 * The number of initially neutral dominoes is limited as grids get bigger:
1526 * too many neutral dominoes invariably ends up with insoluble puzzle at
1527 * this size, and the positioning process means it'll always end up laying
1528 * more than the initial 5 anyway.
1531 /* We should always be able to lay a neutral anywhere. */
1532 assert(!(state->flags[i] & GS_NOTNEUTRAL));
1534 if (n < n_initial_neutral) {
1535 debug((" ...laying neutral\n"));
1536 ret = solve_set(state, i, NEUTRAL, "layout initial neutral", NULL);
1537 } else {
1538 debug((" ... preferring magnet\n"));
1539 if (!(state->flags[i] & GS_NOTPOSITIVE))
1540 ret = solve_set(state, i, POSITIVE, "layout", NULL);
1541 else if (!(state->flags[i] & GS_NOTNEGATIVE))
1542 ret = solve_set(state, i, NEGATIVE, "layout", NULL);
1543 else
1544 ret = solve_set(state, i, NEUTRAL, "layout", NULL);
1546 if (!ret) {
1547 debug(("Unable to lay anything at (%d,%d), giving up.",
1548 i%state->w, i/state->w));
1549 ret = -1;
1550 break;
1553 nlaid++;
1554 ret = solve_unnumbered(state);
1555 if (ret == -1)
1556 debug(("solve_unnumbered decided impossible.\n"));
1557 if (ret != 0)
1558 break;
1561 debug(("Laid %d dominoes, total %d dominoes.\n", nlaid, state->wh/2));
1562 game_debug(state, "Final layout");
1563 return ret;
1566 static void gen_game(game_state *new, random_state *rs)
1568 int ret, x, y, val;
1569 int *scratch = snewn(new->wh, int);
1571 #ifdef STANDALONE_SOLVER
1572 if (verbose) printf("Generating new game...\n");
1573 #endif
1575 clear_state(new);
1576 sfree(new->common->dominoes); /* bit grotty. */
1577 new->common->dominoes = domino_layout(new->w, new->h, rs);
1579 do {
1580 ret = lay_dominoes(new, rs, scratch);
1581 } while(ret == -1);
1583 /* for each cell, update colcount/rowcount as appropriate. */
1584 memset(new->common->colcount, 0, new->w*3*sizeof(int));
1585 memset(new->common->rowcount, 0, new->h*3*sizeof(int));
1586 for (x = 0; x < new->w; x++) {
1587 for (y = 0; y < new->h; y++) {
1588 val = new->grid[y*new->w+x];
1589 new->common->colcount[x*3+val]++;
1590 new->common->rowcount[y*3+val]++;
1593 new->numbered = 1;
1595 sfree(scratch);
1598 static void generate_aux(game_state *new, char *aux)
1600 int i;
1601 for (i = 0; i < new->wh; i++)
1602 aux[i] = GRID2CHAR(new->grid[i]);
1603 aux[new->wh] = '\0';
1606 static int check_difficulty(game_params *params, game_state *new,
1607 random_state *rs)
1609 int *scratch, *grid_correct, slen, i;
1611 memset(new->grid, EMPTY, new->wh*sizeof(int));
1613 if (params->diff > DIFF_EASY) {
1614 /* If this is too easy, return. */
1615 if (solve_state(new, params->diff-1) > 0) {
1616 debug(("Puzzle is too easy."));
1617 return -1;
1620 if (solve_state(new, params->diff) <= 0) {
1621 debug(("Puzzle is not soluble at requested difficulty."));
1622 return -1;
1624 if (!params->stripclues) return 0;
1626 /* Copy the correct grid away. */
1627 grid_correct = snewn(new->wh, int);
1628 memcpy(grid_correct, new->grid, new->wh*sizeof(int));
1630 /* Create shuffled array of side-clue locations. */
1631 slen = new->w*2 + new->h*2;
1632 scratch = snewn(slen, int);
1633 for (i = 0; i < slen; i++) scratch[i] = i;
1634 shuffle(scratch, slen, sizeof(int), rs);
1636 /* For each clue, check whether removing it makes the puzzle unsoluble;
1637 * put it back if so. */
1638 for (i = 0; i < slen; i++) {
1639 int num = scratch[i], which, roworcol, target, targetn, ret;
1640 rowcol rc;
1642 /* work out which clue we meant. */
1643 if (num < new->w+new->h) { which = POSITIVE; }
1644 else { which = NEGATIVE; num -= new->w+new->h; }
1646 if (num < new->w) { roworcol = COLUMN; }
1647 else { roworcol = ROW; num -= new->w; }
1649 /* num is now the row/column index in question. */
1650 rc = mkrowcol(new, num, roworcol);
1652 /* Remove clue, storing original... */
1653 target = rc.targets[which];
1654 targetn = rc.targets[NEUTRAL];
1655 rc.targets[which] = -1;
1656 rc.targets[NEUTRAL] = -1;
1658 /* ...and see if we can still solve it. */
1659 game_debug(new, "removed clue, new board:");
1660 memset(new->grid, EMPTY, new->wh * sizeof(int));
1661 ret = solve_state(new, params->diff);
1662 assert(ret != -1);
1664 if (ret == 0 ||
1665 memcmp(new->grid, grid_correct, new->wh*sizeof(int)) != 0) {
1666 /* We made it ambiguous: put clue back. */
1667 debug(("...now impossible/different, put clue back."));
1668 rc.targets[which] = target;
1669 rc.targets[NEUTRAL] = targetn;
1672 sfree(scratch);
1673 sfree(grid_correct);
1675 return 0;
1678 static char *new_game_desc(game_params *params, random_state *rs,
1679 char **aux_r, int interactive)
1681 game_state *new = new_state(params->w, params->h);
1682 char *desc, *aux = snewn(new->wh+1, char);
1684 do {
1685 gen_game(new, rs);
1686 generate_aux(new, aux);
1687 } while (check_difficulty(params, new, rs) < 0);
1689 /* now we're complete, generate the description string
1690 * and an aux_info for the completed game. */
1691 desc = generate_desc(new);
1693 free_game(new);
1695 *aux_r = aux;
1696 return desc;
1699 struct game_ui {
1700 int cur_x, cur_y, cur_visible;
1703 static game_ui *new_ui(game_state *state)
1705 game_ui *ui = snew(game_ui);
1706 ui->cur_x = ui->cur_y = 0;
1707 ui->cur_visible = 0;
1708 return ui;
1711 static void free_ui(game_ui *ui)
1713 sfree(ui);
1716 static char *encode_ui(game_ui *ui)
1718 return NULL;
1721 static void decode_ui(game_ui *ui, char *encoding)
1725 static void game_changed_state(game_ui *ui, game_state *oldstate,
1726 game_state *newstate)
1728 if (!oldstate->completed && newstate->completed)
1729 ui->cur_visible = 0;
1732 struct game_drawstate {
1733 int tilesize, started, solved;
1734 int w, h;
1735 unsigned long *what; /* size w*h */
1736 unsigned long *colwhat, *rowwhat; /* size 3*w, 3*h */
1739 #define DS_WHICH_MASK 0xf
1741 #define DS_ERROR 0x10
1742 #define DS_CURSOR 0x20
1743 #define DS_SET 0x40
1744 #define DS_FULL 0x80
1745 #define DS_NOTPOS 0x100
1746 #define DS_NOTNEG 0x200
1747 #define DS_NOTNEU 0x400
1748 #define DS_FLASH 0x800
1750 #define PREFERRED_TILE_SIZE 32
1751 #define TILE_SIZE (ds->tilesize)
1752 #define BORDER (TILE_SIZE / 8)
1754 #define COORD(x) ( (x+1) * TILE_SIZE + BORDER )
1755 #define FROMCOORD(x) ( (x - BORDER) / TILE_SIZE - 1 )
1757 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1758 int x, int y, int button)
1760 int gx = FROMCOORD(x), gy = FROMCOORD(y), idx, curr;
1761 char *nullret = NULL, buf[80], movech;
1762 enum { CYCLE_MAGNET, CYCLE_NEUTRAL } action;
1764 if (IS_CURSOR_MOVE(button)) {
1765 move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0);
1766 ui->cur_visible = 1;
1767 return "";
1768 } else if (IS_CURSOR_SELECT(button)) {
1769 if (!ui->cur_visible) {
1770 ui->cur_visible = 1;
1771 return "";
1773 action = (button == CURSOR_SELECT) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
1774 gx = ui->cur_x;
1775 gy = ui->cur_y;
1776 } else if (INGRID(state, gx, gy) &&
1777 (button == LEFT_BUTTON || button == RIGHT_BUTTON)) {
1778 if (ui->cur_visible) {
1779 ui->cur_visible = 0;
1780 nullret = "";
1782 action = (button == LEFT_BUTTON) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
1783 } else
1784 return NULL;
1786 idx = gy * state->w + gx;
1787 if (state->common->dominoes[idx] == idx) return nullret;
1788 curr = state->grid[idx];
1790 if (action == CYCLE_MAGNET) {
1791 /* ... empty --> positive --> negative --> empty ... */
1793 if (state->grid[idx] == NEUTRAL && state->flags[idx] & GS_SET)
1794 return nullret; /* can't cycle a magnet from a neutral. */
1795 movech = (curr == EMPTY) ? '+' : (curr == POSITIVE) ? '-' : ' ';
1796 } else if (action == CYCLE_NEUTRAL) {
1797 /* ... empty -> neutral -> !neutral --> empty ... */
1799 if (state->grid[idx] != NEUTRAL)
1800 return nullret; /* can't cycle through neutral from a magnet. */
1802 /* All of these are grid == EMPTY == NEUTRAL; it twiddles
1803 * combinations of flags. */
1804 if (state->flags[idx] & GS_SET) /* neutral */
1805 movech = '?';
1806 else if (state->flags[idx] & GS_NOTNEUTRAL) /* !neutral */
1807 movech = ' ';
1808 else
1809 movech = '.';
1810 } else {
1811 assert(!"unknown action");
1812 movech = 0; /* placate optimiser */
1815 sprintf(buf, "%c%d,%d", movech, gx, gy);
1817 return dupstr(buf);
1820 static game_state *execute_move(game_state *state, char *move)
1822 game_state *ret = dup_game(state);
1823 int x, y, n, idx, idx2;
1824 char c;
1826 if (!*move) goto badmove;
1827 while (*move) {
1828 c = *move++;
1829 if (c == 'S') {
1830 ret->solved = TRUE;
1831 n = 0;
1832 } else if (c == '+' || c == '-' ||
1833 c == '.' || c == ' ' || c == '?') {
1834 if ((sscanf(move, "%d,%d%n", &x, &y, &n) != 2) ||
1835 !INGRID(state, x, y)) goto badmove;
1837 idx = y*state->w + x;
1838 idx2 = state->common->dominoes[idx];
1839 if (idx == idx2) goto badmove;
1841 ret->flags[idx] &= ~GS_NOTMASK;
1842 ret->flags[idx2] &= ~GS_NOTMASK;
1844 if (c == ' ' || c == '?') {
1845 ret->grid[idx] = EMPTY;
1846 ret->grid[idx2] = EMPTY;
1847 ret->flags[idx] &= ~GS_SET;
1848 ret->flags[idx2] &= ~GS_SET;
1849 if (c == '?') {
1850 ret->flags[idx] |= GS_NOTNEUTRAL;
1851 ret->flags[idx2] |= GS_NOTNEUTRAL;
1853 } else {
1854 ret->grid[idx] = CHAR2GRID(c);
1855 ret->grid[idx2] = OPPOSITE(CHAR2GRID(c));
1856 ret->flags[idx] |= GS_SET;
1857 ret->flags[idx2] |= GS_SET;
1859 } else
1860 goto badmove;
1862 move += n;
1863 if (*move == ';') move++;
1864 else if (*move) goto badmove;
1866 if (check_completion(ret) == 1)
1867 ret->completed = 1;
1869 return ret;
1871 badmove:
1872 free_game(ret);
1873 return NULL;
1876 /* ----------------------------------------------------------------------
1877 * Drawing routines.
1880 static void game_compute_size(game_params *params, int tilesize,
1881 int *x, int *y)
1883 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1884 struct { int tilesize; } ads, *ds = &ads;
1885 ads.tilesize = tilesize;
1887 *x = TILE_SIZE * (params->w+2) + 2 * BORDER;
1888 *y = TILE_SIZE * (params->h+2) + 2 * BORDER;
1891 static void game_set_size(drawing *dr, game_drawstate *ds,
1892 game_params *params, int tilesize)
1894 ds->tilesize = tilesize;
1897 static float *game_colours(frontend *fe, int *ncolours)
1899 float *ret = snewn(3 * NCOLOURS, float);
1900 int i;
1902 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1904 for (i = 0; i < 3; i++) {
1905 ret[COL_TEXT * 3 + i] = 0.0F;
1906 ret[COL_NEGATIVE * 3 + i] = 0.0F;
1907 ret[COL_CURSOR * 3 + i] = 0.9F;
1910 ret[COL_POSITIVE * 3 + 0] = 0.8F;
1911 ret[COL_POSITIVE * 3 + 1] = 0.0F;
1912 ret[COL_POSITIVE * 3 + 2] = 0.0F;
1914 ret[COL_NEUTRAL * 3 + 0] = 0.10F;
1915 ret[COL_NEUTRAL * 3 + 1] = 0.60F;
1916 ret[COL_NEUTRAL * 3 + 2] = 0.10F;
1918 ret[COL_ERROR * 3 + 0] = 1.0F;
1919 ret[COL_ERROR * 3 + 1] = 0.0F;
1920 ret[COL_ERROR * 3 + 2] = 0.0F;
1922 ret[COL_NOT * 3 + 0] = 0.2F;
1923 ret[COL_NOT * 3 + 1] = 0.2F;
1924 ret[COL_NOT * 3 + 2] = 1.0F;
1926 *ncolours = NCOLOURS;
1927 return ret;
1930 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1932 struct game_drawstate *ds = snew(struct game_drawstate);
1934 ds->tilesize = ds->started = ds->solved = 0;
1935 ds->w = state->w;
1936 ds->h = state->h;
1938 ds->what = snewn(state->wh, unsigned long);
1939 memset(ds->what, 0, state->wh*sizeof(unsigned long));
1941 ds->colwhat = snewn(state->w*3, unsigned long);
1942 memset(ds->colwhat, 0, state->w*3*sizeof(unsigned long));
1943 ds->rowwhat = snewn(state->h*3, unsigned long);
1944 memset(ds->rowwhat, 0, state->h*3*sizeof(unsigned long));
1946 return ds;
1949 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1951 sfree(ds->colwhat);
1952 sfree(ds->rowwhat);
1953 sfree(ds->what);
1954 sfree(ds);
1957 static void draw_num_col(drawing *dr, game_drawstate *ds, int rowcol, int which,
1958 int idx, int colbg, int col, int num)
1960 char buf[32];
1961 int cx, cy, tsz;
1963 if (num < 0) return;
1965 sprintf(buf, "%d", num);
1966 tsz = (strlen(buf) == 1) ? (7*TILE_SIZE/10) : (9*TILE_SIZE/10)/strlen(buf);
1968 if (rowcol == ROW) {
1969 cx = BORDER;
1970 if (which == NEGATIVE) cx += TILE_SIZE * (ds->w+1);
1971 cy = BORDER + TILE_SIZE * (idx+1);
1972 } else {
1973 cx = BORDER + TILE_SIZE * (idx+1);
1974 cy = BORDER;
1975 if (which == NEGATIVE) cy += TILE_SIZE * (ds->h+1);
1978 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, colbg);
1979 draw_text(dr, cx + TILE_SIZE/2, cy + TILE_SIZE/2, FONT_VARIABLE, tsz,
1980 ALIGN_VCENTRE | ALIGN_HCENTRE, col, buf);
1982 draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
1985 static void draw_num(drawing *dr, game_drawstate *ds, int rowcol, int which,
1986 int idx, unsigned long c, int num)
1988 draw_num_col(dr, ds, rowcol, which, idx, COL_BACKGROUND,
1989 (c & DS_ERROR) ? COL_ERROR : COL_TEXT, num);
1992 static void draw_sym(drawing *dr, game_drawstate *ds, int x, int y, int which, int col)
1994 int cx = COORD(x), cy = COORD(y);
1995 int ccx = cx + TILE_SIZE/2, ccy = cy + TILE_SIZE/2;
1996 int roff = TILE_SIZE/4, rsz = 2*roff+1;
1997 int soff = TILE_SIZE/16, ssz = 2*soff+1;
1999 if (which == POSITIVE || which == NEGATIVE) {
2000 draw_rect(dr, ccx - roff, ccy - soff, rsz, ssz, col);
2001 if (which == POSITIVE)
2002 draw_rect(dr, ccx - soff, ccy - roff, ssz, rsz, col);
2003 } else if (col == COL_NOT) {
2004 /* not-a-neutral is a blue question mark. */
2005 char qu[2] = { '?', 0 };
2006 draw_text(dr, ccx, ccy, FONT_VARIABLE, 7*TILE_SIZE/10,
2007 ALIGN_VCENTRE | ALIGN_HCENTRE, col, qu);
2008 } else {
2009 draw_line(dr, ccx - roff, ccy - roff, ccx + roff, ccy + roff, col);
2010 draw_line(dr, ccx + roff, ccy - roff, ccx - roff, ccy + roff, col);
2014 enum {
2015 TYPE_L,
2016 TYPE_R,
2017 TYPE_T,
2018 TYPE_B,
2019 TYPE_BLANK
2022 /* NOT responsible for redrawing background or updating. */
2023 static void draw_tile_col(drawing *dr, game_drawstate *ds, int *dominoes,
2024 int x, int y, int which, int bg, int fg, int perc)
2026 int cx = COORD(x), cy = COORD(y), i, other, type = TYPE_BLANK;
2027 int gutter, radius, coffset;
2029 /* gutter is TSZ/16 for 100%, 8*TSZ/16 (TSZ/2) for 0% */
2030 gutter = (TILE_SIZE / 16) + ((100 - perc) * (7*TILE_SIZE / 16))/100;
2031 radius = (perc * (TILE_SIZE / 8)) / 100;
2032 coffset = gutter + radius;
2034 i = y*ds->w + x;
2035 other = dominoes[i];
2037 if (other == i) return;
2038 else if (other == i+1) type = TYPE_L;
2039 else if (other == i-1) type = TYPE_R;
2040 else if (other == i+ds->w) type = TYPE_T;
2041 else if (other == i-ds->w) type = TYPE_B;
2042 else assert(!"mad domino orientation");
2044 /* domino drawing shamelessly stolen from dominosa.c. */
2045 if (type == TYPE_L || type == TYPE_T)
2046 draw_circle(dr, cx+coffset, cy+coffset,
2047 radius, bg, bg);
2048 if (type == TYPE_R || type == TYPE_T)
2049 draw_circle(dr, cx+TILE_SIZE-1-coffset, cy+coffset,
2050 radius, bg, bg);
2051 if (type == TYPE_L || type == TYPE_B)
2052 draw_circle(dr, cx+coffset, cy+TILE_SIZE-1-coffset,
2053 radius, bg, bg);
2054 if (type == TYPE_R || type == TYPE_B)
2055 draw_circle(dr, cx+TILE_SIZE-1-coffset,
2056 cy+TILE_SIZE-1-coffset,
2057 radius, bg, bg);
2059 for (i = 0; i < 2; i++) {
2060 int x1, y1, x2, y2;
2062 x1 = cx + (i ? gutter : coffset);
2063 y1 = cy + (i ? coffset : gutter);
2064 x2 = cx + TILE_SIZE-1 - (i ? gutter : coffset);
2065 y2 = cy + TILE_SIZE-1 - (i ? coffset : gutter);
2066 if (type == TYPE_L)
2067 x2 = cx + TILE_SIZE;
2068 else if (type == TYPE_R)
2069 x1 = cx;
2070 else if (type == TYPE_T)
2071 y2 = cy + TILE_SIZE ;
2072 else if (type == TYPE_B)
2073 y1 = cy;
2075 draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg);
2078 if (fg != -1) draw_sym(dr, ds, x, y, which, fg);
2081 static void draw_tile(drawing *dr, game_drawstate *ds, int *dominoes,
2082 int x, int y, unsigned long flags)
2084 int cx = COORD(x), cy = COORD(y), bg, fg, perc = 100;
2085 int which = flags & DS_WHICH_MASK;
2087 flags &= ~DS_WHICH_MASK;
2089 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2091 if (flags & DS_CURSOR)
2092 bg = COL_CURSOR; /* off-white white for cursor */
2093 else if (which == POSITIVE)
2094 bg = COL_POSITIVE;
2095 else if (which == NEGATIVE)
2096 bg = COL_NEGATIVE;
2097 else if (flags & DS_SET)
2098 bg = COL_NEUTRAL; /* green inner for neutral cells */
2099 else
2100 bg = COL_LOWLIGHT; /* light grey for empty cells. */
2102 if (which == EMPTY && !(flags & DS_SET)) {
2103 int notwhich = -1;
2104 fg = -1; /* don't draw cross unless actually set as neutral. */
2106 if (flags & DS_NOTPOS) notwhich = POSITIVE;
2107 if (flags & DS_NOTNEG) notwhich = NEGATIVE;
2108 if (flags & DS_NOTNEU) notwhich = NEUTRAL;
2109 if (notwhich != -1) {
2110 which = notwhich;
2111 fg = COL_NOT;
2113 } else
2114 fg = (flags & DS_ERROR) ? COL_ERROR :
2115 (flags & DS_CURSOR) ? COL_TEXT : COL_BACKGROUND;
2117 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2119 if (flags & DS_FLASH) {
2120 int bordercol = COL_HIGHLIGHT;
2121 draw_tile_col(dr, ds, dominoes, x, y, which, bordercol, -1, perc);
2122 perc = 3*perc/4;
2124 draw_tile_col(dr, ds, dominoes, x, y, which, bg, fg, perc);
2126 draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
2130 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2131 game_state *state, int dir, game_ui *ui,
2132 float animtime, float flashtime)
2134 int x, y, w = state->w, h = state->h, which, i, j, flash;
2135 unsigned long c = 0;
2137 flash = (int)(flashtime * 5 / FLASH_TIME) % 2;
2139 if (!ds->started) {
2140 /* draw background, corner +-. */
2141 draw_rect(dr, 0, 0,
2142 TILE_SIZE * (w+2) + 2 * BORDER,
2143 TILE_SIZE * (h+2) + 2 * BORDER,
2144 COL_BACKGROUND);
2146 draw_sym(dr, ds, -1, -1, POSITIVE, COL_TEXT);
2147 draw_sym(dr, ds, state->w, state->h, NEGATIVE, COL_TEXT);
2149 draw_update(dr, 0, 0,
2150 TILE_SIZE * (ds->w+2) + 2 * BORDER,
2151 TILE_SIZE * (ds->h+2) + 2 * BORDER);
2154 /* Draw grid */
2155 for (y = 0; y < h; y++) {
2156 for (x = 0; x < w; x++) {
2157 int idx = y*w+x;
2159 c = state->grid[idx];
2161 if (state->flags[idx] & GS_ERROR)
2162 c |= DS_ERROR;
2163 if (state->flags[idx] & GS_SET)
2164 c |= DS_SET;
2166 if (x == ui->cur_x && y == ui->cur_y && ui->cur_visible)
2167 c |= DS_CURSOR;
2169 if (flash)
2170 c |= DS_FLASH;
2172 if (state->flags[idx] & GS_NOTPOSITIVE)
2173 c |= DS_NOTPOS;
2174 if (state->flags[idx] & GS_NOTNEGATIVE)
2175 c |= DS_NOTNEG;
2176 if (state->flags[idx] & GS_NOTNEUTRAL)
2177 c |= DS_NOTNEU;
2179 if (ds->what[idx] != c || !ds->started) {
2180 draw_tile(dr, ds, state->common->dominoes, x, y, c);
2181 ds->what[idx] = c;
2185 /* Draw counts around side */
2186 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
2187 int target, count;
2188 for (i = 0; i < w; i++) {
2189 target = state->common->colcount[i*3+which];
2190 count = count_rowcol(state, i, COLUMN, which);
2191 c = 0;
2192 if ((count > target) ||
2193 (count < target && !count_rowcol(state, i, COLUMN, -1)))
2194 c |= DS_ERROR;
2195 if (count == target) c |= DS_FULL;
2196 if (c != ds->colwhat[i*3+which] || !ds->started) {
2197 draw_num(dr, ds, COLUMN, which, i, c,
2198 state->common->colcount[i*3+which]);
2199 ds->colwhat[i*3+which] = c;
2202 for (i = 0; i < h; i++) {
2203 target = state->common->rowcount[i*3+which];
2204 count = count_rowcol(state, i, ROW, which);
2205 c = 0;
2206 if ((count > target) ||
2207 (count < target && !count_rowcol(state, i, ROW, -1)))
2208 c |= DS_ERROR;
2209 if (count == target) c |= DS_FULL;
2210 if (c != ds->rowwhat[i*3+which] || !ds->started) {
2211 draw_num(dr, ds, ROW, which, i, c,
2212 state->common->rowcount[i*3+which]);
2213 ds->rowwhat[i*3+which] = c;
2218 ds->started = 1;
2221 static float game_anim_length(game_state *oldstate, game_state *newstate,
2222 int dir, game_ui *ui)
2224 return 0.0F;
2227 static float game_flash_length(game_state *oldstate, game_state *newstate,
2228 int dir, game_ui *ui)
2230 if (!oldstate->completed && newstate->completed &&
2231 !oldstate->solved && !newstate->solved)
2232 return FLASH_TIME;
2233 return 0.0F;
2236 static int game_status(game_state *state)
2238 return state->completed ? +1 : 0;
2241 static int game_timing_state(game_state *state, game_ui *ui)
2243 return TRUE;
2246 static void game_print_size(game_params *params, float *x, float *y)
2248 int pw, ph;
2251 * I'll use 6mm squares by default.
2253 game_compute_size(params, 600, &pw, &ph);
2254 *x = pw / 100.0F;
2255 *y = ph / 100.0F;
2258 static void game_print(drawing *dr, game_state *state, int tilesize)
2260 int w = state->w, h = state->h;
2261 int ink = print_mono_colour(dr, 0);
2262 int paper = print_mono_colour(dr, 1);
2263 int x, y, which, i, j;
2265 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2266 game_drawstate ads, *ds = &ads;
2267 game_set_size(dr, ds, NULL, tilesize);
2268 ds->w = w; ds->h = h;
2270 /* Border. */
2271 print_line_width(dr, TILE_SIZE/12);
2273 /* Numbers and +/- for corners. */
2274 draw_sym(dr, ds, -1, -1, POSITIVE, ink);
2275 draw_sym(dr, ds, state->w, state->h, NEGATIVE, ink);
2276 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
2277 for (i = 0; i < w; i++) {
2278 draw_num_col(dr, ds, COLUMN, which, i, paper, ink,
2279 state->common->colcount[i*3+which]);
2281 for (i = 0; i < h; i++) {
2282 draw_num_col(dr, ds, ROW, which, i, paper, ink,
2283 state->common->rowcount[i*3+which]);
2287 /* Dominoes. */
2288 for (x = 0; x < w; x++) {
2289 for (y = 0; y < h; y++) {
2290 i = y*state->w + x;
2291 if (state->common->dominoes[i] == i+1 ||
2292 state->common->dominoes[i] == i+w) {
2293 int dx = state->common->dominoes[i] == i+1 ? 2 : 1;
2294 int dy = 3 - dx;
2295 int xx, yy;
2296 int cx = COORD(x), cy = COORD(y);
2298 print_line_width(dr, 0);
2300 /* Ink the domino */
2301 for (yy = 0; yy < 2; yy++)
2302 for (xx = 0; xx < 2; xx++)
2303 draw_circle(dr,
2304 cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
2305 cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
2306 TILE_SIZE/8, ink, ink);
2307 draw_rect(dr, cx + TILE_SIZE/16, cy + 3*TILE_SIZE/16,
2308 dx*TILE_SIZE - 2*(TILE_SIZE/16),
2309 dy*TILE_SIZE - 6*(TILE_SIZE/16), ink);
2310 draw_rect(dr, cx + 3*TILE_SIZE/16, cy + TILE_SIZE/16,
2311 dx*TILE_SIZE - 6*(TILE_SIZE/16),
2312 dy*TILE_SIZE - 2*(TILE_SIZE/16), ink);
2314 /* Un-ink the domino interior */
2315 for (yy = 0; yy < 2; yy++)
2316 for (xx = 0; xx < 2; xx++)
2317 draw_circle(dr,
2318 cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
2319 cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
2320 3*TILE_SIZE/32, paper, paper);
2321 draw_rect(dr, cx + 3*TILE_SIZE/32, cy + 3*TILE_SIZE/16,
2322 dx*TILE_SIZE - 2*(3*TILE_SIZE/32),
2323 dy*TILE_SIZE - 6*(TILE_SIZE/16), paper);
2324 draw_rect(dr, cx + 3*TILE_SIZE/16, cy + 3*TILE_SIZE/32,
2325 dx*TILE_SIZE - 6*(TILE_SIZE/16),
2326 dy*TILE_SIZE - 2*(3*TILE_SIZE/32), paper);
2331 /* Grid symbols (solution). */
2332 for (x = 0; x < w; x++) {
2333 for (y = 0; y < h; y++) {
2334 i = y*state->w + x;
2335 if ((state->grid[i] != NEUTRAL) || (state->flags[i] & GS_SET))
2336 draw_sym(dr, ds, x, y, state->grid[i], ink);
2341 #ifdef COMBINED
2342 #define thegame magnets
2343 #endif
2345 const struct game thegame = {
2346 "Magnets", "games.magnets", "magnets",
2347 default_params,
2348 game_fetch_preset,
2349 decode_params,
2350 encode_params,
2351 free_params,
2352 dup_params,
2353 TRUE, game_configure, custom_params,
2354 validate_params,
2355 new_game_desc,
2356 validate_desc,
2357 new_game,
2358 dup_game,
2359 free_game,
2360 TRUE, solve_game,
2361 TRUE, game_can_format_as_text_now, game_text_format,
2362 new_ui,
2363 free_ui,
2364 encode_ui,
2365 decode_ui,
2366 game_changed_state,
2367 interpret_move,
2368 execute_move,
2369 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2370 game_colours,
2371 game_new_drawstate,
2372 game_free_drawstate,
2373 game_redraw,
2374 game_anim_length,
2375 game_flash_length,
2376 game_status,
2377 TRUE, FALSE, game_print_size, game_print,
2378 FALSE, /* wants_statusbar */
2379 FALSE, game_timing_state,
2380 REQUIRE_RBUTTON, /* flags */
2383 #ifdef STANDALONE_SOLVER
2385 #include <time.h>
2386 #include <stdarg.h>
2388 const char *quis = NULL;
2389 int csv = 0;
2391 void usage(FILE *out) {
2392 fprintf(out, "usage: %s [-v] [--print] <params>|<game id>\n", quis);
2395 void doprint(game_state *state)
2397 char *fmt = game_text_format(state);
2398 printf("%s", fmt);
2399 sfree(fmt);
2402 static void pnum(int n, int ntot, const char *desc)
2404 printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc);
2407 static void start_soak(game_params *p, random_state *rs)
2409 time_t tt_start, tt_now, tt_last;
2410 char *aux;
2411 game_state *s, *s2;
2412 int n = 0, nsolved = 0, nimpossible = 0, ntricky = 0, ret, i;
2413 long nn, nn_total = 0, nn_solved = 0, nn_tricky = 0;
2415 tt_start = tt_now = time(NULL);
2417 if (csv)
2418 printf("time, w, h, #generated, #solved, #tricky, #impossible, "
2419 "#neutral, #neutral/solved, #neutral/tricky\n");
2420 else
2421 printf("Soak-testing a %dx%d grid.\n", p->w, p->h);
2423 s = new_state(p->w, p->h);
2424 aux = snewn(s->wh+1, char);
2426 while (1) {
2427 gen_game(s, rs);
2429 nn = 0;
2430 for (i = 0; i < s->wh; i++) {
2431 if (s->grid[i] == NEUTRAL) nn++;
2434 generate_aux(s, aux);
2435 memset(s->grid, EMPTY, s->wh * sizeof(int));
2436 s2 = dup_game(s);
2438 ret = solve_state(s, DIFFCOUNT);
2440 n++;
2441 nn_total += nn;
2442 if (ret > 0) {
2443 nsolved++;
2444 nn_solved += nn;
2445 if (solve_state(s2, DIFF_EASY) <= 0) {
2446 ntricky++;
2447 nn_tricky += nn;
2449 } else if (ret < 0) {
2450 char *desc = generate_desc(s);
2451 solve_from_aux(s, aux);
2452 printf("Game considered impossible:\n %dx%d:%s\n",
2453 p->w, p->h, desc);
2454 sfree(desc);
2455 doprint(s);
2456 nimpossible++;
2459 free_game(s2);
2461 tt_last = time(NULL);
2462 if (tt_last > tt_now) {
2463 tt_now = tt_last;
2464 if (csv) {
2465 printf("%d,%d,%d, %d,%d,%d,%d, %ld,%ld,%ld\n",
2466 (int)(tt_now - tt_start), p->w, p->h,
2467 n, nsolved, ntricky, nimpossible,
2468 nn_total, nn_solved, nn_tricky);
2469 } else {
2470 printf("%d total, %3.1f/s, ",
2471 n, (double)n / ((double)tt_now - tt_start));
2472 pnum(nsolved, n, "solved"); printf(", ");
2473 pnum(ntricky, n, "tricky");
2474 if (nimpossible > 0)
2475 pnum(nimpossible, n, "impossible");
2476 printf("\n");
2478 printf(" overall %3.1f%% neutral (%3.1f%% for solved, %3.1f%% for tricky)\n",
2479 (double)(nn_total * 100) / (double)(p->w * p->h * n),
2480 (double)(nn_solved * 100) / (double)(p->w * p->h * nsolved),
2481 (double)(nn_tricky * 100) / (double)(p->w * p->h * ntricky));
2485 free_game(s);
2486 sfree(aux);
2489 int main(int argc, const char *argv[])
2491 int print = 0, soak = 0, solved = 0, ret;
2492 char *id = NULL, *desc, *desc_gen = NULL, *err, *aux = NULL;
2493 game_state *s = NULL;
2494 game_params *p = NULL;
2495 random_state *rs = NULL;
2496 time_t seed = time(NULL);
2498 setvbuf(stdout, NULL, _IONBF, 0);
2500 quis = argv[0];
2501 while (--argc > 0) {
2502 char *p = (char*)(*++argv);
2503 if (!strcmp(p, "-v") || !strcmp(p, "--verbose")) {
2504 verbose = 1;
2505 } else if (!strcmp(p, "--csv")) {
2506 csv = 1;
2507 } else if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
2508 seed = atoi(*++argv);
2509 argc--;
2510 } else if (!strcmp(p, "-p") || !strcmp(p, "--print")) {
2511 print = 1;
2512 } else if (!strcmp(p, "-s") || !strcmp(p, "--soak")) {
2513 soak = 1;
2514 } else if (*p == '-') {
2515 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2516 usage(stderr);
2517 exit(1);
2518 } else {
2519 id = p;
2523 rs = random_new((void*)&seed, sizeof(time_t));
2525 if (!id) {
2526 fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]);
2527 goto done;
2529 desc = strchr(id, ':');
2530 if (desc) *desc++ = '\0';
2532 p = default_params();
2533 decode_params(p, id);
2534 err = validate_params(p, 1);
2535 if (err) {
2536 fprintf(stderr, "%s: %s", argv[0], err);
2537 goto done;
2540 if (soak) {
2541 if (desc) {
2542 fprintf(stderr, "%s: --soak needs parameters, not description.\n", quis);
2543 goto done;
2545 start_soak(p, rs);
2546 goto done;
2549 if (!desc)
2550 desc = desc_gen = new_game_desc(p, rs, &aux, 0);
2552 err = validate_desc(p, desc);
2553 if (err) {
2554 fprintf(stderr, "%s: %s\nDescription: %s\n", quis, err, desc);
2555 goto done;
2557 s = new_game(NULL, p, desc);
2558 printf("%s:%s (seed %ld)\n", id, desc, seed);
2559 if (aux) {
2560 /* We just generated this ourself. */
2561 if (verbose || print) {
2562 doprint(s);
2563 solve_from_aux(s, aux);
2564 solved = 1;
2566 } else {
2567 doprint(s);
2568 verbose = 1;
2569 ret = solve_state(s, DIFFCOUNT);
2570 if (ret < 0) printf("Puzzle is impossible.\n");
2571 else if (ret == 0) printf("Puzzle is ambiguous.\n");
2572 else printf("Puzzle was solved.\n");
2573 verbose = 0;
2574 solved = 1;
2576 if (solved) doprint(s);
2578 done:
2579 if (desc_gen) sfree(desc_gen);
2580 if (p) free_params(p);
2581 if (s) free_game(s);
2582 if (rs) random_free(rs);
2583 if (aux) sfree(aux);
2585 return 0;
2588 #endif
2590 /* vim: set shiftwidth=4 tabstop=8: */