Imported Upstream version 9411
[sgt-puzzles/ydirson.git] / pearl.c
bloba06ecc25f55db9f80194dd554d6c136a57899c9f
1 /*
2 * pearl.c: Nikoli's `Masyu' puzzle.
3 */
5 /*
6 * TODO:
8 * - The current keyboard cursor mechanism works well on ordinary PC
9 * keyboards, but for platforms with only arrow keys and a select
10 * button or two, we may at some point need a simpler one which can
11 * handle 'x' markings without needing shift keys. For instance, a
12 * cursor with twice the grid resolution, so that it can range
13 * across face centres, edge centres and vertices; 'clicks' on face
14 * centres begin a drag as currently, clicks on edges toggle
15 * markings, and clicks on vertices are ignored (but it would be
16 * too confusing not to let the cursor rest on them). But I'm
17 * pretty sure that would be less pleasant to play on a full
18 * keyboard, so probably a #ifdef would be the thing.
20 * - Generation is still pretty slow, due to difficulty coming up in
21 * the first place with a loop that makes a soluble puzzle even
22 * with all possible clues filled in.
23 * + A possible alternative strategy to further tuning of the
24 * existing loop generator would be to throw the entire
25 * mechanism out and instead write a different generator from
26 * scratch which evolves the solution along with the puzzle:
27 * place a few clues, nail down a bit of the loop, place another
28 * clue, nail down some more, etc. However, I don't have a
29 * detailed plan for any such mechanism, so it may be a pipe
30 * dream.
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #include <math.h>
40 #include "puzzles.h"
41 #include "grid.h"
42 #include "loopgen.h"
44 #define SWAP(i,j) do { int swaptmp = (i); (i) = (j); (j) = swaptmp; } while (0)
46 #define NOCLUE 0
47 #define CORNER 1
48 #define STRAIGHT 2
50 #define R 1
51 #define U 2
52 #define L 4
53 #define D 8
55 #define DX(d) ( ((d)==R) - ((d)==L) )
56 #define DY(d) ( ((d)==D) - ((d)==U) )
58 #define F(d) (((d << 2) | (d >> 2)) & 0xF)
59 #define C(d) (((d << 3) | (d >> 1)) & 0xF)
60 #define A(d) (((d << 1) | (d >> 3)) & 0xF)
62 #define LR (L | R)
63 #define RL (R | L)
64 #define UD (U | D)
65 #define DU (D | U)
66 #define LU (L | U)
67 #define UL (U | L)
68 #define LD (L | D)
69 #define DL (D | L)
70 #define RU (R | U)
71 #define UR (U | R)
72 #define RD (R | D)
73 #define DR (D | R)
74 #define BLANK 0
75 #define UNKNOWN 15
77 #define bLR (1 << LR)
78 #define bRL (1 << RL)
79 #define bUD (1 << UD)
80 #define bDU (1 << DU)
81 #define bLU (1 << LU)
82 #define bUL (1 << UL)
83 #define bLD (1 << LD)
84 #define bDL (1 << DL)
85 #define bRU (1 << RU)
86 #define bUR (1 << UR)
87 #define bRD (1 << RD)
88 #define bDR (1 << DR)
89 #define bBLANK (1 << BLANK)
91 enum {
92 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
93 COL_CURSOR_BACKGROUND = COL_LOWLIGHT,
94 COL_BLACK, COL_WHITE,
95 COL_ERROR, COL_GRID, COL_FLASH,
96 COL_DRAGON, COL_DRAGOFF,
97 NCOLOURS
100 /* Macro ickery copied from slant.c */
101 #define DIFFLIST(A) \
102 A(EASY,Easy,e) \
103 A(TRICKY,Tricky,t)
104 #define ENUM(upper,title,lower) DIFF_ ## upper,
105 #define TITLE(upper,title,lower) #title,
106 #define ENCODE(upper,title,lower) #lower
107 #define CONFIG(upper,title,lower) ":" #title
108 enum { DIFFLIST(ENUM) DIFFCOUNT };
109 static char const *const pearl_diffnames[] = { DIFFLIST(TITLE) "(count)" };
110 static char const pearl_diffchars[] = DIFFLIST(ENCODE);
111 #define DIFFCONFIG DIFFLIST(CONFIG)
113 struct game_params {
114 int w, h;
115 int difficulty;
116 int nosolve; /* XXX remove me! */
119 struct shared_state {
120 int w, h, sz;
121 char *clues; /* size w*h */
122 int refcnt;
125 #define INGRID(state, gx, gy) ((gx) >= 0 && (gx) < (state)->shared->w && \
126 (gy) >= 0 && (gy) < (state)->shared->h)
127 struct game_state {
128 struct shared_state *shared;
129 char *lines; /* size w*h: lines placed */
130 char *errors; /* size w*h: errors detected */
131 char *marks; /* size w*h: 'no line here' marks placed. */
132 int completed, used_solve;
133 int loop_length; /* filled in by check_completion when complete. */
136 #define DEFAULT_PRESET 3
138 static const struct game_params pearl_presets[] = {
139 {6, 6, DIFF_EASY},
140 {6, 6, DIFF_TRICKY},
141 {8, 8, DIFF_EASY},
142 {8, 8, DIFF_TRICKY},
143 {10, 10, DIFF_EASY},
144 {10, 10, DIFF_TRICKY},
145 {12, 8, DIFF_EASY},
146 {12, 8, DIFF_TRICKY},
149 static game_params *default_params(void)
151 game_params *ret = snew(game_params);
153 *ret = pearl_presets[DEFAULT_PRESET];
154 ret->nosolve = FALSE;
156 return ret;
159 static int game_fetch_preset(int i, char **name, game_params **params)
161 game_params *ret;
162 char buf[64];
164 if (i < 0 || i >= lenof(pearl_presets)) return FALSE;
166 ret = default_params();
167 *ret = pearl_presets[i]; /* struct copy */
168 *params = ret;
170 sprintf(buf, "%dx%d %s",
171 pearl_presets[i].w, pearl_presets[i].h,
172 pearl_diffnames[pearl_presets[i].difficulty]);
173 *name = dupstr(buf);
175 return TRUE;
178 static void free_params(game_params *params)
180 sfree(params);
183 static game_params *dup_params(game_params *params)
185 game_params *ret = snew(game_params);
186 *ret = *params; /* structure copy */
187 return ret;
190 static void decode_params(game_params *ret, char const *string)
192 ret->w = ret->h = atoi(string);
193 while (*string && isdigit((unsigned char) *string)) ++string;
194 if (*string == 'x') {
195 string++;
196 ret->h = atoi(string);
197 while (*string && isdigit((unsigned char)*string)) string++;
200 ret->difficulty = DIFF_EASY;
201 if (*string == 'd') {
202 int i;
203 string++;
204 for (i = 0; i < DIFFCOUNT; i++)
205 if (*string == pearl_diffchars[i])
206 ret->difficulty = i;
207 if (*string) string++;
210 ret->nosolve = FALSE;
211 if (*string == 'n') {
212 ret->nosolve = TRUE;
213 string++;
217 static char *encode_params(game_params *params, int full)
219 char buf[256];
220 sprintf(buf, "%dx%d", params->w, params->h);
221 if (full)
222 sprintf(buf + strlen(buf), "d%c%s",
223 pearl_diffchars[params->difficulty],
224 params->nosolve ? "n" : "");
225 return dupstr(buf);
228 static config_item *game_configure(game_params *params)
230 config_item *ret;
231 char buf[64];
233 ret = snewn(5, config_item);
235 ret[0].name = "Width";
236 ret[0].type = C_STRING;
237 sprintf(buf, "%d", params->w);
238 ret[0].sval = dupstr(buf);
239 ret[0].ival = 0;
241 ret[1].name = "Height";
242 ret[1].type = C_STRING;
243 sprintf(buf, "%d", params->h);
244 ret[1].sval = dupstr(buf);
245 ret[1].ival = 0;
247 ret[2].name = "Difficulty";
248 ret[2].type = C_CHOICES;
249 ret[2].sval = DIFFCONFIG;
250 ret[2].ival = params->difficulty;
252 ret[3].name = "Allow unsoluble";
253 ret[3].type = C_BOOLEAN;
254 ret[3].sval = NULL;
255 ret[3].ival = params->nosolve;
257 ret[4].name = NULL;
258 ret[4].type = C_END;
259 ret[4].sval = NULL;
260 ret[4].ival = 0;
262 return ret;
265 static game_params *custom_params(config_item *cfg)
267 game_params *ret = snew(game_params);
269 ret->w = atoi(cfg[0].sval);
270 ret->h = atoi(cfg[1].sval);
271 ret->difficulty = cfg[2].ival;
272 ret->nosolve = cfg[3].ival;
274 return ret;
277 static char *validate_params(game_params *params, int full)
279 if (params->w < 5) return "Width must be at least five";
280 if (params->h < 5) return "Height must be at least five";
281 if (params->difficulty < 0 || params->difficulty >= DIFFCOUNT)
282 return "Unknown difficulty level";
284 return NULL;
287 /* ----------------------------------------------------------------------
288 * Solver.
291 int pearl_solve(int w, int h, char *clues, char *result,
292 int difficulty, int partial)
294 int W = 2*w+1, H = 2*h+1;
295 short *workspace;
296 int *dsf, *dsfsize;
297 int x, y, b, d;
298 int ret = -1;
301 * workspace[(2*y+1)*W+(2*x+1)] indicates the possible nature
302 * of the square (x,y), as a logical OR of bitfields.
304 * workspace[(2*y)*W+(2*x+1)], for x odd and y even, indicates
305 * whether the horizontal edge between (x,y) and (x+1,y) is
306 * connected (1), disconnected (2) or unknown (3).
308 * workspace[(2*y+1)*W+(2*x)], indicates the same about the
309 * vertical edge between (x,y) and (x,y+1).
311 * Initially, every square is considered capable of being in
312 * any of the seven possible states (two straights, four
313 * corners and empty), except those corresponding to clue
314 * squares which are more restricted.
316 * Initially, all edges are unknown, except the ones around the
317 * grid border which are known to be disconnected.
319 workspace = snewn(W*H, short);
320 for (x = 0; x < W*H; x++)
321 workspace[x] = 0;
322 /* Square states */
323 for (y = 0; y < h; y++)
324 for (x = 0; x < w; x++)
325 switch (clues[y*w+x]) {
326 case CORNER:
327 workspace[(2*y+1)*W+(2*x+1)] = bLU|bLD|bRU|bRD;
328 break;
329 case STRAIGHT:
330 workspace[(2*y+1)*W+(2*x+1)] = bLR|bUD;
331 break;
332 default:
333 workspace[(2*y+1)*W+(2*x+1)] = bLR|bUD|bLU|bLD|bRU|bRD|bBLANK;
334 break;
336 /* Horizontal edges */
337 for (y = 0; y <= h; y++)
338 for (x = 0; x < w; x++)
339 workspace[(2*y)*W+(2*x+1)] = (y==0 || y==h ? 2 : 3);
340 /* Vertical edges */
341 for (y = 0; y < h; y++)
342 for (x = 0; x <= w; x++)
343 workspace[(2*y+1)*W+(2*x)] = (x==0 || x==w ? 2 : 3);
346 * We maintain a dsf of connected squares, together with a
347 * count of the size of each equivalence class.
349 dsf = snewn(w*h, int);
350 dsfsize = snewn(w*h, int);
353 * Now repeatedly try to find something we can do.
355 while (1) {
356 int done_something = FALSE;
358 #ifdef SOLVER_DIAGNOSTICS
359 for (y = 0; y < H; y++) {
360 for (x = 0; x < W; x++)
361 printf("%*x", (x&1) ? 5 : 2, workspace[y*W+x]);
362 printf("\n");
364 #endif
367 * Go through the square state words, and discard any
368 * square state which is inconsistent with known facts
369 * about the edges around the square.
371 for (y = 0; y < h; y++)
372 for (x = 0; x < w; x++) {
373 for (b = 0; b < 0xD; b++)
374 if (workspace[(2*y+1)*W+(2*x+1)] & (1<<b)) {
376 * If any edge of this square is known to
377 * be connected when state b would require
378 * it disconnected, or vice versa, discard
379 * the state.
381 for (d = 1; d <= 8; d += d) {
382 int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
383 if (workspace[ey*W+ex] ==
384 ((b & d) ? 2 : 1)) {
385 workspace[(2*y+1)*W+(2*x+1)] &= ~(1<<b);
386 #ifdef SOLVER_DIAGNOSTICS
387 printf("edge (%d,%d)-(%d,%d) rules out state"
388 " %d for square (%d,%d)\n",
389 ex/2, ey/2, (ex+1)/2, (ey+1)/2,
390 b, x, y);
391 #endif
392 done_something = TRUE;
393 break;
399 * Consistency check: each square must have at
400 * least one state left!
402 if (!workspace[(2*y+1)*W+(2*x+1)]) {
403 #ifdef SOLVER_DIAGNOSTICS
404 printf("edge check at (%d,%d): inconsistency\n", x, y);
405 #endif
406 ret = 0;
407 goto cleanup;
412 * Now go through the states array again, and nail down any
413 * unknown edge if one of its neighbouring squares makes it
414 * known.
416 for (y = 0; y < h; y++)
417 for (x = 0; x < w; x++) {
418 int edgeor = 0, edgeand = 15;
420 for (b = 0; b < 0xD; b++)
421 if (workspace[(2*y+1)*W+(2*x+1)] & (1<<b)) {
422 edgeor |= b;
423 edgeand &= b;
427 * Now any bit clear in edgeor marks a disconnected
428 * edge, and any bit set in edgeand marks a
429 * connected edge.
432 /* First check consistency: neither bit is both! */
433 if (edgeand & ~edgeor) {
434 #ifdef SOLVER_DIAGNOSTICS
435 printf("square check at (%d,%d): inconsistency\n", x, y);
436 #endif
437 ret = 0;
438 goto cleanup;
441 for (d = 1; d <= 8; d += d) {
442 int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
444 if (!(edgeor & d) && workspace[ey*W+ex] == 3) {
445 workspace[ey*W+ex] = 2;
446 done_something = TRUE;
447 #ifdef SOLVER_DIAGNOSTICS
448 printf("possible states of square (%d,%d) force edge"
449 " (%d,%d)-(%d,%d) to be disconnected\n",
450 x, y, ex/2, ey/2, (ex+1)/2, (ey+1)/2);
451 #endif
452 } else if ((edgeand & d) && workspace[ey*W+ex] == 3) {
453 workspace[ey*W+ex] = 1;
454 done_something = TRUE;
455 #ifdef SOLVER_DIAGNOSTICS
456 printf("possible states of square (%d,%d) force edge"
457 " (%d,%d)-(%d,%d) to be connected\n",
458 x, y, ex/2, ey/2, (ex+1)/2, (ey+1)/2);
459 #endif
464 if (done_something)
465 continue;
468 * Now for longer-range clue-based deductions (using the
469 * rules that a corner clue must connect to two straight
470 * squares, and a straight clue must connect to at least
471 * one corner square).
473 for (y = 0; y < h; y++)
474 for (x = 0; x < w; x++)
475 switch (clues[y*w+x]) {
476 case CORNER:
477 for (d = 1; d <= 8; d += d) {
478 int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
479 int fx = ex + DX(d), fy = ey + DY(d);
480 int type = d | F(d);
482 if (workspace[ey*W+ex] == 1) {
484 * If a corner clue is connected on any
485 * edge, then we can immediately nail
486 * down the square beyond that edge as
487 * being a straight in the appropriate
488 * direction.
490 if (workspace[fy*W+fx] != (1<<type)) {
491 workspace[fy*W+fx] = (1<<type);
492 done_something = TRUE;
493 #ifdef SOLVER_DIAGNOSTICS
494 printf("corner clue at (%d,%d) forces square "
495 "(%d,%d) into state %d\n", x, y,
496 fx/2, fy/2, type);
497 #endif
500 } else if (workspace[ey*W+ex] == 3) {
502 * Conversely, if a corner clue is
503 * separated by an unknown edge from a
504 * square which _cannot_ be a straight
505 * in the appropriate direction, we can
506 * mark that edge as disconnected.
508 if (!(workspace[fy*W+fx] & (1<<type))) {
509 workspace[ey*W+ex] = 2;
510 done_something = TRUE;
511 #ifdef SOLVER_DIAGNOSTICS
512 printf("corner clue at (%d,%d), plus square "
513 "(%d,%d) not being state %d, "
514 "disconnects edge (%d,%d)-(%d,%d)\n",
515 x, y, fx/2, fy/2, type,
516 ex/2, ey/2, (ex+1)/2, (ey+1)/2);
517 #endif
523 break;
524 case STRAIGHT:
526 * If a straight clue is between two squares
527 * neither of which is capable of being a
528 * corner connected to it, then the straight
529 * clue cannot point in that direction.
531 for (d = 1; d <= 2; d += d) {
532 int fx = 2*x+1 + 2*DX(d), fy = 2*y+1 + 2*DY(d);
533 int gx = 2*x+1 - 2*DX(d), gy = 2*y+1 - 2*DY(d);
534 int type = d | F(d);
536 if (!(workspace[(2*y+1)*W+(2*x+1)] & (1<<type)))
537 continue;
539 if (!(workspace[fy*W+fx] & ((1<<(F(d)|A(d))) |
540 (1<<(F(d)|C(d))))) &&
541 !(workspace[gy*W+gx] & ((1<<( d |A(d))) |
542 (1<<( d |C(d)))))) {
543 workspace[(2*y+1)*W+(2*x+1)] &= ~(1<<type);
544 done_something = TRUE;
545 #ifdef SOLVER_DIAGNOSTICS
546 printf("straight clue at (%d,%d) cannot corner at "
547 "(%d,%d) or (%d,%d) so is not state %d\n",
548 x, y, fx/2, fy/2, gx/2, gy/2, type);
549 #endif
555 * If a straight clue with known direction is
556 * connected on one side to a known straight,
557 * then on the other side it must be a corner.
559 for (d = 1; d <= 8; d += d) {
560 int fx = 2*x+1 + 2*DX(d), fy = 2*y+1 + 2*DY(d);
561 int gx = 2*x+1 - 2*DX(d), gy = 2*y+1 - 2*DY(d);
562 int type = d | F(d);
564 if (workspace[(2*y+1)*W+(2*x+1)] != (1<<type))
565 continue;
567 if (!(workspace[fy*W+fx] &~ (bLR|bUD)) &&
568 (workspace[gy*W+gx] &~ (bLU|bLD|bRU|bRD))) {
569 workspace[gy*W+gx] &= (bLU|bLD|bRU|bRD);
570 done_something = TRUE;
571 #ifdef SOLVER_DIAGNOSTICS
572 printf("straight clue at (%d,%d) connecting to "
573 "straight at (%d,%d) makes (%d,%d) a "
574 "corner\n", x, y, fx/2, fy/2, gx/2, gy/2);
575 #endif
579 break;
582 if (done_something)
583 continue;
586 * Now detect shortcut loops.
590 int nonblanks, loopclass;
592 dsf_init(dsf, w*h);
593 for (x = 0; x < w*h; x++)
594 dsfsize[x] = 1;
597 * First go through the edge entries and update the dsf
598 * of which squares are connected to which others. We
599 * also track the number of squares in each equivalence
600 * class, and count the overall number of
601 * known-non-blank squares.
603 * In the process of doing this, we must notice if a
604 * loop has already been formed. If it has, we blank
605 * out any square which isn't part of that loop
606 * (failing a consistency check if any such square does
607 * not have BLANK as one of its remaining options) and
608 * exit the deduction loop with success.
610 nonblanks = 0;
611 loopclass = -1;
612 for (y = 1; y < H-1; y++)
613 for (x = 1; x < W-1; x++)
614 if ((y ^ x) & 1) {
616 * (x,y) are the workspace coordinates of
617 * an edge field. Compute the normal-space
618 * coordinates of the squares it connects.
620 int ax = (x-1)/2, ay = (y-1)/2, ac = ay*w+ax;
621 int bx = x/2, by = y/2, bc = by*w+bx;
624 * If the edge is connected, do the dsf
625 * thing.
627 if (workspace[y*W+x] == 1) {
628 int ae, be;
630 ae = dsf_canonify(dsf, ac);
631 be = dsf_canonify(dsf, bc);
633 if (ae == be) {
635 * We have a loop!
637 if (loopclass != -1) {
639 * In fact, we have two
640 * separate loops, which is
641 * doom.
643 #ifdef SOLVER_DIAGNOSTICS
644 printf("two loops found in grid!\n");
645 #endif
646 ret = 0;
647 goto cleanup;
649 loopclass = ae;
650 } else {
652 * Merge the two equivalence
653 * classes.
655 int size = dsfsize[ae] + dsfsize[be];
656 dsf_merge(dsf, ac, bc);
657 ae = dsf_canonify(dsf, ac);
658 dsfsize[ae] = size;
661 } else if ((y & x) & 1) {
663 * (x,y) are the workspace coordinates of a
664 * square field. If the square is
665 * definitely not blank, count it.
667 if (!(workspace[y*W+x] & bBLANK))
668 nonblanks++;
672 * If we discovered an existing loop above, we must now
673 * blank every square not part of it, and exit the main
674 * deduction loop.
676 if (loopclass != -1) {
677 #ifdef SOLVER_DIAGNOSTICS
678 printf("loop found in grid!\n");
679 #endif
680 for (y = 0; y < h; y++)
681 for (x = 0; x < w; x++)
682 if (dsf_canonify(dsf, y*w+x) != loopclass) {
683 if (workspace[(y*2+1)*W+(x*2+1)] & bBLANK) {
684 workspace[(y*2+1)*W+(x*2+1)] = bBLANK;
685 } else {
687 * This square is not part of the
688 * loop, but is known non-blank. We
689 * have goofed.
691 #ifdef SOLVER_DIAGNOSTICS
692 printf("non-blank square (%d,%d) found outside"
693 " loop!\n", x, y);
694 #endif
695 ret = 0;
696 goto cleanup;
700 * And we're done.
702 ret = 1;
703 break;
706 /* Further deductions are considered 'tricky'. */
707 if (difficulty == DIFF_EASY) goto done_deductions;
710 * Now go through the workspace again and mark any edge
711 * which would cause a shortcut loop (i.e. would
712 * connect together two squares in the same equivalence
713 * class, and that equivalence class does not contain
714 * _all_ the known-non-blank squares currently in the
715 * grid) as disconnected. Also, mark any _square state_
716 * which would cause a shortcut loop as disconnected.
718 for (y = 1; y < H-1; y++)
719 for (x = 1; x < W-1; x++)
720 if ((y ^ x) & 1) {
722 * (x,y) are the workspace coordinates of
723 * an edge field. Compute the normal-space
724 * coordinates of the squares it connects.
726 int ax = (x-1)/2, ay = (y-1)/2, ac = ay*w+ax;
727 int bx = x/2, by = y/2, bc = by*w+bx;
730 * If the edge is currently unknown, and
731 * sits between two squares in the same
732 * equivalence class, and the size of that
733 * class is less than nonblanks, then
734 * connecting this edge would be a shortcut
735 * loop and so we must not do so.
737 if (workspace[y*W+x] == 3) {
738 int ae, be;
740 ae = dsf_canonify(dsf, ac);
741 be = dsf_canonify(dsf, bc);
743 if (ae == be) {
745 * We have a loop. Is it a shortcut?
747 if (dsfsize[ae] < nonblanks) {
749 * Yes! Mark this edge disconnected.
751 workspace[y*W+x] = 2;
752 done_something = TRUE;
753 #ifdef SOLVER_DIAGNOSTICS
754 printf("edge (%d,%d)-(%d,%d) would create"
755 " a shortcut loop, hence must be"
756 " disconnected\n", x/2, y/2,
757 (x+1)/2, (y+1)/2);
758 #endif
762 } else if ((y & x) & 1) {
764 * (x,y) are the workspace coordinates of a
765 * square field. Go through its possible
766 * (non-blank) states and see if any gives
767 * rise to a shortcut loop.
769 * This is slightly fiddly, because we have
770 * to check whether this square is already
771 * part of the same equivalence class as
772 * the things it's joining.
774 int ae = dsf_canonify(dsf, (y/2)*w+(x/2));
776 for (b = 2; b < 0xD; b++)
777 if (workspace[y*W+x] & (1<<b)) {
779 * Find the equivalence classes of
780 * the two squares this one would
781 * connect if it were in this
782 * state.
784 int e = -1;
786 for (d = 1; d <= 8; d += d) if (b & d) {
787 int xx = x/2 + DX(d), yy = y/2 + DY(d);
788 int ee = dsf_canonify(dsf, yy*w+xx);
790 if (e == -1)
791 ee = e;
792 else if (e != ee)
793 e = -2;
796 if (e >= 0) {
798 * This square state would form
799 * a loop on equivalence class
800 * e. Measure the size of that
801 * loop, and see if it's a
802 * shortcut.
804 int loopsize = dsfsize[e];
805 if (e != ae)
806 loopsize++;/* add the square itself */
807 if (loopsize < nonblanks) {
809 * It is! Mark this square
810 * state invalid.
812 workspace[y*W+x] &= ~(1<<b);
813 done_something = TRUE;
814 #ifdef SOLVER_DIAGNOSTICS
815 printf("square (%d,%d) would create a "
816 "shortcut loop in state %d, "
817 "hence cannot be\n",
818 x/2, y/2, b);
819 #endif
826 done_deductions:
828 if (done_something)
829 continue;
832 * If we reach here, there is nothing left we can do.
833 * Return 2 for ambiguous puzzle.
835 ret = 2;
836 break;
839 cleanup:
842 * If ret = 1 then we've successfully achieved a solution. This
843 * means that we expect every square to be nailed down to
844 * exactly one possibility. If this is the case, or if the caller
845 * asked for a partial solution anyway, transcribe those
846 * possibilities into the result array.
848 if (ret == 1 || partial) {
849 for (y = 0; y < h; y++) {
850 for (x = 0; x < w; x++) {
851 for (b = 0; b < 0xD; b++)
852 if (workspace[(2*y+1)*W+(2*x+1)] == (1<<b)) {
853 result[y*w+x] = b;
854 break;
856 if (ret == 1) assert(b < 0xD); /* we should have had a break by now */
861 sfree(dsfsize);
862 sfree(dsf);
863 sfree(workspace);
864 assert(ret >= 0);
865 return ret;
868 /* ----------------------------------------------------------------------
869 * Loop generator.
873 * We use the loop generator code from loopy, hard-coding to a square
874 * grid of the appropriate size. Knowing the grid layout and the tile
875 * size we can shrink that to our small grid and then make our line
876 * layout from the face colour info.
878 * We provide a bias function to the loop generator which tries to
879 * bias in favour of loops with more scope for Pearl black clues. This
880 * seems to improve the success rate of the puzzle generator, in that
881 * such loops have a better chance of being soluble with all valid
882 * clues put in.
885 struct pearl_loopgen_bias_ctx {
887 * Our bias function counts the number of 'black clue' corners
888 * (i.e. corners adjacent to two straights) in both the
889 * BLACK/nonBLACK and WHITE/nonWHITE boundaries. In order to do
890 * this, we must:
892 * - track the edges that are part of each of those loops
893 * - track the types of vertex in each loop (corner, straight,
894 * none)
895 * - track the current black-clue status of each vertex in each
896 * loop.
898 * Each of these chunks of data is updated incrementally from the
899 * previous one, to avoid slowdown due to the bias function
900 * rescanning the whole grid every time it's called.
902 * So we need a lot of separate arrays, plus a tdq for each one,
903 * and we must repeat it all twice for the BLACK and WHITE
904 * boundaries.
906 struct pearl_loopgen_bias_ctx_boundary {
907 int colour; /* FACE_WHITE or FACE_BLACK */
909 char *edges; /* is each edge part of the loop? */
910 tdq *edges_todo;
912 char *vertextypes; /* bits 0-3 == outgoing edge bitmap;
913 * bit 4 set iff corner clue.
914 * Hence, 0 means non-vertex;
915 * nonzero but bit 4 zero = straight. */
916 int *neighbour[2]; /* indices of neighbour vertices in loop */
917 tdq *vertextypes_todo;
919 char *blackclues; /* is each vertex a black clue site? */
920 tdq *blackclues_todo;
921 } boundaries[2]; /* boundaries[0]=WHITE, [1]=BLACK */
923 char *faces; /* remember last-seen colour of each face */
924 tdq *faces_todo;
926 int score;
928 grid *g;
930 int pearl_loopgen_bias(void *vctx, char *board, int face)
932 struct pearl_loopgen_bias_ctx *ctx = (struct pearl_loopgen_bias_ctx *)vctx;
933 grid *g = ctx->g;
934 int oldface, newface;
935 int i, j, k;
937 tdq_add(ctx->faces_todo, face);
938 while ((j = tdq_remove(ctx->faces_todo)) >= 0) {
939 oldface = ctx->faces[j];
940 ctx->faces[j] = newface = board[j];
941 for (i = 0; i < 2; i++) {
942 struct pearl_loopgen_bias_ctx_boundary *b = &ctx->boundaries[i];
943 int c = b->colour;
946 * If the face has changed either from or to colour c, we need
947 * to reprocess the edges for this boundary.
949 if (oldface == c || newface == c) {
950 grid_face *f = &g->faces[face];
951 for (k = 0; k < f->order; k++)
952 tdq_add(b->edges_todo, f->edges[k] - g->edges);
957 for (i = 0; i < 2; i++) {
958 struct pearl_loopgen_bias_ctx_boundary *b = &ctx->boundaries[i];
959 int c = b->colour;
962 * Go through the to-do list of edges. For each edge, decide
963 * anew whether it's part of this boundary or not. Any edge
964 * that changes state has to have both its endpoints put on
965 * the vertextypes_todo list.
967 while ((j = tdq_remove(b->edges_todo)) >= 0) {
968 grid_edge *e = &g->edges[j];
969 int fc1 = e->face1 ? board[e->face1 - g->faces] : FACE_BLACK;
970 int fc2 = e->face2 ? board[e->face2 - g->faces] : FACE_BLACK;
971 int oldedge = b->edges[j];
972 int newedge = (fc1==c) ^ (fc2==c);
973 if (oldedge != newedge) {
974 b->edges[j] = newedge;
975 tdq_add(b->vertextypes_todo, e->dot1 - g->dots);
976 tdq_add(b->vertextypes_todo, e->dot2 - g->dots);
981 * Go through the to-do list of vertices whose types need
982 * refreshing. For each one, decide whether it's a corner, a
983 * straight, or a vertex not in the loop, and in the former
984 * two cases also work out the indices of its neighbour
985 * vertices along the loop. Any vertex that changes state must
986 * be put back on the to-do list for deciding if it's a black
987 * clue site, and so must its two new neighbours _and_ its two
988 * old neighbours.
990 while ((j = tdq_remove(b->vertextypes_todo)) >= 0) {
991 grid_dot *d = &g->dots[j];
992 int neighbours[2], type = 0, n = 0;
994 for (k = 0; k < d->order; k++) {
995 grid_edge *e = d->edges[k];
996 grid_dot *d2 = (e->dot1 == d ? e->dot2 : e->dot1);
997 /* dir == 0,1,2,3 for an edge going L,U,R,D */
998 int dir = (d->y == d2->y) + 2*(d->x+d->y > d2->x+d2->y);
999 int ei = e - g->edges;
1000 if (b->edges[ei]) {
1001 type |= 1 << dir;
1002 neighbours[n] = d2 - g->dots;
1003 n++;
1008 * Decide if it's a corner, and set the corner flag if so.
1010 if (type != 0 && type != 0x5 && type != 0xA)
1011 type |= 0x10;
1013 if (type != b->vertextypes[j]) {
1015 * Recompute old neighbours, if any.
1017 if (b->vertextypes[j]) {
1018 tdq_add(b->blackclues_todo, b->neighbour[0][j]);
1019 tdq_add(b->blackclues_todo, b->neighbour[1][j]);
1022 * Recompute this vertex.
1024 tdq_add(b->blackclues_todo, j);
1025 b->vertextypes[j] = type;
1027 * Recompute new neighbours, if any.
1029 if (b->vertextypes[j]) {
1030 b->neighbour[0][j] = neighbours[0];
1031 b->neighbour[1][j] = neighbours[1];
1032 tdq_add(b->blackclues_todo, b->neighbour[0][j]);
1033 tdq_add(b->blackclues_todo, b->neighbour[1][j]);
1039 * Go through the list of vertices which we must check to see
1040 * if they're black clue sites. Each one is a black clue site
1041 * iff it is a corner and its loop neighbours are non-corners.
1042 * Adjust the running total of black clues we've counted.
1044 while ((j = tdq_remove(b->blackclues_todo)) >= 0) {
1045 ctx->score -= b->blackclues[j];
1046 b->blackclues[j] = ((b->vertextypes[j] & 0x10) &&
1047 !((b->vertextypes[b->neighbour[0][j]] |
1048 b->vertextypes[b->neighbour[1][j]])
1049 & 0x10));
1050 ctx->score += b->blackclues[j];
1054 return ctx->score;
1057 void pearl_loopgen(int w, int h, char *lines, random_state *rs)
1059 grid *g = grid_new(GRID_SQUARE, w-1, h-1, NULL);
1060 char *board = snewn(g->num_faces, char);
1061 int i, s = g->tilesize;
1062 struct pearl_loopgen_bias_ctx biasctx;
1064 memset(lines, 0, w*h);
1067 * Initialise the context for the bias function. Initially we fill
1068 * all the to-do lists, so that the first call will scan
1069 * everything; thereafter the lists stay empty so we make
1070 * incremental changes.
1072 biasctx.g = g;
1073 biasctx.faces = snewn(g->num_faces, char);
1074 biasctx.faces_todo = tdq_new(g->num_faces);
1075 tdq_fill(biasctx.faces_todo);
1076 biasctx.score = 0;
1077 memset(biasctx.faces, FACE_GREY, g->num_faces);
1078 for (i = 0; i < 2; i++) {
1079 biasctx.boundaries[i].edges = snewn(g->num_edges, char);
1080 memset(biasctx.boundaries[i].edges, 0, g->num_edges);
1081 biasctx.boundaries[i].edges_todo = tdq_new(g->num_edges);
1082 tdq_fill(biasctx.boundaries[i].edges_todo);
1083 biasctx.boundaries[i].vertextypes = snewn(g->num_dots, char);
1084 memset(biasctx.boundaries[i].vertextypes, 0, g->num_dots);
1085 biasctx.boundaries[i].neighbour[0] = snewn(g->num_dots, int);
1086 biasctx.boundaries[i].neighbour[1] = snewn(g->num_dots, int);
1087 biasctx.boundaries[i].vertextypes_todo = tdq_new(g->num_dots);
1088 tdq_fill(biasctx.boundaries[i].vertextypes_todo);
1089 biasctx.boundaries[i].blackclues = snewn(g->num_dots, char);
1090 memset(biasctx.boundaries[i].blackclues, 0, g->num_dots);
1091 biasctx.boundaries[i].blackclues_todo = tdq_new(g->num_dots);
1092 tdq_fill(biasctx.boundaries[i].blackclues_todo);
1094 biasctx.boundaries[0].colour = FACE_WHITE;
1095 biasctx.boundaries[1].colour = FACE_BLACK;
1096 generate_loop(g, board, rs, pearl_loopgen_bias, &biasctx);
1097 sfree(biasctx.faces);
1098 tdq_free(biasctx.faces_todo);
1099 for (i = 0; i < 2; i++) {
1100 sfree(biasctx.boundaries[i].edges);
1101 tdq_free(biasctx.boundaries[i].edges_todo);
1102 sfree(biasctx.boundaries[i].vertextypes);
1103 sfree(biasctx.boundaries[i].neighbour[0]);
1104 sfree(biasctx.boundaries[i].neighbour[1]);
1105 tdq_free(biasctx.boundaries[i].vertextypes_todo);
1106 sfree(biasctx.boundaries[i].blackclues);
1107 tdq_free(biasctx.boundaries[i].blackclues_todo);
1110 for (i = 0; i < g->num_edges; i++) {
1111 grid_edge *e = g->edges + i;
1112 enum face_colour c1 = FACE_COLOUR(e->face1);
1113 enum face_colour c2 = FACE_COLOUR(e->face2);
1114 assert(c1 != FACE_GREY);
1115 assert(c2 != FACE_GREY);
1116 if (c1 != c2) {
1117 /* This grid edge is on the loop: lay line along it */
1118 int x1 = e->dot1->x/s, y1 = e->dot1->y/s;
1119 int x2 = e->dot2->x/s, y2 = e->dot2->y/s;
1121 /* (x1,y1) and (x2,y2) are now in our grid coords (0-w,0-h). */
1122 if (x1 == x2) {
1123 if (y1 > y2) SWAP(y1,y2);
1125 assert(y1+1 == y2);
1126 lines[y1*w+x1] |= D;
1127 lines[y2*w+x1] |= U;
1128 } else if (y1 == y2) {
1129 if (x1 > x2) SWAP(x1,x2);
1131 assert(x1+1 == x2);
1132 lines[y1*w+x1] |= R;
1133 lines[y1*w+x2] |= L;
1134 } else
1135 assert(!"grid with diagonal coords?!");
1139 grid_free(g);
1140 sfree(board);
1142 #if defined LOOPGEN_DIAGNOSTICS && !defined GENERATION_DIAGNOSTICS
1143 printf("as returned:\n");
1144 for (y = 0; y < h; y++) {
1145 for (x = 0; x < w; x++) {
1146 int type = lines[y*w+x];
1147 char s[5], *p = s;
1148 if (type & L) *p++ = 'L';
1149 if (type & R) *p++ = 'R';
1150 if (type & U) *p++ = 'U';
1151 if (type & D) *p++ = 'D';
1152 *p = '\0';
1153 printf("%3s", s);
1155 printf("\n");
1157 printf("\n");
1158 #endif
1161 static int new_clues(game_params *params, random_state *rs,
1162 char *clues, char *grid)
1164 int w = params->w, h = params->h;
1165 int ngen = 0, x, y, d, ret, i;
1167 while (1) {
1168 ngen++;
1169 pearl_loopgen(w, h, grid, rs);
1171 #ifdef GENERATION_DIAGNOSTICS
1172 printf("grid array:\n");
1173 for (y = 0; y < h; y++) {
1174 for (x = 0; x < w; x++) {
1175 int type = grid[y*w+x];
1176 char s[5], *p = s;
1177 if (type & L) *p++ = 'L';
1178 if (type & R) *p++ = 'R';
1179 if (type & U) *p++ = 'U';
1180 if (type & D) *p++ = 'D';
1181 *p = '\0';
1182 printf("%2s ", s);
1184 printf("\n");
1186 printf("\n");
1187 #endif
1190 * Set up the maximal clue array.
1192 for (y = 0; y < h; y++)
1193 for (x = 0; x < w; x++) {
1194 int type = grid[y*w+x];
1196 clues[y*w+x] = NOCLUE;
1198 if ((bLR|bUD) & (1 << type)) {
1200 * This is a straight; see if it's a viable
1201 * candidate for a straight clue. It qualifies if
1202 * at least one of the squares it connects to is a
1203 * corner.
1205 for (d = 1; d <= 8; d += d) if (type & d) {
1206 int xx = x + DX(d), yy = y + DY(d);
1207 assert(xx >= 0 && xx < w && yy >= 0 && yy < h);
1208 if ((bLU|bLD|bRU|bRD) & (1 << grid[yy*w+xx]))
1209 break;
1211 if (d <= 8) /* we found one */
1212 clues[y*w+x] = STRAIGHT;
1213 } else if ((bLU|bLD|bRU|bRD) & (1 << type)) {
1215 * This is a corner; see if it's a viable candidate
1216 * for a corner clue. It qualifies if all the
1217 * squares it connects to are straights.
1219 for (d = 1; d <= 8; d += d) if (type & d) {
1220 int xx = x + DX(d), yy = y + DY(d);
1221 assert(xx >= 0 && xx < w && yy >= 0 && yy < h);
1222 if (!((bLR|bUD) & (1 << grid[yy*w+xx])))
1223 break;
1225 if (d > 8) /* we didn't find a counterexample */
1226 clues[y*w+x] = CORNER;
1230 #ifdef GENERATION_DIAGNOSTICS
1231 printf("clue array:\n");
1232 for (y = 0; y < h; y++) {
1233 for (x = 0; x < w; x++) {
1234 printf("%c", " *O"[(unsigned char)clues[y*w+x]]);
1236 printf("\n");
1238 printf("\n");
1239 #endif
1241 if (!params->nosolve) {
1242 int *cluespace, *straights, *corners;
1243 int nstraights, ncorners, nstraightpos, ncornerpos;
1246 * See if we can solve the puzzle just like this.
1248 ret = pearl_solve(w, h, clues, grid, params->difficulty, FALSE);
1249 assert(ret > 0); /* shouldn't be inconsistent! */
1250 if (ret != 1)
1251 continue; /* go round and try again */
1254 * Check this puzzle isn't too easy.
1256 if (params->difficulty > DIFF_EASY) {
1257 ret = pearl_solve(w, h, clues, grid, params->difficulty-1, FALSE);
1258 assert(ret > 0);
1259 if (ret == 1)
1260 continue; /* too easy: try again */
1264 * Now shuffle the grid points and gradually remove the
1265 * clues to find a minimal set which still leaves the
1266 * puzzle soluble.
1268 * We preferentially attempt to remove whichever type of
1269 * clue is currently most numerous, to combat a general
1270 * tendency of plain random generation to bias in favour
1271 * of many white clues and few black.
1273 * 'nstraights' and 'ncorners' count the number of clues
1274 * of each type currently remaining in the grid;
1275 * 'nstraightpos' and 'ncornerpos' count the clues of each
1276 * type we have left to try to remove. (Clues which we
1277 * have tried and failed to remove are counted by the
1278 * former but not the latter.)
1280 cluespace = snewn(w*h, int);
1281 straights = cluespace;
1282 nstraightpos = 0;
1283 for (i = 0; i < w*h; i++)
1284 if (clues[i] == STRAIGHT)
1285 straights[nstraightpos++] = i;
1286 corners = straights + nstraightpos;
1287 ncornerpos = 0;
1288 for (i = 0; i < w*h; i++)
1289 if (clues[i] == STRAIGHT)
1290 corners[ncornerpos++] = i;
1291 nstraights = nstraightpos;
1292 ncorners = ncornerpos;
1294 shuffle(straights, nstraightpos, sizeof(*straights), rs);
1295 shuffle(corners, ncornerpos, sizeof(*corners), rs);
1296 while (nstraightpos > 0 || ncornerpos > 0) {
1297 int cluepos;
1298 int clue;
1301 * Decide which clue to try to remove next. If both
1302 * types are available, we choose whichever kind is
1303 * currently overrepresented; otherwise we take
1304 * whatever we can get.
1306 if (nstraightpos > 0 && ncornerpos > 0) {
1307 if (nstraights >= ncorners)
1308 cluepos = straights[--nstraightpos];
1309 else
1310 cluepos = straights[--ncornerpos];
1311 } else {
1312 if (nstraightpos > 0)
1313 cluepos = straights[--nstraightpos];
1314 else
1315 cluepos = straights[--ncornerpos];
1318 y = cluepos / w;
1319 x = cluepos % w;
1321 clue = clues[y*w+x];
1322 clues[y*w+x] = 0; /* try removing this clue */
1324 ret = pearl_solve(w, h, clues, grid, params->difficulty, FALSE);
1325 assert(ret > 0);
1326 if (ret != 1)
1327 clues[y*w+x] = clue; /* oops, put it back again */
1329 sfree(cluespace);
1332 #ifdef FINISHED_PUZZLE
1333 printf("clue array:\n");
1334 for (y = 0; y < h; y++) {
1335 for (x = 0; x < w; x++) {
1336 printf("%c", " *O"[(unsigned char)clues[y*w+x]]);
1338 printf("\n");
1340 printf("\n");
1341 #endif
1343 break; /* got it */
1346 debug(("%d %dx%d loops before finished puzzle.\n", ngen, w, h));
1348 return ngen;
1351 static char *new_game_desc(game_params *params, random_state *rs,
1352 char **aux, int interactive)
1354 char *grid, *clues;
1355 char *desc;
1356 int w = params->w, h = params->h, i, j;
1358 grid = snewn(w*h, char);
1359 clues = snewn(w*h, char);
1361 new_clues(params, rs, clues, grid);
1363 desc = snewn(w * h + 1, char);
1364 for (i = j = 0; i < w*h; i++) {
1365 if (clues[i] == NOCLUE && j > 0 &&
1366 desc[j-1] >= 'a' && desc[j-1] < 'z')
1367 desc[j-1]++;
1368 else if (clues[i] == NOCLUE)
1369 desc[j++] = 'a';
1370 else if (clues[i] == CORNER)
1371 desc[j++] = 'B';
1372 else if (clues[i] == STRAIGHT)
1373 desc[j++] = 'W';
1375 desc[j] = '\0';
1377 *aux = snewn(w*h+1, char);
1378 for (i = 0; i < w*h; i++)
1379 (*aux)[i] = (grid[i] < 10) ? (grid[i] + '0') : (grid[i] + 'A' - 10);
1380 (*aux)[w*h] = '\0';
1382 sfree(grid);
1383 sfree(clues);
1385 return desc;
1388 static char *validate_desc(game_params *params, char *desc)
1390 int i, sizesofar;
1391 const int totalsize = params->w * params->h;
1393 sizesofar = 0;
1394 for (i = 0; desc[i]; i++) {
1395 if (desc[i] >= 'a' && desc[i] <= 'z')
1396 sizesofar += desc[i] - 'a' + 1;
1397 else if (desc[i] == 'B' || desc[i] == 'W')
1398 sizesofar++;
1399 else
1400 return "unrecognised character in string";
1403 if (sizesofar > totalsize)
1404 return "string too long";
1405 else if (sizesofar < totalsize)
1406 return "string too short";
1408 return NULL;
1411 static game_state *new_game(midend *me, game_params *params, char *desc)
1413 game_state *state = snew(game_state);
1414 int i, j, sz = params->w*params->h;
1416 state->completed = state->used_solve = FALSE;
1417 state->shared = snew(struct shared_state);
1419 state->shared->w = params->w;
1420 state->shared->h = params->h;
1421 state->shared->sz = sz;
1422 state->shared->refcnt = 1;
1423 state->shared->clues = snewn(sz, char);
1424 for (i = j = 0; desc[i]; i++) {
1425 assert(j < sz);
1426 if (desc[i] >= 'a' && desc[i] <= 'z') {
1427 int n = desc[i] - 'a' + 1;
1428 assert(j + n <= sz);
1429 while (n-- > 0)
1430 state->shared->clues[j++] = NOCLUE;
1431 } else if (desc[i] == 'B') {
1432 state->shared->clues[j++] = CORNER;
1433 } else if (desc[i] == 'W') {
1434 state->shared->clues[j++] = STRAIGHT;
1438 state->lines = snewn(sz, char);
1439 state->errors = snewn(sz, char);
1440 state->marks = snewn(sz, char);
1441 for (i = 0; i < sz; i++)
1442 state->lines[i] = state->errors[i] = state->marks[i] = BLANK;
1444 return state;
1447 static game_state *dup_game(game_state *state)
1449 game_state *ret = snew(game_state);
1450 int sz = state->shared->sz, i;
1452 ret->shared = state->shared;
1453 ret->completed = state->completed;
1454 ret->used_solve = state->used_solve;
1455 ++ret->shared->refcnt;
1457 ret->lines = snewn(sz, char);
1458 ret->errors = snewn(sz, char);
1459 ret->marks = snewn(sz, char);
1460 for (i = 0; i < sz; i++) {
1461 ret->lines[i] = state->lines[i];
1462 ret->errors[i] = state->errors[i];
1463 ret->marks[i] = state->marks[i];
1466 return ret;
1469 static void free_game(game_state *state)
1471 assert(state);
1472 if (--state->shared->refcnt == 0) {
1473 sfree(state->shared->clues);
1474 sfree(state->shared);
1476 sfree(state->lines);
1477 sfree(state->errors);
1478 sfree(state->marks);
1479 sfree(state);
1482 static char nbits[16] = { 0, 1, 1, 2,
1483 1, 2, 2, 3,
1484 1, 2, 2, 3,
1485 2, 3, 3, 4 };
1486 #define NBITS(l) ( ((l) < 0 || (l) > 15) ? 4 : nbits[l] )
1488 #define ERROR_CLUE 16
1490 static void dsf_update_completion(game_state *state, int *loopclass,
1491 int ax, int ay, char dir,
1492 int *dsf, int *dsfsize)
1494 int w = state->shared->w /*, h = state->shared->h */;
1495 int ac = ay*w+ax, ae, bx, by, bc, be;
1497 if (!(state->lines[ac] & dir)) return; /* no link */
1498 bx = ax + DX(dir); by = ay + DY(dir);
1500 assert(INGRID(state, bx, by)); /* should not have a link off grid */
1502 bc = by*w+bx;
1503 #if 0
1504 assert(state->lines[bc] & F(dir)); /* should have reciprocal link */
1505 #endif
1506 /* TODO put above assertion back in once we stop generating partially
1507 * soluble puzzles. */
1508 if (!(state->lines[bc] & F(dir))) return;
1510 ae = dsf_canonify(dsf, ac);
1511 be = dsf_canonify(dsf, bc);
1513 if (ae == be) { /* detected a loop! */
1514 if (*loopclass != -1) /* this is the second loop, doom. */
1515 return;
1516 *loopclass = ae;
1517 } else {
1518 int size = dsfsize[ae] + dsfsize[be];
1519 dsf_merge(dsf, ac, bc);
1520 ae = dsf_canonify(dsf, ac);
1521 dsfsize[ae] = size;
1523 return;
1526 static void check_completion(game_state *state, int mark)
1528 int w = state->shared->w, h = state->shared->h, x, y, i, d;
1529 int had_error = FALSE /*, is_complete = FALSE */, loopclass;
1530 int *dsf, *dsfsize;
1532 if (mark) {
1533 for (i = 0; i < w*h; i++) {
1534 state->errors[i] = 0;
1538 #define ERROR(x,y,e) do { had_error = TRUE; if (mark) state->errors[(y)*w+(x)] |= (e); } while(0)
1541 * First of all: we should have one single closed loop, passing through all clues.
1543 dsf = snewn(w*h, int);
1544 dsfsize = snewn(w*h, int);
1545 dsf_init(dsf, w*h);
1546 for (i = 0; i < w*h; i++) dsfsize[i] = 1;
1547 loopclass = -1;
1549 for (x = 0; x < w; x++) {
1550 for (y = 0; y < h; y++) {
1551 dsf_update_completion(state, &loopclass, x, y, R, dsf, dsfsize);
1552 dsf_update_completion(state, &loopclass, x, y, D, dsf, dsfsize);
1555 if (loopclass != -1) {
1556 /* We have a loop. Check all squares with lines on. */
1557 for (x = 0; x < w; x++) {
1558 for (y = 0; y < h; y++) {
1559 if (state->lines[y*w+x] == BLANK) {
1560 if (state->shared->clues[y*w+x] != NOCLUE) {
1561 /* the loop doesn't include this clue square! */
1562 ERROR(x, y, ERROR_CLUE);
1564 } else {
1565 if (dsf_canonify(dsf, y*w+x) != loopclass) {
1566 /* these lines are not on the loop: mark them as error. */
1567 ERROR(x, y, state->lines[y*w+x]);
1575 * Second: check no clues are contradicted.
1578 for (x = 0; x < w; x++) {
1579 for (y = 0; y < h; y++) {
1580 int type = state->lines[y*w+x];
1582 * Check that no square has more than two line segments.
1584 if (NBITS(type) > 2) {
1585 ERROR(x,y,type);
1588 * Check that no clues are contradicted. This code is similar to
1589 * the code that sets up the maximal clue array for any given
1590 * loop.
1592 if (state->shared->clues[y*w+x] == CORNER) {
1593 /* Supposed to be a corner: will find a contradiction if
1594 * it actually contains a straight line, or if it touches any
1595 * corners. */
1596 if ((bLR|bUD) & (1 << type)) {
1597 ERROR(x,y,ERROR_CLUE); /* actually straight */
1599 for (d = 1; d <= 8; d += d) if (type & d) {
1600 int xx = x + DX(d), yy = y + DY(d);
1601 if (!INGRID(state, xx, yy)) {
1602 ERROR(x,y,d); /* leads off grid */
1603 } else {
1604 if ((bLU|bLD|bRU|bRD) & (1 << state->lines[yy*w+xx])) {
1605 ERROR(x,y,ERROR_CLUE); /* touches corner */
1609 } else if (state->shared->clues[y*w+x] == STRAIGHT) {
1610 /* Supposed to be straight: will find a contradiction if
1611 * it actually contains a corner, or if it only touches
1612 * straight lines. */
1613 if ((bLU|bLD|bRU|bRD) & (1 << type)) {
1614 ERROR(x,y,ERROR_CLUE); /* actually a corner */
1616 i = 0;
1617 for (d = 1; d <= 8; d += d) if (type & d) {
1618 int xx = x + DX(d), yy = y + DY(d);
1619 if (!INGRID(state, xx, yy)) {
1620 ERROR(x,y,d); /* leads off grid */
1621 } else {
1622 if ((bLR|bUD) & (1 << state->lines[yy*w+xx]))
1623 i++; /* a straight */
1626 if (i >= 2 && NBITS(type) >= 2) {
1627 ERROR(x,y,ERROR_CLUE); /* everything touched is straight */
1632 if (!had_error && loopclass != -1) {
1633 state->completed = TRUE;
1634 state->loop_length = dsfsize[loopclass];
1635 } else {
1636 state->completed = FALSE;
1639 sfree(dsf);
1640 sfree(dsfsize);
1642 return;
1645 /* completion check:
1647 * - no clues must be contradicted (highlight clue itself in error if so)
1648 * - if there is a closed loop it must include every line segment laid
1649 * - if there's a smaller closed loop then highlight whole loop as error
1650 * - no square must have more than 3 lines radiating from centre point
1651 * (highlight all lines in that square as error if so)
1654 static char *solve_for_diff(game_state *state, char *old_lines, char *new_lines)
1656 int w = state->shared->w, h = state->shared->h, i;
1657 char *move = snewn(w*h*40, char), *p = move;
1659 *p++ = 'S';
1660 for (i = 0; i < w*h; i++) {
1661 if (old_lines[i] != new_lines[i]) {
1662 p += sprintf(p, ";R%d,%d,%d", new_lines[i], i%w, i/w);
1665 *p++ = '\0';
1666 move = sresize(move, p - move, char);
1668 return move;
1671 static char *solve_game(game_state *state, game_state *currstate,
1672 char *aux, char **error)
1674 game_state *solved = dup_game(state);
1675 int i, ret, sz = state->shared->sz;
1676 char *move;
1678 if (aux) {
1679 for (i = 0; i < sz; i++) {
1680 if (aux[i] >= '0' && aux[i] <= '9')
1681 solved->lines[i] = aux[i] - '0';
1682 else if (aux[i] >= 'A' && aux[i] <= 'F')
1683 solved->lines[i] = aux[i] - 'A' + 10;
1684 else {
1685 *error = "invalid char in aux";
1686 move = NULL;
1687 goto done;
1690 ret = 1;
1691 } else {
1692 /* Try to solve with present (half-solved) state first: if there's no
1693 * solution from there go back to original state. */
1694 ret = pearl_solve(currstate->shared->w, currstate->shared->h,
1695 currstate->shared->clues, solved->lines,
1696 DIFFCOUNT, FALSE);
1697 if (ret < 1)
1698 ret = pearl_solve(state->shared->w, state->shared->h,
1699 state->shared->clues, solved->lines,
1700 DIFFCOUNT, FALSE);
1704 if (ret < 1) {
1705 *error = "Unable to find solution";
1706 move = NULL;
1707 } else {
1708 move = solve_for_diff(solved, currstate->lines, solved->lines);
1711 done:
1712 free_game(solved);
1713 return move;
1716 static int game_can_format_as_text_now(game_params *params)
1718 return FALSE;
1721 static char *game_text_format(game_state *state)
1723 return NULL;
1726 struct game_ui {
1727 int *dragcoords; /* list of (y*w+x) coords in drag so far */
1728 int ndragcoords; /* number of entries in dragcoords.
1729 * 0 = click but no drag yet. -1 = no drag at all */
1730 int clickx, clicky; /* pixel position of initial click */
1732 int curx, cury; /* grid position of keyboard cursor */
1733 int cursor_active; /* TRUE iff cursor is shown */
1736 static game_ui *new_ui(game_state *state)
1738 game_ui *ui = snew(game_ui);
1739 int sz = state->shared->sz;
1741 ui->ndragcoords = -1;
1742 ui->dragcoords = snewn(sz, int);
1743 ui->cursor_active = FALSE;
1744 ui->curx = ui->cury = 0;
1746 return ui;
1749 static void free_ui(game_ui *ui)
1751 sfree(ui->dragcoords);
1752 sfree(ui);
1755 static char *encode_ui(game_ui *ui)
1757 return NULL;
1760 static void decode_ui(game_ui *ui, char *encoding)
1764 static void game_changed_state(game_ui *ui, game_state *oldstate,
1765 game_state *newstate)
1769 #define PREFERRED_TILE_SIZE 31
1770 #define HALFSZ (ds->halfsz)
1771 #define TILE_SIZE (ds->halfsz*2 + 1)
1773 #define BORDER ((get_gui_style() == GUI_LOOPY) ? (TILE_SIZE/8) : (TILE_SIZE/2))
1775 #define BORDER_WIDTH (max(TILE_SIZE / 32, 1))
1777 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
1778 #define CENTERED_COORD(x) ( COORD(x) + TILE_SIZE/2 )
1779 #define FROMCOORD(x) ( ((x) < BORDER) ? -1 : ( ((x) - BORDER) / TILE_SIZE) )
1781 #define DS_ESHIFT 4 /* R/U/L/D shift, for error flags */
1782 #define DS_DSHIFT 8 /* R/U/L/D shift, for drag-in-progress flags */
1783 #define DS_MSHIFT 12 /* shift for no-line mark */
1785 #define DS_ERROR_CLUE (1 << 20)
1786 #define DS_FLASH (1 << 21)
1787 #define DS_CURSOR (1 << 22)
1789 enum { GUI_MASYU, GUI_LOOPY };
1791 static int get_gui_style(void)
1793 static int gui_style = -1;
1795 if (gui_style == -1) {
1796 char *env = getenv("PEARL_GUI_LOOPY");
1797 if (env && (env[0] == 'y' || env[0] == 'Y'))
1798 gui_style = GUI_LOOPY;
1799 else
1800 gui_style = GUI_MASYU;
1802 return gui_style;
1805 struct game_drawstate {
1806 int halfsz;
1807 int started;
1809 int w, h, sz;
1810 unsigned int *lflags; /* size w*h */
1812 char *draglines; /* size w*h; lines flipped by current drag */
1815 static void update_ui_drag(game_state *state, game_ui *ui, int gx, int gy)
1817 int /* sz = state->shared->sz, */ w = state->shared->w;
1818 int i, ox, oy, pos;
1819 int lastpos;
1821 if (!INGRID(state, gx, gy))
1822 return; /* square is outside grid */
1824 if (ui->ndragcoords < 0)
1825 return; /* drag not in progress anyway */
1827 pos = gy * w + gx;
1829 lastpos = ui->dragcoords[ui->ndragcoords > 0 ? ui->ndragcoords-1 : 0];
1830 if (pos == lastpos)
1831 return; /* same square as last visited one */
1833 /* Drag confirmed, if it wasn't already. */
1834 if (ui->ndragcoords == 0)
1835 ui->ndragcoords = 1;
1838 * Dragging the mouse into a square that's already been visited by
1839 * the drag path so far has the effect of truncating the path back
1840 * to that square, so a player can back out part of an uncommitted
1841 * drag without having to let go of the mouse.
1843 for (i = 0; i < ui->ndragcoords; i++)
1844 if (pos == ui->dragcoords[i]) {
1845 ui->ndragcoords = i+1;
1846 return;
1850 * Otherwise, dragging the mouse into a square that's a rook-move
1851 * away from the last one on the path extends the path.
1853 oy = ui->dragcoords[ui->ndragcoords-1] / w;
1854 ox = ui->dragcoords[ui->ndragcoords-1] % w;
1855 if (ox == gx || oy == gy) {
1856 int dx = (gx < ox ? -1 : gx > ox ? +1 : 0);
1857 int dy = (gy < oy ? -1 : gy > oy ? +1 : 0);
1858 int dir = (dy>0 ? D : dy<0 ? U : dx>0 ? R : L);
1859 while (ox != gx || oy != gy) {
1861 * If the drag attempts to cross a 'no line here' mark,
1862 * stop there. We physically don't allow the user to drag
1863 * over those marks.
1865 if (state->marks[oy*w+ox] & dir)
1866 break;
1867 ox += dx;
1868 oy += dy;
1869 ui->dragcoords[ui->ndragcoords++] = oy * w + ox;
1874 * Failing that, we do nothing at all: if the user has dragged
1875 * diagonally across the board, they'll just have to return the
1876 * mouse to the last known position and do whatever they meant to
1877 * do again, more slowly and clearly.
1882 * Routine shared between interpret_move and game_redraw to work out
1883 * the intended effect of a drag path on the grid.
1885 * Call it in a loop, like this:
1887 * int clearing = TRUE;
1888 * for (i = 0; i < ui->ndragcoords - 1; i++) {
1889 * int sx, sy, dx, dy, dir, oldstate, newstate;
1890 * interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
1891 * &dir, &oldstate, &newstate);
1893 * [do whatever is needed to handle the fact that the drag
1894 * wants the edge from sx,sy to dx,dy (heading in direction
1895 * 'dir' at the sx,sy end) to be changed from state oldstate
1896 * to state newstate, each of which equals either 0 or dir]
1899 static void interpret_ui_drag(game_state *state, game_ui *ui, int *clearing,
1900 int i, int *sx, int *sy, int *dx, int *dy,
1901 int *dir, int *oldstate, int *newstate)
1903 int w = state->shared->w;
1904 int sp = ui->dragcoords[i], dp = ui->dragcoords[i+1];
1905 *sy = sp/w;
1906 *sx = sp%w;
1907 *dy = dp/w;
1908 *dx = dp%w;
1909 *dir = (*dy>*sy ? D : *dy<*sy ? U : *dx>*sx ? R : L);
1910 *oldstate = state->lines[sp] & *dir;
1911 if (*oldstate) {
1913 * The edge we've dragged over was previously
1914 * present. Set it to absent, unless we've already
1915 * stopped doing that.
1917 *newstate = *clearing ? 0 : *dir;
1918 } else {
1920 * The edge we've dragged over was previously
1921 * absent. Set it to present, and cancel the
1922 * 'clearing' flag so that all subsequent edges in
1923 * the drag are set rather than cleared.
1925 *newstate = *dir;
1926 *clearing = FALSE;
1930 static char *mark_in_direction(game_state *state, int x, int y, int dir,
1931 int ismark, char *buf)
1933 int w = state->shared->w /*, h = state->shared->h, sz = state->shared->sz */;
1934 int x2 = x + DX(dir);
1935 int y2 = y + DY(dir);
1936 int dir2 = F(dir);
1937 char ch = ismark ? 'M' : 'F';
1939 if (!INGRID(state, x, y) || !INGRID(state, x2, y2)) return "";
1940 /* disallow laying a mark over a line, or vice versa. */
1941 if (ismark) {
1942 if ((state->lines[y*w+x] & dir) || (state->lines[y2*w+x2] & dir2))
1943 return "";
1944 } else {
1945 if ((state->marks[y*w+x] & dir) || (state->marks[y2*w+x2] & dir2))
1946 return "";
1949 sprintf(buf, "%c%d,%d,%d;%c%d,%d,%d", ch, dir, x, y, ch, dir2, x2, y2);
1950 return dupstr(buf);
1953 #define KEY_DIRECTION(btn) (\
1954 (btn) == CURSOR_DOWN ? D : (btn) == CURSOR_UP ? U :\
1955 (btn) == CURSOR_LEFT ? L : R)
1957 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1958 int x, int y, int button)
1960 int w = state->shared->w, h = state->shared->h /*, sz = state->shared->sz */;
1961 int gx = FROMCOORD(x), gy = FROMCOORD(y), i;
1962 int release = FALSE;
1963 char tmpbuf[80];
1965 if (IS_MOUSE_DOWN(button)) {
1966 ui->cursor_active = FALSE;
1968 if (!INGRID(state, gx, gy)) {
1969 ui->ndragcoords = -1;
1970 return NULL;
1973 ui->clickx = x; ui->clicky = y;
1974 ui->dragcoords[0] = gy * w + gx;
1975 ui->ndragcoords = 0; /* will be 1 once drag is confirmed */
1977 return "";
1980 if (button == LEFT_DRAG && ui->ndragcoords >= 0) {
1981 update_ui_drag(state, ui, gx, gy);
1982 return "";
1985 if (IS_MOUSE_RELEASE(button)) release = TRUE;
1987 if (IS_CURSOR_MOVE(button & ~MOD_MASK)) {
1988 if (!ui->cursor_active) {
1989 ui->cursor_active = TRUE;
1990 } else if (button & (MOD_SHFT | MOD_CTRL)) {
1991 if (ui->ndragcoords > 0) return NULL;
1992 ui->ndragcoords = -1;
1993 return mark_in_direction(state, ui->curx, ui->cury,
1994 KEY_DIRECTION(button & ~MOD_MASK),
1995 (button & MOD_SHFT), tmpbuf);
1996 } else {
1997 move_cursor(button, &ui->curx, &ui->cury, w, h, FALSE);
1998 if (ui->ndragcoords >= 0)
1999 update_ui_drag(state, ui, ui->curx, ui->cury);
2001 return "";
2004 if (IS_CURSOR_SELECT(button & ~MOD_MASK)) {
2005 if (!ui->cursor_active) {
2006 ui->cursor_active = TRUE;
2007 return "";
2008 } else if (button == CURSOR_SELECT) {
2009 if (ui->ndragcoords == -1) {
2010 ui->ndragcoords = 0;
2011 ui->dragcoords[0] = ui->cury * w + ui->curx;
2012 ui->clickx = CENTERED_COORD(ui->curx);
2013 ui->clicky = CENTERED_COORD(ui->cury);
2014 return "";
2015 } else release = TRUE;
2016 } else if (button == CURSOR_SELECT2 && ui->ndragcoords >= 0) {
2017 ui->ndragcoords = -1;
2018 return "";
2022 if (release) {
2023 if (ui->ndragcoords > 0) {
2024 /* End of a drag: process the cached line data. */
2025 int buflen = 0, bufsize = 256, tmplen;
2026 char *buf = NULL;
2027 const char *sep = "";
2028 int clearing = TRUE;
2030 for (i = 0; i < ui->ndragcoords - 1; i++) {
2031 int sx, sy, dx, dy, dir, oldstate, newstate;
2032 interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
2033 &dir, &oldstate, &newstate);
2035 if (oldstate != newstate) {
2036 if (!buf) buf = snewn(bufsize, char);
2037 tmplen = sprintf(tmpbuf, "%sF%d,%d,%d;F%d,%d,%d", sep,
2038 dir, sx, sy, F(dir), dx, dy);
2039 if (buflen + tmplen >= bufsize) {
2040 bufsize = (buflen + tmplen) * 5 / 4 + 256;
2041 buf = sresize(buf, bufsize, char);
2043 strcpy(buf + buflen, tmpbuf);
2044 buflen += tmplen;
2045 sep = ";";
2049 ui->ndragcoords = -1;
2051 return buf ? buf : "";
2052 } else if (ui->ndragcoords == 0) {
2053 /* Click (or tiny drag). Work out which edge we were
2054 * closest to. */
2055 int cx, cy;
2057 ui->ndragcoords = -1;
2060 * We process clicks based on the mouse-down location,
2061 * because that's more natural for a user to carefully
2062 * control than the mouse-up.
2064 x = ui->clickx;
2065 y = ui->clicky;
2067 gx = FROMCOORD(x);
2068 gy = FROMCOORD(y);
2069 cx = CENTERED_COORD(gx);
2070 cy = CENTERED_COORD(gy);
2072 if (!INGRID(state, gx, gy)) return "";
2074 if (max(abs(x-cx),abs(y-cy)) < TILE_SIZE/4) {
2075 /* TODO closer to centre of grid: process as a cell click not an edge click. */
2077 return "";
2078 } else {
2079 int direction;
2080 if (abs(x-cx) < abs(y-cy)) {
2081 /* Closest to top/bottom edge. */
2082 direction = (y < cy) ? U : D;
2083 } else {
2084 /* Closest to left/right edge. */
2085 direction = (x < cx) ? L : R;
2087 return mark_in_direction(state, gx, gy, direction,
2088 (button == RIGHT_RELEASE), tmpbuf);
2093 if (button == 'H' || button == 'h')
2094 return dupstr("H");
2096 return NULL;
2099 static game_state *execute_move(game_state *state, char *move)
2101 int w = state->shared->w, h = state->shared->h;
2102 char c;
2103 int x, y, l, n;
2104 game_state *ret = dup_game(state);
2106 debug(("move: %s\n", move));
2108 while (*move) {
2109 c = *move;
2110 if (c == 'S') {
2111 ret->used_solve = TRUE;
2112 move++;
2113 } else if (c == 'L' || c == 'N' || c == 'R' || c == 'F' || c == 'M') {
2114 /* 'line' or 'noline' or 'replace' or 'flip' or 'mark' */
2115 move++;
2116 if (sscanf(move, "%d,%d,%d%n", &l, &x, &y, &n) != 3)
2117 goto badmove;
2118 if (!INGRID(state, x, y)) goto badmove;
2119 if (l < 0 || l > 15) goto badmove;
2121 if (c == 'L')
2122 ret->lines[y*w + x] |= (char)l;
2123 else if (c == 'N')
2124 ret->lines[y*w + x] &= ~((char)l);
2125 else if (c == 'R') {
2126 ret->lines[y*w + x] = (char)l;
2127 ret->marks[y*w + x] &= ~((char)l); /* erase marks too */
2128 } else if (c == 'F')
2129 ret->lines[y*w + x] ^= (char)l;
2130 else if (c == 'M')
2131 ret->marks[y*w + x] ^= (char)l;
2134 * If we ended up trying to lay a line _over_ a mark,
2135 * that's a failed move: interpret_move() should have
2136 * ensured we never received a move string like that in
2137 * the first place.
2139 if ((ret->lines[y*w + x] & (char)l) &&
2140 (ret->marks[y*w + x] & (char)l))
2141 goto badmove;
2143 move += n;
2144 } else if (strcmp(move, "H") == 0) {
2145 pearl_solve(ret->shared->w, ret->shared->h,
2146 ret->shared->clues, ret->lines, DIFFCOUNT, TRUE);
2147 for (n = 0; n < w*h; n++)
2148 ret->marks[n] &= ~ret->lines[n]; /* erase marks too */
2149 move++;
2150 } else {
2151 goto badmove;
2153 if (*move == ';')
2154 move++;
2155 else if (*move)
2156 goto badmove;
2159 check_completion(ret, TRUE);
2161 return ret;
2163 badmove:
2164 free_game(ret);
2165 return NULL;
2168 /* ----------------------------------------------------------------------
2169 * Drawing routines.
2172 #define FLASH_TIME 0.5F
2174 static void game_compute_size(game_params *params, int tilesize,
2175 int *x, int *y)
2177 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2178 struct { int halfsz; } ads, *ds = &ads;
2179 ads.halfsz = (tilesize-1)/2;
2181 *x = (params->w) * TILE_SIZE + 2 * BORDER;
2182 *y = (params->h) * TILE_SIZE + 2 * BORDER;
2185 static void game_set_size(drawing *dr, game_drawstate *ds,
2186 game_params *params, int tilesize)
2188 ds->halfsz = (tilesize-1)/2;
2191 static float *game_colours(frontend *fe, int *ncolours)
2193 float *ret = snewn(3 * NCOLOURS, float);
2194 int i;
2196 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
2198 for (i = 0; i < 3; i++) {
2199 ret[COL_BLACK * 3 + i] = 0.0F;
2200 ret[COL_WHITE * 3 + i] = 1.0F;
2201 ret[COL_GRID * 3 + i] = 0.4F;
2204 ret[COL_ERROR * 3 + 0] = 1.0F;
2205 ret[COL_ERROR * 3 + 1] = 0.0F;
2206 ret[COL_ERROR * 3 + 2] = 0.0F;
2208 ret[COL_DRAGON * 3 + 0] = 0.0F;
2209 ret[COL_DRAGON * 3 + 1] = 0.0F;
2210 ret[COL_DRAGON * 3 + 2] = 1.0F;
2212 ret[COL_DRAGOFF * 3 + 0] = 0.8F;
2213 ret[COL_DRAGOFF * 3 + 1] = 0.8F;
2214 ret[COL_DRAGOFF * 3 + 2] = 1.0F;
2216 ret[COL_FLASH * 3 + 0] = 1.0F;
2217 ret[COL_FLASH * 3 + 1] = 1.0F;
2218 ret[COL_FLASH * 3 + 2] = 1.0F;
2220 *ncolours = NCOLOURS;
2222 return ret;
2225 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2227 struct game_drawstate *ds = snew(struct game_drawstate);
2228 int i;
2230 ds->halfsz = 0;
2231 ds->started = FALSE;
2233 ds->w = state->shared->w;
2234 ds->h = state->shared->h;
2235 ds->sz = state->shared->sz;
2236 ds->lflags = snewn(ds->sz, unsigned int);
2237 for (i = 0; i < ds->sz; i++)
2238 ds->lflags[i] = 0;
2240 ds->draglines = snewn(ds->sz, char);
2242 return ds;
2245 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2247 sfree(ds->draglines);
2248 sfree(ds->lflags);
2249 sfree(ds);
2252 static void draw_lines_specific(drawing *dr, game_drawstate *ds,
2253 int x, int y, unsigned int lflags,
2254 unsigned int shift, int c)
2256 int ox = COORD(x), oy = COORD(y);
2257 int t2 = HALFSZ, t16 = HALFSZ/4;
2258 int cx = ox + t2, cy = oy + t2;
2259 int d;
2261 /* Draw each of the four directions, where laid (or error, or drag, etc.) */
2262 for (d = 1; d < 16; d *= 2) {
2263 int xoff = t2 * DX(d), yoff = t2 * DY(d);
2264 int xnudge = abs(t16 * DX(C(d))), ynudge = abs(t16 * DY(C(d)));
2266 if ((lflags >> shift) & d) {
2267 int lx = cx + ((xoff < 0) ? xoff : 0) - xnudge;
2268 int ly = cy + ((yoff < 0) ? yoff : 0) - ynudge;
2270 if (c == COL_DRAGOFF && !(lflags & d))
2271 continue;
2272 if (c == COL_DRAGON && (lflags & d))
2273 continue;
2275 draw_rect(dr, lx, ly,
2276 abs(xoff)+2*xnudge+1,
2277 abs(yoff)+2*ynudge+1, c);
2278 /* end cap */
2279 draw_rect(dr, cx - t16, cy - t16, 2*t16+1, 2*t16+1, c);
2284 static void draw_square(drawing *dr, game_drawstate *ds, game_ui *ui,
2285 int x, int y, unsigned int lflags, char clue)
2287 int ox = COORD(x), oy = COORD(y);
2288 int t2 = HALFSZ, t16 = HALFSZ/4;
2289 int cx = ox + t2, cy = oy + t2;
2290 int d;
2292 assert(dr);
2294 /* Clip to the grid square. */
2295 clip(dr, ox, oy, TILE_SIZE, TILE_SIZE);
2297 /* Clear the square. */
2298 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE,
2299 (lflags & DS_CURSOR) ?
2300 COL_CURSOR_BACKGROUND : COL_BACKGROUND);
2303 if (get_gui_style() == GUI_LOOPY) {
2304 /* Draw small dot, underneath any lines. */
2305 draw_circle(dr, cx, cy, t16, COL_GRID, COL_GRID);
2306 } else {
2307 /* Draw outline of grid square */
2308 draw_line(dr, ox, oy, COORD(x+1), oy, COL_GRID);
2309 draw_line(dr, ox, oy, ox, COORD(y+1), COL_GRID);
2312 /* Draw grid: either thin gridlines, or no-line marks.
2313 * We draw these first because the thick laid lines should be on top. */
2314 for (d = 1; d < 16; d *= 2) {
2315 int xoff = t2 * DX(d), yoff = t2 * DY(d);
2317 if ((x == 0 && d == L) ||
2318 (y == 0 && d == U) ||
2319 (x == ds->w-1 && d == R) ||
2320 (y == ds->h-1 && d == D))
2321 continue; /* no gridlines out to the border. */
2323 if ((lflags >> DS_MSHIFT) & d) {
2324 /* either a no-line mark ... */
2325 int mx = cx + xoff, my = cy + yoff, msz = t16;
2327 draw_line(dr, mx-msz, my-msz, mx+msz, my+msz, COL_BLACK);
2328 draw_line(dr, mx-msz, my+msz, mx+msz, my-msz, COL_BLACK);
2329 } else {
2330 if (get_gui_style() == GUI_LOOPY) {
2331 /* draw grid lines connecting centre of cells */
2332 draw_line(dr, cx, cy, cx+xoff, cy+yoff, COL_GRID);
2337 /* Draw each of the four directions, where laid (or error, or drag, etc.)
2338 * Order is important here, specifically for the eventual colours of the
2339 * exposed end caps. */
2340 draw_lines_specific(dr, ds, x, y, lflags, 0,
2341 (lflags & DS_FLASH ? COL_FLASH : COL_BLACK));
2342 draw_lines_specific(dr, ds, x, y, lflags, DS_ESHIFT, COL_ERROR);
2343 draw_lines_specific(dr, ds, x, y, lflags, DS_DSHIFT, COL_DRAGOFF);
2344 draw_lines_specific(dr, ds, x, y, lflags, DS_DSHIFT, COL_DRAGON);
2346 /* Draw a clue, if present */
2347 if (clue != NOCLUE) {
2348 int c = (lflags & DS_FLASH) ? COL_FLASH :
2349 (clue == STRAIGHT) ? COL_WHITE : COL_BLACK;
2351 if (lflags & DS_ERROR_CLUE) /* draw a bigger 'error' clue circle. */
2352 draw_circle(dr, cx, cy, TILE_SIZE*3/8, COL_ERROR, COL_ERROR);
2354 draw_circle(dr, cx, cy, TILE_SIZE/4, c, COL_BLACK);
2357 unclip(dr);
2358 draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
2361 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2362 game_state *state, int dir, game_ui *ui,
2363 float animtime, float flashtime)
2365 int w = state->shared->w, h = state->shared->h, sz = state->shared->sz;
2366 int x, y, force = 0, flashing = 0;
2368 if (!ds->started) {
2370 * The initial contents of the window are not guaranteed and
2371 * can vary with front ends. To be on the safe side, all games
2372 * should start by drawing a big background-colour rectangle
2373 * covering the whole window.
2375 draw_rect(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER,
2376 COL_BACKGROUND);
2378 if (get_gui_style() == GUI_MASYU) {
2380 * Smaller black rectangle which is the main grid.
2382 draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
2383 w*TILE_SIZE + 2*BORDER_WIDTH + 1,
2384 h*TILE_SIZE + 2*BORDER_WIDTH + 1,
2385 COL_GRID);
2388 draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER);
2390 ds->started = TRUE;
2391 force = 1;
2394 if (flashtime > 0 &&
2395 (flashtime <= FLASH_TIME/3 ||
2396 flashtime >= FLASH_TIME*2/3))
2397 flashing = DS_FLASH;
2399 memset(ds->draglines, 0, sz);
2400 if (ui->ndragcoords > 0) {
2401 int i, clearing = TRUE;
2402 for (i = 0; i < ui->ndragcoords - 1; i++) {
2403 int sx, sy, dx, dy, dir, oldstate, newstate;
2404 interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
2405 &dir, &oldstate, &newstate);
2406 ds->draglines[sy*w+sx] ^= (oldstate ^ newstate);
2407 ds->draglines[dy*w+dx] ^= (F(oldstate) ^ F(newstate));
2411 for (x = 0; x < w; x++) {
2412 for (y = 0; y < h; y++) {
2413 unsigned int f = (unsigned int)state->lines[y*w+x];
2414 unsigned int eline = (unsigned int)(state->errors[y*w+x] & (R|U|L|D));
2416 f |= eline << DS_ESHIFT;
2417 f |= ((unsigned int)ds->draglines[y*w+x]) << DS_DSHIFT;
2418 f |= ((unsigned int)state->marks[y*w+x]) << DS_MSHIFT;
2420 if (state->errors[y*w+x] & ERROR_CLUE)
2421 f |= DS_ERROR_CLUE;
2423 f |= flashing;
2425 if (ui->cursor_active && x == ui->curx && y == ui->cury)
2426 f |= DS_CURSOR;
2428 if (f != ds->lflags[y*w+x] || force) {
2429 ds->lflags[y*w+x] = f;
2430 draw_square(dr, ds, ui, x, y, f, state->shared->clues[y*w+x]);
2436 static float game_anim_length(game_state *oldstate, game_state *newstate,
2437 int dir, game_ui *ui)
2439 return 0.0F;
2442 static float game_flash_length(game_state *oldstate, game_state *newstate,
2443 int dir, game_ui *ui)
2445 if (!oldstate->completed &&
2446 newstate->completed && !newstate->used_solve)
2447 return FLASH_TIME;
2448 else
2449 return 0.0F;
2452 static int game_status(game_state *state)
2454 return state->completed ? +1 : 0;
2457 static int game_timing_state(game_state *state, game_ui *ui)
2459 return TRUE;
2462 static void game_print_size(game_params *params, float *x, float *y)
2464 int pw, ph;
2467 * I'll use 6mm squares by default.
2469 game_compute_size(params, 600, &pw, &ph);
2470 *x = pw / 100.0F;
2471 *y = ph / 100.0F;
2474 static void game_print(drawing *dr, game_state *state, int tilesize)
2476 int w = state->shared->w, h = state->shared->h, x, y;
2477 int black = print_mono_colour(dr, 0);
2478 int white = print_mono_colour(dr, 1);
2480 /* No GUI_LOOPY here: only use the familiar masyu style. */
2482 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2483 game_drawstate *ds = game_new_drawstate(dr, state);
2484 game_set_size(dr, ds, NULL, tilesize);
2486 /* Draw grid outlines (black). */
2487 for (x = 0; x <= w; x++)
2488 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black);
2489 for (y = 0; y <= h; y++)
2490 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black);
2492 for (x = 0; x < w; x++) {
2493 for (y = 0; y < h; y++) {
2494 int cx = COORD(x) + HALFSZ, cy = COORD(y) + HALFSZ;
2495 int clue = state->shared->clues[y*w+x];
2497 draw_lines_specific(dr, ds, x, y, state->lines[y*w+x], 0, black);
2499 if (clue != NOCLUE) {
2500 int c = (clue == CORNER) ? black : white;
2501 draw_circle(dr, cx, cy, TILE_SIZE/4, c, black);
2506 game_free_drawstate(dr, ds);
2509 #ifdef COMBINED
2510 #define thegame pearl
2511 #endif
2513 const struct game thegame = {
2514 "Pearl", "games.pearl", "pearl",
2515 default_params,
2516 game_fetch_preset,
2517 decode_params,
2518 encode_params,
2519 free_params,
2520 dup_params,
2521 TRUE, game_configure, custom_params,
2522 validate_params,
2523 new_game_desc,
2524 validate_desc,
2525 new_game,
2526 dup_game,
2527 free_game,
2528 TRUE, solve_game,
2529 FALSE, game_can_format_as_text_now, game_text_format,
2530 new_ui,
2531 free_ui,
2532 encode_ui,
2533 decode_ui,
2534 game_changed_state,
2535 interpret_move,
2536 execute_move,
2537 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2538 game_colours,
2539 game_new_drawstate,
2540 game_free_drawstate,
2541 game_redraw,
2542 game_anim_length,
2543 game_flash_length,
2544 game_status,
2545 TRUE, FALSE, game_print_size, game_print,
2546 FALSE, /* wants_statusbar */
2547 FALSE, game_timing_state,
2548 0, /* flags */
2551 #ifdef STANDALONE_SOLVER
2553 #include <time.h>
2554 #include <stdarg.h>
2556 const char *quis = NULL;
2558 static void usage(FILE *out) {
2559 fprintf(out, "usage: %s <params>\n", quis);
2562 static void pnum(int n, int ntot, const char *desc)
2564 printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc);
2567 static void start_soak(game_params *p, random_state *rs, int nsecs)
2569 time_t tt_start, tt_now, tt_last;
2570 int n = 0, nsolved = 0, nimpossible = 0, ret;
2571 char *grid, *clues;
2573 tt_start = tt_last = time(NULL);
2575 /* Currently this generates puzzles of any difficulty (trying to solve it
2576 * on the maximum difficulty level and not checking it's not too easy). */
2577 printf("Soak-testing a %dx%d grid (any difficulty)", p->w, p->h);
2578 if (nsecs > 0) printf(" for %d seconds", nsecs);
2579 printf(".\n");
2581 p->nosolve = TRUE;
2583 grid = snewn(p->w*p->h, char);
2584 clues = snewn(p->w*p->h, char);
2586 while (1) {
2587 n += new_clues(p, rs, clues, grid); /* should be 1, with nosolve */
2589 ret = pearl_solve(p->w, p->h, clues, grid, DIFF_TRICKY, FALSE);
2590 if (ret <= 0) nimpossible++;
2591 if (ret == 1) nsolved++;
2593 tt_now = time(NULL);
2594 if (tt_now > tt_last) {
2595 tt_last = tt_now;
2597 printf("%d total, %3.1f/s, ",
2598 n, (double)n / ((double)tt_now - tt_start));
2599 pnum(nsolved, n, "solved"); printf(", ");
2600 printf("%3.1f/s", (double)nsolved / ((double)tt_now - tt_start));
2601 if (nimpossible > 0)
2602 pnum(nimpossible, n, "impossible");
2603 printf("\n");
2605 if (nsecs > 0 && (tt_now - tt_start) > nsecs) {
2606 printf("\n");
2607 break;
2611 sfree(grid);
2612 sfree(clues);
2615 int main(int argc, const char *argv[])
2617 game_params *p = NULL;
2618 random_state *rs = NULL;
2619 time_t seed = time(NULL);
2620 char *id = NULL, *err;
2622 setvbuf(stdout, NULL, _IONBF, 0);
2624 quis = argv[0];
2626 while (--argc > 0) {
2627 char *p = (char*)(*++argv);
2628 if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
2629 seed = atoi(*++argv);
2630 argc--;
2631 } else if (*p == '-') {
2632 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2633 usage(stderr);
2634 exit(1);
2635 } else {
2636 id = p;
2640 rs = random_new((void*)&seed, sizeof(time_t));
2641 p = default_params();
2643 if (id) {
2644 if (strchr(id, ':')) {
2645 fprintf(stderr, "soak takes params only.\n");
2646 goto done;
2649 decode_params(p, id);
2650 err = validate_params(p, 1);
2651 if (err) {
2652 fprintf(stderr, "%s: %s", argv[0], err);
2653 goto done;
2656 start_soak(p, rs, 0); /* run forever */
2657 } else {
2658 int i;
2660 for (i = 5; i <= 12; i++) {
2661 p->w = p->h = i;
2662 start_soak(p, rs, 5);
2666 done:
2667 free_params(p);
2668 random_free(rs);
2670 return 0;
2673 #endif
2675 /* vim: set shiftwidth=4 tabstop=8: */