Add a STYLUS_BASED variant to magnets
[sgt-puzzles/ydirson.git] / twiddle.c
blob51a21f04749bc305512fd15ecf040cf518c1bfe6
1 /*
2 * twiddle.c: Puzzle involving rearranging a grid of squares by
3 * rotating subsquares. Adapted and generalised from a
4 * door-unlocking puzzle in Metroid Prime 2 (the one in the Main
5 * Gyro Chamber).
6 */
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <assert.h>
12 #include <ctype.h>
13 #include <math.h>
15 #include "puzzles.h"
17 #define PREFERRED_TILE_SIZE 48
18 #define TILE_SIZE (ds->tilesize)
19 #define BORDER (TILE_SIZE / 2)
20 #define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
21 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
22 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
24 #define ANIM_PER_BLKSIZE_UNIT 0.13F
25 #define FLASH_FRAME 0.13F
27 enum {
28 COL_BACKGROUND,
29 COL_TEXT,
30 COL_HIGHLIGHT,
31 COL_HIGHLIGHT_GENTLE,
32 COL_LOWLIGHT,
33 COL_LOWLIGHT_GENTLE,
34 COL_HIGHCURSOR, COL_LOWCURSOR,
35 NCOLOURS
38 struct game_params {
39 int w, h, n;
40 int rowsonly;
41 int orientable;
42 int movetarget;
45 struct game_state {
46 int w, h, n;
47 int orientable;
48 int *grid;
49 int completed;
50 int used_solve; /* used to suppress completion flash */
51 int movecount, movetarget;
52 int lastx, lasty, lastr; /* coordinates of last rotation */
55 static game_params *default_params(void)
57 game_params *ret = snew(game_params);
59 ret->w = ret->h = 3;
60 ret->n = 2;
61 ret->rowsonly = ret->orientable = FALSE;
62 ret->movetarget = 0;
64 return ret;
68 static void free_params(game_params *params)
70 sfree(params);
73 static game_params *dup_params(game_params *params)
75 game_params *ret = snew(game_params);
76 *ret = *params; /* structure copy */
77 return ret;
80 static int game_fetch_preset(int i, char **name, game_params **params)
82 static struct {
83 char *title;
84 game_params params;
85 } presets[] = {
86 { "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
87 { "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
88 { "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
89 { "4x4 normal", { 4, 4, 2, FALSE } },
90 { "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
91 { "4x4, rotating 3x3 blocks", { 4, 4, 3, FALSE } },
92 { "5x5, rotating 3x3 blocks", { 5, 5, 3, FALSE } },
93 { "6x6, rotating 4x4 blocks", { 6, 6, 4, FALSE } },
96 if (i < 0 || i >= lenof(presets))
97 return FALSE;
99 *name = dupstr(presets[i].title);
100 *params = dup_params(&presets[i].params);
102 return TRUE;
105 static void decode_params(game_params *ret, char const *string)
107 ret->w = ret->h = atoi(string);
108 ret->n = 2;
109 ret->rowsonly = ret->orientable = FALSE;
110 ret->movetarget = 0;
111 while (*string && isdigit((unsigned char)*string)) string++;
112 if (*string == 'x') {
113 string++;
114 ret->h = atoi(string);
115 while (*string && isdigit((unsigned char)*string)) string++;
117 if (*string == 'n') {
118 string++;
119 ret->n = atoi(string);
120 while (*string && isdigit((unsigned char)*string)) string++;
122 while (*string) {
123 if (*string == 'r') {
124 ret->rowsonly = TRUE;
125 } else if (*string == 'o') {
126 ret->orientable = TRUE;
127 } else if (*string == 'm') {
128 string++;
129 ret->movetarget = atoi(string);
130 while (string[1] && isdigit((unsigned char)string[1])) string++;
132 string++;
136 static char *encode_params(game_params *params, int full)
138 char buf[256];
139 sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
140 params->rowsonly ? "r" : "",
141 params->orientable ? "o" : "");
142 /* Shuffle limit is part of the limited parameters, because we have to
143 * supply the target move count. */
144 if (params->movetarget)
145 sprintf(buf + strlen(buf), "m%d", params->movetarget);
146 return dupstr(buf);
149 static config_item *game_configure(game_params *params)
151 config_item *ret;
152 char buf[80];
154 ret = snewn(7, config_item);
156 ret[0].name = "Width";
157 ret[0].type = C_STRING;
158 sprintf(buf, "%d", params->w);
159 ret[0].sval = dupstr(buf);
160 ret[0].ival = 0;
162 ret[1].name = "Height";
163 ret[1].type = C_STRING;
164 sprintf(buf, "%d", params->h);
165 ret[1].sval = dupstr(buf);
166 ret[1].ival = 0;
168 ret[2].name = "Rotating block size";
169 ret[2].type = C_STRING;
170 sprintf(buf, "%d", params->n);
171 ret[2].sval = dupstr(buf);
172 ret[2].ival = 0;
174 ret[3].name = "One number per row";
175 ret[3].type = C_BOOLEAN;
176 ret[3].sval = NULL;
177 ret[3].ival = params->rowsonly;
179 ret[4].name = "Orientation matters";
180 ret[4].type = C_BOOLEAN;
181 ret[4].sval = NULL;
182 ret[4].ival = params->orientable;
184 ret[5].name = "Number of shuffling moves";
185 ret[5].type = C_STRING;
186 sprintf(buf, "%d", params->movetarget);
187 ret[5].sval = dupstr(buf);
188 ret[5].ival = 0;
190 ret[6].name = NULL;
191 ret[6].type = C_END;
192 ret[6].sval = NULL;
193 ret[6].ival = 0;
195 return ret;
198 static game_params *custom_params(config_item *cfg)
200 game_params *ret = snew(game_params);
202 ret->w = atoi(cfg[0].sval);
203 ret->h = atoi(cfg[1].sval);
204 ret->n = atoi(cfg[2].sval);
205 ret->rowsonly = cfg[3].ival;
206 ret->orientable = cfg[4].ival;
207 ret->movetarget = atoi(cfg[5].sval);
209 return ret;
212 static char *validate_params(game_params *params, int full)
214 if (params->n < 2)
215 return "Rotating block size must be at least two";
216 if (params->w < params->n)
217 return "Width must be at least the rotating block size";
218 if (params->h < params->n)
219 return "Height must be at least the rotating block size";
220 return NULL;
224 * This function actually performs a rotation on a grid. The `x'
225 * and `y' coordinates passed in are the coordinates of the _top
226 * left corner_ of the rotated region. (Using the centre would have
227 * involved half-integers and been annoyingly fiddly. Clicking in
228 * the centre is good for a user interface, but too inconvenient to
229 * use internally.)
231 static void do_rotate(int *grid, int w, int h, int n, int orientable,
232 int x, int y, int dir)
234 int i, j;
236 assert(x >= 0 && x+n <= w);
237 assert(y >= 0 && y+n <= h);
238 dir &= 3;
239 if (dir == 0)
240 return; /* nothing to do */
242 grid += y*w+x; /* translate region to top corner */
245 * If we were leaving the result of the rotation in a separate
246 * grid, the simple thing to do would be to loop over each
247 * square within the rotated region and assign it from its
248 * source square. However, to do it in place without taking
249 * O(n^2) memory, we need to be marginally more clever. What
250 * I'm going to do is loop over about one _quarter_ of the
251 * rotated region and permute each element within that quarter
252 * with its rotational coset.
254 * The size of the region I need to loop over is (n+1)/2 by
255 * n/2, which is an obvious exact quarter for even n and is a
256 * rectangle for odd n. (For odd n, this technique leaves out
257 * one element of the square, which is of course the central
258 * one that never moves anyway.)
260 for (i = 0; i < (n+1)/2; i++) {
261 for (j = 0; j < n/2; j++) {
262 int k;
263 int g[4];
264 int p[4];
266 p[0] = j*w+i;
267 p[1] = i*w+(n-j-1);
268 p[2] = (n-j-1)*w+(n-i-1);
269 p[3] = (n-i-1)*w+j;
271 for (k = 0; k < 4; k++)
272 g[k] = grid[p[k]];
274 for (k = 0; k < 4; k++) {
275 int v = g[(k+dir) & 3];
276 if (orientable)
277 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
278 grid[p[k]] = v;
284 * Don't forget the orientation on the centre square, if n is
285 * odd.
287 if (orientable && (n & 1)) {
288 int v = grid[n/2*(w+1)];
289 v ^= ((v+dir) ^ v) & 3; /* alter orientation */
290 grid[n/2*(w+1)] = v;
294 static int grid_complete(int *grid, int wh, int orientable)
296 int ok = TRUE;
297 int i;
298 for (i = 1; i < wh; i++)
299 if (grid[i] < grid[i-1])
300 ok = FALSE;
301 if (orientable) {
302 for (i = 0; i < wh; i++)
303 if (grid[i] & 3)
304 ok = FALSE;
306 return ok;
309 static char *new_game_desc(game_params *params, random_state *rs,
310 char **aux, int interactive)
312 int *grid;
313 int w = params->w, h = params->h, n = params->n, wh = w*h;
314 int i;
315 char *ret;
316 int retlen;
317 int total_moves;
320 * Set up a solved grid.
322 grid = snewn(wh, int);
323 for (i = 0; i < wh; i++)
324 grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
327 * Shuffle it. This game is complex enough that I don't feel up
328 * to analysing its full symmetry properties (particularly at
329 * n=4 and above!), so I'm going to do it the pedestrian way
330 * and simply shuffle the grid by making a long sequence of
331 * randomly chosen moves.
333 total_moves = params->movetarget;
334 if (!total_moves)
335 /* Add a random move to avoid parity issues. */
336 total_moves = w*h*n*n*2 + random_upto(rs, 2);
338 do {
339 int *prevmoves;
340 int rw, rh; /* w/h of rotation centre space */
342 rw = w - n + 1;
343 rh = h - n + 1;
344 prevmoves = snewn(rw * rh, int);
345 for (i = 0; i < rw * rh; i++)
346 prevmoves[i] = 0;
348 for (i = 0; i < total_moves; i++) {
349 int x, y, r, oldtotal, newtotal, dx, dy;
351 do {
352 x = random_upto(rs, w - n + 1);
353 y = random_upto(rs, h - n + 1);
354 r = 2 * random_upto(rs, 2) - 1;
357 * See if any previous rotations has happened at
358 * this point which nothing has overlapped since.
359 * If so, ensure we haven't either undone a
360 * previous move or repeated one so many times that
361 * it turns into fewer moves in the inverse
362 * direction (i.e. three identical rotations).
364 oldtotal = prevmoves[y*rw+x];
365 newtotal = oldtotal + r;
368 * Special case here for w==h==n, in which case
369 * there is actually no way to _avoid_ all moves
370 * repeating or undoing previous ones.
372 } while ((w != n || h != n) &&
373 (abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
375 do_rotate(grid, w, h, n, params->orientable, x, y, r);
378 * Log the rotation we've just performed at this point,
379 * for inversion detection in the next move.
381 * Also zero a section of the prevmoves array, because
382 * any rotation area which _overlaps_ this one is now
383 * entirely safe to perform further moves in.
385 * Two rotation areas overlap if their top left
386 * coordinates differ by strictly less than n in both
387 * directions
389 prevmoves[y*rw+x] += r;
390 for (dy = -n+1; dy <= n-1; dy++) {
391 if (y + dy < 0 || y + dy >= rh)
392 continue;
393 for (dx = -n+1; dx <= n-1; dx++) {
394 if (x + dx < 0 || x + dx >= rw)
395 continue;
396 if (dx == 0 && dy == 0)
397 continue;
398 prevmoves[(y+dy)*rw+(x+dx)] = 0;
403 sfree(prevmoves);
405 } while (grid_complete(grid, wh, params->orientable));
408 * Now construct the game description, by describing the grid
409 * as a simple sequence of integers. They're comma-separated,
410 * unless the puzzle is orientable in which case they're
411 * separated by orientation letters `u', `d', `l' and `r'.
413 ret = NULL;
414 retlen = 0;
415 for (i = 0; i < wh; i++) {
416 char buf[80];
417 int k;
419 k = sprintf(buf, "%d%c", grid[i] / 4,
420 (char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
422 ret = sresize(ret, retlen + k + 1, char);
423 strcpy(ret + retlen, buf);
424 retlen += k;
426 if (!params->orientable)
427 ret[retlen-1] = '\0'; /* delete last comma */
429 sfree(grid);
430 return ret;
433 static char *validate_desc(game_params *params, char *desc)
435 char *p;
436 int w = params->w, h = params->h, wh = w*h;
437 int i;
439 p = desc;
441 for (i = 0; i < wh; i++) {
442 if (*p < '0' || *p > '9')
443 return "Not enough numbers in string";
444 while (*p >= '0' && *p <= '9')
445 p++;
446 if (!params->orientable && i < wh-1) {
447 if (*p != ',')
448 return "Expected comma after number";
449 } else if (params->orientable && i < wh) {
450 if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
451 return "Expected orientation letter after number";
452 } else if (i == wh-1 && *p) {
453 return "Excess junk at end of string";
456 if (*p) p++; /* eat comma */
459 return NULL;
462 static game_state *new_game(midend *me, game_params *params, char *desc)
464 game_state *state = snew(game_state);
465 int w = params->w, h = params->h, n = params->n, wh = w*h;
466 int i;
467 char *p;
469 state->w = w;
470 state->h = h;
471 state->n = n;
472 state->orientable = params->orientable;
473 state->completed = 0;
474 state->used_solve = FALSE;
475 state->movecount = 0;
476 state->movetarget = params->movetarget;
477 state->lastx = state->lasty = state->lastr = -1;
479 state->grid = snewn(wh, int);
481 p = desc;
483 for (i = 0; i < wh; i++) {
484 state->grid[i] = 4 * atoi(p);
485 while (*p >= '0' && *p <= '9')
486 p++;
487 if (*p) {
488 if (params->orientable) {
489 switch (*p) {
490 case 'l': state->grid[i] |= 1; break;
491 case 'd': state->grid[i] |= 2; break;
492 case 'r': state->grid[i] |= 3; break;
495 p++;
499 return state;
502 static game_state *dup_game(game_state *state)
504 game_state *ret = snew(game_state);
506 ret->w = state->w;
507 ret->h = state->h;
508 ret->n = state->n;
509 ret->orientable = state->orientable;
510 ret->completed = state->completed;
511 ret->movecount = state->movecount;
512 ret->movetarget = state->movetarget;
513 ret->lastx = state->lastx;
514 ret->lasty = state->lasty;
515 ret->lastr = state->lastr;
516 ret->used_solve = state->used_solve;
518 ret->grid = snewn(ret->w * ret->h, int);
519 memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
521 return ret;
524 static void free_game(game_state *state)
526 sfree(state->grid);
527 sfree(state);
530 static int compare_int(const void *av, const void *bv)
532 const int *a = (const int *)av;
533 const int *b = (const int *)bv;
534 if (*a < *b)
535 return -1;
536 else if (*a > *b)
537 return +1;
538 else
539 return 0;
542 static char *solve_game(game_state *state, game_state *currstate,
543 char *aux, char **error)
545 return dupstr("S");
548 static int game_can_format_as_text_now(game_params *params)
550 return TRUE;
553 static char *game_text_format(game_state *state)
555 char *ret, *p, buf[80];
556 int i, x, y, col, o, maxlen;
559 * First work out how many characters we need to display each
560 * number. We're pretty flexible on grid contents here, so we
561 * have to scan the entire grid.
563 col = 0;
564 for (i = 0; i < state->w * state->h; i++) {
565 x = sprintf(buf, "%d", state->grid[i] / 4);
566 if (col < x) col = x;
568 o = (state->orientable ? 1 : 0);
571 * Now we know the exact total size of the grid we're going to
572 * produce: it's got h rows, each containing w lots of col+o,
573 * w-1 spaces and a trailing newline.
575 maxlen = state->h * state->w * (col+o+1);
577 ret = snewn(maxlen+1, char);
578 p = ret;
580 for (y = 0; y < state->h; y++) {
581 for (x = 0; x < state->w; x++) {
582 int v = state->grid[state->w*y+x];
583 sprintf(buf, "%*d", col, v/4);
584 memcpy(p, buf, col);
585 p += col;
586 if (o)
587 *p++ = "^<v>"[v & 3];
588 if (x+1 == state->w)
589 *p++ = '\n';
590 else
591 *p++ = ' ';
595 assert(p - ret == maxlen);
596 *p = '\0';
597 return ret;
600 struct game_ui {
601 int cur_x, cur_y;
602 int cur_visible;
605 static game_ui *new_ui(game_state *state)
607 game_ui *ui = snew(game_ui);
609 ui->cur_x = 0;
610 ui->cur_y = 0;
611 ui->cur_visible = FALSE;
613 return ui;
616 static void free_ui(game_ui *ui)
618 sfree(ui);
621 static char *encode_ui(game_ui *ui)
623 return NULL;
626 static void decode_ui(game_ui *ui, char *encoding)
630 static void game_changed_state(game_ui *ui, game_state *oldstate,
631 game_state *newstate)
635 struct game_drawstate {
636 int started;
637 int w, h, bgcolour;
638 int *grid;
639 int tilesize;
640 int cur_x, cur_y;
643 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
644 int x, int y, int button)
646 int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
647 char buf[80];
648 int dir;
650 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
652 if (IS_CURSOR_MOVE(button)) {
653 if (button == CURSOR_LEFT && ui->cur_x > 0)
654 ui->cur_x--;
655 if (button == CURSOR_RIGHT && (ui->cur_x+n) < (w))
656 ui->cur_x++;
657 if (button == CURSOR_UP && ui->cur_y > 0)
658 ui->cur_y--;
659 if (button == CURSOR_DOWN && (ui->cur_y+n) < (h))
660 ui->cur_y++;
661 ui->cur_visible = 1;
662 return "";
665 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
667 * Determine the coordinates of the click. We offset by n-1
668 * half-blocks so that the user must click at the centre of
669 * a rotation region rather than at the corner.
671 x -= (n-1) * TILE_SIZE / 2;
672 y -= (n-1) * TILE_SIZE / 2;
673 x = FROMCOORD(x);
674 y = FROMCOORD(y);
675 dir = (button == LEFT_BUTTON ? 1 : -1);
676 if (x < 0 || x > w-n || y < 0 || y > h-n)
677 return NULL;
678 ui->cur_visible = 0;
679 } else if (IS_CURSOR_SELECT(button)) {
680 if (ui->cur_visible) {
681 x = ui->cur_x;
682 y = ui->cur_y;
683 dir = (button == CURSOR_SELECT2) ? -1 : +1;
684 } else {
685 ui->cur_visible = 1;
686 return "";
688 } else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
689 x = y = 0;
690 dir = (button == 'A' ? -1 : +1);
691 } else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
692 x = w-n;
693 y = 0;
694 dir = (button == 'B' ? -1 : +1);
695 } else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
696 x = 0;
697 y = h-n;
698 dir = (button == 'C' ? -1 : +1);
699 } else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
700 x = w-n;
701 y = h-n;
702 dir = (button == 'D' ? -1 : +1);
703 } else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
704 x = (w-n) / 2;
705 y = 0;
706 dir = +1;
707 } else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
708 x = (w-n) / 2;
709 y = h-n;
710 dir = +1;
711 } else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
712 x = 0;
713 y = (h-n) / 2;
714 dir = +1;
715 } else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
716 x = w-n;
717 y = (h-n) / 2;
718 dir = +1;
719 } else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
720 x = (w-n) / 2;
721 y = (h-n) / 2;
722 dir = +1;
723 } else {
724 return NULL; /* no move to be made */
728 * If we reach here, we have a valid move.
730 sprintf(buf, "M%d,%d,%d", x, y, dir);
731 return dupstr(buf);
734 static game_state *execute_move(game_state *from, char *move)
736 game_state *ret;
737 int w = from->w, h = from->h, n = from->n, wh = w*h;
738 int x, y, dir;
740 if (!strcmp(move, "S")) {
741 int i;
742 ret = dup_game(from);
745 * Simply replace the grid with a solved one. For this game,
746 * this isn't a useful operation for actually telling the user
747 * what they should have done, but it is useful for
748 * conveniently being able to get hold of a clean state from
749 * which to practise manoeuvres.
751 qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
752 for (i = 0; i < ret->w*ret->h; i++)
753 ret->grid[i] &= ~3;
754 ret->used_solve = TRUE;
755 ret->completed = ret->movecount = 1;
757 return ret;
760 if (move[0] != 'M' ||
761 sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
762 x < 0 || y < 0 || x > from->w - n || y > from->h - n)
763 return NULL; /* can't parse this move string */
765 ret = dup_game(from);
766 ret->movecount++;
767 do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
768 ret->lastx = x;
769 ret->lasty = y;
770 ret->lastr = dir;
773 * See if the game has been completed. To do this we simply
774 * test that the grid contents are in increasing order.
776 if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
777 ret->completed = ret->movecount;
778 return ret;
781 /* ----------------------------------------------------------------------
782 * Drawing routines.
785 static void game_compute_size(game_params *params, int tilesize,
786 int *x, int *y)
788 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
789 struct { int tilesize; } ads, *ds = &ads;
790 ads.tilesize = tilesize;
792 *x = TILE_SIZE * params->w + 2 * BORDER;
793 *y = TILE_SIZE * params->h + 2 * BORDER;
796 static void game_set_size(drawing *dr, game_drawstate *ds,
797 game_params *params, int tilesize)
799 ds->tilesize = tilesize;
802 static float *game_colours(frontend *fe, int *ncolours)
804 float *ret = snewn(3 * NCOLOURS, float);
805 int i;
807 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
809 /* cursor is light-background with a red tinge. */
810 ret[COL_HIGHCURSOR * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 1.0F;
811 ret[COL_HIGHCURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.5F;
812 ret[COL_HIGHCURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.5F;
814 for (i = 0; i < 3; i++) {
815 ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
816 ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
817 ret[COL_TEXT * 3 + i] = 0.0;
818 ret[COL_LOWCURSOR * 3 + i] = ret[COL_HIGHCURSOR * 3 + i] * 0.6F;
821 *ncolours = NCOLOURS;
822 return ret;
825 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
827 struct game_drawstate *ds = snew(struct game_drawstate);
828 int i;
830 ds->started = FALSE;
831 ds->w = state->w;
832 ds->h = state->h;
833 ds->bgcolour = COL_BACKGROUND;
834 ds->grid = snewn(ds->w*ds->h, int);
835 ds->tilesize = 0; /* haven't decided yet */
836 for (i = 0; i < ds->w*ds->h; i++)
837 ds->grid[i] = -1;
838 ds->cur_x = ds->cur_y = -state->n;
840 return ds;
843 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
845 sfree(ds->grid);
846 sfree(ds);
849 struct rotation {
850 int cx, cy, cw, ch; /* clip region */
851 int ox, oy; /* rotation origin */
852 float c, s; /* cos and sin of rotation angle */
853 int lc, rc, tc, bc; /* colours of tile edges */
856 static void rotate(int *xy, struct rotation *rot)
858 if (rot) {
859 float xf = (float)xy[0] - rot->ox, yf = (float)xy[1] - rot->oy;
860 float xf2, yf2;
862 xf2 = rot->c * xf + rot->s * yf;
863 yf2 = - rot->s * xf + rot->c * yf;
865 xy[0] = (int)(xf2 + rot->ox + 0.5); /* round to nearest */
866 xy[1] = (int)(yf2 + rot->oy + 0.5); /* round to nearest */
870 #define CUR_TOP 1
871 #define CUR_RIGHT 2
872 #define CUR_BOTTOM 4
873 #define CUR_LEFT 8
875 static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
876 int x, int y, int tile, int flash_colour,
877 struct rotation *rot, unsigned cedges)
879 int coords[8];
880 char str[40];
883 * If we've been passed a rotation region but we're drawing a
884 * tile which is outside it, we must draw it normally. This can
885 * occur if we're cleaning up after a completion flash while a
886 * new move is also being made.
888 if (rot && (x < rot->cx || y < rot->cy ||
889 x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
890 rot = NULL;
892 if (rot)
893 clip(dr, rot->cx, rot->cy, rot->cw, rot->ch);
896 * We must draw each side of the tile's highlight separately,
897 * because in some cases (during rotation) they will all need
898 * to be different colours.
901 /* The centre point is common to all sides. */
902 coords[4] = x + TILE_SIZE / 2;
903 coords[5] = y + TILE_SIZE / 2;
904 rotate(coords+4, rot);
906 /* Right side. */
907 coords[0] = x + TILE_SIZE - 1;
908 coords[1] = y + TILE_SIZE - 1;
909 rotate(coords+0, rot);
910 coords[2] = x + TILE_SIZE - 1;
911 coords[3] = y;
912 rotate(coords+2, rot);
913 draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
914 rot ? rot->rc : (cedges & CUR_RIGHT) ? COL_LOWCURSOR : COL_LOWLIGHT);
916 /* Bottom side. */
917 coords[2] = x;
918 coords[3] = y + TILE_SIZE - 1;
919 rotate(coords+2, rot);
920 draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
921 rot ? rot->bc : (cedges & CUR_BOTTOM) ? COL_LOWCURSOR : COL_LOWLIGHT);
923 /* Left side. */
924 coords[0] = x;
925 coords[1] = y;
926 rotate(coords+0, rot);
927 draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
928 rot ? rot->lc : (cedges & CUR_LEFT) ? COL_HIGHCURSOR : COL_HIGHLIGHT);
930 /* Top side. */
931 coords[2] = x + TILE_SIZE - 1;
932 coords[3] = y;
933 rotate(coords+2, rot);
934 draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
935 rot ? rot->tc : (cedges & CUR_TOP) ? COL_HIGHCURSOR : COL_HIGHLIGHT);
938 * Now the main blank area in the centre of the tile.
940 if (rot) {
941 coords[0] = x + HIGHLIGHT_WIDTH;
942 coords[1] = y + HIGHLIGHT_WIDTH;
943 rotate(coords+0, rot);
944 coords[2] = x + HIGHLIGHT_WIDTH;
945 coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
946 rotate(coords+2, rot);
947 coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
948 coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
949 rotate(coords+4, rot);
950 coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
951 coords[7] = y + HIGHLIGHT_WIDTH;
952 rotate(coords+6, rot);
953 draw_polygon(dr, coords, 4, flash_colour, flash_colour);
954 } else {
955 draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
956 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
957 flash_colour);
961 * Next, the triangles for orientation.
963 if (state->orientable) {
964 int xdx, xdy, ydx, ydy;
965 int cx, cy, displ, displ2;
966 switch (tile & 3) {
967 case 0:
968 xdx = 1, xdy = 0;
969 ydx = 0, ydy = 1;
970 break;
971 case 1:
972 xdx = 0, xdy = -1;
973 ydx = 1, ydy = 0;
974 break;
975 case 2:
976 xdx = -1, xdy = 0;
977 ydx = 0, ydy = -1;
978 break;
979 default /* case 3 */:
980 xdx = 0, xdy = 1;
981 ydx = -1, ydy = 0;
982 break;
985 cx = x + TILE_SIZE / 2;
986 cy = y + TILE_SIZE / 2;
987 displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
988 displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
990 coords[0] = cx - displ * xdx + displ2 * ydx;
991 coords[1] = cy - displ * xdy + displ2 * ydy;
992 rotate(coords+0, rot);
993 coords[2] = cx + displ * xdx + displ2 * ydx;
994 coords[3] = cy + displ * xdy + displ2 * ydy;
995 rotate(coords+2, rot);
996 coords[4] = cx - displ * ydx;
997 coords[5] = cy - displ * ydy;
998 rotate(coords+4, rot);
999 draw_polygon(dr, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE);
1002 coords[0] = x + TILE_SIZE/2;
1003 coords[1] = y + TILE_SIZE/2;
1004 rotate(coords+0, rot);
1005 sprintf(str, "%d", tile / 4);
1006 draw_text(dr, coords[0], coords[1],
1007 FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
1008 COL_TEXT, str);
1010 if (rot)
1011 unclip(dr);
1013 draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
1016 static int highlight_colour(float angle)
1018 int colours[32] = {
1019 COL_LOWLIGHT,
1020 COL_LOWLIGHT_GENTLE,
1021 COL_LOWLIGHT_GENTLE,
1022 COL_LOWLIGHT_GENTLE,
1023 COL_HIGHLIGHT_GENTLE,
1024 COL_HIGHLIGHT_GENTLE,
1025 COL_HIGHLIGHT_GENTLE,
1026 COL_HIGHLIGHT,
1027 COL_HIGHLIGHT,
1028 COL_HIGHLIGHT,
1029 COL_HIGHLIGHT,
1030 COL_HIGHLIGHT,
1031 COL_HIGHLIGHT,
1032 COL_HIGHLIGHT,
1033 COL_HIGHLIGHT,
1034 COL_HIGHLIGHT,
1035 COL_HIGHLIGHT,
1036 COL_HIGHLIGHT_GENTLE,
1037 COL_HIGHLIGHT_GENTLE,
1038 COL_HIGHLIGHT_GENTLE,
1039 COL_LOWLIGHT_GENTLE,
1040 COL_LOWLIGHT_GENTLE,
1041 COL_LOWLIGHT_GENTLE,
1042 COL_LOWLIGHT,
1043 COL_LOWLIGHT,
1044 COL_LOWLIGHT,
1045 COL_LOWLIGHT,
1046 COL_LOWLIGHT,
1047 COL_LOWLIGHT,
1048 COL_LOWLIGHT,
1049 COL_LOWLIGHT,
1050 COL_LOWLIGHT,
1053 return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
1056 static float game_anim_length(game_state *oldstate, game_state *newstate,
1057 int dir, game_ui *ui)
1059 return (float)(ANIM_PER_BLKSIZE_UNIT * sqrt(newstate->n-1));
1062 static float game_flash_length(game_state *oldstate, game_state *newstate,
1063 int dir, game_ui *ui)
1065 if (!oldstate->completed && newstate->completed &&
1066 !oldstate->used_solve && !newstate->used_solve)
1067 return 2 * FLASH_FRAME;
1068 else
1069 return 0.0F;
1072 static int game_status(game_state *state)
1074 return state->completed ? +1 : 0;
1077 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1078 game_state *state, int dir, game_ui *ui,
1079 float animtime, float flashtime)
1081 int i, bgcolour;
1082 struct rotation srot, *rot;
1083 int lastx = -1, lasty = -1, lastr = -1;
1084 int cx, cy, cmoved = 0, n = state->n;
1086 cx = ui->cur_visible ? ui->cur_x : -state->n;
1087 cy = ui->cur_visible ? ui->cur_y : -state->n;
1088 if (cx != ds->cur_x || cy != ds->cur_y)
1089 cmoved = 1;
1091 if (flashtime > 0) {
1092 int frame = (int)(flashtime / FLASH_FRAME);
1093 bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
1094 } else
1095 bgcolour = COL_BACKGROUND;
1097 if (!ds->started) {
1098 int coords[10];
1100 draw_rect(dr, 0, 0,
1101 TILE_SIZE * state->w + 2 * BORDER,
1102 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
1103 draw_update(dr, 0, 0,
1104 TILE_SIZE * state->w + 2 * BORDER,
1105 TILE_SIZE * state->h + 2 * BORDER);
1108 * Recessed area containing the whole puzzle.
1110 coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1111 coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1112 coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
1113 coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
1114 coords[4] = coords[2] - TILE_SIZE;
1115 coords[5] = coords[3] + TILE_SIZE;
1116 coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
1117 coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
1118 coords[6] = coords[8] + TILE_SIZE;
1119 coords[7] = coords[9] - TILE_SIZE;
1120 draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
1122 coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
1123 coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
1124 draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
1126 ds->started = TRUE;
1130 * If we're drawing any rotated tiles, sort out the rotation
1131 * parameters, and also zap the rotation region to the
1132 * background colour before doing anything else.
1134 if (oldstate) {
1135 float angle;
1136 float anim_max = game_anim_length(oldstate, state, dir, ui);
1138 if (dir > 0) {
1139 lastx = state->lastx;
1140 lasty = state->lasty;
1141 lastr = state->lastr;
1142 } else {
1143 lastx = oldstate->lastx;
1144 lasty = oldstate->lasty;
1145 lastr = -oldstate->lastr;
1148 rot = &srot;
1149 rot->cx = COORD(lastx);
1150 rot->cy = COORD(lasty);
1151 rot->cw = rot->ch = TILE_SIZE * state->n;
1152 rot->ox = rot->cx + rot->cw/2;
1153 rot->oy = rot->cy + rot->ch/2;
1154 angle = (float)((-PI/2 * lastr) * (1.0 - animtime / anim_max));
1155 rot->c = (float)cos(angle);
1156 rot->s = (float)sin(angle);
1159 * Sort out the colours of the various sides of the tile.
1161 rot->lc = highlight_colour((float)PI + angle);
1162 rot->rc = highlight_colour(angle);
1163 rot->tc = highlight_colour((float)(PI/2.0) + angle);
1164 rot->bc = highlight_colour((float)(-PI/2.0) + angle);
1166 draw_rect(dr, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
1167 } else
1168 rot = NULL;
1171 * Now draw each tile.
1173 for (i = 0; i < state->w * state->h; i++) {
1174 int t, cc = 0;
1175 int tx = i % state->w, ty = i / state->w;
1178 * Figure out what should be displayed at this location.
1179 * Usually it will be state->grid[i], unless we're in the
1180 * middle of animating an actual rotation and this cell is
1181 * within the rotation region, in which case we set -1
1182 * (always display).
1184 if (oldstate && lastx >= 0 && lasty >= 0 &&
1185 tx >= lastx && tx < lastx + state->n &&
1186 ty >= lasty && ty < lasty + state->n)
1187 t = -1;
1188 else
1189 t = state->grid[i];
1191 if (cmoved) {
1192 /* cursor has moved (or changed visibility)... */
1193 if (tx == cx || tx == cx+n-1 || ty == cy || ty == cy+n-1)
1194 cc = 1; /* ...we're on new cursor, redraw */
1195 if (tx == ds->cur_x || tx == ds->cur_x+n-1 ||
1196 ty == ds->cur_y || ty == ds->cur_y+n-1)
1197 cc = 1; /* ...we were on old cursor, redraw */
1200 if (ds->bgcolour != bgcolour || /* always redraw when flashing */
1201 ds->grid[i] != t || ds->grid[i] == -1 || t == -1 || cc) {
1202 int x = COORD(tx), y = COORD(ty);
1203 unsigned cedges = 0;
1205 if (tx == cx && ty >= cy && ty <= cy+n-1) cedges |= CUR_LEFT;
1206 if (ty == cy && tx >= cx && tx <= cx+n-1) cedges |= CUR_TOP;
1207 if (tx == cx+n-1 && ty >= cy && ty <= cy+n-1) cedges |= CUR_RIGHT;
1208 if (ty == cy+n-1 && tx >= cx && tx <= cx+n-1) cedges |= CUR_BOTTOM;
1210 draw_tile(dr, ds, state, x, y, state->grid[i], bgcolour, rot, cedges);
1211 ds->grid[i] = t;
1214 ds->bgcolour = bgcolour;
1215 ds->cur_x = cx; ds->cur_y = cy;
1218 * Update the status bar.
1221 char statusbuf[256];
1224 * Don't show the new status until we're also showing the
1225 * new _state_ - after the game animation is complete.
1227 if (oldstate)
1228 state = oldstate;
1230 if (state->used_solve)
1231 sprintf(statusbuf, "Moves since auto-solve: %d",
1232 state->movecount - state->completed);
1233 else {
1234 sprintf(statusbuf, "%sMoves: %d",
1235 (state->completed ? "COMPLETED! " : ""),
1236 (state->completed ? state->completed : state->movecount));
1237 if (state->movetarget)
1238 sprintf(statusbuf+strlen(statusbuf), " (target %d)",
1239 state->movetarget);
1242 status_bar(dr, statusbuf);
1246 static int game_timing_state(game_state *state, game_ui *ui)
1248 return TRUE;
1251 static void game_print_size(game_params *params, float *x, float *y)
1255 static void game_print(drawing *dr, game_state *state, int tilesize)
1259 #ifdef COMBINED
1260 #define thegame twiddle
1261 #endif
1263 const struct game thegame = {
1264 "Twiddle", "games.twiddle", "twiddle",
1265 default_params,
1266 game_fetch_preset,
1267 decode_params,
1268 encode_params,
1269 free_params,
1270 dup_params,
1271 TRUE, game_configure, custom_params,
1272 validate_params,
1273 new_game_desc,
1274 validate_desc,
1275 new_game,
1276 dup_game,
1277 free_game,
1278 TRUE, solve_game,
1279 TRUE, game_can_format_as_text_now, game_text_format,
1280 new_ui,
1281 free_ui,
1282 encode_ui,
1283 decode_ui,
1284 game_changed_state,
1285 interpret_move,
1286 execute_move,
1287 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1288 game_colours,
1289 game_new_drawstate,
1290 game_free_drawstate,
1291 game_redraw,
1292 game_anim_length,
1293 game_flash_length,
1294 game_status,
1295 FALSE, FALSE, game_print_size, game_print,
1296 TRUE, /* wants_statusbar */
1297 FALSE, game_timing_state,
1298 0, /* flags */
1301 /* vim: set shiftwidth=4 tabstop=8: */