New upstream release
[sgt-puzzles/ydirson.git] / slant.c
blobfc472091eddcefb44a9d87196974b253a9dbd523
1 /*
2 * slant.c: Puzzle from nikoli.co.jp involving drawing a diagonal
3 * line through each square of a grid.
4 */
6 /*
7 * In this puzzle you have a grid of squares, each of which must
8 * contain a diagonal line; you also have clue numbers placed at
9 * _points_ of that grid, which means there's a (w+1) x (h+1) array
10 * of possible clue positions.
12 * I'm therefore going to adopt a rigid convention throughout this
13 * source file of using w and h for the dimensions of the grid of
14 * squares, and W and H for the dimensions of the grid of points.
15 * Thus, W == w+1 and H == h+1 always.
17 * Clue arrays will be W*H `signed char's, and the clue at each
18 * point will be a number from 0 to 4, or -1 if there's no clue.
20 * Solution arrays will be W*H `signed char's, and the number at
21 * each point will be +1 for a forward slash (/), -1 for a
22 * backslash (\), and 0 for unknown.
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <stdarg.h>
28 #include <string.h>
29 #include <assert.h>
30 #include <ctype.h>
31 #include <math.h>
33 #include "puzzles.h"
35 enum {
36 COL_BACKGROUND,
37 COL_GRID,
38 COL_INK,
39 COL_SLANT1,
40 COL_SLANT2,
41 COL_ERROR,
42 NCOLOURS
46 * In standalone solver mode, `verbose' is a variable which can be
47 * set by command-line option; in debugging mode it's simply always
48 * true.
50 #if defined STANDALONE_SOLVER
51 #define SOLVER_DIAGNOSTICS
52 int verbose = FALSE;
53 #elif defined SOLVER_DIAGNOSTICS
54 #define verbose TRUE
55 #endif
58 * Difficulty levels. I do some macro ickery here to ensure that my
59 * enum and the various forms of my name list always match up.
61 #define DIFFLIST(A) \
62 A(EASY,Easy,e) \
63 A(HARD,Hard,h)
64 #define ENUM(upper,title,lower) DIFF_ ## upper,
65 #define TITLE(upper,title,lower) #title,
66 #define ENCODE(upper,title,lower) #lower
67 #define CONFIG(upper,title,lower) ":" #title
68 enum { DIFFLIST(ENUM) DIFFCOUNT };
69 static char const *const slant_diffnames[] = { DIFFLIST(TITLE) };
70 static char const slant_diffchars[] = DIFFLIST(ENCODE);
71 #define DIFFCONFIG DIFFLIST(CONFIG)
73 struct game_params {
74 int w, h, diff;
77 typedef struct game_clues {
78 int w, h;
79 signed char *clues;
80 int *tmpdsf;
81 int refcount;
82 } game_clues;
84 #define ERR_VERTEX 1
85 #define ERR_SQUARE 2
86 #define ERR_SQUARE_TMP 4
88 struct game_state {
89 struct game_params p;
90 game_clues *clues;
91 signed char *soln;
92 unsigned char *errors;
93 int completed;
94 int used_solve; /* used to suppress completion flash */
97 static game_params *default_params(void)
99 game_params *ret = snew(game_params);
101 ret->w = ret->h = 8;
102 ret->diff = DIFF_EASY;
104 return ret;
107 static const struct game_params slant_presets[] = {
108 {5, 5, DIFF_EASY},
109 {5, 5, DIFF_HARD},
110 {8, 8, DIFF_EASY},
111 {8, 8, DIFF_HARD},
112 {12, 10, DIFF_EASY},
113 {12, 10, DIFF_HARD},
116 static int game_fetch_preset(int i, char **name, game_params **params)
118 game_params *ret;
119 char str[80];
121 if (i < 0 || i >= lenof(slant_presets))
122 return FALSE;
124 ret = snew(game_params);
125 *ret = slant_presets[i];
127 sprintf(str, "%dx%d %s", ret->w, ret->h, slant_diffnames[ret->diff]);
129 *name = dupstr(str);
130 *params = ret;
131 return TRUE;
134 static void free_params(game_params *params)
136 sfree(params);
139 static game_params *dup_params(game_params *params)
141 game_params *ret = snew(game_params);
142 *ret = *params; /* structure copy */
143 return ret;
146 static void decode_params(game_params *ret, char const *string)
148 ret->w = ret->h = atoi(string);
149 while (*string && isdigit((unsigned char)*string)) string++;
150 if (*string == 'x') {
151 string++;
152 ret->h = atoi(string);
153 while (*string && isdigit((unsigned char)*string)) string++;
155 if (*string == 'd') {
156 int i;
157 string++;
158 for (i = 0; i < DIFFCOUNT; i++)
159 if (*string == slant_diffchars[i])
160 ret->diff = i;
161 if (*string) string++;
165 static char *encode_params(game_params *params, int full)
167 char data[256];
169 sprintf(data, "%dx%d", params->w, params->h);
170 if (full)
171 sprintf(data + strlen(data), "d%c", slant_diffchars[params->diff]);
173 return dupstr(data);
176 static config_item *game_configure(game_params *params)
178 config_item *ret;
179 char buf[80];
181 ret = snewn(4, config_item);
183 ret[0].name = "Width";
184 ret[0].type = C_STRING;
185 sprintf(buf, "%d", params->w);
186 ret[0].sval = dupstr(buf);
187 ret[0].ival = 0;
189 ret[1].name = "Height";
190 ret[1].type = C_STRING;
191 sprintf(buf, "%d", params->h);
192 ret[1].sval = dupstr(buf);
193 ret[1].ival = 0;
195 ret[2].name = "Difficulty";
196 ret[2].type = C_CHOICES;
197 ret[2].sval = DIFFCONFIG;
198 ret[2].ival = params->diff;
200 ret[3].name = NULL;
201 ret[3].type = C_END;
202 ret[3].sval = NULL;
203 ret[3].ival = 0;
205 return ret;
208 static game_params *custom_params(config_item *cfg)
210 game_params *ret = snew(game_params);
212 ret->w = atoi(cfg[0].sval);
213 ret->h = atoi(cfg[1].sval);
214 ret->diff = cfg[2].ival;
216 return ret;
219 static char *validate_params(game_params *params, int full)
222 * (At least at the time of writing this comment) The grid
223 * generator is actually capable of handling even zero grid
224 * dimensions without crashing. Puzzles with a zero-area grid
225 * are a bit boring, though, because they're already solved :-)
226 * And puzzles with a dimension of 1 can't be made Hard, which
227 * means the simplest thing is to forbid them altogether.
230 if (params->w < 2 || params->h < 2)
231 return "Width and height must both be at least two";
233 return NULL;
237 * Scratch space for solver.
239 struct solver_scratch {
241 * Disjoint set forest which tracks the connected sets of
242 * points.
244 int *connected;
247 * Counts the number of possible exits from each connected set
248 * of points. (That is, the number of possible _simultaneous_
249 * exits: an unconnected point labelled 2 has an exit count of
250 * 2 even if all four possible edges are still under
251 * consideration.)
253 int *exits;
256 * Tracks whether each connected set of points includes a
257 * border point.
259 unsigned char *border;
262 * Another disjoint set forest. This one tracks _squares_ which
263 * are known to slant in the same direction.
265 int *equiv;
268 * Stores slash values which we know for an equivalence class.
269 * When we fill in a square, we set slashval[canonify(x)] to
270 * the same value as soln[x], so that we can then spot other
271 * squares equivalent to it and fill them in immediately via
272 * their known equivalence.
274 signed char *slashval;
277 * Stores possible v-shapes. This array is w by h in size, but
278 * not every bit of every entry is meaningful. The bits mean:
280 * - bit 0 for a square means that that square and the one to
281 * its right might form a v-shape between them
282 * - bit 1 for a square means that that square and the one to
283 * its right might form a ^-shape between them
284 * - bit 2 for a square means that that square and the one
285 * below it might form a >-shape between them
286 * - bit 3 for a square means that that square and the one
287 * below it might form a <-shape between them
289 * Any starting 1 or 3 clue rules out four bits in this array
290 * immediately; a 2 clue propagates any ruled-out bit past it
291 * (if the two squares on one side of a 2 cannot be a v-shape,
292 * then neither can the two on the other side be the same
293 * v-shape); we can rule out further bits during play using
294 * partially filled 2 clues; whenever a pair of squares is
295 * known not to be _either_ kind of v-shape, we can mark them
296 * as equivalent.
298 unsigned char *vbitmap;
301 * Useful to have this information automatically passed to
302 * solver subroutines. (This pointer is not dynamically
303 * allocated by new_scratch and free_scratch.)
305 const signed char *clues;
308 static struct solver_scratch *new_scratch(int w, int h)
310 int W = w+1, H = h+1;
311 struct solver_scratch *ret = snew(struct solver_scratch);
312 ret->connected = snewn(W*H, int);
313 ret->exits = snewn(W*H, int);
314 ret->border = snewn(W*H, unsigned char);
315 ret->equiv = snewn(w*h, int);
316 ret->slashval = snewn(w*h, signed char);
317 ret->vbitmap = snewn(w*h, unsigned char);
318 return ret;
321 static void free_scratch(struct solver_scratch *sc)
323 sfree(sc->vbitmap);
324 sfree(sc->slashval);
325 sfree(sc->equiv);
326 sfree(sc->border);
327 sfree(sc->exits);
328 sfree(sc->connected);
329 sfree(sc);
333 * Wrapper on dsf_merge() which updates the `exits' and `border'
334 * arrays.
336 static void merge_vertices(int *connected,
337 struct solver_scratch *sc, int i, int j)
339 int exits = -1, border = FALSE; /* initialise to placate optimiser */
341 if (sc) {
342 i = dsf_canonify(connected, i);
343 j = dsf_canonify(connected, j);
346 * We have used one possible exit from each of the two
347 * classes. Thus, the viable exit count of the new class is
348 * the sum of the old exit counts minus two.
350 exits = sc->exits[i] + sc->exits[j] - 2;
352 border = sc->border[i] || sc->border[j];
355 dsf_merge(connected, i, j);
357 if (sc) {
358 i = dsf_canonify(connected, i);
359 sc->exits[i] = exits;
360 sc->border[i] = border;
365 * Called when we have just blocked one way out of a particular
366 * point. If that point is a non-clue point (thus has a variable
367 * number of exits), we have therefore decreased its potential exit
368 * count, so we must decrement the exit count for the group as a
369 * whole.
371 static void decr_exits(struct solver_scratch *sc, int i)
373 if (sc->clues[i] < 0) {
374 i = dsf_canonify(sc->connected, i);
375 sc->exits[i]--;
379 static void fill_square(int w, int h, int x, int y, int v,
380 signed char *soln,
381 int *connected, struct solver_scratch *sc)
383 int W = w+1 /*, H = h+1 */;
385 assert(x >= 0 && x < w && y >= 0 && y < h);
387 if (soln[y*w+x] != 0) {
388 return; /* do nothing */
391 #ifdef SOLVER_DIAGNOSTICS
392 if (verbose)
393 printf(" placing %c in %d,%d\n", v == -1 ? '\\' : '/', x, y);
394 #endif
396 soln[y*w+x] = v;
398 if (sc) {
399 int c = dsf_canonify(sc->equiv, y*w+x);
400 sc->slashval[c] = v;
403 if (v < 0) {
404 merge_vertices(connected, sc, y*W+x, (y+1)*W+(x+1));
405 if (sc) {
406 decr_exits(sc, y*W+(x+1));
407 decr_exits(sc, (y+1)*W+x);
409 } else {
410 merge_vertices(connected, sc, y*W+(x+1), (y+1)*W+x);
411 if (sc) {
412 decr_exits(sc, y*W+x);
413 decr_exits(sc, (y+1)*W+(x+1));
418 static int vbitmap_clear(int w, int h, struct solver_scratch *sc,
419 int x, int y, int vbits, char *reason, ...)
421 int done_something = FALSE;
422 int vbit;
424 for (vbit = 1; vbit <= 8; vbit <<= 1)
425 if (vbits & sc->vbitmap[y*w+x] & vbit) {
426 done_something = TRUE;
427 #ifdef SOLVER_DIAGNOSTICS
428 if (verbose) {
429 va_list ap;
431 printf("ruling out %c shape at (%d,%d)-(%d,%d) (",
432 "!v^!>!!!<"[vbit], x, y,
433 x+((vbit&0x3)!=0), y+((vbit&0xC)!=0));
435 va_start(ap, reason);
436 vprintf(reason, ap);
437 va_end(ap);
439 printf(")\n");
441 #endif
442 sc->vbitmap[y*w+x] &= ~vbit;
445 return done_something;
449 * Solver. Returns 0 for impossibility, 1 for success, 2 for
450 * ambiguity or failure to converge.
452 static int slant_solve(int w, int h, const signed char *clues,
453 signed char *soln, struct solver_scratch *sc,
454 int difficulty)
456 int W = w+1, H = h+1;
457 int x, y, i, j;
458 int done_something;
461 * Clear the output.
463 memset(soln, 0, w*h);
465 sc->clues = clues;
468 * Establish a disjoint set forest for tracking connectedness
469 * between grid points.
471 dsf_init(sc->connected, W*H);
474 * Establish a disjoint set forest for tracking which squares
475 * are known to slant in the same direction.
477 dsf_init(sc->equiv, w*h);
480 * Clear the slashval array.
482 memset(sc->slashval, 0, w*h);
485 * Set up the vbitmap array. Initially all types of v are possible.
487 memset(sc->vbitmap, 0xF, w*h);
490 * Initialise the `exits' and `border' arrays. These are used
491 * to do second-order loop avoidance: the dual of the no loops
492 * constraint is that every point must be somehow connected to
493 * the border of the grid (otherwise there would be a solid
494 * loop around it which prevented this).
496 * I define a `dead end' to be a connected group of points
497 * which contains no border point, and which can form at most
498 * one new connection outside itself. Then I forbid placing an
499 * edge so that it connects together two dead-end groups, since
500 * this would yield a non-border-connected isolated subgraph
501 * with no further scope to extend it.
503 for (y = 0; y < H; y++)
504 for (x = 0; x < W; x++) {
505 if (y == 0 || y == H-1 || x == 0 || x == W-1)
506 sc->border[y*W+x] = TRUE;
507 else
508 sc->border[y*W+x] = FALSE;
510 if (clues[y*W+x] < 0)
511 sc->exits[y*W+x] = 4;
512 else
513 sc->exits[y*W+x] = clues[y*W+x];
517 * Repeatedly try to deduce something until we can't.
519 do {
520 done_something = FALSE;
523 * Any clue point with the number of remaining lines equal
524 * to zero or to the number of remaining undecided
525 * neighbouring squares can be filled in completely.
527 for (y = 0; y < H; y++)
528 for (x = 0; x < W; x++) {
529 struct {
530 int pos, slash;
531 } neighbours[4];
532 int nneighbours;
533 int nu, nl, c, s, eq, eq2, last, meq, mj1, mj2;
535 if ((c = clues[y*W+x]) < 0)
536 continue;
539 * We have a clue point. Start by listing its
540 * neighbouring squares, in order around the point,
541 * together with the type of slash that would be
542 * required in that square to connect to the point.
544 nneighbours = 0;
545 if (x > 0 && y > 0) {
546 neighbours[nneighbours].pos = (y-1)*w+(x-1);
547 neighbours[nneighbours].slash = -1;
548 nneighbours++;
550 if (x > 0 && y < h) {
551 neighbours[nneighbours].pos = y*w+(x-1);
552 neighbours[nneighbours].slash = +1;
553 nneighbours++;
555 if (x < w && y < h) {
556 neighbours[nneighbours].pos = y*w+x;
557 neighbours[nneighbours].slash = -1;
558 nneighbours++;
560 if (x < w && y > 0) {
561 neighbours[nneighbours].pos = (y-1)*w+x;
562 neighbours[nneighbours].slash = +1;
563 nneighbours++;
567 * Count up the number of undecided neighbours, and
568 * also the number of lines already present.
570 * If we're not on DIFF_EASY, then in this loop we
571 * also track whether we've seen two adjacent empty
572 * squares belonging to the same equivalence class
573 * (meaning they have the same type of slash). If
574 * so, we count them jointly as one line.
576 nu = 0;
577 nl = c;
578 last = neighbours[nneighbours-1].pos;
579 if (soln[last] == 0)
580 eq = dsf_canonify(sc->equiv, last);
581 else
582 eq = -1;
583 meq = mj1 = mj2 = -1;
584 for (i = 0; i < nneighbours; i++) {
585 j = neighbours[i].pos;
586 s = neighbours[i].slash;
587 if (soln[j] == 0) {
588 nu++; /* undecided */
589 if (meq < 0 && difficulty > DIFF_EASY) {
590 eq2 = dsf_canonify(sc->equiv, j);
591 if (eq == eq2 && last != j) {
593 * We've found an equivalent pair.
594 * Mark it. This also inhibits any
595 * further equivalence tracking
596 * around this square, since we can
597 * only handle one pair (and in
598 * particular we want to avoid
599 * being misled by two overlapping
600 * equivalence pairs).
602 meq = eq;
603 mj1 = last;
604 mj2 = j;
605 nl--; /* count one line */
606 nu -= 2; /* and lose two undecideds */
607 } else
608 eq = eq2;
610 } else {
611 eq = -1;
612 if (soln[j] == s)
613 nl--; /* here's a line */
615 last = j;
619 * Check the counts.
621 if (nl < 0 || nl > nu) {
623 * No consistent value for this at all!
625 #ifdef SOLVER_DIAGNOSTICS
626 if (verbose)
627 printf("need %d / %d lines around clue point at %d,%d!\n",
628 nl, nu, x, y);
629 #endif
630 return 0; /* impossible */
633 if (nu > 0 && (nl == 0 || nl == nu)) {
634 #ifdef SOLVER_DIAGNOSTICS
635 if (verbose) {
636 if (meq >= 0)
637 printf("partially (since %d,%d == %d,%d) ",
638 mj1%w, mj1/w, mj2%w, mj2/w);
639 printf("%s around clue point at %d,%d\n",
640 nl ? "filling" : "emptying", x, y);
642 #endif
643 for (i = 0; i < nneighbours; i++) {
644 j = neighbours[i].pos;
645 s = neighbours[i].slash;
646 if (soln[j] == 0 && j != mj1 && j != mj2)
647 fill_square(w, h, j%w, j/w, (nl ? s : -s), soln,
648 sc->connected, sc);
651 done_something = TRUE;
652 } else if (nu == 2 && nl == 1 && difficulty > DIFF_EASY) {
654 * If we have precisely two undecided squares
655 * and precisely one line to place between
656 * them, _and_ those squares are adjacent, then
657 * we can mark them as equivalent to one
658 * another.
660 * This even applies if meq >= 0: if we have a
661 * 2 clue point and two of its neighbours are
662 * already marked equivalent, we can indeed
663 * mark the other two as equivalent.
665 * We don't bother with this on DIFF_EASY,
666 * since we wouldn't have used the results
667 * anyway.
669 last = -1;
670 for (i = 0; i < nneighbours; i++) {
671 j = neighbours[i].pos;
672 if (soln[j] == 0 && j != mj1 && j != mj2) {
673 if (last < 0)
674 last = i;
675 else if (last == i-1 || (last == 0 && i == 3))
676 break; /* found a pair */
679 if (i < nneighbours) {
680 int sv1, sv2;
682 assert(last >= 0);
684 * neighbours[last] and neighbours[i] are
685 * the pair. Mark them equivalent.
687 #ifdef SOLVER_DIAGNOSTICS
688 if (verbose) {
689 if (meq >= 0)
690 printf("since %d,%d == %d,%d, ",
691 mj1%w, mj1/w, mj2%w, mj2/w);
693 #endif
694 mj1 = neighbours[last].pos;
695 mj2 = neighbours[i].pos;
696 #ifdef SOLVER_DIAGNOSTICS
697 if (verbose)
698 printf("clue point at %d,%d implies %d,%d == %d,"
699 "%d\n", x, y, mj1%w, mj1/w, mj2%w, mj2/w);
700 #endif
701 mj1 = dsf_canonify(sc->equiv, mj1);
702 sv1 = sc->slashval[mj1];
703 mj2 = dsf_canonify(sc->equiv, mj2);
704 sv2 = sc->slashval[mj2];
705 if (sv1 != 0 && sv2 != 0 && sv1 != sv2) {
706 #ifdef SOLVER_DIAGNOSTICS
707 if (verbose)
708 printf("merged two equivalence classes with"
709 " different slash values!\n");
710 #endif
711 return 0;
713 sv1 = sv1 ? sv1 : sv2;
714 dsf_merge(sc->equiv, mj1, mj2);
715 mj1 = dsf_canonify(sc->equiv, mj1);
716 sc->slashval[mj1] = sv1;
721 if (done_something)
722 continue;
725 * Failing that, we now apply the second condition, which
726 * is that no square may be filled in such a way as to form
727 * a loop. Also in this loop (since it's over squares
728 * rather than points), we check slashval to see if we've
729 * already filled in another square in the same equivalence
730 * class.
732 * The slashval check is disabled on DIFF_EASY, as is dead
733 * end avoidance. Only _immediate_ loop avoidance remains.
735 for (y = 0; y < h; y++)
736 for (x = 0; x < w; x++) {
737 int fs, bs, v;
738 int c1, c2;
739 #ifdef SOLVER_DIAGNOSTICS
740 char *reason = "<internal error>";
741 #endif
743 if (soln[y*w+x])
744 continue; /* got this one already */
746 fs = FALSE;
747 bs = FALSE;
749 if (difficulty > DIFF_EASY)
750 v = sc->slashval[dsf_canonify(sc->equiv, y*w+x)];
751 else
752 v = 0;
755 * Try to rule out connectivity between (x,y) and
756 * (x+1,y+1); if successful, we will deduce that we
757 * must have a forward slash.
759 c1 = dsf_canonify(sc->connected, y*W+x);
760 c2 = dsf_canonify(sc->connected, (y+1)*W+(x+1));
761 if (c1 == c2) {
762 fs = TRUE;
763 #ifdef SOLVER_DIAGNOSTICS
764 reason = "simple loop avoidance";
765 #endif
767 if (difficulty > DIFF_EASY &&
768 !sc->border[c1] && !sc->border[c2] &&
769 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
770 fs = TRUE;
771 #ifdef SOLVER_DIAGNOSTICS
772 reason = "dead end avoidance";
773 #endif
775 if (v == +1) {
776 fs = TRUE;
777 #ifdef SOLVER_DIAGNOSTICS
778 reason = "equivalence to an already filled square";
779 #endif
783 * Now do the same between (x+1,y) and (x,y+1), to
784 * see if we are required to have a backslash.
786 c1 = dsf_canonify(sc->connected, y*W+(x+1));
787 c2 = dsf_canonify(sc->connected, (y+1)*W+x);
788 if (c1 == c2) {
789 bs = TRUE;
790 #ifdef SOLVER_DIAGNOSTICS
791 reason = "simple loop avoidance";
792 #endif
794 if (difficulty > DIFF_EASY &&
795 !sc->border[c1] && !sc->border[c2] &&
796 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
797 bs = TRUE;
798 #ifdef SOLVER_DIAGNOSTICS
799 reason = "dead end avoidance";
800 #endif
802 if (v == -1) {
803 bs = TRUE;
804 #ifdef SOLVER_DIAGNOSTICS
805 reason = "equivalence to an already filled square";
806 #endif
809 if (fs && bs) {
811 * No consistent value for this at all!
813 #ifdef SOLVER_DIAGNOSTICS
814 if (verbose)
815 printf("%d,%d has no consistent slash!\n", x, y);
816 #endif
817 return 0; /* impossible */
820 if (fs) {
821 #ifdef SOLVER_DIAGNOSTICS
822 if (verbose)
823 printf("employing %s\n", reason);
824 #endif
825 fill_square(w, h, x, y, +1, soln, sc->connected, sc);
826 done_something = TRUE;
827 } else if (bs) {
828 #ifdef SOLVER_DIAGNOSTICS
829 if (verbose)
830 printf("employing %s\n", reason);
831 #endif
832 fill_square(w, h, x, y, -1, soln, sc->connected, sc);
833 done_something = TRUE;
837 if (done_something)
838 continue;
841 * Now see what we can do with the vbitmap array. All
842 * vbitmap deductions are disabled at Easy level.
844 if (difficulty <= DIFF_EASY)
845 continue;
847 for (y = 0; y < h; y++)
848 for (x = 0; x < w; x++) {
849 int s, c;
852 * Any line already placed in a square must rule
853 * out any type of v which contradicts it.
855 if ((s = soln[y*w+x]) != 0) {
856 if (x > 0)
857 done_something |=
858 vbitmap_clear(w, h, sc, x-1, y, (s < 0 ? 0x1 : 0x2),
859 "contradicts known edge at (%d,%d)",x,y);
860 if (x+1 < w)
861 done_something |=
862 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x2 : 0x1),
863 "contradicts known edge at (%d,%d)",x,y);
864 if (y > 0)
865 done_something |=
866 vbitmap_clear(w, h, sc, x, y-1, (s < 0 ? 0x4 : 0x8),
867 "contradicts known edge at (%d,%d)",x,y);
868 if (y+1 < h)
869 done_something |=
870 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x8 : 0x4),
871 "contradicts known edge at (%d,%d)",x,y);
875 * If both types of v are ruled out for a pair of
876 * adjacent squares, mark them as equivalent.
878 if (x+1 < w && !(sc->vbitmap[y*w+x] & 0x3)) {
879 int n1 = y*w+x, n2 = y*w+(x+1);
880 if (dsf_canonify(sc->equiv, n1) !=
881 dsf_canonify(sc->equiv, n2)) {
882 dsf_merge(sc->equiv, n1, n2);
883 done_something = TRUE;
884 #ifdef SOLVER_DIAGNOSTICS
885 if (verbose)
886 printf("(%d,%d) and (%d,%d) must be equivalent"
887 " because both v-shapes are ruled out\n",
888 x, y, x+1, y);
889 #endif
892 if (y+1 < h && !(sc->vbitmap[y*w+x] & 0xC)) {
893 int n1 = y*w+x, n2 = (y+1)*w+x;
894 if (dsf_canonify(sc->equiv, n1) !=
895 dsf_canonify(sc->equiv, n2)) {
896 dsf_merge(sc->equiv, n1, n2);
897 done_something = TRUE;
898 #ifdef SOLVER_DIAGNOSTICS
899 if (verbose)
900 printf("(%d,%d) and (%d,%d) must be equivalent"
901 " because both v-shapes are ruled out\n",
902 x, y, x, y+1);
903 #endif
908 * The remaining work in this loop only works
909 * around non-edge clue points.
911 if (y == 0 || x == 0)
912 continue;
913 if ((c = clues[y*W+x]) < 0)
914 continue;
917 * x,y marks a clue point not on the grid edge. See
918 * if this clue point allows us to rule out any v
919 * shapes.
922 if (c == 1) {
924 * A 1 clue can never have any v shape pointing
925 * at it.
927 done_something |=
928 vbitmap_clear(w, h, sc, x-1, y-1, 0x5,
929 "points at 1 clue at (%d,%d)", x, y);
930 done_something |=
931 vbitmap_clear(w, h, sc, x-1, y, 0x2,
932 "points at 1 clue at (%d,%d)", x, y);
933 done_something |=
934 vbitmap_clear(w, h, sc, x, y-1, 0x8,
935 "points at 1 clue at (%d,%d)", x, y);
936 } else if (c == 3) {
938 * A 3 clue can never have any v shape pointing
939 * away from it.
941 done_something |=
942 vbitmap_clear(w, h, sc, x-1, y-1, 0xA,
943 "points away from 3 clue at (%d,%d)", x, y);
944 done_something |=
945 vbitmap_clear(w, h, sc, x-1, y, 0x1,
946 "points away from 3 clue at (%d,%d)", x, y);
947 done_something |=
948 vbitmap_clear(w, h, sc, x, y-1, 0x4,
949 "points away from 3 clue at (%d,%d)", x, y);
950 } else if (c == 2) {
952 * If a 2 clue has any kind of v ruled out on
953 * one side of it, the same v is ruled out on
954 * the other side.
956 done_something |=
957 vbitmap_clear(w, h, sc, x-1, y-1,
958 (sc->vbitmap[(y )*w+(x-1)] & 0x3) ^ 0x3,
959 "propagated by 2 clue at (%d,%d)", x, y);
960 done_something |=
961 vbitmap_clear(w, h, sc, x-1, y-1,
962 (sc->vbitmap[(y-1)*w+(x )] & 0xC) ^ 0xC,
963 "propagated by 2 clue at (%d,%d)", x, y);
964 done_something |=
965 vbitmap_clear(w, h, sc, x-1, y,
966 (sc->vbitmap[(y-1)*w+(x-1)] & 0x3) ^ 0x3,
967 "propagated by 2 clue at (%d,%d)", x, y);
968 done_something |=
969 vbitmap_clear(w, h, sc, x, y-1,
970 (sc->vbitmap[(y-1)*w+(x-1)] & 0xC) ^ 0xC,
971 "propagated by 2 clue at (%d,%d)", x, y);
974 #undef CLEARBITS
978 } while (done_something);
981 * Solver can make no more progress. See if the grid is full.
983 for (i = 0; i < w*h; i++)
984 if (!soln[i])
985 return 2; /* failed to converge */
986 return 1; /* success */
990 * Filled-grid generator.
992 static void slant_generate(int w, int h, signed char *soln, random_state *rs)
994 int W = w+1, H = h+1;
995 int x, y, i;
996 int *connected, *indices;
999 * Clear the output.
1001 memset(soln, 0, w*h);
1004 * Establish a disjoint set forest for tracking connectedness
1005 * between grid points.
1007 connected = snew_dsf(W*H);
1010 * Prepare a list of the squares in the grid, and fill them in
1011 * in a random order.
1013 indices = snewn(w*h, int);
1014 for (i = 0; i < w*h; i++)
1015 indices[i] = i;
1016 shuffle(indices, w*h, sizeof(*indices), rs);
1019 * Fill in each one in turn.
1021 for (i = 0; i < w*h; i++) {
1022 int fs, bs, v;
1024 y = indices[i] / w;
1025 x = indices[i] % w;
1027 fs = (dsf_canonify(connected, y*W+x) ==
1028 dsf_canonify(connected, (y+1)*W+(x+1)));
1029 bs = (dsf_canonify(connected, (y+1)*W+x) ==
1030 dsf_canonify(connected, y*W+(x+1)));
1033 * It isn't possible to get into a situation where we
1034 * aren't allowed to place _either_ type of slash in a
1035 * square. Thus, filled-grid generation never has to
1036 * backtrack.
1038 * Proof (thanks to Gareth Taylor):
1040 * If it were possible, it would have to be because there
1041 * was an existing path (not using this square) between the
1042 * top-left and bottom-right corners of this square, and
1043 * another between the other two. These two paths would
1044 * have to cross at some point.
1046 * Obviously they can't cross in the middle of a square, so
1047 * they must cross by sharing a point in common. But this
1048 * isn't possible either: if you chessboard-colour all the
1049 * points on the grid, you find that any continuous
1050 * diagonal path is entirely composed of points of the same
1051 * colour. And one of our two hypothetical paths is between
1052 * two black points, and the other is between two white
1053 * points - therefore they can have no point in common. []
1055 assert(!(fs && bs));
1057 v = fs ? +1 : bs ? -1 : 2 * random_upto(rs, 2) - 1;
1058 fill_square(w, h, x, y, v, soln, connected, NULL);
1061 sfree(indices);
1062 sfree(connected);
1065 static char *new_game_desc(game_params *params, random_state *rs,
1066 char **aux, int interactive)
1068 int w = params->w, h = params->h, W = w+1, H = h+1;
1069 signed char *soln, *tmpsoln, *clues;
1070 int *clueindices;
1071 struct solver_scratch *sc;
1072 int x, y, v, i, j;
1073 char *desc;
1075 soln = snewn(w*h, signed char);
1076 tmpsoln = snewn(w*h, signed char);
1077 clues = snewn(W*H, signed char);
1078 clueindices = snewn(W*H, int);
1079 sc = new_scratch(w, h);
1081 do {
1083 * Create the filled grid.
1085 slant_generate(w, h, soln, rs);
1088 * Fill in the complete set of clues.
1090 for (y = 0; y < H; y++)
1091 for (x = 0; x < W; x++) {
1092 v = 0;
1094 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] == -1) v++;
1095 if (x > 0 && y < h && soln[y*w+(x-1)] == +1) v++;
1096 if (x < w && y > 0 && soln[(y-1)*w+x] == +1) v++;
1097 if (x < w && y < h && soln[y*w+x] == -1) v++;
1099 clues[y*W+x] = v;
1103 * With all clue points filled in, all puzzles are easy: we can
1104 * simply process the clue points in lexicographic order, and
1105 * at each clue point we will always have at most one square
1106 * undecided, which we can then fill in uniquely.
1108 assert(slant_solve(w, h, clues, tmpsoln, sc, DIFF_EASY) == 1);
1111 * Remove as many clues as possible while retaining solubility.
1113 * In DIFF_HARD mode, we prioritise the removal of obvious
1114 * starting points (4s, 0s, border 2s and corner 1s), on
1115 * the grounds that having as few of these as possible
1116 * seems like a good thing. In particular, we can often get
1117 * away without _any_ completely obvious starting points,
1118 * which is even better.
1120 for (i = 0; i < W*H; i++)
1121 clueindices[i] = i;
1122 shuffle(clueindices, W*H, sizeof(*clueindices), rs);
1123 for (j = 0; j < 2; j++) {
1124 for (i = 0; i < W*H; i++) {
1125 int pass, yb, xb;
1127 y = clueindices[i] / W;
1128 x = clueindices[i] % W;
1129 v = clues[y*W+x];
1132 * Identify which pass we should process this point
1133 * in. If it's an obvious start point, _or_ we're
1134 * in DIFF_EASY, then it goes in pass 0; otherwise
1135 * pass 1.
1137 xb = (x == 0 || x == W-1);
1138 yb = (y == 0 || y == H-1);
1139 if (params->diff == DIFF_EASY || v == 4 || v == 0 ||
1140 (v == 2 && (xb||yb)) || (v == 1 && xb && yb))
1141 pass = 0;
1142 else
1143 pass = 1;
1145 if (pass == j) {
1146 clues[y*W+x] = -1;
1147 if (slant_solve(w, h, clues, tmpsoln, sc,
1148 params->diff) != 1)
1149 clues[y*W+x] = v; /* put it back */
1155 * And finally, verify that the grid is of _at least_ the
1156 * requested difficulty, by running the solver one level
1157 * down and verifying that it can't manage it.
1159 } while (params->diff > 0 &&
1160 slant_solve(w, h, clues, tmpsoln, sc, params->diff - 1) <= 1);
1163 * Now we have the clue set as it will be presented to the
1164 * user. Encode it in a game desc.
1167 char *p;
1168 int run, i;
1170 desc = snewn(W*H+1, char);
1171 p = desc;
1172 run = 0;
1173 for (i = 0; i <= W*H; i++) {
1174 int n = (i < W*H ? clues[i] : -2);
1176 if (n == -1)
1177 run++;
1178 else {
1179 if (run) {
1180 while (run > 0) {
1181 int c = 'a' - 1 + run;
1182 if (run > 26)
1183 c = 'z';
1184 *p++ = c;
1185 run -= c - ('a' - 1);
1188 if (n >= 0)
1189 *p++ = '0' + n;
1190 run = 0;
1193 assert(p - desc <= W*H);
1194 *p++ = '\0';
1195 desc = sresize(desc, p - desc, char);
1199 * Encode the solution as an aux_info.
1202 char *auxbuf;
1203 *aux = auxbuf = snewn(w*h+1, char);
1204 for (i = 0; i < w*h; i++)
1205 auxbuf[i] = soln[i] < 0 ? '\\' : '/';
1206 auxbuf[w*h] = '\0';
1209 free_scratch(sc);
1210 sfree(clueindices);
1211 sfree(clues);
1212 sfree(tmpsoln);
1213 sfree(soln);
1215 return desc;
1218 static char *validate_desc(game_params *params, char *desc)
1220 int w = params->w, h = params->h, W = w+1, H = h+1;
1221 int area = W*H;
1222 int squares = 0;
1224 while (*desc) {
1225 int n = *desc++;
1226 if (n >= 'a' && n <= 'z') {
1227 squares += n - 'a' + 1;
1228 } else if (n >= '0' && n <= '4') {
1229 squares++;
1230 } else
1231 return "Invalid character in game description";
1234 if (squares < area)
1235 return "Not enough data to fill grid";
1237 if (squares > area)
1238 return "Too much data to fit in grid";
1240 return NULL;
1243 static game_state *new_game(midend *me, game_params *params, char *desc)
1245 int w = params->w, h = params->h, W = w+1, H = h+1;
1246 game_state *state = snew(game_state);
1247 int area = W*H;
1248 int squares = 0;
1250 state->p = *params;
1251 state->soln = snewn(w*h, signed char);
1252 memset(state->soln, 0, w*h);
1253 state->completed = state->used_solve = FALSE;
1254 state->errors = snewn(W*H, unsigned char);
1255 memset(state->errors, 0, W*H);
1257 state->clues = snew(game_clues);
1258 state->clues->w = w;
1259 state->clues->h = h;
1260 state->clues->clues = snewn(W*H, signed char);
1261 state->clues->refcount = 1;
1262 state->clues->tmpdsf = snewn(W*H, int);
1263 memset(state->clues->clues, -1, W*H);
1264 while (*desc) {
1265 int n = *desc++;
1266 if (n >= 'a' && n <= 'z') {
1267 squares += n - 'a' + 1;
1268 } else if (n >= '0' && n <= '4') {
1269 state->clues->clues[squares++] = n - '0';
1270 } else
1271 assert(!"can't get here");
1273 assert(squares == area);
1275 return state;
1278 static game_state *dup_game(game_state *state)
1280 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1281 game_state *ret = snew(game_state);
1283 ret->p = state->p;
1284 ret->clues = state->clues;
1285 ret->clues->refcount++;
1286 ret->completed = state->completed;
1287 ret->used_solve = state->used_solve;
1289 ret->soln = snewn(w*h, signed char);
1290 memcpy(ret->soln, state->soln, w*h);
1292 ret->errors = snewn(W*H, unsigned char);
1293 memcpy(ret->errors, state->errors, W*H);
1295 return ret;
1298 static void free_game(game_state *state)
1300 sfree(state->errors);
1301 sfree(state->soln);
1302 assert(state->clues);
1303 if (--state->clues->refcount <= 0) {
1304 sfree(state->clues->clues);
1305 sfree(state->clues->tmpdsf);
1306 sfree(state->clues);
1308 sfree(state);
1312 * Utility function to return the current degree of a vertex. If
1313 * `anti' is set, it returns the number of filled-in edges
1314 * surrounding the point which _don't_ connect to it; thus 4 minus
1315 * its anti-degree is the maximum degree it could have if all the
1316 * empty spaces around it were filled in.
1318 * (Yes, _4_ minus its anti-degree even if it's a border vertex.)
1320 * If ret > 0, *sx and *sy are set to the coordinates of one of the
1321 * squares that contributed to it.
1323 static int vertex_degree(int w, int h, signed char *soln, int x, int y,
1324 int anti, int *sx, int *sy)
1326 int ret = 0;
1328 assert(x >= 0 && x <= w && y >= 0 && y <= h);
1329 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] - anti < 0) {
1330 if (sx) *sx = x-1;
1331 if (sy) *sy = y-1;
1332 ret++;
1334 if (x > 0 && y < h && soln[y*w+(x-1)] + anti > 0) {
1335 if (sx) *sx = x-1;
1336 if (sy) *sy = y;
1337 ret++;
1339 if (x < w && y > 0 && soln[(y-1)*w+x] + anti > 0) {
1340 if (sx) *sx = x;
1341 if (sy) *sy = y-1;
1342 ret++;
1344 if (x < w && y < h && soln[y*w+x] - anti < 0) {
1345 if (sx) *sx = x;
1346 if (sy) *sy = y;
1347 ret++;
1350 return anti ? 4 - ret : ret;
1353 static int check_completion(game_state *state)
1355 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1356 int i, x, y, err = FALSE;
1357 int *dsf;
1359 memset(state->errors, 0, W*H);
1362 * To detect loops in the grid, we iterate through each edge
1363 * building up a dsf of connected components, and raise the
1364 * alarm whenever we find an edge that connects two
1365 * already-connected vertices.
1367 * We use the `tmpdsf' scratch space in the shared clues
1368 * structure, to avoid mallocing too often.
1370 * When we find such an edge, we then search around the grid to
1371 * find the loop it is a part of, so that we can highlight it
1372 * as an error for the user. We do this by the hand-on-one-wall
1373 * technique: the search will follow branches off the inside of
1374 * the loop, discover they're dead ends, and unhighlight them
1375 * again when returning to the actual loop.
1377 * This technique guarantees that every loop it tracks will
1378 * surround a disjoint area of the grid (since if an existing
1379 * loop appears on the boundary of a new one, so that there are
1380 * multiple possible paths that would come back to the starting
1381 * point, it will pick the one that allows it to turn right
1382 * most sharply and hence the one that does not re-surround the
1383 * area of the previous one). Thus, the total time taken in
1384 * searching round loops is linear in the grid area since every
1385 * edge is visited at most twice.
1387 dsf = state->clues->tmpdsf;
1388 dsf_init(dsf, W*H);
1389 for (y = 0; y < h; y++)
1390 for (x = 0; x < w; x++) {
1391 int i1, i2;
1393 if (state->soln[y*w+x] == 0)
1394 continue;
1395 if (state->soln[y*w+x] < 0) {
1396 i1 = y*W+x;
1397 i2 = (y+1)*W+(x+1);
1398 } else {
1399 i1 = y*W+(x+1);
1400 i2 = (y+1)*W+x;
1404 * Our edge connects i1 with i2. If they're already
1405 * connected, flag an error. Otherwise, link them.
1407 if (dsf_canonify(dsf, i1) == dsf_canonify(dsf, i2)) {
1408 int x1, y1, x2, y2, dx, dy, dt, pass;
1410 err = TRUE;
1413 * Now search around the boundary of the loop to
1414 * highlight it.
1416 * We have to do this in two passes. The first
1417 * time, we toggle ERR_SQUARE_TMP on each edge;
1418 * this pass terminates with ERR_SQUARE_TMP set on
1419 * exactly the loop edges. In the second pass, we
1420 * trace round that loop again and turn
1421 * ERR_SQUARE_TMP into ERR_SQUARE. We have to do
1422 * this because otherwise we might cancel part of a
1423 * loop highlighted in a previous iteration of the
1424 * outer loop.
1427 for (pass = 0; pass < 2; pass++) {
1429 x1 = i1 % W;
1430 y1 = i1 / W;
1431 x2 = i2 % W;
1432 y2 = i2 / W;
1434 do {
1435 /* Mark this edge. */
1436 if (pass == 0) {
1437 state->errors[min(y1,y2)*W+min(x1,x2)] ^=
1438 ERR_SQUARE_TMP;
1439 } else {
1440 state->errors[min(y1,y2)*W+min(x1,x2)] |=
1441 ERR_SQUARE;
1442 state->errors[min(y1,y2)*W+min(x1,x2)] &=
1443 ~ERR_SQUARE_TMP;
1447 * Progress to the next edge by turning as
1448 * sharply right as possible. In fact we do
1449 * this by facing back along the edge and
1450 * turning _left_ until we see an edge we
1451 * can follow.
1453 dx = x1 - x2;
1454 dy = y1 - y2;
1456 for (i = 0; i < 4; i++) {
1458 * Rotate (dx,dy) to the left.
1460 dt = dx; dx = dy; dy = -dt;
1463 * See if (x2,y2) has an edge in direction
1464 * (dx,dy).
1466 if (x2+dx < 0 || x2+dx >= W ||
1467 y2+dy < 0 || y2+dy >= H)
1468 continue; /* off the side of the grid */
1469 /* In the second pass, ignore unmarked edges. */
1470 if (pass == 1 &&
1471 !(state->errors[(y2-(dy<0))*W+x2-(dx<0)] &
1472 ERR_SQUARE_TMP))
1473 continue;
1474 if (state->soln[(y2-(dy<0))*w+x2-(dx<0)] ==
1475 (dx==dy ? -1 : +1))
1476 break;
1480 * In pass 0, we expect to have found
1481 * _some_ edge we can follow, even if it
1482 * was found by rotating all the way round
1483 * and going back the way we came.
1485 * In pass 1, because we're removing the
1486 * mark on each edge that allows us to
1487 * follow it, we expect to find _no_ edge
1488 * we can follow when we've come all the
1489 * way round the loop.
1491 if (pass == 1 && i == 4)
1492 break;
1493 assert(i < 4);
1496 * Set x1,y1 to x2,y2, and x2,y2 to be the
1497 * other end of the new edge.
1499 x1 = x2;
1500 y1 = y2;
1501 x2 += dx;
1502 y2 += dy;
1503 } while (y2*W+x2 != i2);
1507 } else
1508 dsf_merge(dsf, i1, i2);
1512 * Now go through and check the degree of each clue vertex, and
1513 * mark it with ERR_VERTEX if it cannot be fulfilled.
1515 for (y = 0; y < H; y++)
1516 for (x = 0; x < W; x++) {
1517 int c;
1519 if ((c = state->clues->clues[y*W+x]) < 0)
1520 continue;
1523 * Check to see if there are too many connections to
1524 * this vertex _or_ too many non-connections. Either is
1525 * grounds for marking the vertex as erroneous.
1527 if (vertex_degree(w, h, state->soln, x, y,
1528 FALSE, NULL, NULL) > c ||
1529 vertex_degree(w, h, state->soln, x, y,
1530 TRUE, NULL, NULL) > 4-c) {
1531 state->errors[y*W+x] |= ERR_VERTEX;
1532 err = TRUE;
1537 * Now our actual victory condition is that (a) none of the
1538 * above code marked anything as erroneous, and (b) every
1539 * square has an edge in it.
1542 if (err)
1543 return FALSE;
1545 for (y = 0; y < h; y++)
1546 for (x = 0; x < w; x++)
1547 if (state->soln[y*w+x] == 0)
1548 return FALSE;
1550 return TRUE;
1553 static char *solve_game(game_state *state, game_state *currstate,
1554 char *aux, char **error)
1556 int w = state->p.w, h = state->p.h;
1557 signed char *soln;
1558 int bs, ret;
1559 int free_soln = FALSE;
1560 char *move, buf[80];
1561 int movelen, movesize;
1562 int x, y;
1564 if (aux) {
1566 * If we already have the solution, save ourselves some
1567 * time.
1569 soln = (signed char *)aux;
1570 bs = (signed char)'\\';
1571 free_soln = FALSE;
1572 } else {
1573 struct solver_scratch *sc = new_scratch(w, h);
1574 soln = snewn(w*h, signed char);
1575 bs = -1;
1576 ret = slant_solve(w, h, state->clues->clues, soln, sc, DIFF_HARD);
1577 free_scratch(sc);
1578 if (ret != 1) {
1579 sfree(soln);
1580 if (ret == 0)
1581 *error = "This puzzle is not self-consistent";
1582 else
1583 *error = "Unable to find a unique solution for this puzzle";
1584 return NULL;
1586 free_soln = TRUE;
1590 * Construct a move string which turns the current state into
1591 * the solved state.
1593 movesize = 256;
1594 move = snewn(movesize, char);
1595 movelen = 0;
1596 move[movelen++] = 'S';
1597 move[movelen] = '\0';
1598 for (y = 0; y < h; y++)
1599 for (x = 0; x < w; x++) {
1600 int v = (soln[y*w+x] == bs ? -1 : +1);
1601 if (state->soln[y*w+x] != v) {
1602 int len = sprintf(buf, ";%c%d,%d", (int)(v < 0 ? '\\' : '/'), x, y);
1603 if (movelen + len >= movesize) {
1604 movesize = movelen + len + 256;
1605 move = sresize(move, movesize, char);
1607 strcpy(move + movelen, buf);
1608 movelen += len;
1612 if (free_soln)
1613 sfree(soln);
1615 return move;
1618 static char *game_text_format(game_state *state)
1620 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1621 int x, y, len;
1622 char *ret, *p;
1625 * There are h+H rows of w+W columns.
1627 len = (h+H) * (w+W+1) + 1;
1628 ret = snewn(len, char);
1629 p = ret;
1631 for (y = 0; y < H; y++) {
1632 for (x = 0; x < W; x++) {
1633 if (state->clues->clues[y*W+x] >= 0)
1634 *p++ = state->clues->clues[y*W+x] + '0';
1635 else
1636 *p++ = '+';
1637 if (x < w)
1638 *p++ = '-';
1640 *p++ = '\n';
1641 if (y < h) {
1642 for (x = 0; x < W; x++) {
1643 *p++ = '|';
1644 if (x < w) {
1645 if (state->soln[y*w+x] != 0)
1646 *p++ = (state->soln[y*w+x] < 0 ? '\\' : '/');
1647 else
1648 *p++ = ' ';
1651 *p++ = '\n';
1654 *p++ = '\0';
1656 assert(p - ret == len);
1657 return ret;
1660 static game_ui *new_ui(game_state *state)
1662 return NULL;
1665 static void free_ui(game_ui *ui)
1669 static char *encode_ui(game_ui *ui)
1671 return NULL;
1674 static void decode_ui(game_ui *ui, char *encoding)
1678 static void game_changed_state(game_ui *ui, game_state *oldstate,
1679 game_state *newstate)
1683 #define PREFERRED_TILESIZE 32
1684 #define TILESIZE (ds->tilesize)
1685 #define BORDER TILESIZE
1686 #define CLUE_RADIUS (TILESIZE / 3)
1687 #define CLUE_TEXTSIZE (TILESIZE / 2)
1688 #define COORD(x) ( (x) * TILESIZE + BORDER )
1689 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1691 #define FLASH_TIME 0.30F
1694 * Bit fields in the `grid' and `todraw' elements of the drawstate.
1696 #define BACKSLASH 0x00000001L
1697 #define FORWSLASH 0x00000002L
1698 #define L_T 0x00000004L
1699 #define ERR_L_T 0x00000008L
1700 #define L_B 0x00000010L
1701 #define ERR_L_B 0x00000020L
1702 #define T_L 0x00000040L
1703 #define ERR_T_L 0x00000080L
1704 #define T_R 0x00000100L
1705 #define ERR_T_R 0x00000200L
1706 #define C_TL 0x00000400L
1707 #define ERR_C_TL 0x00000800L
1708 #define FLASH 0x00001000L
1709 #define ERRSLASH 0x00002000L
1710 #define ERR_TL 0x00004000L
1711 #define ERR_TR 0x00008000L
1712 #define ERR_BL 0x00010000L
1713 #define ERR_BR 0x00020000L
1715 struct game_drawstate {
1716 int tilesize;
1717 int started;
1718 long *grid;
1719 long *todraw;
1722 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1723 int x, int y, int button)
1725 int w = state->p.w, h = state->p.h;
1727 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1728 int v;
1729 char buf[80];
1732 * This is an utterly awful hack which I should really sort out
1733 * by means of a proper configuration mechanism. One Slant
1734 * player has observed that they prefer the mouse buttons to
1735 * function exactly the opposite way round, so here's a
1736 * mechanism for environment-based configuration. I cache the
1737 * result in a global variable - yuck! - to avoid repeated
1738 * lookups.
1741 static int swap_buttons = -1;
1742 if (swap_buttons < 0) {
1743 char *env = getenv("SLANT_SWAP_BUTTONS");
1744 swap_buttons = (env && (env[0] == 'y' || env[0] == 'Y'));
1746 if (swap_buttons) {
1747 if (button == LEFT_BUTTON)
1748 button = RIGHT_BUTTON;
1749 else
1750 button = LEFT_BUTTON;
1754 x = FROMCOORD(x);
1755 y = FROMCOORD(y);
1756 if (x < 0 || y < 0 || x >= w || y >= h)
1757 return NULL;
1759 if (button == LEFT_BUTTON) {
1761 * Left-clicking cycles blank -> \ -> / -> blank.
1763 v = state->soln[y*w+x] - 1;
1764 if (v == -2)
1765 v = +1;
1766 } else {
1768 * Right-clicking cycles blank -> / -> \ -> blank.
1770 v = state->soln[y*w+x] + 1;
1771 if (v == +2)
1772 v = -1;
1775 sprintf(buf, "%c%d,%d", (int)(v==-1 ? '\\' : v==+1 ? '/' : 'C'), x, y);
1776 return dupstr(buf);
1779 return NULL;
1782 static game_state *execute_move(game_state *state, char *move)
1784 int w = state->p.w, h = state->p.h;
1785 char c;
1786 int x, y, n;
1787 game_state *ret = dup_game(state);
1789 while (*move) {
1790 c = *move;
1791 if (c == 'S') {
1792 ret->used_solve = TRUE;
1793 move++;
1794 } else if (c == '\\' || c == '/' || c == 'C') {
1795 move++;
1796 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
1797 x < 0 || y < 0 || x >= w || y >= h) {
1798 free_game(ret);
1799 return NULL;
1801 ret->soln[y*w+x] = (c == '\\' ? -1 : c == '/' ? +1 : 0);
1802 move += n;
1803 } else {
1804 free_game(ret);
1805 return NULL;
1807 if (*move == ';')
1808 move++;
1809 else if (*move) {
1810 free_game(ret);
1811 return NULL;
1816 * We never clear the `completed' flag, but we must always
1817 * re-run the completion check because it also highlights
1818 * errors in the grid.
1820 ret->completed = check_completion(ret) || ret->completed;
1822 return ret;
1825 /* ----------------------------------------------------------------------
1826 * Drawing routines.
1829 static void game_compute_size(game_params *params, int tilesize,
1830 int *x, int *y)
1832 /* fool the macros */
1833 struct dummy { int tilesize; } dummy = { tilesize }, *ds = &dummy;
1835 *x = 2 * BORDER + params->w * TILESIZE + 1;
1836 *y = 2 * BORDER + params->h * TILESIZE + 1;
1839 static void game_set_size(drawing *dr, game_drawstate *ds,
1840 game_params *params, int tilesize)
1842 ds->tilesize = tilesize;
1845 static float *game_colours(frontend *fe, int *ncolours)
1847 float *ret = snewn(3 * NCOLOURS, float);
1849 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1851 ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.7F;
1852 ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.7F;
1853 ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.7F;
1855 ret[COL_INK * 3 + 0] = 0.0F;
1856 ret[COL_INK * 3 + 1] = 0.0F;
1857 ret[COL_INK * 3 + 2] = 0.0F;
1859 ret[COL_SLANT1 * 3 + 0] = 0.0F;
1860 ret[COL_SLANT1 * 3 + 1] = 0.0F;
1861 ret[COL_SLANT1 * 3 + 2] = 0.0F;
1863 ret[COL_SLANT2 * 3 + 0] = 0.0F;
1864 ret[COL_SLANT2 * 3 + 1] = 0.0F;
1865 ret[COL_SLANT2 * 3 + 2] = 0.0F;
1867 ret[COL_ERROR * 3 + 0] = 1.0F;
1868 ret[COL_ERROR * 3 + 1] = 0.0F;
1869 ret[COL_ERROR * 3 + 2] = 0.0F;
1871 *ncolours = NCOLOURS;
1872 return ret;
1875 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1877 int w = state->p.w, h = state->p.h;
1878 int i;
1879 struct game_drawstate *ds = snew(struct game_drawstate);
1881 ds->tilesize = 0;
1882 ds->started = FALSE;
1883 ds->grid = snewn((w+2)*(h+2), long);
1884 ds->todraw = snewn((w+2)*(h+2), long);
1885 for (i = 0; i < (w+2)*(h+2); i++)
1886 ds->grid[i] = ds->todraw[i] = -1;
1888 return ds;
1891 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1893 sfree(ds->todraw);
1894 sfree(ds->grid);
1895 sfree(ds);
1898 static void draw_clue(drawing *dr, game_drawstate *ds,
1899 int x, int y, long v, long err, int bg, int colour)
1901 char p[2];
1902 int ccol = colour >= 0 ? colour : ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2;
1903 int tcol = colour >= 0 ? colour : err ? COL_ERROR : COL_INK;
1905 if (v < 0)
1906 return;
1908 p[0] = v + '0';
1909 p[1] = '\0';
1910 draw_circle(dr, COORD(x), COORD(y), CLUE_RADIUS,
1911 bg >= 0 ? bg : COL_BACKGROUND, ccol);
1912 draw_text(dr, COORD(x), COORD(y), FONT_VARIABLE,
1913 CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE, tcol, p);
1916 static void draw_tile(drawing *dr, game_drawstate *ds, game_clues *clues,
1917 int x, int y, long v)
1919 int w = clues->w, h = clues->h, W = w+1 /*, H = h+1 */;
1920 int chesscolour = (x ^ y) & 1;
1921 int fscol = chesscolour ? COL_SLANT2 : COL_SLANT1;
1922 int bscol = chesscolour ? COL_SLANT1 : COL_SLANT2;
1924 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
1926 draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
1927 (v & FLASH) ? COL_GRID : COL_BACKGROUND);
1930 * Draw the grid lines.
1932 if (x >= 0 && x < w && y >= 0)
1933 draw_rect(dr, COORD(x), COORD(y), TILESIZE+1, 1, COL_GRID);
1934 if (x >= 0 && x < w && y < h)
1935 draw_rect(dr, COORD(x), COORD(y+1), TILESIZE+1, 1, COL_GRID);
1936 if (y >= 0 && y < h && x >= 0)
1937 draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE+1, COL_GRID);
1938 if (y >= 0 && y < h && x < w)
1939 draw_rect(dr, COORD(x+1), COORD(y), 1, TILESIZE+1, COL_GRID);
1940 if (x == -1 && y == -1)
1941 draw_rect(dr, COORD(x+1), COORD(y+1), 1, 1, COL_GRID);
1942 if (x == -1 && y == h)
1943 draw_rect(dr, COORD(x+1), COORD(y), 1, 1, COL_GRID);
1944 if (x == w && y == -1)
1945 draw_rect(dr, COORD(x), COORD(y+1), 1, 1, COL_GRID);
1946 if (x == w && y == h)
1947 draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
1950 * Draw the slash.
1952 if (v & BACKSLASH) {
1953 int scol = (v & ERRSLASH) ? COL_ERROR : bscol;
1954 draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y+1), scol);
1955 draw_line(dr, COORD(x)+1, COORD(y), COORD(x+1), COORD(y+1)-1,
1956 scol);
1957 draw_line(dr, COORD(x), COORD(y)+1, COORD(x+1)-1, COORD(y+1),
1958 scol);
1959 } else if (v & FORWSLASH) {
1960 int scol = (v & ERRSLASH) ? COL_ERROR : fscol;
1961 draw_line(dr, COORD(x+1), COORD(y), COORD(x), COORD(y+1), scol);
1962 draw_line(dr, COORD(x+1)-1, COORD(y), COORD(x), COORD(y+1)-1,
1963 scol);
1964 draw_line(dr, COORD(x+1), COORD(y)+1, COORD(x)+1, COORD(y+1),
1965 scol);
1969 * Draw dots on the grid corners that appear if a slash is in a
1970 * neighbouring cell.
1972 if (v & (L_T | BACKSLASH))
1973 draw_rect(dr, COORD(x), COORD(y)+1, 1, 1,
1974 (v & ERR_L_T ? COL_ERROR : bscol));
1975 if (v & (L_B | FORWSLASH))
1976 draw_rect(dr, COORD(x), COORD(y+1)-1, 1, 1,
1977 (v & ERR_L_B ? COL_ERROR : fscol));
1978 if (v & (T_L | BACKSLASH))
1979 draw_rect(dr, COORD(x)+1, COORD(y), 1, 1,
1980 (v & ERR_T_L ? COL_ERROR : bscol));
1981 if (v & (T_R | FORWSLASH))
1982 draw_rect(dr, COORD(x+1)-1, COORD(y), 1, 1,
1983 (v & ERR_T_R ? COL_ERROR : fscol));
1984 if (v & (C_TL | BACKSLASH))
1985 draw_rect(dr, COORD(x), COORD(y), 1, 1,
1986 (v & ERR_C_TL ? COL_ERROR : bscol));
1989 * And finally the clues at the corners.
1991 if (x >= 0 && y >= 0)
1992 draw_clue(dr, ds, x, y, clues->clues[y*W+x], v & ERR_TL, -1, -1);
1993 if (x < w && y >= 0)
1994 draw_clue(dr, ds, x+1, y, clues->clues[y*W+(x+1)], v & ERR_TR, -1, -1);
1995 if (x >= 0 && y < h)
1996 draw_clue(dr, ds, x, y+1, clues->clues[(y+1)*W+x], v & ERR_BL, -1, -1);
1997 if (x < w && y < h)
1998 draw_clue(dr, ds, x+1, y+1, clues->clues[(y+1)*W+(x+1)], v & ERR_BR,
1999 -1, -1);
2001 unclip(dr);
2002 draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2005 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2006 game_state *state, int dir, game_ui *ui,
2007 float animtime, float flashtime)
2009 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
2010 int x, y;
2011 int flashing;
2013 if (flashtime > 0)
2014 flashing = (int)(flashtime * 3 / FLASH_TIME) != 1;
2015 else
2016 flashing = FALSE;
2018 if (!ds->started) {
2019 int ww, wh;
2020 game_compute_size(&state->p, TILESIZE, &ww, &wh);
2021 draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
2022 draw_update(dr, 0, 0, ww, wh);
2023 ds->started = TRUE;
2027 * Loop over the grid and work out where all the slashes are.
2028 * We need to do this because a slash in one square affects the
2029 * drawing of the next one along.
2031 for (y = -1; y <= h; y++)
2032 for (x = -1; x <= w; x++) {
2033 if (x >= 0 && x < w && y >= 0 && y < h)
2034 ds->todraw[(y+1)*(w+2)+(x+1)] = flashing ? FLASH : 0;
2035 else
2036 ds->todraw[(y+1)*(w+2)+(x+1)] = 0;
2039 for (y = 0; y < h; y++) {
2040 for (x = 0; x < w; x++) {
2041 int err = state->errors[y*W+x] & ERR_SQUARE;
2043 if (state->soln[y*w+x] < 0) {
2044 ds->todraw[(y+1)*(w+2)+(x+1)] |= BACKSLASH;
2045 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_R;
2046 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_B;
2047 ds->todraw[(y+2)*(w+2)+(x+2)] |= C_TL;
2048 if (err) {
2049 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
2050 ERR_T_L | ERR_L_T | ERR_C_TL;
2051 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_R;
2052 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_B;
2053 ds->todraw[(y+2)*(w+2)+(x+2)] |= ERR_C_TL;
2055 } else if (state->soln[y*w+x] > 0) {
2056 ds->todraw[(y+1)*(w+2)+(x+1)] |= FORWSLASH;
2057 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_T | C_TL;
2058 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_L | C_TL;
2059 if (err) {
2060 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
2061 ERR_L_B | ERR_T_R;
2062 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_T | ERR_C_TL;
2063 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_L | ERR_C_TL;
2069 for (y = 0; y < H; y++)
2070 for (x = 0; x < W; x++)
2071 if (state->errors[y*W+x] & ERR_VERTEX) {
2072 ds->todraw[y*(w+2)+x] |= ERR_BR;
2073 ds->todraw[y*(w+2)+(x+1)] |= ERR_BL;
2074 ds->todraw[(y+1)*(w+2)+x] |= ERR_TR;
2075 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERR_TL;
2079 * Now go through and draw the grid squares.
2081 for (y = -1; y <= h; y++) {
2082 for (x = -1; x <= w; x++) {
2083 if (ds->todraw[(y+1)*(w+2)+(x+1)] != ds->grid[(y+1)*(w+2)+(x+1)]) {
2084 draw_tile(dr, ds, state->clues, x, y,
2085 ds->todraw[(y+1)*(w+2)+(x+1)]);
2086 ds->grid[(y+1)*(w+2)+(x+1)] = ds->todraw[(y+1)*(w+2)+(x+1)];
2092 static float game_anim_length(game_state *oldstate, game_state *newstate,
2093 int dir, game_ui *ui)
2095 return 0.0F;
2098 static float game_flash_length(game_state *oldstate, game_state *newstate,
2099 int dir, game_ui *ui)
2101 if (!oldstate->completed && newstate->completed &&
2102 !oldstate->used_solve && !newstate->used_solve)
2103 return FLASH_TIME;
2105 return 0.0F;
2108 static int game_timing_state(game_state *state, game_ui *ui)
2110 return TRUE;
2113 static void game_print_size(game_params *params, float *x, float *y)
2115 int pw, ph;
2118 * I'll use 6mm squares by default.
2120 game_compute_size(params, 600, &pw, &ph);
2121 *x = pw / 100.0;
2122 *y = ph / 100.0;
2125 static void game_print(drawing *dr, game_state *state, int tilesize)
2127 int w = state->p.w, h = state->p.h, W = w+1;
2128 int ink = print_mono_colour(dr, 0);
2129 int paper = print_mono_colour(dr, 1);
2130 int x, y;
2132 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2133 game_drawstate ads, *ds = &ads;
2134 game_set_size(dr, ds, NULL, tilesize);
2137 * Border.
2139 print_line_width(dr, TILESIZE / 16);
2140 draw_rect_outline(dr, COORD(0), COORD(0), w*TILESIZE, h*TILESIZE, ink);
2143 * Grid.
2145 print_line_width(dr, TILESIZE / 24);
2146 for (x = 1; x < w; x++)
2147 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
2148 for (y = 1; y < h; y++)
2149 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
2152 * Solution.
2154 print_line_width(dr, TILESIZE / 12);
2155 for (y = 0; y < h; y++)
2156 for (x = 0; x < w; x++)
2157 if (state->soln[y*w+x]) {
2158 int ly, ry;
2160 * To prevent nasty line-ending artefacts at
2161 * corners, I'll do something slightly cunning
2162 * here.
2164 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2165 if (state->soln[y*w+x] < 0)
2166 ly = y-1, ry = y+2;
2167 else
2168 ry = y-1, ly = y+2;
2169 draw_line(dr, COORD(x-1), COORD(ly), COORD(x+2), COORD(ry),
2170 ink);
2171 unclip(dr);
2175 * Clues.
2177 print_line_width(dr, TILESIZE / 24);
2178 for (y = 0; y <= h; y++)
2179 for (x = 0; x <= w; x++)
2180 draw_clue(dr, ds, x, y, state->clues->clues[y*W+x],
2181 FALSE, paper, ink);
2184 #ifdef COMBINED
2185 #define thegame slant
2186 #endif
2188 const struct game thegame = {
2189 "Slant", "games.slant", "slant",
2190 default_params,
2191 game_fetch_preset,
2192 decode_params,
2193 encode_params,
2194 free_params,
2195 dup_params,
2196 TRUE, game_configure, custom_params,
2197 validate_params,
2198 new_game_desc,
2199 validate_desc,
2200 new_game,
2201 dup_game,
2202 free_game,
2203 TRUE, solve_game,
2204 TRUE, game_text_format,
2205 new_ui,
2206 free_ui,
2207 encode_ui,
2208 decode_ui,
2209 game_changed_state,
2210 interpret_move,
2211 execute_move,
2212 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2213 game_colours,
2214 game_new_drawstate,
2215 game_free_drawstate,
2216 game_redraw,
2217 game_anim_length,
2218 game_flash_length,
2219 TRUE, FALSE, game_print_size, game_print,
2220 FALSE, /* wants_statusbar */
2221 FALSE, game_timing_state,
2222 0, /* flags */
2225 #ifdef STANDALONE_SOLVER
2227 #include <stdarg.h>
2229 int main(int argc, char **argv)
2231 game_params *p;
2232 game_state *s;
2233 char *id = NULL, *desc, *err;
2234 int grade = FALSE;
2235 int ret, diff, really_verbose = FALSE;
2236 struct solver_scratch *sc;
2238 while (--argc > 0) {
2239 char *p = *++argv;
2240 if (!strcmp(p, "-v")) {
2241 really_verbose = TRUE;
2242 } else if (!strcmp(p, "-g")) {
2243 grade = TRUE;
2244 } else if (*p == '-') {
2245 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2246 return 1;
2247 } else {
2248 id = p;
2252 if (!id) {
2253 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2254 return 1;
2257 desc = strchr(id, ':');
2258 if (!desc) {
2259 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2260 return 1;
2262 *desc++ = '\0';
2264 p = default_params();
2265 decode_params(p, id);
2266 err = validate_desc(p, desc);
2267 if (err) {
2268 fprintf(stderr, "%s: %s\n", argv[0], err);
2269 return 1;
2271 s = new_game(NULL, p, desc);
2273 sc = new_scratch(p->w, p->h);
2276 * When solving an Easy puzzle, we don't want to bother the
2277 * user with Hard-level deductions. For this reason, we grade
2278 * the puzzle internally before doing anything else.
2280 ret = -1; /* placate optimiser */
2281 for (diff = 0; diff < DIFFCOUNT; diff++) {
2282 ret = slant_solve(p->w, p->h, s->clues->clues,
2283 s->soln, sc, diff);
2284 if (ret < 2)
2285 break;
2288 if (diff == DIFFCOUNT) {
2289 if (grade)
2290 printf("Difficulty rating: harder than Hard, or ambiguous\n");
2291 else
2292 printf("Unable to find a unique solution\n");
2293 } else {
2294 if (grade) {
2295 if (ret == 0)
2296 printf("Difficulty rating: impossible (no solution exists)\n");
2297 else if (ret == 1)
2298 printf("Difficulty rating: %s\n", slant_diffnames[diff]);
2299 } else {
2300 verbose = really_verbose;
2301 ret = slant_solve(p->w, p->h, s->clues->clues,
2302 s->soln, sc, diff);
2303 if (ret == 0)
2304 printf("Puzzle is inconsistent\n");
2305 else
2306 fputs(game_text_format(s), stdout);
2310 return 0;
2313 #endif