New upstream release
[sgt-puzzles/ydirson.git] / tree234.c
blob9699120298d3202fe0d2f5f798212c8d0d24eeb3
1 /*
2 * tree234.c: reasonably generic counted 2-3-4 tree routines.
3 *
4 * This file is copyright 1999-2001 Simon Tatham.
5 *
6 * Permission is hereby granted, free of charge, to any person
7 * obtaining a copy of this software and associated documentation
8 * files (the "Software"), to deal in the Software without
9 * restriction, including without limitation the rights to use,
10 * copy, modify, merge, publish, distribute, sublicense, and/or
11 * sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following
13 * conditions:
15 * The above copyright notice and this permission notice shall be
16 * included in all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
20 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
21 * NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
23 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * SOFTWARE.
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <assert.h>
32 #include "tree234.h"
34 #include "puzzles.h" /* for smalloc/sfree */
36 #ifdef TEST
37 #define LOG(x) (printf x)
38 #define smalloc malloc
39 #define srealloc realloc
40 #define sfree free
41 #else
42 #define LOG(x)
43 #endif
45 typedef struct node234_Tag node234;
47 struct tree234_Tag {
48 node234 *root;
49 cmpfn234 cmp;
52 struct node234_Tag {
53 node234 *parent;
54 node234 *kids[4];
55 int counts[4];
56 void *elems[3];
60 * Create a 2-3-4 tree.
62 tree234 *newtree234(cmpfn234 cmp) {
63 tree234 *ret = snew(tree234);
64 LOG(("created tree %p\n", ret));
65 ret->root = NULL;
66 ret->cmp = cmp;
67 return ret;
71 * Free a 2-3-4 tree (not including freeing the elements).
73 static void freenode234(node234 *n) {
74 if (!n)
75 return;
76 freenode234(n->kids[0]);
77 freenode234(n->kids[1]);
78 freenode234(n->kids[2]);
79 freenode234(n->kids[3]);
80 sfree(n);
82 void freetree234(tree234 *t) {
83 freenode234(t->root);
84 sfree(t);
88 * Internal function to count a node.
90 static int countnode234(node234 *n) {
91 int count = 0;
92 int i;
93 if (!n)
94 return 0;
95 for (i = 0; i < 4; i++)
96 count += n->counts[i];
97 for (i = 0; i < 3; i++)
98 if (n->elems[i])
99 count++;
100 return count;
104 * Count the elements in a tree.
106 int count234(tree234 *t) {
107 if (t->root)
108 return countnode234(t->root);
109 else
110 return 0;
114 * Propagate a node overflow up a tree until it stops. Returns 0 or
115 * 1, depending on whether the root had to be split or not.
117 static int add234_insert(node234 *left, void *e, node234 *right,
118 node234 **root, node234 *n, int ki) {
119 int lcount, rcount;
121 * We need to insert the new left/element/right set in n at
122 * child position ki.
124 lcount = countnode234(left);
125 rcount = countnode234(right);
126 while (n) {
127 LOG((" at %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
129 n->kids[0], n->counts[0], n->elems[0],
130 n->kids[1], n->counts[1], n->elems[1],
131 n->kids[2], n->counts[2], n->elems[2],
132 n->kids[3], n->counts[3]));
133 LOG((" need to insert %p/%d \"%s\" %p/%d at position %d\n",
134 left, lcount, e, right, rcount, ki));
135 if (n->elems[1] == NULL) {
137 * Insert in a 2-node; simple.
139 if (ki == 0) {
140 LOG((" inserting on left of 2-node\n"));
141 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
142 n->elems[1] = n->elems[0];
143 n->kids[1] = right; n->counts[1] = rcount;
144 n->elems[0] = e;
145 n->kids[0] = left; n->counts[0] = lcount;
146 } else { /* ki == 1 */
147 LOG((" inserting on right of 2-node\n"));
148 n->kids[2] = right; n->counts[2] = rcount;
149 n->elems[1] = e;
150 n->kids[1] = left; n->counts[1] = lcount;
152 if (n->kids[0]) n->kids[0]->parent = n;
153 if (n->kids[1]) n->kids[1]->parent = n;
154 if (n->kids[2]) n->kids[2]->parent = n;
155 LOG((" done\n"));
156 break;
157 } else if (n->elems[2] == NULL) {
159 * Insert in a 3-node; simple.
161 if (ki == 0) {
162 LOG((" inserting on left of 3-node\n"));
163 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
164 n->elems[2] = n->elems[1];
165 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
166 n->elems[1] = n->elems[0];
167 n->kids[1] = right; n->counts[1] = rcount;
168 n->elems[0] = e;
169 n->kids[0] = left; n->counts[0] = lcount;
170 } else if (ki == 1) {
171 LOG((" inserting in middle of 3-node\n"));
172 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
173 n->elems[2] = n->elems[1];
174 n->kids[2] = right; n->counts[2] = rcount;
175 n->elems[1] = e;
176 n->kids[1] = left; n->counts[1] = lcount;
177 } else { /* ki == 2 */
178 LOG((" inserting on right of 3-node\n"));
179 n->kids[3] = right; n->counts[3] = rcount;
180 n->elems[2] = e;
181 n->kids[2] = left; n->counts[2] = lcount;
183 if (n->kids[0]) n->kids[0]->parent = n;
184 if (n->kids[1]) n->kids[1]->parent = n;
185 if (n->kids[2]) n->kids[2]->parent = n;
186 if (n->kids[3]) n->kids[3]->parent = n;
187 LOG((" done\n"));
188 break;
189 } else {
190 node234 *m = snew(node234);
191 m->parent = n->parent;
192 LOG((" splitting a 4-node; created new node %p\n", m));
194 * Insert in a 4-node; split into a 2-node and a
195 * 3-node, and move focus up a level.
197 * I don't think it matters which way round we put the
198 * 2 and the 3. For simplicity, we'll put the 3 first
199 * always.
201 if (ki == 0) {
202 m->kids[0] = left; m->counts[0] = lcount;
203 m->elems[0] = e;
204 m->kids[1] = right; m->counts[1] = rcount;
205 m->elems[1] = n->elems[0];
206 m->kids[2] = n->kids[1]; m->counts[2] = n->counts[1];
207 e = n->elems[1];
208 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
209 n->elems[0] = n->elems[2];
210 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
211 } else if (ki == 1) {
212 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
213 m->elems[0] = n->elems[0];
214 m->kids[1] = left; m->counts[1] = lcount;
215 m->elems[1] = e;
216 m->kids[2] = right; m->counts[2] = rcount;
217 e = n->elems[1];
218 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
219 n->elems[0] = n->elems[2];
220 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
221 } else if (ki == 2) {
222 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
223 m->elems[0] = n->elems[0];
224 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
225 m->elems[1] = n->elems[1];
226 m->kids[2] = left; m->counts[2] = lcount;
227 /* e = e; */
228 n->kids[0] = right; n->counts[0] = rcount;
229 n->elems[0] = n->elems[2];
230 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
231 } else { /* ki == 3 */
232 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
233 m->elems[0] = n->elems[0];
234 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
235 m->elems[1] = n->elems[1];
236 m->kids[2] = n->kids[2]; m->counts[2] = n->counts[2];
237 n->kids[0] = left; n->counts[0] = lcount;
238 n->elems[0] = e;
239 n->kids[1] = right; n->counts[1] = rcount;
240 e = n->elems[2];
242 m->kids[3] = n->kids[3] = n->kids[2] = NULL;
243 m->counts[3] = n->counts[3] = n->counts[2] = 0;
244 m->elems[2] = n->elems[2] = n->elems[1] = NULL;
245 if (m->kids[0]) m->kids[0]->parent = m;
246 if (m->kids[1]) m->kids[1]->parent = m;
247 if (m->kids[2]) m->kids[2]->parent = m;
248 if (n->kids[0]) n->kids[0]->parent = n;
249 if (n->kids[1]) n->kids[1]->parent = n;
250 LOG((" left (%p): %p/%d \"%s\" %p/%d \"%s\" %p/%d\n", m,
251 m->kids[0], m->counts[0], m->elems[0],
252 m->kids[1], m->counts[1], m->elems[1],
253 m->kids[2], m->counts[2]));
254 LOG((" right (%p): %p/%d \"%s\" %p/%d\n", n,
255 n->kids[0], n->counts[0], n->elems[0],
256 n->kids[1], n->counts[1]));
257 left = m; lcount = countnode234(left);
258 right = n; rcount = countnode234(right);
260 if (n->parent)
261 ki = (n->parent->kids[0] == n ? 0 :
262 n->parent->kids[1] == n ? 1 :
263 n->parent->kids[2] == n ? 2 : 3);
264 n = n->parent;
268 * If we've come out of here by `break', n will still be
269 * non-NULL and all we need to do is go back up the tree
270 * updating counts. If we've come here because n is NULL, we
271 * need to create a new root for the tree because the old one
272 * has just split into two. */
273 if (n) {
274 while (n->parent) {
275 int count = countnode234(n);
276 int childnum;
277 childnum = (n->parent->kids[0] == n ? 0 :
278 n->parent->kids[1] == n ? 1 :
279 n->parent->kids[2] == n ? 2 : 3);
280 n->parent->counts[childnum] = count;
281 n = n->parent;
283 return 0; /* root unchanged */
284 } else {
285 LOG((" root is overloaded, split into two\n"));
286 (*root) = snew(node234);
287 (*root)->kids[0] = left; (*root)->counts[0] = lcount;
288 (*root)->elems[0] = e;
289 (*root)->kids[1] = right; (*root)->counts[1] = rcount;
290 (*root)->elems[1] = NULL;
291 (*root)->kids[2] = NULL; (*root)->counts[2] = 0;
292 (*root)->elems[2] = NULL;
293 (*root)->kids[3] = NULL; (*root)->counts[3] = 0;
294 (*root)->parent = NULL;
295 if ((*root)->kids[0]) (*root)->kids[0]->parent = (*root);
296 if ((*root)->kids[1]) (*root)->kids[1]->parent = (*root);
297 LOG((" new root is %p/%d \"%s\" %p/%d\n",
298 (*root)->kids[0], (*root)->counts[0],
299 (*root)->elems[0],
300 (*root)->kids[1], (*root)->counts[1]));
301 return 1; /* root moved */
306 * Add an element e to a 2-3-4 tree t. Returns e on success, or if
307 * an existing element compares equal, returns that.
309 static void *add234_internal(tree234 *t, void *e, int index) {
310 node234 *n;
311 int ki;
312 void *orig_e = e;
313 int c;
315 LOG(("adding element \"%s\" to tree %p\n", e, t));
316 if (t->root == NULL) {
317 t->root = snew(node234);
318 t->root->elems[1] = t->root->elems[2] = NULL;
319 t->root->kids[0] = t->root->kids[1] = NULL;
320 t->root->kids[2] = t->root->kids[3] = NULL;
321 t->root->counts[0] = t->root->counts[1] = 0;
322 t->root->counts[2] = t->root->counts[3] = 0;
323 t->root->parent = NULL;
324 t->root->elems[0] = e;
325 LOG((" created root %p\n", t->root));
326 return orig_e;
329 n = t->root;
330 while (n) {
331 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
333 n->kids[0], n->counts[0], n->elems[0],
334 n->kids[1], n->counts[1], n->elems[1],
335 n->kids[2], n->counts[2], n->elems[2],
336 n->kids[3], n->counts[3]));
337 if (index >= 0) {
338 if (!n->kids[0]) {
340 * Leaf node. We want to insert at kid position
341 * equal to the index:
343 * 0 A 1 B 2 C 3
345 ki = index;
346 } else {
348 * Internal node. We always descend through it (add
349 * always starts at the bottom, never in the
350 * middle).
352 if (index <= n->counts[0]) {
353 ki = 0;
354 } else if (index -= n->counts[0] + 1, index <= n->counts[1]) {
355 ki = 1;
356 } else if (index -= n->counts[1] + 1, index <= n->counts[2]) {
357 ki = 2;
358 } else if (index -= n->counts[2] + 1, index <= n->counts[3]) {
359 ki = 3;
360 } else
361 return NULL; /* error: index out of range */
363 } else {
364 if ((c = t->cmp(e, n->elems[0])) < 0)
365 ki = 0;
366 else if (c == 0)
367 return n->elems[0]; /* already exists */
368 else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
369 ki = 1;
370 else if (c == 0)
371 return n->elems[1]; /* already exists */
372 else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
373 ki = 2;
374 else if (c == 0)
375 return n->elems[2]; /* already exists */
376 else
377 ki = 3;
379 LOG((" moving to child %d (%p)\n", ki, n->kids[ki]));
380 if (!n->kids[ki])
381 break;
382 n = n->kids[ki];
385 add234_insert(NULL, e, NULL, &t->root, n, ki);
387 return orig_e;
390 void *add234(tree234 *t, void *e) {
391 if (!t->cmp) /* tree is unsorted */
392 return NULL;
394 return add234_internal(t, e, -1);
396 void *addpos234(tree234 *t, void *e, int index) {
397 if (index < 0 || /* index out of range */
398 t->cmp) /* tree is sorted */
399 return NULL; /* return failure */
401 return add234_internal(t, e, index); /* this checks the upper bound */
405 * Look up the element at a given numeric index in a 2-3-4 tree.
406 * Returns NULL if the index is out of range.
408 void *index234(tree234 *t, int index) {
409 node234 *n;
411 if (!t->root)
412 return NULL; /* tree is empty */
414 if (index < 0 || index >= countnode234(t->root))
415 return NULL; /* out of range */
417 n = t->root;
419 while (n) {
420 if (index < n->counts[0])
421 n = n->kids[0];
422 else if (index -= n->counts[0] + 1, index < 0)
423 return n->elems[0];
424 else if (index < n->counts[1])
425 n = n->kids[1];
426 else if (index -= n->counts[1] + 1, index < 0)
427 return n->elems[1];
428 else if (index < n->counts[2])
429 n = n->kids[2];
430 else if (index -= n->counts[2] + 1, index < 0)
431 return n->elems[2];
432 else
433 n = n->kids[3];
436 /* We shouldn't ever get here. I wonder how we did. */
437 return NULL;
441 * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
442 * found. e is always passed as the first argument to cmp, so cmp
443 * can be an asymmetric function if desired. cmp can also be passed
444 * as NULL, in which case the compare function from the tree proper
445 * will be used.
447 void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp,
448 int relation, int *index) {
449 node234 *n;
450 void *ret;
451 int c;
452 int idx, ecount, kcount, cmpret;
454 if (t->root == NULL)
455 return NULL;
457 if (cmp == NULL)
458 cmp = t->cmp;
460 n = t->root;
462 * Attempt to find the element itself.
464 idx = 0;
465 ecount = -1;
467 * Prepare a fake `cmp' result if e is NULL.
469 cmpret = 0;
470 if (e == NULL) {
471 assert(relation == REL234_LT || relation == REL234_GT);
472 if (relation == REL234_LT)
473 cmpret = +1; /* e is a max: always greater */
474 else if (relation == REL234_GT)
475 cmpret = -1; /* e is a min: always smaller */
477 while (1) {
478 for (kcount = 0; kcount < 4; kcount++) {
479 if (kcount >= 3 || n->elems[kcount] == NULL ||
480 (c = cmpret ? cmpret : cmp(e, n->elems[kcount])) < 0) {
481 break;
483 if (n->kids[kcount]) idx += n->counts[kcount];
484 if (c == 0) {
485 ecount = kcount;
486 break;
488 idx++;
490 if (ecount >= 0)
491 break;
492 if (n->kids[kcount])
493 n = n->kids[kcount];
494 else
495 break;
498 if (ecount >= 0) {
500 * We have found the element we're looking for. It's
501 * n->elems[ecount], at tree index idx. If our search
502 * relation is EQ, LE or GE we can now go home.
504 if (relation != REL234_LT && relation != REL234_GT) {
505 if (index) *index = idx;
506 return n->elems[ecount];
510 * Otherwise, we'll do an indexed lookup for the previous
511 * or next element. (It would be perfectly possible to
512 * implement these search types in a non-counted tree by
513 * going back up from where we are, but far more fiddly.)
515 if (relation == REL234_LT)
516 idx--;
517 else
518 idx++;
519 } else {
521 * We've found our way to the bottom of the tree and we
522 * know where we would insert this node if we wanted to:
523 * we'd put it in in place of the (empty) subtree
524 * n->kids[kcount], and it would have index idx
526 * But the actual element isn't there. So if our search
527 * relation is EQ, we're doomed.
529 if (relation == REL234_EQ)
530 return NULL;
533 * Otherwise, we must do an index lookup for index idx-1
534 * (if we're going left - LE or LT) or index idx (if we're
535 * going right - GE or GT).
537 if (relation == REL234_LT || relation == REL234_LE) {
538 idx--;
543 * We know the index of the element we want; just call index234
544 * to do the rest. This will return NULL if the index is out of
545 * bounds, which is exactly what we want.
547 ret = index234(t, idx);
548 if (ret && index) *index = idx;
549 return ret;
551 void *find234(tree234 *t, void *e, cmpfn234 cmp) {
552 return findrelpos234(t, e, cmp, REL234_EQ, NULL);
554 void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation) {
555 return findrelpos234(t, e, cmp, relation, NULL);
557 void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index) {
558 return findrelpos234(t, e, cmp, REL234_EQ, index);
562 * Tree transformation used in delete and split: move a subtree
563 * right, from child ki of a node to the next child. Update k and
564 * index so that they still point to the same place in the
565 * transformed tree. Assumes the destination child is not full, and
566 * that the source child does have a subtree to spare. Can cope if
567 * the destination child is undersized.
569 * . C . . B .
570 * / \ -> / \
571 * [more] a A b B c d D e [more] a A b c C d D e
573 * . C . . B .
574 * / \ -> / \
575 * [more] a A b B c d [more] a A b c C d
577 static void trans234_subtree_right(node234 *n, int ki, int *k, int *index) {
578 node234 *src, *dest;
579 int i, srclen, adjust;
581 src = n->kids[ki];
582 dest = n->kids[ki+1];
584 LOG((" trans234_subtree_right(%p, %d):\n", n, ki));
585 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
587 n->kids[0], n->counts[0], n->elems[0],
588 n->kids[1], n->counts[1], n->elems[1],
589 n->kids[2], n->counts[2], n->elems[2],
590 n->kids[3], n->counts[3]));
591 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
592 src,
593 src->kids[0], src->counts[0], src->elems[0],
594 src->kids[1], src->counts[1], src->elems[1],
595 src->kids[2], src->counts[2], src->elems[2],
596 src->kids[3], src->counts[3]));
597 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
598 dest,
599 dest->kids[0], dest->counts[0], dest->elems[0],
600 dest->kids[1], dest->counts[1], dest->elems[1],
601 dest->kids[2], dest->counts[2], dest->elems[2],
602 dest->kids[3], dest->counts[3]));
604 * Move over the rest of the destination node to make space.
606 dest->kids[3] = dest->kids[2]; dest->counts[3] = dest->counts[2];
607 dest->elems[2] = dest->elems[1];
608 dest->kids[2] = dest->kids[1]; dest->counts[2] = dest->counts[1];
609 dest->elems[1] = dest->elems[0];
610 dest->kids[1] = dest->kids[0]; dest->counts[1] = dest->counts[0];
612 /* which element to move over */
613 i = (src->elems[2] ? 2 : src->elems[1] ? 1 : 0);
615 dest->elems[0] = n->elems[ki];
616 n->elems[ki] = src->elems[i];
617 src->elems[i] = NULL;
619 dest->kids[0] = src->kids[i+1]; dest->counts[0] = src->counts[i+1];
620 src->kids[i+1] = NULL; src->counts[i+1] = 0;
622 if (dest->kids[0]) dest->kids[0]->parent = dest;
624 adjust = dest->counts[0] + 1;
626 n->counts[ki] -= adjust;
627 n->counts[ki+1] += adjust;
629 srclen = n->counts[ki];
631 if (k) {
632 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
633 if ((*k) == ki && (*index) > srclen) {
634 (*index) -= srclen + 1;
635 (*k)++;
636 } else if ((*k) == ki+1) {
637 (*index) += adjust;
639 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
642 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
644 n->kids[0], n->counts[0], n->elems[0],
645 n->kids[1], n->counts[1], n->elems[1],
646 n->kids[2], n->counts[2], n->elems[2],
647 n->kids[3], n->counts[3]));
648 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
649 src,
650 src->kids[0], src->counts[0], src->elems[0],
651 src->kids[1], src->counts[1], src->elems[1],
652 src->kids[2], src->counts[2], src->elems[2],
653 src->kids[3], src->counts[3]));
654 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
655 dest,
656 dest->kids[0], dest->counts[0], dest->elems[0],
657 dest->kids[1], dest->counts[1], dest->elems[1],
658 dest->kids[2], dest->counts[2], dest->elems[2],
659 dest->kids[3], dest->counts[3]));
663 * Tree transformation used in delete and split: move a subtree
664 * left, from child ki of a node to the previous child. Update k
665 * and index so that they still point to the same place in the
666 * transformed tree. Assumes the destination child is not full, and
667 * that the source child does have a subtree to spare. Can cope if
668 * the destination child is undersized.
670 * . B . . C .
671 * / \ -> / \
672 * a A b c C d D e [more] a A b B c d D e [more]
674 * . A . . B .
675 * / \ -> / \
676 * a b B c C d [more] a A b c C d [more]
678 static void trans234_subtree_left(node234 *n, int ki, int *k, int *index) {
679 node234 *src, *dest;
680 int i, adjust;
682 src = n->kids[ki];
683 dest = n->kids[ki-1];
685 LOG((" trans234_subtree_left(%p, %d):\n", n, ki));
686 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
688 n->kids[0], n->counts[0], n->elems[0],
689 n->kids[1], n->counts[1], n->elems[1],
690 n->kids[2], n->counts[2], n->elems[2],
691 n->kids[3], n->counts[3]));
692 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
693 dest,
694 dest->kids[0], dest->counts[0], dest->elems[0],
695 dest->kids[1], dest->counts[1], dest->elems[1],
696 dest->kids[2], dest->counts[2], dest->elems[2],
697 dest->kids[3], dest->counts[3]));
698 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
699 src,
700 src->kids[0], src->counts[0], src->elems[0],
701 src->kids[1], src->counts[1], src->elems[1],
702 src->kids[2], src->counts[2], src->elems[2],
703 src->kids[3], src->counts[3]));
705 /* where in dest to put it */
706 i = (dest->elems[1] ? 2 : dest->elems[0] ? 1 : 0);
707 dest->elems[i] = n->elems[ki-1];
708 n->elems[ki-1] = src->elems[0];
710 dest->kids[i+1] = src->kids[0]; dest->counts[i+1] = src->counts[0];
712 if (dest->kids[i+1]) dest->kids[i+1]->parent = dest;
715 * Move over the rest of the source node.
717 src->kids[0] = src->kids[1]; src->counts[0] = src->counts[1];
718 src->elems[0] = src->elems[1];
719 src->kids[1] = src->kids[2]; src->counts[1] = src->counts[2];
720 src->elems[1] = src->elems[2];
721 src->kids[2] = src->kids[3]; src->counts[2] = src->counts[3];
722 src->elems[2] = NULL;
723 src->kids[3] = NULL; src->counts[3] = 0;
725 adjust = dest->counts[i+1] + 1;
727 n->counts[ki] -= adjust;
728 n->counts[ki-1] += adjust;
730 if (k) {
731 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
732 if ((*k) == ki) {
733 (*index) -= adjust;
734 if ((*index) < 0) {
735 (*index) += n->counts[ki-1] + 1;
736 (*k)--;
739 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
742 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
744 n->kids[0], n->counts[0], n->elems[0],
745 n->kids[1], n->counts[1], n->elems[1],
746 n->kids[2], n->counts[2], n->elems[2],
747 n->kids[3], n->counts[3]));
748 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
749 dest,
750 dest->kids[0], dest->counts[0], dest->elems[0],
751 dest->kids[1], dest->counts[1], dest->elems[1],
752 dest->kids[2], dest->counts[2], dest->elems[2],
753 dest->kids[3], dest->counts[3]));
754 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
755 src,
756 src->kids[0], src->counts[0], src->elems[0],
757 src->kids[1], src->counts[1], src->elems[1],
758 src->kids[2], src->counts[2], src->elems[2],
759 src->kids[3], src->counts[3]));
763 * Tree transformation used in delete and split: merge child nodes
764 * ki and ki+1 of a node. Update k and index so that they still
765 * point to the same place in the transformed tree. Assumes both
766 * children _are_ sufficiently small.
768 * . B . .
769 * / \ -> |
770 * a A b c C d a A b B c C d
772 * This routine can also cope with either child being undersized:
774 * . A . .
775 * / \ -> |
776 * a b B c a A b B c
778 * . A . .
779 * / \ -> |
780 * a b B c C d a A b B c C d
782 static void trans234_subtree_merge(node234 *n, int ki, int *k, int *index) {
783 node234 *left, *right;
784 int i, leftlen, rightlen, lsize, rsize;
786 left = n->kids[ki]; leftlen = n->counts[ki];
787 right = n->kids[ki+1]; rightlen = n->counts[ki+1];
789 LOG((" trans234_subtree_merge(%p, %d):\n", n, ki));
790 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
792 n->kids[0], n->counts[0], n->elems[0],
793 n->kids[1], n->counts[1], n->elems[1],
794 n->kids[2], n->counts[2], n->elems[2],
795 n->kids[3], n->counts[3]));
796 LOG((" left %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
797 left,
798 left->kids[0], left->counts[0], left->elems[0],
799 left->kids[1], left->counts[1], left->elems[1],
800 left->kids[2], left->counts[2], left->elems[2],
801 left->kids[3], left->counts[3]));
802 LOG((" right %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
803 right,
804 right->kids[0], right->counts[0], right->elems[0],
805 right->kids[1], right->counts[1], right->elems[1],
806 right->kids[2], right->counts[2], right->elems[2],
807 right->kids[3], right->counts[3]));
809 assert(!left->elems[2] && !right->elems[2]); /* neither is large! */
810 lsize = (left->elems[1] ? 2 : left->elems[0] ? 1 : 0);
811 rsize = (right->elems[1] ? 2 : right->elems[0] ? 1 : 0);
813 left->elems[lsize] = n->elems[ki];
815 for (i = 0; i < rsize+1; i++) {
816 left->kids[lsize+1+i] = right->kids[i];
817 left->counts[lsize+1+i] = right->counts[i];
818 if (left->kids[lsize+1+i])
819 left->kids[lsize+1+i]->parent = left;
820 if (i < rsize)
821 left->elems[lsize+1+i] = right->elems[i];
824 n->counts[ki] += rightlen + 1;
826 sfree(right);
829 * Move the rest of n up by one.
831 for (i = ki+1; i < 3; i++) {
832 n->kids[i] = n->kids[i+1];
833 n->counts[i] = n->counts[i+1];
835 for (i = ki; i < 2; i++) {
836 n->elems[i] = n->elems[i+1];
838 n->kids[3] = NULL;
839 n->counts[3] = 0;
840 n->elems[2] = NULL;
842 if (k) {
843 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
844 if ((*k) == ki+1) {
845 (*k)--;
846 (*index) += leftlen + 1;
847 } else if ((*k) > ki+1) {
848 (*k)--;
850 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
853 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
855 n->kids[0], n->counts[0], n->elems[0],
856 n->kids[1], n->counts[1], n->elems[1],
857 n->kids[2], n->counts[2], n->elems[2],
858 n->kids[3], n->counts[3]));
859 LOG((" merged %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
860 left,
861 left->kids[0], left->counts[0], left->elems[0],
862 left->kids[1], left->counts[1], left->elems[1],
863 left->kids[2], left->counts[2], left->elems[2],
864 left->kids[3], left->counts[3]));
869 * Delete an element e in a 2-3-4 tree. Does not free the element,
870 * merely removes all links to it from the tree nodes.
872 static void *delpos234_internal(tree234 *t, int index) {
873 node234 *n;
874 void *retval;
875 int ki, i;
877 retval = NULL;
879 n = t->root; /* by assumption this is non-NULL */
880 LOG(("deleting item %d from tree %p\n", index, t));
881 while (1) {
882 node234 *sub;
884 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
886 n->kids[0], n->counts[0], n->elems[0],
887 n->kids[1], n->counts[1], n->elems[1],
888 n->kids[2], n->counts[2], n->elems[2],
889 n->kids[3], n->counts[3],
890 index));
891 if (index <= n->counts[0]) {
892 ki = 0;
893 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
894 ki = 1;
895 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
896 ki = 2;
897 } else if (index -= n->counts[2]+1, index <= n->counts[3]) {
898 ki = 3;
899 } else {
900 assert(0); /* can't happen */
903 if (!n->kids[0])
904 break; /* n is a leaf node; we're here! */
907 * Check to see if we've found our target element. If so,
908 * we must choose a new target (we'll use the old target's
909 * successor, which will be in a leaf), move it into the
910 * place of the old one, continue down to the leaf and
911 * delete the old copy of the new target.
913 if (index == n->counts[ki]) {
914 node234 *m;
915 LOG((" found element in internal node, index %d\n", ki));
916 assert(n->elems[ki]); /* must be a kid _before_ an element */
917 ki++; index = 0;
918 for (m = n->kids[ki]; m->kids[0]; m = m->kids[0])
919 continue;
920 LOG((" replacing with element \"%s\" from leaf node %p\n",
921 m->elems[0], m));
922 retval = n->elems[ki-1];
923 n->elems[ki-1] = m->elems[0];
927 * Recurse down to subtree ki. If it has only one element,
928 * we have to do some transformation to start with.
930 LOG((" moving to subtree %d\n", ki));
931 sub = n->kids[ki];
932 if (!sub->elems[1]) {
933 LOG((" subtree has only one element!\n"));
934 if (ki > 0 && n->kids[ki-1]->elems[1]) {
936 * Child ki has only one element, but child
937 * ki-1 has two or more. So we need to move a
938 * subtree from ki-1 to ki.
940 trans234_subtree_right(n, ki-1, &ki, &index);
941 } else if (ki < 3 && n->kids[ki+1] &&
942 n->kids[ki+1]->elems[1]) {
944 * Child ki has only one element, but ki+1 has
945 * two or more. Move a subtree from ki+1 to ki.
947 trans234_subtree_left(n, ki+1, &ki, &index);
948 } else {
950 * ki is small with only small neighbours. Pick a
951 * neighbour and merge with it.
953 trans234_subtree_merge(n, ki>0 ? ki-1 : ki, &ki, &index);
954 sub = n->kids[ki];
956 if (!n->elems[0]) {
958 * The root is empty and needs to be
959 * removed.
961 LOG((" shifting root!\n"));
962 t->root = sub;
963 sub->parent = NULL;
964 sfree(n);
965 n = NULL;
970 if (n)
971 n->counts[ki]--;
972 n = sub;
976 * Now n is a leaf node, and ki marks the element number we
977 * want to delete. We've already arranged for the leaf to be
978 * bigger than minimum size, so let's just go to it.
980 assert(!n->kids[0]);
981 if (!retval)
982 retval = n->elems[ki];
984 for (i = ki; i < 2 && n->elems[i+1]; i++)
985 n->elems[i] = n->elems[i+1];
986 n->elems[i] = NULL;
989 * It's just possible that we have reduced the leaf to zero
990 * size. This can only happen if it was the root - so destroy
991 * it and make the tree empty.
993 if (!n->elems[0]) {
994 LOG((" removed last element in tree, destroying empty root\n"));
995 assert(n == t->root);
996 sfree(n);
997 t->root = NULL;
1000 return retval; /* finished! */
1002 void *delpos234(tree234 *t, int index) {
1003 if (index < 0 || index >= countnode234(t->root))
1004 return NULL;
1005 return delpos234_internal(t, index);
1007 void *del234(tree234 *t, void *e) {
1008 int index;
1009 if (!findrelpos234(t, e, NULL, REL234_EQ, &index))
1010 return NULL; /* it wasn't in there anyway */
1011 return delpos234_internal(t, index); /* it's there; delete it. */
1015 * Join two subtrees together with a separator element between
1016 * them, given their relative height.
1018 * (Height<0 means the left tree is shorter, >0 means the right
1019 * tree is shorter, =0 means (duh) they're equal.)
1021 * It is assumed that any checks needed on the ordering criterion
1022 * have _already_ been done.
1024 * The value returned in `height' is 0 or 1 depending on whether the
1025 * resulting tree is the same height as the original larger one, or
1026 * one higher.
1028 static node234 *join234_internal(node234 *left, void *sep,
1029 node234 *right, int *height) {
1030 node234 *root, *node;
1031 int relht = *height;
1032 int ki;
1034 LOG((" join: joining %p \"%s\" %p, relative height is %d\n",
1035 left, sep, right, relht));
1036 if (relht == 0) {
1038 * The trees are the same height. Create a new one-element
1039 * root containing the separator and pointers to the two
1040 * nodes.
1042 node234 *newroot;
1043 newroot = snew(node234);
1044 newroot->kids[0] = left; newroot->counts[0] = countnode234(left);
1045 newroot->elems[0] = sep;
1046 newroot->kids[1] = right; newroot->counts[1] = countnode234(right);
1047 newroot->elems[1] = NULL;
1048 newroot->kids[2] = NULL; newroot->counts[2] = 0;
1049 newroot->elems[2] = NULL;
1050 newroot->kids[3] = NULL; newroot->counts[3] = 0;
1051 newroot->parent = NULL;
1052 if (left) left->parent = newroot;
1053 if (right) right->parent = newroot;
1054 *height = 1;
1055 LOG((" join: same height, brand new root\n"));
1056 return newroot;
1060 * This now works like the addition algorithm on the larger
1061 * tree. We're replacing a single kid pointer with two kid
1062 * pointers separated by an element; if that causes the node to
1063 * overload, we split it in two, move a separator element up to
1064 * the next node, and repeat.
1066 if (relht < 0) {
1068 * Left tree is shorter. Search down the right tree to find
1069 * the pointer we're inserting at.
1071 node = root = right;
1072 while (++relht < 0) {
1073 node = node->kids[0];
1075 ki = 0;
1076 right = node->kids[ki];
1077 } else {
1079 * Right tree is shorter; search down the left to find the
1080 * pointer we're inserting at.
1082 node = root = left;
1083 while (--relht > 0) {
1084 if (node->elems[2])
1085 node = node->kids[3];
1086 else if (node->elems[1])
1087 node = node->kids[2];
1088 else
1089 node = node->kids[1];
1091 if (node->elems[2])
1092 ki = 3;
1093 else if (node->elems[1])
1094 ki = 2;
1095 else
1096 ki = 1;
1097 left = node->kids[ki];
1101 * Now proceed as for addition.
1103 *height = add234_insert(left, sep, right, &root, node, ki);
1105 return root;
1107 static int height234(tree234 *t) {
1108 int level = 0;
1109 node234 *n = t->root;
1110 while (n) {
1111 level++;
1112 n = n->kids[0];
1114 return level;
1116 tree234 *join234(tree234 *t1, tree234 *t2) {
1117 int size2 = countnode234(t2->root);
1118 if (size2 > 0) {
1119 void *element;
1120 int relht;
1122 if (t1->cmp) {
1123 element = index234(t2, 0);
1124 element = findrelpos234(t1, element, NULL, REL234_GE, NULL);
1125 if (element)
1126 return NULL;
1129 element = delpos234(t2, 0);
1130 relht = height234(t1) - height234(t2);
1131 t1->root = join234_internal(t1->root, element, t2->root, &relht);
1132 t2->root = NULL;
1134 return t1;
1136 tree234 *join234r(tree234 *t1, tree234 *t2) {
1137 int size1 = countnode234(t1->root);
1138 if (size1 > 0) {
1139 void *element;
1140 int relht;
1142 if (t2->cmp) {
1143 element = index234(t1, size1-1);
1144 element = findrelpos234(t2, element, NULL, REL234_LE, NULL);
1145 if (element)
1146 return NULL;
1149 element = delpos234(t1, size1-1);
1150 relht = height234(t1) - height234(t2);
1151 t2->root = join234_internal(t1->root, element, t2->root, &relht);
1152 t1->root = NULL;
1154 return t2;
1158 * Split out the first <index> elements in a tree and return a
1159 * pointer to the root node. Leave the root node of the remainder
1160 * in t.
1162 static node234 *split234_internal(tree234 *t, int index) {
1163 node234 *halves[2], *n, *sib, *sub;
1164 node234 *lparent, *rparent;
1165 int ki, pki, i, half, lcount, rcount;
1167 n = t->root;
1168 LOG(("splitting tree %p at point %d\n", t, index));
1171 * Easy special cases. After this we have also dealt completely
1172 * with the empty-tree case and we can assume the root exists.
1174 if (index == 0) /* return nothing */
1175 return NULL;
1176 if (index == countnode234(t->root)) { /* return the whole tree */
1177 node234 *ret = t->root;
1178 t->root = NULL;
1179 return ret;
1183 * Search down the tree to find the split point.
1185 lparent = rparent = NULL;
1186 pki = -1;
1187 while (n) {
1188 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
1190 n->kids[0], n->counts[0], n->elems[0],
1191 n->kids[1], n->counts[1], n->elems[1],
1192 n->kids[2], n->counts[2], n->elems[2],
1193 n->kids[3], n->counts[3],
1194 index));
1195 lcount = index;
1196 rcount = countnode234(n) - lcount;
1197 if (index <= n->counts[0]) {
1198 ki = 0;
1199 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
1200 ki = 1;
1201 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
1202 ki = 2;
1203 } else {
1204 index -= n->counts[2]+1;
1205 ki = 3;
1208 LOG((" splitting at subtree %d\n", ki));
1209 sub = n->kids[ki];
1211 LOG((" splitting at child index %d\n", ki));
1214 * Split the node, put halves[0] on the right of the left
1215 * one and halves[1] on the left of the right one, put the
1216 * new node pointers in halves[0] and halves[1], and go up
1217 * a level.
1219 sib = snew(node234);
1220 for (i = 0; i < 3; i++) {
1221 if (i+ki < 3 && n->elems[i+ki]) {
1222 sib->elems[i] = n->elems[i+ki];
1223 sib->kids[i+1] = n->kids[i+ki+1];
1224 if (sib->kids[i+1]) sib->kids[i+1]->parent = sib;
1225 sib->counts[i+1] = n->counts[i+ki+1];
1226 n->elems[i+ki] = NULL;
1227 n->kids[i+ki+1] = NULL;
1228 n->counts[i+ki+1] = 0;
1229 } else {
1230 sib->elems[i] = NULL;
1231 sib->kids[i+1] = NULL;
1232 sib->counts[i+1] = 0;
1235 if (lparent) {
1236 lparent->kids[pki] = n;
1237 lparent->counts[pki] = lcount;
1238 n->parent = lparent;
1239 rparent->kids[0] = sib;
1240 rparent->counts[0] = rcount;
1241 sib->parent = rparent;
1242 } else {
1243 halves[0] = n;
1244 n->parent = NULL;
1245 halves[1] = sib;
1246 sib->parent = NULL;
1248 lparent = n;
1249 rparent = sib;
1250 pki = ki;
1251 LOG((" left node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1253 n->kids[0], n->counts[0], n->elems[0],
1254 n->kids[1], n->counts[1], n->elems[1],
1255 n->kids[2], n->counts[2], n->elems[2],
1256 n->kids[3], n->counts[3]));
1257 LOG((" right node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1258 sib,
1259 sib->kids[0], sib->counts[0], sib->elems[0],
1260 sib->kids[1], sib->counts[1], sib->elems[1],
1261 sib->kids[2], sib->counts[2], sib->elems[2],
1262 sib->kids[3], sib->counts[3]));
1264 n = sub;
1268 * We've come off the bottom here, so we've successfully split
1269 * the tree into two equally high subtrees. The only problem is
1270 * that some of the nodes down the fault line will be smaller
1271 * than the minimum permitted size. (Since this is a 2-3-4
1272 * tree, that means they'll be zero-element one-child nodes.)
1274 LOG((" fell off bottom, lroot is %p, rroot is %p\n",
1275 halves[0], halves[1]));
1276 lparent->counts[pki] = rparent->counts[0] = 0;
1277 lparent->kids[pki] = rparent->kids[0] = NULL;
1280 * So now we go back down the tree from each of the two roots,
1281 * fixing up undersize nodes.
1283 for (half = 0; half < 2; half++) {
1285 * Remove the root if it's undersize (it will contain only
1286 * one child pointer, so just throw it away and replace it
1287 * with its child). This might happen several times.
1289 while (halves[half] && !halves[half]->elems[0]) {
1290 LOG((" root %p is undersize, throwing away\n", halves[half]));
1291 halves[half] = halves[half]->kids[0];
1292 sfree(halves[half]->parent);
1293 halves[half]->parent = NULL;
1294 LOG((" new root is %p\n", halves[half]));
1297 n = halves[half];
1298 while (n) {
1299 void (*toward)(node234 *n, int ki, int *k, int *index);
1300 int ni, merge;
1303 * Now we have a potentially undersize node on the
1304 * right (if half==0) or left (if half==1). Sort it
1305 * out, by merging with a neighbour or by transferring
1306 * subtrees over. At this time we must also ensure that
1307 * nodes are bigger than minimum, in case we need an
1308 * element to merge two nodes below.
1310 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1312 n->kids[0], n->counts[0], n->elems[0],
1313 n->kids[1], n->counts[1], n->elems[1],
1314 n->kids[2], n->counts[2], n->elems[2],
1315 n->kids[3], n->counts[3]));
1316 if (half == 1) {
1317 ki = 0; /* the kid we're interested in */
1318 ni = 1; /* the neighbour */
1319 merge = 0; /* for merge: leftmost of the two */
1320 toward = trans234_subtree_left;
1321 } else {
1322 ki = (n->kids[3] ? 3 : n->kids[2] ? 2 : 1);
1323 ni = ki-1;
1324 merge = ni;
1325 toward = trans234_subtree_right;
1328 sub = n->kids[ki];
1329 if (sub && !sub->elems[1]) {
1331 * This node is undersized or minimum-size. If we
1332 * can merge it with its neighbour, we do so;
1333 * otherwise we must be able to transfer subtrees
1334 * over to it until it is greater than minimum
1335 * size.
1337 int undersized = (!sub->elems[0]);
1338 LOG((" child %d is %ssize\n", ki,
1339 undersized ? "under" : "minimum-"));
1340 LOG((" neighbour is %s\n",
1341 n->kids[ni]->elems[2] ? "large" :
1342 n->kids[ni]->elems[1] ? "medium" : "small"));
1343 if (!n->kids[ni]->elems[1] ||
1344 (undersized && !n->kids[ni]->elems[2])) {
1346 * Neighbour is small, or possibly neighbour is
1347 * medium and we are undersize.
1349 trans234_subtree_merge(n, merge, NULL, NULL);
1350 sub = n->kids[merge];
1351 if (!n->elems[0]) {
1353 * n is empty, and hence must have been the
1354 * root and needs to be removed.
1356 assert(!n->parent);
1357 LOG((" shifting root!\n"));
1358 halves[half] = sub;
1359 halves[half]->parent = NULL;
1360 sfree(n);
1362 } else {
1363 /* Neighbour is big enough to move trees over. */
1364 toward(n, ni, NULL, NULL);
1365 if (undersized)
1366 toward(n, ni, NULL, NULL);
1369 n = sub;
1373 t->root = halves[1];
1374 return halves[0];
1376 tree234 *splitpos234(tree234 *t, int index, int before) {
1377 tree234 *ret;
1378 node234 *n;
1379 int count;
1381 count = countnode234(t->root);
1382 if (index < 0 || index > count)
1383 return NULL; /* error */
1384 ret = newtree234(t->cmp);
1385 n = split234_internal(t, index);
1386 if (before) {
1387 /* We want to return the ones before the index. */
1388 ret->root = n;
1389 } else {
1391 * We want to keep the ones before the index and return the
1392 * ones after.
1394 ret->root = t->root;
1395 t->root = n;
1397 return ret;
1399 tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel) {
1400 int before;
1401 int index;
1403 assert(rel != REL234_EQ);
1405 if (rel == REL234_GT || rel == REL234_GE) {
1406 before = 1;
1407 rel = (rel == REL234_GT ? REL234_LE : REL234_LT);
1408 } else {
1409 before = 0;
1411 if (!findrelpos234(t, e, cmp, rel, &index))
1412 index = 0;
1414 return splitpos234(t, index+1, before);
1417 static node234 *copynode234(node234 *n, copyfn234 copyfn, void *copyfnstate) {
1418 int i;
1419 node234 *n2 = snew(node234);
1421 for (i = 0; i < 3; i++) {
1422 if (n->elems[i] && copyfn)
1423 n2->elems[i] = copyfn(copyfnstate, n->elems[i]);
1424 else
1425 n2->elems[i] = n->elems[i];
1428 for (i = 0; i < 4; i++) {
1429 if (n->kids[i]) {
1430 n2->kids[i] = copynode234(n->kids[i], copyfn, copyfnstate);
1431 n2->kids[i]->parent = n2;
1432 } else {
1433 n2->kids[i] = NULL;
1435 n2->counts[i] = n->counts[i];
1438 return n2;
1440 tree234 *copytree234(tree234 *t, copyfn234 copyfn, void *copyfnstate) {
1441 tree234 *t2;
1443 t2 = newtree234(t->cmp);
1444 if (t->root) {
1445 t2->root = copynode234(t->root, copyfn, copyfnstate);
1446 t2->root->parent = NULL;
1447 } else
1448 t2->root = NULL;
1450 return t2;
1453 #ifdef TEST
1456 * Test code for the 2-3-4 tree. This code maintains an alternative
1457 * representation of the data in the tree, in an array (using the
1458 * obvious and slow insert and delete functions). After each tree
1459 * operation, the verify() function is called, which ensures all
1460 * the tree properties are preserved:
1461 * - node->child->parent always equals node
1462 * - tree->root->parent always equals NULL
1463 * - number of kids == 0 or number of elements + 1;
1464 * - tree has the same depth everywhere
1465 * - every node has at least one element
1466 * - subtree element counts are accurate
1467 * - any NULL kid pointer is accompanied by a zero count
1468 * - in a sorted tree: ordering property between elements of a
1469 * node and elements of its children is preserved
1470 * and also ensures the list represented by the tree is the same
1471 * list it should be. (This last check also doubly verifies the
1472 * ordering properties, because the `same list it should be' is by
1473 * definition correctly ordered. It also ensures all nodes are
1474 * distinct, because the enum functions would get caught in a loop
1475 * if not.)
1478 #include <stdarg.h>
1480 #define srealloc realloc
1483 * Error reporting function.
1485 void error(char *fmt, ...) {
1486 va_list ap;
1487 printf("ERROR: ");
1488 va_start(ap, fmt);
1489 vfprintf(stdout, fmt, ap);
1490 va_end(ap);
1491 printf("\n");
1494 /* The array representation of the data. */
1495 void **array;
1496 int arraylen, arraysize;
1497 cmpfn234 cmp;
1499 /* The tree representation of the same data. */
1500 tree234 *tree;
1503 * Routines to provide a diagnostic printout of a tree. Currently
1504 * relies on every element in the tree being a one-character string
1505 * :-)
1507 typedef struct {
1508 char **levels;
1509 } dispctx;
1511 int dispnode(node234 *n, int level, dispctx *ctx) {
1512 if (level == 0) {
1513 int xpos = strlen(ctx->levels[0]);
1514 int len;
1516 if (n->elems[2])
1517 len = sprintf(ctx->levels[0]+xpos, " %s%s%s",
1518 n->elems[0], n->elems[1], n->elems[2]);
1519 else if (n->elems[1])
1520 len = sprintf(ctx->levels[0]+xpos, " %s%s",
1521 n->elems[0], n->elems[1]);
1522 else
1523 len = sprintf(ctx->levels[0]+xpos, " %s",
1524 n->elems[0]);
1525 return xpos + 1 + (len-1) / 2;
1526 } else {
1527 int xpos[4], nkids;
1528 int nodelen, mypos, myleft, x, i;
1530 xpos[0] = dispnode(n->kids[0], level-3, ctx);
1531 xpos[1] = dispnode(n->kids[1], level-3, ctx);
1532 nkids = 2;
1533 if (n->kids[2]) {
1534 xpos[2] = dispnode(n->kids[2], level-3, ctx);
1535 nkids = 3;
1537 if (n->kids[3]) {
1538 xpos[3] = dispnode(n->kids[3], level-3, ctx);
1539 nkids = 4;
1542 if (nkids == 4)
1543 mypos = (xpos[1] + xpos[2]) / 2;
1544 else if (nkids == 3)
1545 mypos = xpos[1];
1546 else
1547 mypos = (xpos[0] + xpos[1]) / 2;
1548 nodelen = nkids * 2 - 1;
1549 myleft = mypos - ((nodelen-1)/2);
1550 assert(myleft >= xpos[0]);
1551 assert(myleft + nodelen-1 <= xpos[nkids-1]);
1553 x = strlen(ctx->levels[level]);
1554 while (x <= xpos[0] && x < myleft)
1555 ctx->levels[level][x++] = ' ';
1556 while (x < myleft)
1557 ctx->levels[level][x++] = '_';
1558 if (nkids==4)
1559 x += sprintf(ctx->levels[level]+x, ".%s.%s.%s.",
1560 n->elems[0], n->elems[1], n->elems[2]);
1561 else if (nkids==3)
1562 x += sprintf(ctx->levels[level]+x, ".%s.%s.",
1563 n->elems[0], n->elems[1]);
1564 else
1565 x += sprintf(ctx->levels[level]+x, ".%s.",
1566 n->elems[0]);
1567 while (x < xpos[nkids-1])
1568 ctx->levels[level][x++] = '_';
1569 ctx->levels[level][x] = '\0';
1571 x = strlen(ctx->levels[level-1]);
1572 for (i = 0; i < nkids; i++) {
1573 int rpos, pos;
1574 rpos = xpos[i];
1575 if (i > 0 && i < nkids-1)
1576 pos = myleft + 2*i;
1577 else
1578 pos = rpos;
1579 if (rpos < pos)
1580 rpos++;
1581 while (x < pos && x < rpos)
1582 ctx->levels[level-1][x++] = ' ';
1583 if (x == pos)
1584 ctx->levels[level-1][x++] = '|';
1585 while (x < pos || x < rpos)
1586 ctx->levels[level-1][x++] = '_';
1587 if (x == pos)
1588 ctx->levels[level-1][x++] = '|';
1590 ctx->levels[level-1][x] = '\0';
1592 x = strlen(ctx->levels[level-2]);
1593 for (i = 0; i < nkids; i++) {
1594 int rpos = xpos[i];
1596 while (x < rpos)
1597 ctx->levels[level-2][x++] = ' ';
1598 ctx->levels[level-2][x++] = '|';
1600 ctx->levels[level-2][x] = '\0';
1602 return mypos;
1606 void disptree(tree234 *t) {
1607 dispctx ctx;
1608 char *leveldata;
1609 int width = count234(t);
1610 int ht = height234(t) * 3 - 2;
1611 int i;
1613 if (!t->root) {
1614 printf("[empty tree]\n");
1617 leveldata = smalloc(ht * (width+2));
1618 ctx.levels = smalloc(ht * sizeof(char *));
1619 for (i = 0; i < ht; i++) {
1620 ctx.levels[i] = leveldata + i * (width+2);
1621 ctx.levels[i][0] = '\0';
1624 (void) dispnode(t->root, ht-1, &ctx);
1626 for (i = ht; i-- ;)
1627 printf("%s\n", ctx.levels[i]);
1629 sfree(ctx.levels);
1630 sfree(leveldata);
1633 typedef struct {
1634 int treedepth;
1635 int elemcount;
1636 } chkctx;
1638 int chknode(chkctx *ctx, int level, node234 *node,
1639 void *lowbound, void *highbound) {
1640 int nkids, nelems;
1641 int i;
1642 int count;
1644 /* Count the non-NULL kids. */
1645 for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
1646 /* Ensure no kids beyond the first NULL are non-NULL. */
1647 for (i = nkids; i < 4; i++)
1648 if (node->kids[i]) {
1649 error("node %p: nkids=%d but kids[%d] non-NULL",
1650 node, nkids, i);
1651 } else if (node->counts[i]) {
1652 error("node %p: kids[%d] NULL but count[%d]=%d nonzero",
1653 node, i, i, node->counts[i]);
1656 /* Count the non-NULL elements. */
1657 for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
1658 /* Ensure no elements beyond the first NULL are non-NULL. */
1659 for (i = nelems; i < 3; i++)
1660 if (node->elems[i]) {
1661 error("node %p: nelems=%d but elems[%d] non-NULL",
1662 node, nelems, i);
1665 if (nkids == 0) {
1667 * If nkids==0, this is a leaf node; verify that the tree
1668 * depth is the same everywhere.
1670 if (ctx->treedepth < 0)
1671 ctx->treedepth = level; /* we didn't know the depth yet */
1672 else if (ctx->treedepth != level)
1673 error("node %p: leaf at depth %d, previously seen depth %d",
1674 node, level, ctx->treedepth);
1675 } else {
1677 * If nkids != 0, then it should be nelems+1, unless nelems
1678 * is 0 in which case nkids should also be 0 (and so we
1679 * shouldn't be in this condition at all).
1681 int shouldkids = (nelems ? nelems+1 : 0);
1682 if (nkids != shouldkids) {
1683 error("node %p: %d elems should mean %d kids but has %d",
1684 node, nelems, shouldkids, nkids);
1689 * nelems should be at least 1.
1691 if (nelems == 0) {
1692 error("node %p: no elems", node, nkids);
1696 * Add nelems to the running element count of the whole tree.
1698 ctx->elemcount += nelems;
1701 * Check ordering property: all elements should be strictly >
1702 * lowbound, strictly < highbound, and strictly < each other in
1703 * sequence. (lowbound and highbound are NULL at edges of tree
1704 * - both NULL at root node - and NULL is considered to be <
1705 * everything and > everything. IYSWIM.)
1707 if (cmp) {
1708 for (i = -1; i < nelems; i++) {
1709 void *lower = (i == -1 ? lowbound : node->elems[i]);
1710 void *higher = (i+1 == nelems ? highbound : node->elems[i+1]);
1711 if (lower && higher && cmp(lower, higher) >= 0) {
1712 error("node %p: kid comparison [%d=%s,%d=%s] failed",
1713 node, i, lower, i+1, higher);
1719 * Check parent pointers: all non-NULL kids should have a
1720 * parent pointer coming back to this node.
1722 for (i = 0; i < nkids; i++)
1723 if (node->kids[i]->parent != node) {
1724 error("node %p kid %d: parent ptr is %p not %p",
1725 node, i, node->kids[i]->parent, node);
1730 * Now (finally!) recurse into subtrees.
1732 count = nelems;
1734 for (i = 0; i < nkids; i++) {
1735 void *lower = (i == 0 ? lowbound : node->elems[i-1]);
1736 void *higher = (i >= nelems ? highbound : node->elems[i]);
1737 int subcount = chknode(ctx, level+1, node->kids[i], lower, higher);
1738 if (node->counts[i] != subcount) {
1739 error("node %p kid %d: count says %d, subtree really has %d",
1740 node, i, node->counts[i], subcount);
1742 count += subcount;
1745 return count;
1748 void verifytree(tree234 *tree, void **array, int arraylen) {
1749 chkctx ctx;
1750 int i;
1751 void *p;
1753 ctx.treedepth = -1; /* depth unknown yet */
1754 ctx.elemcount = 0; /* no elements seen yet */
1756 * Verify validity of tree properties.
1758 if (tree->root) {
1759 if (tree->root->parent != NULL)
1760 error("root->parent is %p should be null", tree->root->parent);
1761 chknode(&ctx, 0, tree->root, NULL, NULL);
1763 printf("tree depth: %d\n", ctx.treedepth);
1765 * Enumerate the tree and ensure it matches up to the array.
1767 for (i = 0; NULL != (p = index234(tree, i)); i++) {
1768 if (i >= arraylen)
1769 error("tree contains more than %d elements", arraylen);
1770 if (array[i] != p)
1771 error("enum at position %d: array says %s, tree says %s",
1772 i, array[i], p);
1774 if (ctx.elemcount != i) {
1775 error("tree really contains %d elements, enum gave %d",
1776 ctx.elemcount, i);
1778 if (i < arraylen) {
1779 error("enum gave only %d elements, array has %d", i, arraylen);
1781 i = count234(tree);
1782 if (ctx.elemcount != i) {
1783 error("tree really contains %d elements, count234 gave %d",
1784 ctx.elemcount, i);
1787 void verify(void) { verifytree(tree, array, arraylen); }
1789 void internal_addtest(void *elem, int index, void *realret) {
1790 int i, j;
1791 void *retval;
1793 if (arraysize < arraylen+1) {
1794 arraysize = arraylen+1+256;
1795 array = (array == NULL ? smalloc(arraysize*sizeof(*array)) :
1796 srealloc(array, arraysize*sizeof(*array)));
1799 i = index;
1800 /* now i points to the first element >= elem */
1801 retval = elem; /* expect elem returned (success) */
1802 for (j = arraylen; j > i; j--)
1803 array[j] = array[j-1];
1804 array[i] = elem; /* add elem to array */
1805 arraylen++;
1807 if (realret != retval) {
1808 error("add: retval was %p expected %p", realret, retval);
1811 verify();
1814 void addtest(void *elem) {
1815 int i;
1816 void *realret;
1818 realret = add234(tree, elem);
1820 i = 0;
1821 while (i < arraylen && cmp(elem, array[i]) > 0)
1822 i++;
1823 if (i < arraylen && !cmp(elem, array[i])) {
1824 void *retval = array[i]; /* expect that returned not elem */
1825 if (realret != retval) {
1826 error("add: retval was %p expected %p", realret, retval);
1828 } else
1829 internal_addtest(elem, i, realret);
1832 void addpostest(void *elem, int i) {
1833 void *realret;
1835 realret = addpos234(tree, elem, i);
1837 internal_addtest(elem, i, realret);
1840 void delpostest(int i) {
1841 int index = i;
1842 void *elem = array[i], *ret;
1844 /* i points to the right element */
1845 while (i < arraylen-1) {
1846 array[i] = array[i+1];
1847 i++;
1849 arraylen--; /* delete elem from array */
1851 if (tree->cmp)
1852 ret = del234(tree, elem);
1853 else
1854 ret = delpos234(tree, index);
1856 if (ret != elem) {
1857 error("del returned %p, expected %p", ret, elem);
1860 verify();
1863 void deltest(void *elem) {
1864 int i;
1866 i = 0;
1867 while (i < arraylen && cmp(elem, array[i]) > 0)
1868 i++;
1869 if (i >= arraylen || cmp(elem, array[i]) != 0)
1870 return; /* don't do it! */
1871 delpostest(i);
1874 /* A sample data set and test utility. Designed for pseudo-randomness,
1875 * and yet repeatability. */
1878 * This random number generator uses the `portable implementation'
1879 * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
1880 * change it if not.
1882 int randomnumber(unsigned *seed) {
1883 *seed *= 1103515245;
1884 *seed += 12345;
1885 return ((*seed) / 65536) % 32768;
1888 int mycmp(void *av, void *bv) {
1889 char const *a = (char const *)av;
1890 char const *b = (char const *)bv;
1891 return strcmp(a, b);
1894 char *strings[] = {
1895 "0", "2", "3", "I", "K", "d", "H", "J", "Q", "N", "n", "q", "j", "i",
1896 "7", "G", "F", "D", "b", "x", "g", "B", "e", "v", "V", "T", "f", "E",
1897 "S", "8", "A", "k", "X", "p", "C", "R", "a", "o", "r", "O", "Z", "u",
1898 "6", "1", "w", "L", "P", "M", "c", "U", "h", "9", "t", "5", "W", "Y",
1899 "m", "s", "l", "4",
1900 #if 0
1901 "a", "ab", "absque", "coram", "de",
1902 "palam", "clam", "cum", "ex", "e",
1903 "sine", "tenus", "pro", "prae",
1904 "banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
1905 "penguin", "blancmange", "pangolin", "whale", "hedgehog",
1906 "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
1907 "murfl", "spoo", "breen", "flarn", "octothorpe",
1908 "snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
1909 "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
1910 "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
1911 "wand", "ring", "amulet"
1912 #endif
1915 #define NSTR lenof(strings)
1917 void findtest(void) {
1918 static const int rels[] = {
1919 REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT
1921 static const char *const relnames[] = {
1922 "EQ", "GE", "LE", "LT", "GT"
1924 int i, j, rel, index;
1925 char *p, *ret, *realret, *realret2;
1926 int lo, hi, mid, c;
1928 for (i = 0; i < (int)NSTR; i++) {
1929 p = strings[i];
1930 for (j = 0; j < (int)(sizeof(rels)/sizeof(*rels)); j++) {
1931 rel = rels[j];
1933 lo = 0; hi = arraylen-1;
1934 while (lo <= hi) {
1935 mid = (lo + hi) / 2;
1936 c = strcmp(p, array[mid]);
1937 if (c < 0)
1938 hi = mid-1;
1939 else if (c > 0)
1940 lo = mid+1;
1941 else
1942 break;
1945 if (c == 0) {
1946 if (rel == REL234_LT)
1947 ret = (mid > 0 ? array[--mid] : NULL);
1948 else if (rel == REL234_GT)
1949 ret = (mid < arraylen-1 ? array[++mid] : NULL);
1950 else
1951 ret = array[mid];
1952 } else {
1953 assert(lo == hi+1);
1954 if (rel == REL234_LT || rel == REL234_LE) {
1955 mid = hi;
1956 ret = (hi >= 0 ? array[hi] : NULL);
1957 } else if (rel == REL234_GT || rel == REL234_GE) {
1958 mid = lo;
1959 ret = (lo < arraylen ? array[lo] : NULL);
1960 } else
1961 ret = NULL;
1964 realret = findrelpos234(tree, p, NULL, rel, &index);
1965 if (realret != ret) {
1966 error("find(\"%s\",%s) gave %s should be %s",
1967 p, relnames[j], realret, ret);
1969 if (realret && index != mid) {
1970 error("find(\"%s\",%s) gave %d should be %d",
1971 p, relnames[j], index, mid);
1973 if (realret && rel == REL234_EQ) {
1974 realret2 = index234(tree, index);
1975 if (realret2 != realret) {
1976 error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
1977 p, relnames[j], realret, index, index, realret2);
1980 #if 0
1981 printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],
1982 realret, index);
1983 #endif
1987 realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);
1988 if (arraylen && (realret != array[0] || index != 0)) {
1989 error("find(NULL,GT) gave %s(%d) should be %s(0)",
1990 realret, index, array[0]);
1991 } else if (!arraylen && (realret != NULL)) {
1992 error("find(NULL,GT) gave %s(%d) should be NULL",
1993 realret, index);
1996 realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);
1997 if (arraylen && (realret != array[arraylen-1] || index != arraylen-1)) {
1998 error("find(NULL,LT) gave %s(%d) should be %s(0)",
1999 realret, index, array[arraylen-1]);
2000 } else if (!arraylen && (realret != NULL)) {
2001 error("find(NULL,LT) gave %s(%d) should be NULL",
2002 realret, index);
2006 void splittest(tree234 *tree, void **array, int arraylen) {
2007 int i;
2008 tree234 *tree3, *tree4;
2009 for (i = 0; i <= arraylen; i++) {
2010 tree3 = copytree234(tree, NULL, NULL);
2011 tree4 = splitpos234(tree3, i, 0);
2012 verifytree(tree3, array, i);
2013 verifytree(tree4, array+i, arraylen-i);
2014 join234(tree3, tree4);
2015 freetree234(tree4); /* left empty by join */
2016 verifytree(tree3, array, arraylen);
2017 freetree234(tree3);
2021 int main(void) {
2022 int in[NSTR];
2023 int i, j, k;
2024 int tworoot, tmplen;
2025 unsigned seed = 0;
2026 tree234 *tree2, *tree3, *tree4;
2027 int c;
2029 setvbuf(stdout, NULL, _IOLBF, 0);
2031 for (i = 0; i < (int)NSTR; i++) in[i] = 0;
2032 array = NULL;
2033 arraylen = arraysize = 0;
2034 tree = newtree234(mycmp);
2035 cmp = mycmp;
2037 verify();
2038 for (i = 0; i < 10000; i++) {
2039 j = randomnumber(&seed);
2040 j %= NSTR;
2041 printf("trial: %d\n", i);
2042 if (in[j]) {
2043 printf("deleting %s (%d)\n", strings[j], j);
2044 deltest(strings[j]);
2045 in[j] = 0;
2046 } else {
2047 printf("adding %s (%d)\n", strings[j], j);
2048 addtest(strings[j]);
2049 in[j] = 1;
2051 disptree(tree);
2052 findtest();
2055 while (arraylen > 0) {
2056 j = randomnumber(&seed);
2057 j %= arraylen;
2058 deltest(array[j]);
2061 freetree234(tree);
2064 * Now try an unsorted tree. We don't really need to test
2065 * delpos234 because we know del234 is based on it, so it's
2066 * already been tested in the above sorted-tree code; but for
2067 * completeness we'll use it to tear down our unsorted tree
2068 * once we've built it.
2070 tree = newtree234(NULL);
2071 cmp = NULL;
2072 verify();
2073 for (i = 0; i < 1000; i++) {
2074 printf("trial: %d\n", i);
2075 j = randomnumber(&seed);
2076 j %= NSTR;
2077 k = randomnumber(&seed);
2078 k %= count234(tree)+1;
2079 printf("adding string %s at index %d\n", strings[j], k);
2080 addpostest(strings[j], k);
2084 * While we have this tree in its full form, we'll take a copy
2085 * of it to use in split and join testing.
2087 tree2 = copytree234(tree, NULL, NULL);
2088 verifytree(tree2, array, arraylen);/* check the copy is accurate */
2090 * Split tests. Split the tree at every possible point and
2091 * check the resulting subtrees.
2093 tworoot = (!tree2->root->elems[1]);/* see if it has a 2-root */
2094 splittest(tree2, array, arraylen);
2096 * Now do the split test again, but on a tree that has a 2-root
2097 * (if the previous one didn't) or doesn't (if the previous one
2098 * did).
2100 tmplen = arraylen;
2101 while ((!tree2->root->elems[1]) == tworoot) {
2102 delpos234(tree2, --tmplen);
2104 printf("now trying splits on second tree\n");
2105 splittest(tree2, array, tmplen);
2106 freetree234(tree2);
2109 * Back to the main testing of uncounted trees.
2111 while (count234(tree) > 0) {
2112 printf("cleanup: tree size %d\n", count234(tree));
2113 j = randomnumber(&seed);
2114 j %= count234(tree);
2115 printf("deleting string %s from index %d\n", (char *)array[j], j);
2116 delpostest(j);
2118 freetree234(tree);
2121 * Finally, do some testing on split/join on _sorted_ trees. At
2122 * the same time, we'll be testing split on very small trees.
2124 tree = newtree234(mycmp);
2125 cmp = mycmp;
2126 arraylen = 0;
2127 for (i = 0; i < 17; i++) {
2128 tree2 = copytree234(tree, NULL, NULL);
2129 splittest(tree2, array, arraylen);
2130 freetree234(tree2);
2131 if (i < 16)
2132 addtest(strings[i]);
2134 freetree234(tree);
2137 * Test silly cases of join: join(emptytree, emptytree), and
2138 * also ensure join correctly spots when sorted trees fail the
2139 * ordering constraint.
2141 tree = newtree234(mycmp);
2142 tree2 = newtree234(mycmp);
2143 tree3 = newtree234(mycmp);
2144 tree4 = newtree234(mycmp);
2145 assert(mycmp(strings[0], strings[1]) < 0); /* just in case :-) */
2146 add234(tree2, strings[1]);
2147 add234(tree4, strings[0]);
2148 array[0] = strings[0];
2149 array[1] = strings[1];
2150 verifytree(tree, array, 0);
2151 verifytree(tree2, array+1, 1);
2152 verifytree(tree3, array, 0);
2153 verifytree(tree4, array, 1);
2156 * So:
2157 * - join(tree,tree3) should leave both tree and tree3 unchanged.
2158 * - joinr(tree,tree2) should leave both tree and tree2 unchanged.
2159 * - join(tree4,tree3) should leave both tree3 and tree4 unchanged.
2160 * - join(tree, tree2) should move the element from tree2 to tree.
2161 * - joinr(tree4, tree3) should move the element from tree4 to tree3.
2162 * - join(tree,tree3) should return NULL and leave both unchanged.
2163 * - join(tree3,tree) should work and create a bigger tree in tree3.
2165 assert(tree == join234(tree, tree3));
2166 verifytree(tree, array, 0);
2167 verifytree(tree3, array, 0);
2168 assert(tree2 == join234r(tree, tree2));
2169 verifytree(tree, array, 0);
2170 verifytree(tree2, array+1, 1);
2171 assert(tree4 == join234(tree4, tree3));
2172 verifytree(tree3, array, 0);
2173 verifytree(tree4, array, 1);
2174 assert(tree == join234(tree, tree2));
2175 verifytree(tree, array+1, 1);
2176 verifytree(tree2, array, 0);
2177 assert(tree3 == join234r(tree4, tree3));
2178 verifytree(tree3, array, 1);
2179 verifytree(tree4, array, 0);
2180 assert(NULL == join234(tree, tree3));
2181 verifytree(tree, array+1, 1);
2182 verifytree(tree3, array, 1);
2183 assert(tree3 == join234(tree3, tree));
2184 verifytree(tree3, array, 2);
2185 verifytree(tree, array, 0);
2187 return 0;
2190 #endif
2192 #if 0 /* sorted list of strings might be useful */
2194 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x",
2196 #endif