14 #define MAXVERTICES 20
19 float vertices
[MAXVERTICES
* 3]; /* 3*npoints coordinates */
22 int faces
[MAXFACES
* MAXORDER
]; /* order*nfaces point indices */
23 float normals
[MAXFACES
* 3]; /* 3*npoints vector components */
24 float shear
; /* isometric shear for nice drawing */
25 float border
; /* border required around arena */
28 static const struct solid s_tetrahedron
= {
31 0.0F
, -0.57735026919F
, -0.20412414523F
,
32 -0.5F
, 0.28867513459F
, -0.20412414523F
,
33 0.0F
, -0.0F
, 0.6123724357F
,
34 0.5F
, 0.28867513459F
, -0.20412414523F
,
38 0,2,1, 3,1,2, 2,0,3, 1,3,0
41 -0.816496580928F
, -0.471404520791F
, 0.333333333334F
,
42 0.0F
, 0.942809041583F
, 0.333333333333F
,
43 0.816496580928F
, -0.471404520791F
, 0.333333333334F
,
49 static const struct solid s_cube
= {
52 -0.5F
,-0.5F
,-0.5F
, -0.5F
,-0.5F
,+0.5F
,
53 -0.5F
,+0.5F
,-0.5F
, -0.5F
,+0.5F
,+0.5F
,
54 +0.5F
,-0.5F
,-0.5F
, +0.5F
,-0.5F
,+0.5F
,
55 +0.5F
,+0.5F
,-0.5F
, +0.5F
,+0.5F
,+0.5F
,
59 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
62 -1.0F
,0.0F
,0.0F
, 0.0F
,0.0F
,+1.0F
,
63 +1.0F
,0.0F
,0.0F
, 0.0F
,0.0F
,-1.0F
,
64 0.0F
,-1.0F
,0.0F
, 0.0F
,+1.0F
,0.0F
69 static const struct solid s_octahedron
= {
72 -0.5F
, -0.28867513459472505F
, 0.4082482904638664F
,
73 0.5F
, 0.28867513459472505F
, -0.4082482904638664F
,
74 -0.5F
, 0.28867513459472505F
, -0.4082482904638664F
,
75 0.5F
, -0.28867513459472505F
, 0.4082482904638664F
,
76 0.0F
, -0.57735026918945009F
, -0.4082482904638664F
,
77 0.0F
, 0.57735026918945009F
, 0.4082482904638664F
,
81 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
84 -0.816496580928F
, -0.471404520791F
, -0.333333333334F
,
85 -0.816496580928F
, 0.471404520791F
, 0.333333333334F
,
86 0.0F
, -0.942809041583F
, 0.333333333333F
,
89 0.0F
, 0.942809041583F
, -0.333333333333F
,
90 0.816496580928F
, -0.471404520791F
, -0.333333333334F
,
91 0.816496580928F
, 0.471404520791F
, 0.333333333334F
,
96 static const struct solid s_icosahedron
= {
99 0.0F
, 0.57735026919F
, 0.75576131408F
,
100 0.0F
, -0.93417235896F
, 0.17841104489F
,
101 0.0F
, 0.93417235896F
, -0.17841104489F
,
102 0.0F
, -0.57735026919F
, -0.75576131408F
,
103 -0.5F
, -0.28867513459F
, 0.75576131408F
,
104 -0.5F
, 0.28867513459F
, -0.75576131408F
,
105 0.5F
, -0.28867513459F
, 0.75576131408F
,
106 0.5F
, 0.28867513459F
, -0.75576131408F
,
107 -0.80901699437F
, 0.46708617948F
, 0.17841104489F
,
108 0.80901699437F
, 0.46708617948F
, 0.17841104489F
,
109 -0.80901699437F
, -0.46708617948F
, -0.17841104489F
,
110 0.80901699437F
, -0.46708617948F
, -0.17841104489F
,
114 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
115 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
116 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
117 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
120 -0.356822089773F
, 0.87267799625F
, 0.333333333333F
,
121 0.356822089773F
, 0.87267799625F
, 0.333333333333F
,
122 -0.356822089773F
, -0.87267799625F
, -0.333333333333F
,
123 0.356822089773F
, -0.87267799625F
, -0.333333333333F
,
125 0.0F
, -0.666666666667F
, 0.745355992501F
,
126 0.0F
, 0.666666666667F
, -0.745355992501F
,
128 -0.934172358963F
, -0.12732200375F
, 0.333333333333F
,
129 -0.934172358963F
, 0.12732200375F
, -0.333333333333F
,
130 0.934172358963F
, -0.12732200375F
, 0.333333333333F
,
131 0.934172358963F
, 0.12732200375F
, -0.333333333333F
,
132 -0.57735026919F
, 0.333333333334F
, 0.745355992501F
,
133 0.57735026919F
, 0.333333333334F
, 0.745355992501F
,
134 -0.57735026919F
, -0.745355992501F
, 0.333333333334F
,
135 0.57735026919F
, -0.745355992501F
, 0.333333333334F
,
136 -0.57735026919F
, 0.745355992501F
, -0.333333333334F
,
137 0.57735026919F
, 0.745355992501F
, -0.333333333334F
,
138 -0.57735026919F
, -0.333333333334F
, -0.745355992501F
,
139 0.57735026919F
, -0.333333333334F
, -0.745355992501F
,
145 TETRAHEDRON
, CUBE
, OCTAHEDRON
, ICOSAHEDRON
147 static const struct solid
*solids
[] = {
148 &s_tetrahedron
, &s_cube
, &s_octahedron
, &s_icosahedron
158 enum { LEFT
, RIGHT
, UP
, DOWN
, UP_LEFT
, UP_RIGHT
, DOWN_LEFT
, DOWN_RIGHT
};
160 #define PREFERRED_GRID_SCALE 48
161 #define GRID_SCALE (ds->gridscale)
162 #define ROLLTIME 0.13F
164 #define SQ(x) ( (x) * (x) )
166 #define MATMUL(ra,m,a) do { \
167 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
168 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
169 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
170 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
171 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
174 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
179 float points
[8]; /* maximum */
180 int directions
[8]; /* bit masks showing point pairs */
189 * Grid dimensions. For a square grid these are width and
190 * height respectively; otherwise the grid is a hexagon, with
191 * the top side and the two lower diagonals having length d1
192 * and the remaining three sides having length d2 (so that
193 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
199 struct game_params params
;
200 const struct solid
*solid
;
202 struct grid_square
*squares
;
204 int current
; /* index of current grid square */
205 int sgkey
[2]; /* key-point indices into grid sq */
206 int dgkey
[2]; /* key-point indices into grid sq */
207 int spkey
[2]; /* key-point indices into polyhedron */
208 int dpkey
[2]; /* key-point indices into polyhedron */
215 static game_params
*default_params(void)
217 game_params
*ret
= snew(game_params
);
226 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
228 game_params
*ret
= snew(game_params
);
240 ret
->solid
= TETRAHEDRON
;
246 ret
->solid
= OCTAHEDRON
;
252 ret
->solid
= ICOSAHEDRON
;
266 static void free_params(game_params
*params
)
271 static game_params
*dup_params(game_params
*params
)
273 game_params
*ret
= snew(game_params
);
274 *ret
= *params
; /* structure copy */
278 static void decode_params(game_params
*ret
, char const *string
)
281 case 't': ret
->solid
= TETRAHEDRON
; string
++; break;
282 case 'c': ret
->solid
= CUBE
; string
++; break;
283 case 'o': ret
->solid
= OCTAHEDRON
; string
++; break;
284 case 'i': ret
->solid
= ICOSAHEDRON
; string
++; break;
287 ret
->d1
= ret
->d2
= atoi(string
);
288 while (*string
&& isdigit((unsigned char)*string
)) string
++;
289 if (*string
== 'x') {
291 ret
->d2
= atoi(string
);
295 static char *encode_params(game_params
*params
, int full
)
299 assert(params
->solid
>= 0 && params
->solid
< 4);
300 sprintf(data
, "%c%dx%d", "tcoi"[params
->solid
], params
->d1
, params
->d2
);
304 typedef void (*egc_callback
)(void *, struct grid_square
*);
306 static void enum_grid_squares(game_params
*params
, egc_callback callback
, void *ctx
)
308 const struct solid
*solid
= solids
[params
->solid
];
310 if (solid
->order
== 4) {
313 for (y
= 0; y
< params
->d2
; y
++)
314 for (x
= 0; x
< params
->d1
; x
++) {
315 struct grid_square sq
;
319 sq
.points
[0] = x
- 0.5F
;
320 sq
.points
[1] = y
- 0.5F
;
321 sq
.points
[2] = x
- 0.5F
;
322 sq
.points
[3] = y
+ 0.5F
;
323 sq
.points
[4] = x
+ 0.5F
;
324 sq
.points
[5] = y
+ 0.5F
;
325 sq
.points
[6] = x
+ 0.5F
;
326 sq
.points
[7] = y
- 0.5F
;
329 sq
.directions
[LEFT
] = 0x03; /* 0,1 */
330 sq
.directions
[RIGHT
] = 0x0C; /* 2,3 */
331 sq
.directions
[UP
] = 0x09; /* 0,3 */
332 sq
.directions
[DOWN
] = 0x06; /* 1,2 */
333 sq
.directions
[UP_LEFT
] = 0; /* no diagonals in a square */
334 sq
.directions
[UP_RIGHT
] = 0; /* no diagonals in a square */
335 sq
.directions
[DOWN_LEFT
] = 0; /* no diagonals in a square */
336 sq
.directions
[DOWN_RIGHT
] = 0; /* no diagonals in a square */
341 * This is supremely irrelevant, but just to avoid
342 * having any uninitialised structure members...
349 int row
, rowlen
, other
, i
, firstix
= -1;
350 float theight
= (float)(sqrt(3) / 2.0);
352 for (row
= 0; row
< params
->d1
+ params
->d2
; row
++) {
353 if (row
< params
->d2
) {
355 rowlen
= row
+ params
->d1
;
358 rowlen
= 2*params
->d2
+ params
->d1
- row
;
362 * There are `rowlen' down-pointing triangles.
364 for (i
= 0; i
< rowlen
; i
++) {
365 struct grid_square sq
;
369 ix
= (2 * i
- (rowlen
-1));
373 sq
.y
= y
+ theight
/ 3;
374 sq
.points
[0] = x
- 0.5F
;
377 sq
.points
[3] = y
+ theight
;
378 sq
.points
[4] = x
+ 0.5F
;
382 sq
.directions
[LEFT
] = 0x03; /* 0,1 */
383 sq
.directions
[RIGHT
] = 0x06; /* 1,2 */
384 sq
.directions
[UP
] = 0x05; /* 0,2 */
385 sq
.directions
[DOWN
] = 0; /* invalid move */
388 * Down-pointing triangle: both the up diagonals go
389 * up, and the down ones go left and right.
391 sq
.directions
[UP_LEFT
] = sq
.directions
[UP_RIGHT
] =
393 sq
.directions
[DOWN_LEFT
] = sq
.directions
[LEFT
];
394 sq
.directions
[DOWN_RIGHT
] = sq
.directions
[RIGHT
];
401 sq
.tetra_class
= ((row
+(ix
&1)) & 2) ^ (ix
& 3);
407 * There are `rowlen+other' up-pointing triangles.
409 for (i
= 0; i
< rowlen
+other
; i
++) {
410 struct grid_square sq
;
414 ix
= (2 * i
- (rowlen
+other
-1));
418 sq
.y
= y
+ 2*theight
/ 3;
419 sq
.points
[0] = x
+ 0.5F
;
420 sq
.points
[1] = y
+ theight
;
423 sq
.points
[4] = x
- 0.5F
;
424 sq
.points
[5] = y
+ theight
;
427 sq
.directions
[LEFT
] = 0x06; /* 1,2 */
428 sq
.directions
[RIGHT
] = 0x03; /* 0,1 */
429 sq
.directions
[DOWN
] = 0x05; /* 0,2 */
430 sq
.directions
[UP
] = 0; /* invalid move */
433 * Up-pointing triangle: both the down diagonals go
434 * down, and the up ones go left and right.
436 sq
.directions
[DOWN_LEFT
] = sq
.directions
[DOWN_RIGHT
] =
438 sq
.directions
[UP_LEFT
] = sq
.directions
[LEFT
];
439 sq
.directions
[UP_RIGHT
] = sq
.directions
[RIGHT
];
444 firstix
= (ix
- 1) & 3;
446 sq
.tetra_class
= ((row
+(ix
&1)) & 2) ^ (ix
& 3);
454 static int grid_area(int d1
, int d2
, int order
)
457 * An NxM grid of squares has NM squares in it.
459 * A grid of triangles with dimensions A and B has a total of
460 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
461 * a side-A triangle containing A^2 subtriangles, a side-B
462 * triangle containing B^2, and two congruent parallelograms,
463 * each with side lengths A and B, each therefore containing AB
464 * two-triangle rhombuses.)
469 return d1
*d1
+ d2
*d2
+ 4*d1
*d2
;
472 static config_item
*game_configure(game_params
*params
)
474 config_item
*ret
= snewn(4, config_item
);
477 ret
[0].name
= "Type of solid";
478 ret
[0].type
= C_CHOICES
;
479 ret
[0].sval
= ":Tetrahedron:Cube:Octahedron:Icosahedron";
480 ret
[0].ival
= params
->solid
;
482 ret
[1].name
= "Width / top";
483 ret
[1].type
= C_STRING
;
484 sprintf(buf
, "%d", params
->d1
);
485 ret
[1].sval
= dupstr(buf
);
488 ret
[2].name
= "Height / bottom";
489 ret
[2].type
= C_STRING
;
490 sprintf(buf
, "%d", params
->d2
);
491 ret
[2].sval
= dupstr(buf
);
502 static game_params
*custom_params(config_item
*cfg
)
504 game_params
*ret
= snew(game_params
);
506 ret
->solid
= cfg
[0].ival
;
507 ret
->d1
= atoi(cfg
[1].sval
);
508 ret
->d2
= atoi(cfg
[2].sval
);
513 static void count_grid_square_callback(void *ctx
, struct grid_square
*sq
)
515 int *classes
= (int *)ctx
;
519 thisclass
= sq
->tetra_class
;
520 else if (classes
[4] == 2)
521 thisclass
= sq
->flip
;
525 classes
[thisclass
]++;
528 static char *validate_params(game_params
*params
, int full
)
533 if (params
->solid
< 0 || params
->solid
>= lenof(solids
))
534 return "Unrecognised solid type";
536 if (solids
[params
->solid
]->order
== 4) {
537 if (params
->d1
<= 0 || params
->d2
<= 0)
538 return "Both grid dimensions must be greater than zero";
540 if (params
->d1
<= 0 && params
->d2
<= 0)
541 return "At least one grid dimension must be greater than zero";
544 for (i
= 0; i
< 4; i
++)
546 if (params
->solid
== TETRAHEDRON
)
548 else if (params
->solid
== OCTAHEDRON
)
552 enum_grid_squares(params
, count_grid_square_callback
, classes
);
554 for (i
= 0; i
< classes
[4]; i
++)
555 if (classes
[i
] < solids
[params
->solid
]->nfaces
/ classes
[4])
556 return "Not enough grid space to place all blue faces";
558 if (grid_area(params
->d1
, params
->d2
, solids
[params
->solid
]->order
) <
559 solids
[params
->solid
]->nfaces
+ 1)
560 return "Not enough space to place the solid on an empty square";
572 static void classify_grid_square_callback(void *ctx
, struct grid_square
*sq
)
574 struct grid_data
*data
= (struct grid_data
*)ctx
;
577 if (data
->nclasses
== 4)
578 thisclass
= sq
->tetra_class
;
579 else if (data
->nclasses
== 2)
580 thisclass
= sq
->flip
;
584 data
->gridptrs
[thisclass
][data
->nsquares
[thisclass
]++] =
588 static char *new_game_desc(game_params
*params
, random_state
*rs
,
589 char **aux
, int interactive
)
591 struct grid_data data
;
592 int i
, j
, k
, m
, area
, facesperclass
;
597 * Enumerate the grid squares, dividing them into equivalence
598 * classes as appropriate. (For the tetrahedron, there is one
599 * equivalence class for each face; for the octahedron there
600 * are two classes; for the other two solids there's only one.)
603 area
= grid_area(params
->d1
, params
->d2
, solids
[params
->solid
]->order
);
604 if (params
->solid
== TETRAHEDRON
)
606 else if (params
->solid
== OCTAHEDRON
)
610 data
.gridptrs
[0] = snewn(data
.nclasses
* area
, int);
611 for (i
= 0; i
< data
.nclasses
; i
++) {
612 data
.gridptrs
[i
] = data
.gridptrs
[0] + i
* area
;
613 data
.nsquares
[i
] = 0;
615 data
.squareindex
= 0;
616 enum_grid_squares(params
, classify_grid_square_callback
, &data
);
618 facesperclass
= solids
[params
->solid
]->nfaces
/ data
.nclasses
;
620 for (i
= 0; i
< data
.nclasses
; i
++)
621 assert(data
.nsquares
[i
] >= facesperclass
);
622 assert(data
.squareindex
== area
);
625 * So now we know how many faces to allocate in each class. Get
628 flags
= snewn(area
, int);
629 for (i
= 0; i
< area
; i
++)
632 for (i
= 0; i
< data
.nclasses
; i
++) {
633 for (j
= 0; j
< facesperclass
; j
++) {
634 int n
= random_upto(rs
, data
.nsquares
[i
]);
636 assert(!flags
[data
.gridptrs
[i
][n
]]);
637 flags
[data
.gridptrs
[i
][n
]] = TRUE
;
640 * Move everything else up the array. I ought to use a
641 * better data structure for this, but for such small
642 * numbers it hardly seems worth the effort.
644 while (n
< data
.nsquares
[i
]-1) {
645 data
.gridptrs
[i
][n
] = data
.gridptrs
[i
][n
+1];
653 * Now we know precisely which squares are blue. Encode this
654 * information in hex. While we're looping over this, collect
655 * the non-blue squares into a list in the now-unused gridptrs
658 desc
= snewn(area
/ 4 + 40, char);
663 for (i
= 0; i
< area
; i
++) {
667 data
.gridptrs
[0][m
++] = i
;
671 *p
++ = "0123456789ABCDEF"[j
];
677 *p
++ = "0123456789ABCDEF"[j
];
680 * Choose a non-blue square for the polyhedron.
682 sprintf(p
, ",%d", data
.gridptrs
[0][random_upto(rs
, m
)]);
684 sfree(data
.gridptrs
[0]);
690 static void add_grid_square_callback(void *ctx
, struct grid_square
*sq
)
692 game_state
*state
= (game_state
*)ctx
;
694 state
->squares
[state
->nsquares
] = *sq
; /* structure copy */
695 state
->squares
[state
->nsquares
].blue
= FALSE
;
699 static int lowest_face(const struct solid
*solid
)
706 for (i
= 0; i
< solid
->nfaces
; i
++) {
709 for (j
= 0; j
< solid
->order
; j
++) {
710 int f
= solid
->faces
[i
*solid
->order
+ j
];
711 z
+= solid
->vertices
[f
*3+2];
714 if (i
== 0 || zmin
> z
) {
723 static int align_poly(const struct solid
*solid
, struct grid_square
*sq
,
728 int flip
= (sq
->flip
? -1 : +1);
731 * First, find the lowest z-coordinate present in the solid.
734 for (i
= 0; i
< solid
->nvertices
; i
++)
735 if (zmin
> solid
->vertices
[i
*3+2])
736 zmin
= solid
->vertices
[i
*3+2];
739 * Now go round the grid square. For each point in the grid
740 * square, we're looking for a point of the polyhedron with the
741 * same x- and y-coordinates (relative to the square's centre),
742 * and z-coordinate equal to zmin (near enough).
744 for (j
= 0; j
< sq
->npoints
; j
++) {
750 for (i
= 0; i
< solid
->nvertices
; i
++) {
753 dist
+= SQ(solid
->vertices
[i
*3+0] * flip
- sq
->points
[j
*2+0] + sq
->x
);
754 dist
+= SQ(solid
->vertices
[i
*3+1] * flip
- sq
->points
[j
*2+1] + sq
->y
);
755 dist
+= SQ(solid
->vertices
[i
*3+2] - zmin
);
763 if (matches
!= 1 || index
< 0)
771 static void flip_poly(struct solid
*solid
, int flip
)
776 for (i
= 0; i
< solid
->nvertices
; i
++) {
777 solid
->vertices
[i
*3+0] *= -1;
778 solid
->vertices
[i
*3+1] *= -1;
780 for (i
= 0; i
< solid
->nfaces
; i
++) {
781 solid
->normals
[i
*3+0] *= -1;
782 solid
->normals
[i
*3+1] *= -1;
787 static struct solid
*transform_poly(const struct solid
*solid
, int flip
,
788 int key0
, int key1
, float angle
)
790 struct solid
*ret
= snew(struct solid
);
791 float vx
, vy
, ax
, ay
;
792 float vmatrix
[9], amatrix
[9], vmatrix2
[9];
795 *ret
= *solid
; /* structure copy */
797 flip_poly(ret
, flip
);
800 * Now rotate the polyhedron through the given angle. We must
801 * rotate about the Z-axis to bring the two vertices key0 and
802 * key1 into horizontal alignment, then rotate about the
803 * X-axis, then rotate back again.
805 vx
= ret
->vertices
[key1
*3+0] - ret
->vertices
[key0
*3+0];
806 vy
= ret
->vertices
[key1
*3+1] - ret
->vertices
[key0
*3+1];
807 assert(APPROXEQ(vx
*vx
+ vy
*vy
, 1.0));
809 vmatrix
[0] = vx
; vmatrix
[3] = vy
; vmatrix
[6] = 0;
810 vmatrix
[1] = -vy
; vmatrix
[4] = vx
; vmatrix
[7] = 0;
811 vmatrix
[2] = 0; vmatrix
[5] = 0; vmatrix
[8] = 1;
813 ax
= (float)cos(angle
);
814 ay
= (float)sin(angle
);
816 amatrix
[0] = 1; amatrix
[3] = 0; amatrix
[6] = 0;
817 amatrix
[1] = 0; amatrix
[4] = ax
; amatrix
[7] = ay
;
818 amatrix
[2] = 0; amatrix
[5] = -ay
; amatrix
[8] = ax
;
820 memcpy(vmatrix2
, vmatrix
, sizeof(vmatrix
));
824 for (i
= 0; i
< ret
->nvertices
; i
++) {
825 MATMUL(ret
->vertices
+ 3*i
, vmatrix
, ret
->vertices
+ 3*i
);
826 MATMUL(ret
->vertices
+ 3*i
, amatrix
, ret
->vertices
+ 3*i
);
827 MATMUL(ret
->vertices
+ 3*i
, vmatrix2
, ret
->vertices
+ 3*i
);
829 for (i
= 0; i
< ret
->nfaces
; i
++) {
830 MATMUL(ret
->normals
+ 3*i
, vmatrix
, ret
->normals
+ 3*i
);
831 MATMUL(ret
->normals
+ 3*i
, amatrix
, ret
->normals
+ 3*i
);
832 MATMUL(ret
->normals
+ 3*i
, vmatrix2
, ret
->normals
+ 3*i
);
838 static char *validate_desc(game_params
*params
, char *desc
)
840 int area
= grid_area(params
->d1
, params
->d2
, solids
[params
->solid
]->order
);
844 for (j
= 0; j
< i
; j
++) {
846 if (c
>= '0' && c
<= '9') continue;
847 if (c
>= 'A' && c
<= 'F') continue;
848 if (c
>= 'a' && c
<= 'f') continue;
849 return "Not enough hex digits at start of string";
850 /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
854 return "Expected ',' after hex digits";
858 if (desc
[i
] < '0' || desc
[i
] > '9')
859 return "Expected decimal integer after ','";
866 static game_state
*new_game(midend
*me
, game_params
*params
, char *desc
)
868 game_state
*state
= snew(game_state
);
871 state
->params
= *params
; /* structure copy */
872 state
->solid
= solids
[params
->solid
];
874 area
= grid_area(params
->d1
, params
->d2
, state
->solid
->order
);
875 state
->squares
= snewn(area
, struct grid_square
);
877 enum_grid_squares(params
, add_grid_square_callback
, state
);
878 assert(state
->nsquares
== area
);
880 state
->facecolours
= snewn(state
->solid
->nfaces
, int);
881 memset(state
->facecolours
, 0, state
->solid
->nfaces
* sizeof(int));
884 * Set up the blue squares and polyhedron position according to
885 * the game description.
893 for (i
= 0; i
< state
->nsquares
; i
++) {
896 if (v
>= '0' && v
<= '9')
898 else if (v
>= 'A' && v
<= 'F')
900 else if (v
>= 'a' && v
<= 'f')
906 state
->squares
[i
].blue
= TRUE
;
915 state
->current
= atoi(p
);
916 if (state
->current
< 0 || state
->current
>= state
->nsquares
)
917 state
->current
= 0; /* got to do _something_ */
921 * Align the polyhedron with its grid square and determine
922 * initial key points.
928 ret
= align_poly(state
->solid
, &state
->squares
[state
->current
], pkey
);
931 state
->dpkey
[0] = state
->spkey
[0] = pkey
[0];
932 state
->dpkey
[1] = state
->spkey
[0] = pkey
[1];
933 state
->dgkey
[0] = state
->sgkey
[0] = 0;
934 state
->dgkey
[1] = state
->sgkey
[0] = 1;
937 state
->previous
= state
->current
;
939 state
->completed
= 0;
940 state
->movecount
= 0;
945 static game_state
*dup_game(game_state
*state
)
947 game_state
*ret
= snew(game_state
);
949 ret
->params
= state
->params
; /* structure copy */
950 ret
->solid
= state
->solid
;
951 ret
->facecolours
= snewn(ret
->solid
->nfaces
, int);
952 memcpy(ret
->facecolours
, state
->facecolours
,
953 ret
->solid
->nfaces
* sizeof(int));
954 ret
->nsquares
= state
->nsquares
;
955 ret
->current
= state
->current
;
956 ret
->squares
= snewn(ret
->nsquares
, struct grid_square
);
957 memcpy(ret
->squares
, state
->squares
,
958 ret
->nsquares
* sizeof(struct grid_square
));
959 ret
->dpkey
[0] = state
->dpkey
[0];
960 ret
->dpkey
[1] = state
->dpkey
[1];
961 ret
->dgkey
[0] = state
->dgkey
[0];
962 ret
->dgkey
[1] = state
->dgkey
[1];
963 ret
->spkey
[0] = state
->spkey
[0];
964 ret
->spkey
[1] = state
->spkey
[1];
965 ret
->sgkey
[0] = state
->sgkey
[0];
966 ret
->sgkey
[1] = state
->sgkey
[1];
967 ret
->previous
= state
->previous
;
968 ret
->angle
= state
->angle
;
969 ret
->completed
= state
->completed
;
970 ret
->movecount
= state
->movecount
;
975 static void free_game(game_state
*state
)
977 sfree(state
->squares
);
978 sfree(state
->facecolours
);
982 static char *solve_game(game_state
*state
, game_state
*currstate
,
983 char *aux
, char **error
)
988 static char *game_text_format(game_state
*state
)
993 static game_ui
*new_ui(game_state
*state
)
998 static void free_ui(game_ui
*ui
)
1002 static char *encode_ui(game_ui
*ui
)
1007 static void decode_ui(game_ui
*ui
, char *encoding
)
1011 static void game_changed_state(game_ui
*ui
, game_state
*oldstate
,
1012 game_state
*newstate
)
1016 struct game_drawstate
{
1018 int ox
, oy
; /* pixel position of float origin */
1022 * Code shared between interpret_move() and execute_move().
1024 static int find_move_dest(game_state
*from
, int direction
,
1025 int *skey
, int *dkey
)
1027 int mask
, dest
, i
, j
;
1031 * Find the two points in the current grid square which
1032 * correspond to this move.
1034 mask
= from
->squares
[from
->current
].directions
[direction
];
1037 for (i
= j
= 0; i
< from
->squares
[from
->current
].npoints
; i
++)
1038 if (mask
& (1 << i
)) {
1039 points
[j
*2] = from
->squares
[from
->current
].points
[i
*2];
1040 points
[j
*2+1] = from
->squares
[from
->current
].points
[i
*2+1];
1047 * Now find the other grid square which shares those points.
1048 * This is our move destination.
1051 for (i
= 0; i
< from
->nsquares
; i
++)
1052 if (i
!= from
->current
) {
1056 for (j
= 0; j
< from
->squares
[i
].npoints
; j
++) {
1057 dist
= (SQ(from
->squares
[i
].points
[j
*2] - points
[0]) +
1058 SQ(from
->squares
[i
].points
[j
*2+1] - points
[1]));
1061 dist
= (SQ(from
->squares
[i
].points
[j
*2] - points
[2]) +
1062 SQ(from
->squares
[i
].points
[j
*2+1] - points
[3]));
1076 static char *interpret_move(game_state
*state
, game_ui
*ui
, game_drawstate
*ds
,
1077 int x
, int y
, int button
)
1079 int direction
, mask
, i
;
1080 int skey
[2], dkey
[2];
1082 button
= button
& (~MOD_MASK
| MOD_NUM_KEYPAD
);
1085 * Moves can be made with the cursor keys or numeric keypad, or
1086 * alternatively you can left-click and the polyhedron will
1087 * move in the general direction of the mouse pointer.
1089 if (button
== CURSOR_UP
|| button
== (MOD_NUM_KEYPAD
| '8'))
1091 else if (button
== CURSOR_DOWN
|| button
== (MOD_NUM_KEYPAD
| '2'))
1093 else if (button
== CURSOR_LEFT
|| button
== (MOD_NUM_KEYPAD
| '4'))
1095 else if (button
== CURSOR_RIGHT
|| button
== (MOD_NUM_KEYPAD
| '6'))
1097 else if (button
== (MOD_NUM_KEYPAD
| '7'))
1098 direction
= UP_LEFT
;
1099 else if (button
== (MOD_NUM_KEYPAD
| '1'))
1100 direction
= DOWN_LEFT
;
1101 else if (button
== (MOD_NUM_KEYPAD
| '9'))
1102 direction
= UP_RIGHT
;
1103 else if (button
== (MOD_NUM_KEYPAD
| '3'))
1104 direction
= DOWN_RIGHT
;
1105 else if (button
== LEFT_BUTTON
) {
1107 * Find the bearing of the click point from the current
1113 cx
= state
->squares
[state
->current
].x
* GRID_SCALE
+ ds
->ox
;
1114 cy
= state
->squares
[state
->current
].y
* GRID_SCALE
+ ds
->oy
;
1116 if (x
== cx
&& y
== cy
)
1117 return NULL
; /* clicked in exact centre! */
1118 angle
= atan2(y
- cy
, x
- cx
);
1121 * There are three possibilities.
1123 * - This square is a square, so we choose between UP,
1124 * DOWN, LEFT and RIGHT by dividing the available angle
1125 * at the 45-degree points.
1127 * - This square is an up-pointing triangle, so we choose
1128 * between DOWN, LEFT and RIGHT by dividing into
1131 * - This square is a down-pointing triangle, so we choose
1132 * between UP, LEFT and RIGHT in the inverse manner.
1134 * Don't forget that since our y-coordinates increase
1135 * downwards, `angle' is measured _clockwise_ from the
1136 * x-axis, not anticlockwise as most mathematicians would
1137 * instinctively assume.
1139 if (state
->squares
[state
->current
].npoints
== 4) {
1141 if (fabs(angle
) > 3*PI
/4)
1143 else if (fabs(angle
) < PI
/4)
1149 } else if (state
->squares
[state
->current
].directions
[UP
] == 0) {
1150 /* Up-pointing triangle. */
1151 if (angle
< -PI
/2 || angle
> 5*PI
/6)
1153 else if (angle
> PI
/6)
1158 /* Down-pointing triangle. */
1159 assert(state
->squares
[state
->current
].directions
[DOWN
] == 0);
1160 if (angle
> PI
/2 || angle
< -5*PI
/6)
1162 else if (angle
< -PI
/6)
1170 mask
= state
->squares
[state
->current
].directions
[direction
];
1175 * Translate diagonal directions into orthogonal ones.
1177 if (direction
> DOWN
) {
1178 for (i
= LEFT
; i
<= DOWN
; i
++)
1179 if (state
->squares
[state
->current
].directions
[i
] == mask
) {
1183 assert(direction
<= DOWN
);
1186 if (find_move_dest(state
, direction
, skey
, dkey
) < 0)
1189 if (direction
== LEFT
) return dupstr("L");
1190 if (direction
== RIGHT
) return dupstr("R");
1191 if (direction
== UP
) return dupstr("U");
1192 if (direction
== DOWN
) return dupstr("D");
1194 return NULL
; /* should never happen */
1197 static game_state
*execute_move(game_state
*from
, char *move
)
1203 int skey
[2], dkey
[2];
1208 case 'L': direction
= LEFT
; break;
1209 case 'R': direction
= RIGHT
; break;
1210 case 'U': direction
= UP
; break;
1211 case 'D': direction
= DOWN
; break;
1212 default: return NULL
;
1215 dest
= find_move_dest(from
, direction
, skey
, dkey
);
1219 ret
= dup_game(from
);
1220 ret
->current
= dest
;
1223 * So we know what grid square we're aiming for, and we also
1224 * know the two key points (as indices in both the source and
1225 * destination grid squares) which are invariant between source
1228 * Next we must roll the polyhedron on to that square. So we
1229 * find the indices of the key points within the polyhedron's
1230 * vertex array, then use those in a call to transform_poly,
1231 * and align the result on the new grid square.
1235 align_poly(from
->solid
, &from
->squares
[from
->current
], all_pkey
);
1236 pkey
[0] = all_pkey
[skey
[0]];
1237 pkey
[1] = all_pkey
[skey
[1]];
1239 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1245 * Now find the angle through which to rotate the polyhedron.
1246 * Do this by finding the two faces that share the two vertices
1247 * we've found, and taking the dot product of their normals.
1253 for (i
= 0; i
< from
->solid
->nfaces
; i
++) {
1255 for (j
= 0; j
< from
->solid
->order
; j
++)
1256 if (from
->solid
->faces
[i
*from
->solid
->order
+ j
] == pkey
[0] ||
1257 from
->solid
->faces
[i
*from
->solid
->order
+ j
] == pkey
[1])
1268 for (i
= 0; i
< 3; i
++)
1269 dp
+= (from
->solid
->normals
[f
[0]*3+i
] *
1270 from
->solid
->normals
[f
[1]*3+i
]);
1271 angle
= (float)acos(dp
);
1275 * Now transform the polyhedron. We aren't entirely sure
1276 * whether we need to rotate through angle or -angle, and the
1277 * simplest way round this is to try both and see which one
1278 * aligns successfully!
1280 * Unfortunately, _both_ will align successfully if this is a
1281 * cube, which won't tell us anything much. So for that
1282 * particular case, I resort to gross hackery: I simply negate
1283 * the angle before trying the alignment, depending on the
1284 * direction. Which directions work which way is determined by
1285 * pure trial and error. I said it was gross :-/
1291 if (from
->solid
->order
== 4 && direction
== UP
)
1292 angle
= -angle
; /* HACK */
1294 poly
= transform_poly(from
->solid
,
1295 from
->squares
[from
->current
].flip
,
1296 pkey
[0], pkey
[1], angle
);
1297 flip_poly(poly
, from
->squares
[ret
->current
].flip
);
1298 success
= align_poly(poly
, &from
->squares
[ret
->current
], all_pkey
);
1303 poly
= transform_poly(from
->solid
,
1304 from
->squares
[from
->current
].flip
,
1305 pkey
[0], pkey
[1], angle
);
1306 flip_poly(poly
, from
->squares
[ret
->current
].flip
);
1307 success
= align_poly(poly
, &from
->squares
[ret
->current
], all_pkey
);
1314 * Now we have our rotated polyhedron, which we expect to be
1315 * exactly congruent to the one we started with - but with the
1316 * faces permuted. So we map that congruence and thereby figure
1317 * out how to permute the faces as a result of the polyhedron
1321 int *newcolours
= snewn(from
->solid
->nfaces
, int);
1323 for (i
= 0; i
< from
->solid
->nfaces
; i
++)
1326 for (i
= 0; i
< from
->solid
->nfaces
; i
++) {
1330 * Now go through the transformed polyhedron's faces
1331 * and figure out which one's normal is approximately
1332 * equal to this one.
1334 for (j
= 0; j
< poly
->nfaces
; j
++) {
1340 for (k
= 0; k
< 3; k
++)
1341 dist
+= SQ(poly
->normals
[j
*3+k
] -
1342 from
->solid
->normals
[i
*3+k
]);
1344 if (APPROXEQ(dist
, 0)) {
1346 newcolours
[i
] = ret
->facecolours
[j
];
1350 assert(nmatch
== 1);
1353 for (i
= 0; i
< from
->solid
->nfaces
; i
++)
1354 assert(newcolours
[i
] != -1);
1356 sfree(ret
->facecolours
);
1357 ret
->facecolours
= newcolours
;
1363 * And finally, swap the colour between the bottom face of the
1364 * polyhedron and the face we've just landed on.
1366 * We don't do this if the game is already complete, since we
1367 * allow the user to roll the fully blue polyhedron around the
1368 * grid as a feeble reward.
1370 if (!ret
->completed
) {
1371 i
= lowest_face(from
->solid
);
1372 j
= ret
->facecolours
[i
];
1373 ret
->facecolours
[i
] = ret
->squares
[ret
->current
].blue
;
1374 ret
->squares
[ret
->current
].blue
= j
;
1377 * Detect game completion.
1380 for (i
= 0; i
< ret
->solid
->nfaces
; i
++)
1381 if (ret
->facecolours
[i
])
1383 if (j
== ret
->solid
->nfaces
)
1384 ret
->completed
= ret
->movecount
;
1390 * Align the normal polyhedron with its grid square, to get key
1391 * points for non-animated display.
1397 success
= align_poly(ret
->solid
, &ret
->squares
[ret
->current
], pkey
);
1400 ret
->dpkey
[0] = pkey
[0];
1401 ret
->dpkey
[1] = pkey
[1];
1407 ret
->spkey
[0] = pkey
[0];
1408 ret
->spkey
[1] = pkey
[1];
1409 ret
->sgkey
[0] = skey
[0];
1410 ret
->sgkey
[1] = skey
[1];
1411 ret
->previous
= from
->current
;
1417 /* ----------------------------------------------------------------------
1425 static void find_bbox_callback(void *ctx
, struct grid_square
*sq
)
1427 struct bbox
*bb
= (struct bbox
*)ctx
;
1430 for (i
= 0; i
< sq
->npoints
; i
++) {
1431 if (bb
->l
> sq
->points
[i
*2]) bb
->l
= sq
->points
[i
*2];
1432 if (bb
->r
< sq
->points
[i
*2]) bb
->r
= sq
->points
[i
*2];
1433 if (bb
->u
> sq
->points
[i
*2+1]) bb
->u
= sq
->points
[i
*2+1];
1434 if (bb
->d
< sq
->points
[i
*2+1]) bb
->d
= sq
->points
[i
*2+1];
1438 static struct bbox
find_bbox(game_params
*params
)
1443 * These should be hugely more than the real bounding box will
1446 bb
.l
= 2.0F
* (params
->d1
+ params
->d2
);
1447 bb
.r
= -2.0F
* (params
->d1
+ params
->d2
);
1448 bb
.u
= 2.0F
* (params
->d1
+ params
->d2
);
1449 bb
.d
= -2.0F
* (params
->d1
+ params
->d2
);
1450 enum_grid_squares(params
, find_bbox_callback
, &bb
);
1455 #define XSIZE(gs, bb, solid) \
1456 ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
1457 #define YSIZE(gs, bb, solid) \
1458 ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
1460 static void game_compute_size(game_params
*params
, int tilesize
,
1463 struct bbox bb
= find_bbox(params
);
1465 *x
= XSIZE(tilesize
, bb
, solids
[params
->solid
]);
1466 *y
= YSIZE(tilesize
, bb
, solids
[params
->solid
]);
1469 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
1470 game_params
*params
, int tilesize
)
1472 struct bbox bb
= find_bbox(params
);
1474 ds
->gridscale
= tilesize
;
1475 ds
->ox
= (int)(-(bb
.l
- solids
[params
->solid
]->border
) * ds
->gridscale
);
1476 ds
->oy
= (int)(-(bb
.u
- solids
[params
->solid
]->border
) * ds
->gridscale
);
1479 static float *game_colours(frontend
*fe
, int *ncolours
)
1481 float *ret
= snewn(3 * NCOLOURS
, float);
1483 frontend_default_colour(fe
, &ret
[COL_BACKGROUND
* 3]);
1485 ret
[COL_BORDER
* 3 + 0] = 0.0;
1486 ret
[COL_BORDER
* 3 + 1] = 0.0;
1487 ret
[COL_BORDER
* 3 + 2] = 0.0;
1489 ret
[COL_BLUE
* 3 + 0] = 0.0;
1490 ret
[COL_BLUE
* 3 + 1] = 0.0;
1491 ret
[COL_BLUE
* 3 + 2] = 1.0;
1493 *ncolours
= NCOLOURS
;
1497 static game_drawstate
*game_new_drawstate(drawing
*dr
, game_state
*state
)
1499 struct game_drawstate
*ds
= snew(struct game_drawstate
);
1501 ds
->ox
= ds
->oy
= ds
->gridscale
= 0.0F
;/* not decided yet */
1506 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
1511 static void game_redraw(drawing
*dr
, game_drawstate
*ds
, game_state
*oldstate
,
1512 game_state
*state
, int dir
, game_ui
*ui
,
1513 float animtime
, float flashtime
)
1516 struct bbox bb
= find_bbox(&state
->params
);
1521 game_state
*newstate
;
1524 draw_rect(dr
, 0, 0, XSIZE(GRID_SCALE
, bb
, state
->solid
),
1525 YSIZE(GRID_SCALE
, bb
, state
->solid
), COL_BACKGROUND
);
1531 * This is an Undo. So reverse the order of the states, and
1532 * run the roll timer backwards.
1540 animtime
= ROLLTIME
- animtime
;
1546 square
= state
->current
;
1547 pkey
= state
->dpkey
;
1548 gkey
= state
->dgkey
;
1550 angle
= state
->angle
* animtime
/ ROLLTIME
;
1551 square
= state
->previous
;
1552 pkey
= state
->spkey
;
1553 gkey
= state
->sgkey
;
1558 for (i
= 0; i
< state
->nsquares
; i
++) {
1561 for (j
= 0; j
< state
->squares
[i
].npoints
; j
++) {
1562 coords
[2*j
] = ((int)(state
->squares
[i
].points
[2*j
] * GRID_SCALE
)
1564 coords
[2*j
+1] = ((int)(state
->squares
[i
].points
[2*j
+1]*GRID_SCALE
)
1568 draw_polygon(dr
, coords
, state
->squares
[i
].npoints
,
1569 state
->squares
[i
].blue
? COL_BLUE
: COL_BACKGROUND
,
1574 * Now compute and draw the polyhedron.
1576 poly
= transform_poly(state
->solid
, state
->squares
[square
].flip
,
1577 pkey
[0], pkey
[1], angle
);
1580 * Compute the translation required to align the two key points
1581 * on the polyhedron with the same key points on the current
1584 for (i
= 0; i
< 3; i
++) {
1587 for (j
= 0; j
< 2; j
++) {
1592 state
->squares
[square
].points
[gkey
[j
]*2+i
];
1597 tc
+= (grid_coord
- poly
->vertices
[pkey
[j
]*3+i
]);
1602 for (i
= 0; i
< poly
->nvertices
; i
++)
1603 for (j
= 0; j
< 3; j
++)
1604 poly
->vertices
[i
*3+j
] += t
[j
];
1607 * Now actually draw each face.
1609 for (i
= 0; i
< poly
->nfaces
; i
++) {
1613 for (j
= 0; j
< poly
->order
; j
++) {
1614 int f
= poly
->faces
[i
*poly
->order
+ j
];
1615 points
[j
*2] = (poly
->vertices
[f
*3+0] -
1616 poly
->vertices
[f
*3+2] * poly
->shear
);
1617 points
[j
*2+1] = (poly
->vertices
[f
*3+1] -
1618 poly
->vertices
[f
*3+2] * poly
->shear
);
1621 for (j
= 0; j
< poly
->order
; j
++) {
1622 coords
[j
*2] = (int)floor(points
[j
*2] * GRID_SCALE
) + ds
->ox
;
1623 coords
[j
*2+1] = (int)floor(points
[j
*2+1] * GRID_SCALE
) + ds
->oy
;
1627 * Find out whether these points are in a clockwise or
1628 * anticlockwise arrangement. If the latter, discard the
1629 * face because it's facing away from the viewer.
1631 * This would involve fiddly winding-number stuff for a
1632 * general polygon, but for the simple parallelograms we'll
1633 * be seeing here, all we have to do is check whether the
1634 * corners turn right or left. So we'll take the vector
1635 * from point 0 to point 1, turn it right 90 degrees,
1636 * and check the sign of the dot product with that and the
1637 * next vector (point 1 to point 2).
1640 float v1x
= points
[2]-points
[0];
1641 float v1y
= points
[3]-points
[1];
1642 float v2x
= points
[4]-points
[2];
1643 float v2y
= points
[5]-points
[3];
1644 float dp
= v1x
* v2y
- v1y
* v2x
;
1650 draw_polygon(dr
, coords
, poly
->order
,
1651 state
->facecolours
[i
] ? COL_BLUE
: COL_BACKGROUND
,
1656 draw_update(dr
, 0, 0, XSIZE(GRID_SCALE
, bb
, state
->solid
),
1657 YSIZE(GRID_SCALE
, bb
, state
->solid
));
1660 * Update the status bar.
1663 char statusbuf
[256];
1665 sprintf(statusbuf
, "%sMoves: %d",
1666 (state
->completed
? "COMPLETED! " : ""),
1667 (state
->completed
? state
->completed
: state
->movecount
));
1669 status_bar(dr
, statusbuf
);
1673 static float game_anim_length(game_state
*oldstate
,
1674 game_state
*newstate
, int dir
, game_ui
*ui
)
1679 static float game_flash_length(game_state
*oldstate
,
1680 game_state
*newstate
, int dir
, game_ui
*ui
)
1685 static int game_timing_state(game_state
*state
, game_ui
*ui
)
1690 static void game_print_size(game_params
*params
, float *x
, float *y
)
1694 static void game_print(drawing
*dr
, game_state
*state
, int tilesize
)
1699 #define thegame cube
1702 const struct game thegame
= {
1703 "Cube", "games.cube", "cube",
1710 TRUE
, game_configure
, custom_params
,
1718 FALSE
, game_text_format
,
1726 PREFERRED_GRID_SCALE
, game_compute_size
, game_set_size
,
1729 game_free_drawstate
,
1733 FALSE
, FALSE
, game_print_size
, game_print
,
1734 TRUE
, /* wants_statusbar */
1735 FALSE
, game_timing_state
,