Kyle Brazell points out that the completion checker considers a
[sgt-puzzles/ydirson.git] / cube.c
blobbc919730b89941f164d6e9d551c4c6e08014051c
1 /*
2 * cube.c: Cube game.
3 */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
12 #include "puzzles.h"
14 #define MAXVERTICES 20
15 #define MAXFACES 20
16 #define MAXORDER 4
17 struct solid {
18 int nvertices;
19 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
20 int order;
21 int nfaces;
22 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
23 float normals[MAXFACES * 3]; /* 3*npoints vector components */
24 float shear; /* isometric shear for nice drawing */
25 float border; /* border required around arena */
28 static const struct solid s_tetrahedron = {
31 0.0F, -0.57735026919F, -0.20412414523F,
32 -0.5F, 0.28867513459F, -0.20412414523F,
33 0.0F, -0.0F, 0.6123724357F,
34 0.5F, 0.28867513459F, -0.20412414523F,
36 3, 4,
38 0,2,1, 3,1,2, 2,0,3, 1,3,0
41 -0.816496580928F, -0.471404520791F, 0.333333333334F,
42 0.0F, 0.942809041583F, 0.333333333333F,
43 0.816496580928F, -0.471404520791F, 0.333333333334F,
44 0.0F, 0.0F, -1.0F,
46 0.0F, 0.3F
49 static const struct solid s_cube = {
52 -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
53 -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
54 +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
55 +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
57 4, 6,
59 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
62 -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
63 +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
64 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
66 0.3F, 0.5F
69 static const struct solid s_octahedron = {
72 -0.5F, -0.28867513459472505F, 0.4082482904638664F,
73 0.5F, 0.28867513459472505F, -0.4082482904638664F,
74 -0.5F, 0.28867513459472505F, -0.4082482904638664F,
75 0.5F, -0.28867513459472505F, 0.4082482904638664F,
76 0.0F, -0.57735026918945009F, -0.4082482904638664F,
77 0.0F, 0.57735026918945009F, 0.4082482904638664F,
79 3, 8,
81 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
84 -0.816496580928F, -0.471404520791F, -0.333333333334F,
85 -0.816496580928F, 0.471404520791F, 0.333333333334F,
86 0.0F, -0.942809041583F, 0.333333333333F,
87 0.0F, 0.0F, 1.0F,
88 0.0F, 0.0F, -1.0F,
89 0.0F, 0.942809041583F, -0.333333333333F,
90 0.816496580928F, -0.471404520791F, -0.333333333334F,
91 0.816496580928F, 0.471404520791F, 0.333333333334F,
93 0.0F, 0.5F
96 static const struct solid s_icosahedron = {
97 12,
99 0.0F, 0.57735026919F, 0.75576131408F,
100 0.0F, -0.93417235896F, 0.17841104489F,
101 0.0F, 0.93417235896F, -0.17841104489F,
102 0.0F, -0.57735026919F, -0.75576131408F,
103 -0.5F, -0.28867513459F, 0.75576131408F,
104 -0.5F, 0.28867513459F, -0.75576131408F,
105 0.5F, -0.28867513459F, 0.75576131408F,
106 0.5F, 0.28867513459F, -0.75576131408F,
107 -0.80901699437F, 0.46708617948F, 0.17841104489F,
108 0.80901699437F, 0.46708617948F, 0.17841104489F,
109 -0.80901699437F, -0.46708617948F, -0.17841104489F,
110 0.80901699437F, -0.46708617948F, -0.17841104489F,
112 3, 20,
114 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
115 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
116 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
117 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
120 -0.356822089773F, 0.87267799625F, 0.333333333333F,
121 0.356822089773F, 0.87267799625F, 0.333333333333F,
122 -0.356822089773F, -0.87267799625F, -0.333333333333F,
123 0.356822089773F, -0.87267799625F, -0.333333333333F,
124 -0.0F, 0.0F, 1.0F,
125 0.0F, -0.666666666667F, 0.745355992501F,
126 0.0F, 0.666666666667F, -0.745355992501F,
127 0.0F, 0.0F, -1.0F,
128 -0.934172358963F, -0.12732200375F, 0.333333333333F,
129 -0.934172358963F, 0.12732200375F, -0.333333333333F,
130 0.934172358963F, -0.12732200375F, 0.333333333333F,
131 0.934172358963F, 0.12732200375F, -0.333333333333F,
132 -0.57735026919F, 0.333333333334F, 0.745355992501F,
133 0.57735026919F, 0.333333333334F, 0.745355992501F,
134 -0.57735026919F, -0.745355992501F, 0.333333333334F,
135 0.57735026919F, -0.745355992501F, 0.333333333334F,
136 -0.57735026919F, 0.745355992501F, -0.333333333334F,
137 0.57735026919F, 0.745355992501F, -0.333333333334F,
138 -0.57735026919F, -0.333333333334F, -0.745355992501F,
139 0.57735026919F, -0.333333333334F, -0.745355992501F,
141 0.0F, 0.8F
144 enum {
145 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
147 static const struct solid *solids[] = {
148 &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
151 enum {
152 COL_BACKGROUND,
153 COL_BORDER,
154 COL_BLUE,
155 NCOLOURS
158 enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
160 #define PREFERRED_GRID_SCALE 48
161 #define GRID_SCALE (ds->gridscale)
162 #define ROLLTIME 0.13F
164 #define SQ(x) ( (x) * (x) )
166 #define MATMUL(ra,m,a) do { \
167 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
168 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
169 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
170 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
171 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
172 } while (0)
174 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
176 struct grid_square {
177 float x, y;
178 int npoints;
179 float points[8]; /* maximum */
180 int directions[8]; /* bit masks showing point pairs */
181 int flip;
182 int blue;
183 int tetra_class;
186 struct game_params {
187 int solid;
189 * Grid dimensions. For a square grid these are width and
190 * height respectively; otherwise the grid is a hexagon, with
191 * the top side and the two lower diagonals having length d1
192 * and the remaining three sides having length d2 (so that
193 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
195 int d1, d2;
198 struct game_state {
199 struct game_params params;
200 const struct solid *solid;
201 int *facecolours;
202 struct grid_square *squares;
203 int nsquares;
204 int current; /* index of current grid square */
205 int sgkey[2]; /* key-point indices into grid sq */
206 int dgkey[2]; /* key-point indices into grid sq */
207 int spkey[2]; /* key-point indices into polyhedron */
208 int dpkey[2]; /* key-point indices into polyhedron */
209 int previous;
210 float angle;
211 int completed;
212 int movecount;
215 static game_params *default_params(void)
217 game_params *ret = snew(game_params);
219 ret->solid = CUBE;
220 ret->d1 = 4;
221 ret->d2 = 4;
223 return ret;
226 static int game_fetch_preset(int i, char **name, game_params **params)
228 game_params *ret = snew(game_params);
229 char *str;
231 switch (i) {
232 case 0:
233 str = "Cube";
234 ret->solid = CUBE;
235 ret->d1 = 4;
236 ret->d2 = 4;
237 break;
238 case 1:
239 str = "Tetrahedron";
240 ret->solid = TETRAHEDRON;
241 ret->d1 = 1;
242 ret->d2 = 2;
243 break;
244 case 2:
245 str = "Octahedron";
246 ret->solid = OCTAHEDRON;
247 ret->d1 = 2;
248 ret->d2 = 2;
249 break;
250 case 3:
251 str = "Icosahedron";
252 ret->solid = ICOSAHEDRON;
253 ret->d1 = 3;
254 ret->d2 = 3;
255 break;
256 default:
257 sfree(ret);
258 return FALSE;
261 *name = dupstr(str);
262 *params = ret;
263 return TRUE;
266 static void free_params(game_params *params)
268 sfree(params);
271 static game_params *dup_params(game_params *params)
273 game_params *ret = snew(game_params);
274 *ret = *params; /* structure copy */
275 return ret;
278 static void decode_params(game_params *ret, char const *string)
280 switch (*string) {
281 case 't': ret->solid = TETRAHEDRON; string++; break;
282 case 'c': ret->solid = CUBE; string++; break;
283 case 'o': ret->solid = OCTAHEDRON; string++; break;
284 case 'i': ret->solid = ICOSAHEDRON; string++; break;
285 default: break;
287 ret->d1 = ret->d2 = atoi(string);
288 while (*string && isdigit((unsigned char)*string)) string++;
289 if (*string == 'x') {
290 string++;
291 ret->d2 = atoi(string);
295 static char *encode_params(game_params *params, int full)
297 char data[256];
299 assert(params->solid >= 0 && params->solid < 4);
300 sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
302 return dupstr(data);
304 typedef void (*egc_callback)(void *, struct grid_square *);
306 static void enum_grid_squares(game_params *params, egc_callback callback, void *ctx)
308 const struct solid *solid = solids[params->solid];
310 if (solid->order == 4) {
311 int x, y;
313 for (y = 0; y < params->d2; y++)
314 for (x = 0; x < params->d1; x++) {
315 struct grid_square sq;
317 sq.x = (float)x;
318 sq.y = (float)y;
319 sq.points[0] = x - 0.5F;
320 sq.points[1] = y - 0.5F;
321 sq.points[2] = x - 0.5F;
322 sq.points[3] = y + 0.5F;
323 sq.points[4] = x + 0.5F;
324 sq.points[5] = y + 0.5F;
325 sq.points[6] = x + 0.5F;
326 sq.points[7] = y - 0.5F;
327 sq.npoints = 4;
329 sq.directions[LEFT] = 0x03; /* 0,1 */
330 sq.directions[RIGHT] = 0x0C; /* 2,3 */
331 sq.directions[UP] = 0x09; /* 0,3 */
332 sq.directions[DOWN] = 0x06; /* 1,2 */
333 sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
334 sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
335 sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
336 sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
338 sq.flip = FALSE;
341 * This is supremely irrelevant, but just to avoid
342 * having any uninitialised structure members...
344 sq.tetra_class = 0;
346 callback(ctx, &sq);
348 } else {
349 int row, rowlen, other, i, firstix = -1;
350 float theight = (float)(sqrt(3) / 2.0);
352 for (row = 0; row < params->d1 + params->d2; row++) {
353 if (row < params->d2) {
354 other = +1;
355 rowlen = row + params->d1;
356 } else {
357 other = -1;
358 rowlen = 2*params->d2 + params->d1 - row;
362 * There are `rowlen' down-pointing triangles.
364 for (i = 0; i < rowlen; i++) {
365 struct grid_square sq;
366 int ix;
367 float x, y;
369 ix = (2 * i - (rowlen-1));
370 x = ix * 0.5F;
371 y = theight * row;
372 sq.x = x;
373 sq.y = y + theight / 3;
374 sq.points[0] = x - 0.5F;
375 sq.points[1] = y;
376 sq.points[2] = x;
377 sq.points[3] = y + theight;
378 sq.points[4] = x + 0.5F;
379 sq.points[5] = y;
380 sq.npoints = 3;
382 sq.directions[LEFT] = 0x03; /* 0,1 */
383 sq.directions[RIGHT] = 0x06; /* 1,2 */
384 sq.directions[UP] = 0x05; /* 0,2 */
385 sq.directions[DOWN] = 0; /* invalid move */
388 * Down-pointing triangle: both the up diagonals go
389 * up, and the down ones go left and right.
391 sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
392 sq.directions[UP];
393 sq.directions[DOWN_LEFT] = sq.directions[LEFT];
394 sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
396 sq.flip = TRUE;
398 if (firstix < 0)
399 firstix = ix & 3;
400 ix -= firstix;
401 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
403 callback(ctx, &sq);
407 * There are `rowlen+other' up-pointing triangles.
409 for (i = 0; i < rowlen+other; i++) {
410 struct grid_square sq;
411 int ix;
412 float x, y;
414 ix = (2 * i - (rowlen+other-1));
415 x = ix * 0.5F;
416 y = theight * row;
417 sq.x = x;
418 sq.y = y + 2*theight / 3;
419 sq.points[0] = x + 0.5F;
420 sq.points[1] = y + theight;
421 sq.points[2] = x;
422 sq.points[3] = y;
423 sq.points[4] = x - 0.5F;
424 sq.points[5] = y + theight;
425 sq.npoints = 3;
427 sq.directions[LEFT] = 0x06; /* 1,2 */
428 sq.directions[RIGHT] = 0x03; /* 0,1 */
429 sq.directions[DOWN] = 0x05; /* 0,2 */
430 sq.directions[UP] = 0; /* invalid move */
433 * Up-pointing triangle: both the down diagonals go
434 * down, and the up ones go left and right.
436 sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
437 sq.directions[DOWN];
438 sq.directions[UP_LEFT] = sq.directions[LEFT];
439 sq.directions[UP_RIGHT] = sq.directions[RIGHT];
441 sq.flip = FALSE;
443 if (firstix < 0)
444 firstix = (ix - 1) & 3;
445 ix -= firstix;
446 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
448 callback(ctx, &sq);
454 static int grid_area(int d1, int d2, int order)
457 * An NxM grid of squares has NM squares in it.
459 * A grid of triangles with dimensions A and B has a total of
460 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
461 * a side-A triangle containing A^2 subtriangles, a side-B
462 * triangle containing B^2, and two congruent parallelograms,
463 * each with side lengths A and B, each therefore containing AB
464 * two-triangle rhombuses.)
466 if (order == 4)
467 return d1 * d2;
468 else
469 return d1*d1 + d2*d2 + 4*d1*d2;
472 static config_item *game_configure(game_params *params)
474 config_item *ret = snewn(4, config_item);
475 char buf[80];
477 ret[0].name = "Type of solid";
478 ret[0].type = C_CHOICES;
479 ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
480 ret[0].ival = params->solid;
482 ret[1].name = "Width / top";
483 ret[1].type = C_STRING;
484 sprintf(buf, "%d", params->d1);
485 ret[1].sval = dupstr(buf);
486 ret[1].ival = 0;
488 ret[2].name = "Height / bottom";
489 ret[2].type = C_STRING;
490 sprintf(buf, "%d", params->d2);
491 ret[2].sval = dupstr(buf);
492 ret[2].ival = 0;
494 ret[3].name = NULL;
495 ret[3].type = C_END;
496 ret[3].sval = NULL;
497 ret[3].ival = 0;
499 return ret;
502 static game_params *custom_params(config_item *cfg)
504 game_params *ret = snew(game_params);
506 ret->solid = cfg[0].ival;
507 ret->d1 = atoi(cfg[1].sval);
508 ret->d2 = atoi(cfg[2].sval);
510 return ret;
513 static void count_grid_square_callback(void *ctx, struct grid_square *sq)
515 int *classes = (int *)ctx;
516 int thisclass;
518 if (classes[4] == 4)
519 thisclass = sq->tetra_class;
520 else if (classes[4] == 2)
521 thisclass = sq->flip;
522 else
523 thisclass = 0;
525 classes[thisclass]++;
528 static char *validate_params(game_params *params, int full)
530 int classes[5];
531 int i;
533 if (params->solid < 0 || params->solid >= lenof(solids))
534 return "Unrecognised solid type";
536 if (solids[params->solid]->order == 4) {
537 if (params->d1 <= 0 || params->d2 <= 0)
538 return "Both grid dimensions must be greater than zero";
539 } else {
540 if (params->d1 <= 0 && params->d2 <= 0)
541 return "At least one grid dimension must be greater than zero";
544 for (i = 0; i < 4; i++)
545 classes[i] = 0;
546 if (params->solid == TETRAHEDRON)
547 classes[4] = 4;
548 else if (params->solid == OCTAHEDRON)
549 classes[4] = 2;
550 else
551 classes[4] = 1;
552 enum_grid_squares(params, count_grid_square_callback, classes);
554 for (i = 0; i < classes[4]; i++)
555 if (classes[i] < solids[params->solid]->nfaces / classes[4])
556 return "Not enough grid space to place all blue faces";
558 if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
559 solids[params->solid]->nfaces + 1)
560 return "Not enough space to place the solid on an empty square";
562 return NULL;
565 struct grid_data {
566 int *gridptrs[4];
567 int nsquares[4];
568 int nclasses;
569 int squareindex;
572 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
574 struct grid_data *data = (struct grid_data *)ctx;
575 int thisclass;
577 if (data->nclasses == 4)
578 thisclass = sq->tetra_class;
579 else if (data->nclasses == 2)
580 thisclass = sq->flip;
581 else
582 thisclass = 0;
584 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
585 data->squareindex++;
588 static char *new_game_desc(game_params *params, random_state *rs,
589 char **aux, int interactive)
591 struct grid_data data;
592 int i, j, k, m, area, facesperclass;
593 int *flags;
594 char *desc, *p;
597 * Enumerate the grid squares, dividing them into equivalence
598 * classes as appropriate. (For the tetrahedron, there is one
599 * equivalence class for each face; for the octahedron there
600 * are two classes; for the other two solids there's only one.)
603 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
604 if (params->solid == TETRAHEDRON)
605 data.nclasses = 4;
606 else if (params->solid == OCTAHEDRON)
607 data.nclasses = 2;
608 else
609 data.nclasses = 1;
610 data.gridptrs[0] = snewn(data.nclasses * area, int);
611 for (i = 0; i < data.nclasses; i++) {
612 data.gridptrs[i] = data.gridptrs[0] + i * area;
613 data.nsquares[i] = 0;
615 data.squareindex = 0;
616 enum_grid_squares(params, classify_grid_square_callback, &data);
618 facesperclass = solids[params->solid]->nfaces / data.nclasses;
620 for (i = 0; i < data.nclasses; i++)
621 assert(data.nsquares[i] >= facesperclass);
622 assert(data.squareindex == area);
625 * So now we know how many faces to allocate in each class. Get
626 * on with it.
628 flags = snewn(area, int);
629 for (i = 0; i < area; i++)
630 flags[i] = FALSE;
632 for (i = 0; i < data.nclasses; i++) {
633 for (j = 0; j < facesperclass; j++) {
634 int n = random_upto(rs, data.nsquares[i]);
636 assert(!flags[data.gridptrs[i][n]]);
637 flags[data.gridptrs[i][n]] = TRUE;
640 * Move everything else up the array. I ought to use a
641 * better data structure for this, but for such small
642 * numbers it hardly seems worth the effort.
644 while (n < data.nsquares[i]-1) {
645 data.gridptrs[i][n] = data.gridptrs[i][n+1];
646 n++;
648 data.nsquares[i]--;
653 * Now we know precisely which squares are blue. Encode this
654 * information in hex. While we're looping over this, collect
655 * the non-blue squares into a list in the now-unused gridptrs
656 * array.
658 desc = snewn(area / 4 + 40, char);
659 p = desc;
660 j = 0;
661 k = 8;
662 m = 0;
663 for (i = 0; i < area; i++) {
664 if (flags[i]) {
665 j |= k;
666 } else {
667 data.gridptrs[0][m++] = i;
669 k >>= 1;
670 if (!k) {
671 *p++ = "0123456789ABCDEF"[j];
672 k = 8;
673 j = 0;
676 if (k != 8)
677 *p++ = "0123456789ABCDEF"[j];
680 * Choose a non-blue square for the polyhedron.
682 sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
684 sfree(data.gridptrs[0]);
685 sfree(flags);
687 return desc;
690 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
692 game_state *state = (game_state *)ctx;
694 state->squares[state->nsquares] = *sq; /* structure copy */
695 state->squares[state->nsquares].blue = FALSE;
696 state->nsquares++;
699 static int lowest_face(const struct solid *solid)
701 int i, j, best;
702 float zmin;
704 best = 0;
705 zmin = 0.0;
706 for (i = 0; i < solid->nfaces; i++) {
707 float z = 0;
709 for (j = 0; j < solid->order; j++) {
710 int f = solid->faces[i*solid->order + j];
711 z += solid->vertices[f*3+2];
714 if (i == 0 || zmin > z) {
715 zmin = z;
716 best = i;
720 return best;
723 static int align_poly(const struct solid *solid, struct grid_square *sq,
724 int *pkey)
726 float zmin;
727 int i, j;
728 int flip = (sq->flip ? -1 : +1);
731 * First, find the lowest z-coordinate present in the solid.
733 zmin = 0.0;
734 for (i = 0; i < solid->nvertices; i++)
735 if (zmin > solid->vertices[i*3+2])
736 zmin = solid->vertices[i*3+2];
739 * Now go round the grid square. For each point in the grid
740 * square, we're looking for a point of the polyhedron with the
741 * same x- and y-coordinates (relative to the square's centre),
742 * and z-coordinate equal to zmin (near enough).
744 for (j = 0; j < sq->npoints; j++) {
745 int matches, index;
747 matches = 0;
748 index = -1;
750 for (i = 0; i < solid->nvertices; i++) {
751 float dist = 0;
753 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
754 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
755 dist += SQ(solid->vertices[i*3+2] - zmin);
757 if (dist < 0.1) {
758 matches++;
759 index = i;
763 if (matches != 1 || index < 0)
764 return FALSE;
765 pkey[j] = index;
768 return TRUE;
771 static void flip_poly(struct solid *solid, int flip)
773 int i;
775 if (flip) {
776 for (i = 0; i < solid->nvertices; i++) {
777 solid->vertices[i*3+0] *= -1;
778 solid->vertices[i*3+1] *= -1;
780 for (i = 0; i < solid->nfaces; i++) {
781 solid->normals[i*3+0] *= -1;
782 solid->normals[i*3+1] *= -1;
787 static struct solid *transform_poly(const struct solid *solid, int flip,
788 int key0, int key1, float angle)
790 struct solid *ret = snew(struct solid);
791 float vx, vy, ax, ay;
792 float vmatrix[9], amatrix[9], vmatrix2[9];
793 int i;
795 *ret = *solid; /* structure copy */
797 flip_poly(ret, flip);
800 * Now rotate the polyhedron through the given angle. We must
801 * rotate about the Z-axis to bring the two vertices key0 and
802 * key1 into horizontal alignment, then rotate about the
803 * X-axis, then rotate back again.
805 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
806 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
807 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
809 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
810 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
811 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
813 ax = (float)cos(angle);
814 ay = (float)sin(angle);
816 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
817 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
818 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
820 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
821 vmatrix2[1] = vy;
822 vmatrix2[3] = -vy;
824 for (i = 0; i < ret->nvertices; i++) {
825 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
826 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
827 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
829 for (i = 0; i < ret->nfaces; i++) {
830 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
831 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
832 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
835 return ret;
838 static char *validate_desc(game_params *params, char *desc)
840 int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
841 int i, j;
843 i = (area + 3) / 4;
844 for (j = 0; j < i; j++) {
845 int c = desc[j];
846 if (c >= '0' && c <= '9') continue;
847 if (c >= 'A' && c <= 'F') continue;
848 if (c >= 'a' && c <= 'f') continue;
849 return "Not enough hex digits at start of string";
850 /* NB if desc[j]=='\0' that will also be caught here, so we're safe */
853 if (desc[i] != ',')
854 return "Expected ',' after hex digits";
856 i++;
857 do {
858 if (desc[i] < '0' || desc[i] > '9')
859 return "Expected decimal integer after ','";
860 i++;
861 } while (desc[i]);
863 return NULL;
866 static game_state *new_game(midend *me, game_params *params, char *desc)
868 game_state *state = snew(game_state);
869 int area;
871 state->params = *params; /* structure copy */
872 state->solid = solids[params->solid];
874 area = grid_area(params->d1, params->d2, state->solid->order);
875 state->squares = snewn(area, struct grid_square);
876 state->nsquares = 0;
877 enum_grid_squares(params, add_grid_square_callback, state);
878 assert(state->nsquares == area);
880 state->facecolours = snewn(state->solid->nfaces, int);
881 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
884 * Set up the blue squares and polyhedron position according to
885 * the game description.
888 char *p = desc;
889 int i, j, v;
891 j = 8;
892 v = 0;
893 for (i = 0; i < state->nsquares; i++) {
894 if (j == 8) {
895 v = *p++;
896 if (v >= '0' && v <= '9')
897 v -= '0';
898 else if (v >= 'A' && v <= 'F')
899 v -= 'A' - 10;
900 else if (v >= 'a' && v <= 'f')
901 v -= 'a' - 10;
902 else
903 break;
905 if (v & j)
906 state->squares[i].blue = TRUE;
907 j >>= 1;
908 if (j == 0)
909 j = 8;
912 if (*p == ',')
913 p++;
915 state->current = atoi(p);
916 if (state->current < 0 || state->current >= state->nsquares)
917 state->current = 0; /* got to do _something_ */
921 * Align the polyhedron with its grid square and determine
922 * initial key points.
925 int pkey[4];
926 int ret;
928 ret = align_poly(state->solid, &state->squares[state->current], pkey);
929 assert(ret);
931 state->dpkey[0] = state->spkey[0] = pkey[0];
932 state->dpkey[1] = state->spkey[0] = pkey[1];
933 state->dgkey[0] = state->sgkey[0] = 0;
934 state->dgkey[1] = state->sgkey[0] = 1;
937 state->previous = state->current;
938 state->angle = 0.0;
939 state->completed = 0;
940 state->movecount = 0;
942 return state;
945 static game_state *dup_game(game_state *state)
947 game_state *ret = snew(game_state);
949 ret->params = state->params; /* structure copy */
950 ret->solid = state->solid;
951 ret->facecolours = snewn(ret->solid->nfaces, int);
952 memcpy(ret->facecolours, state->facecolours,
953 ret->solid->nfaces * sizeof(int));
954 ret->nsquares = state->nsquares;
955 ret->current = state->current;
956 ret->squares = snewn(ret->nsquares, struct grid_square);
957 memcpy(ret->squares, state->squares,
958 ret->nsquares * sizeof(struct grid_square));
959 ret->dpkey[0] = state->dpkey[0];
960 ret->dpkey[1] = state->dpkey[1];
961 ret->dgkey[0] = state->dgkey[0];
962 ret->dgkey[1] = state->dgkey[1];
963 ret->spkey[0] = state->spkey[0];
964 ret->spkey[1] = state->spkey[1];
965 ret->sgkey[0] = state->sgkey[0];
966 ret->sgkey[1] = state->sgkey[1];
967 ret->previous = state->previous;
968 ret->angle = state->angle;
969 ret->completed = state->completed;
970 ret->movecount = state->movecount;
972 return ret;
975 static void free_game(game_state *state)
977 sfree(state->squares);
978 sfree(state->facecolours);
979 sfree(state);
982 static char *solve_game(game_state *state, game_state *currstate,
983 char *aux, char **error)
985 return NULL;
988 static char *game_text_format(game_state *state)
990 return NULL;
993 static game_ui *new_ui(game_state *state)
995 return NULL;
998 static void free_ui(game_ui *ui)
1002 static char *encode_ui(game_ui *ui)
1004 return NULL;
1007 static void decode_ui(game_ui *ui, char *encoding)
1011 static void game_changed_state(game_ui *ui, game_state *oldstate,
1012 game_state *newstate)
1016 struct game_drawstate {
1017 float gridscale;
1018 int ox, oy; /* pixel position of float origin */
1022 * Code shared between interpret_move() and execute_move().
1024 static int find_move_dest(game_state *from, int direction,
1025 int *skey, int *dkey)
1027 int mask, dest, i, j;
1028 float points[4];
1031 * Find the two points in the current grid square which
1032 * correspond to this move.
1034 mask = from->squares[from->current].directions[direction];
1035 if (mask == 0)
1036 return -1;
1037 for (i = j = 0; i < from->squares[from->current].npoints; i++)
1038 if (mask & (1 << i)) {
1039 points[j*2] = from->squares[from->current].points[i*2];
1040 points[j*2+1] = from->squares[from->current].points[i*2+1];
1041 skey[j] = i;
1042 j++;
1044 assert(j == 2);
1047 * Now find the other grid square which shares those points.
1048 * This is our move destination.
1050 dest = -1;
1051 for (i = 0; i < from->nsquares; i++)
1052 if (i != from->current) {
1053 int match = 0;
1054 float dist;
1056 for (j = 0; j < from->squares[i].npoints; j++) {
1057 dist = (SQ(from->squares[i].points[j*2] - points[0]) +
1058 SQ(from->squares[i].points[j*2+1] - points[1]));
1059 if (dist < 0.1)
1060 dkey[match++] = j;
1061 dist = (SQ(from->squares[i].points[j*2] - points[2]) +
1062 SQ(from->squares[i].points[j*2+1] - points[3]));
1063 if (dist < 0.1)
1064 dkey[match++] = j;
1067 if (match == 2) {
1068 dest = i;
1069 break;
1073 return dest;
1076 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1077 int x, int y, int button)
1079 int direction, mask, i;
1080 int skey[2], dkey[2];
1082 button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
1085 * Moves can be made with the cursor keys or numeric keypad, or
1086 * alternatively you can left-click and the polyhedron will
1087 * move in the general direction of the mouse pointer.
1089 if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1090 direction = UP;
1091 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1092 direction = DOWN;
1093 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1094 direction = LEFT;
1095 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1096 direction = RIGHT;
1097 else if (button == (MOD_NUM_KEYPAD | '7'))
1098 direction = UP_LEFT;
1099 else if (button == (MOD_NUM_KEYPAD | '1'))
1100 direction = DOWN_LEFT;
1101 else if (button == (MOD_NUM_KEYPAD | '9'))
1102 direction = UP_RIGHT;
1103 else if (button == (MOD_NUM_KEYPAD | '3'))
1104 direction = DOWN_RIGHT;
1105 else if (button == LEFT_BUTTON) {
1107 * Find the bearing of the click point from the current
1108 * square's centre.
1110 int cx, cy;
1111 double angle;
1113 cx = state->squares[state->current].x * GRID_SCALE + ds->ox;
1114 cy = state->squares[state->current].y * GRID_SCALE + ds->oy;
1116 if (x == cx && y == cy)
1117 return NULL; /* clicked in exact centre! */
1118 angle = atan2(y - cy, x - cx);
1121 * There are three possibilities.
1123 * - This square is a square, so we choose between UP,
1124 * DOWN, LEFT and RIGHT by dividing the available angle
1125 * at the 45-degree points.
1127 * - This square is an up-pointing triangle, so we choose
1128 * between DOWN, LEFT and RIGHT by dividing into
1129 * 120-degree arcs.
1131 * - This square is a down-pointing triangle, so we choose
1132 * between UP, LEFT and RIGHT in the inverse manner.
1134 * Don't forget that since our y-coordinates increase
1135 * downwards, `angle' is measured _clockwise_ from the
1136 * x-axis, not anticlockwise as most mathematicians would
1137 * instinctively assume.
1139 if (state->squares[state->current].npoints == 4) {
1140 /* Square. */
1141 if (fabs(angle) > 3*PI/4)
1142 direction = LEFT;
1143 else if (fabs(angle) < PI/4)
1144 direction = RIGHT;
1145 else if (angle > 0)
1146 direction = DOWN;
1147 else
1148 direction = UP;
1149 } else if (state->squares[state->current].directions[UP] == 0) {
1150 /* Up-pointing triangle. */
1151 if (angle < -PI/2 || angle > 5*PI/6)
1152 direction = LEFT;
1153 else if (angle > PI/6)
1154 direction = DOWN;
1155 else
1156 direction = RIGHT;
1157 } else {
1158 /* Down-pointing triangle. */
1159 assert(state->squares[state->current].directions[DOWN] == 0);
1160 if (angle > PI/2 || angle < -5*PI/6)
1161 direction = LEFT;
1162 else if (angle < -PI/6)
1163 direction = UP;
1164 else
1165 direction = RIGHT;
1167 } else
1168 return NULL;
1170 mask = state->squares[state->current].directions[direction];
1171 if (mask == 0)
1172 return NULL;
1175 * Translate diagonal directions into orthogonal ones.
1177 if (direction > DOWN) {
1178 for (i = LEFT; i <= DOWN; i++)
1179 if (state->squares[state->current].directions[i] == mask) {
1180 direction = i;
1181 break;
1183 assert(direction <= DOWN);
1186 if (find_move_dest(state, direction, skey, dkey) < 0)
1187 return NULL;
1189 if (direction == LEFT) return dupstr("L");
1190 if (direction == RIGHT) return dupstr("R");
1191 if (direction == UP) return dupstr("U");
1192 if (direction == DOWN) return dupstr("D");
1194 return NULL; /* should never happen */
1197 static game_state *execute_move(game_state *from, char *move)
1199 game_state *ret;
1200 float angle;
1201 struct solid *poly;
1202 int pkey[2];
1203 int skey[2], dkey[2];
1204 int i, j, dest;
1205 int direction;
1207 switch (*move) {
1208 case 'L': direction = LEFT; break;
1209 case 'R': direction = RIGHT; break;
1210 case 'U': direction = UP; break;
1211 case 'D': direction = DOWN; break;
1212 default: return NULL;
1215 dest = find_move_dest(from, direction, skey, dkey);
1216 if (dest < 0)
1217 return NULL;
1219 ret = dup_game(from);
1220 ret->current = dest;
1223 * So we know what grid square we're aiming for, and we also
1224 * know the two key points (as indices in both the source and
1225 * destination grid squares) which are invariant between source
1226 * and destination.
1228 * Next we must roll the polyhedron on to that square. So we
1229 * find the indices of the key points within the polyhedron's
1230 * vertex array, then use those in a call to transform_poly,
1231 * and align the result on the new grid square.
1234 int all_pkey[4];
1235 align_poly(from->solid, &from->squares[from->current], all_pkey);
1236 pkey[0] = all_pkey[skey[0]];
1237 pkey[1] = all_pkey[skey[1]];
1239 * Now pkey[0] corresponds to skey[0] and dkey[0], and
1240 * likewise [1].
1245 * Now find the angle through which to rotate the polyhedron.
1246 * Do this by finding the two faces that share the two vertices
1247 * we've found, and taking the dot product of their normals.
1250 int f[2], nf = 0;
1251 float dp;
1253 for (i = 0; i < from->solid->nfaces; i++) {
1254 int match = 0;
1255 for (j = 0; j < from->solid->order; j++)
1256 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
1257 from->solid->faces[i*from->solid->order + j] == pkey[1])
1258 match++;
1259 if (match == 2) {
1260 assert(nf < 2);
1261 f[nf++] = i;
1265 assert(nf == 2);
1267 dp = 0;
1268 for (i = 0; i < 3; i++)
1269 dp += (from->solid->normals[f[0]*3+i] *
1270 from->solid->normals[f[1]*3+i]);
1271 angle = (float)acos(dp);
1275 * Now transform the polyhedron. We aren't entirely sure
1276 * whether we need to rotate through angle or -angle, and the
1277 * simplest way round this is to try both and see which one
1278 * aligns successfully!
1280 * Unfortunately, _both_ will align successfully if this is a
1281 * cube, which won't tell us anything much. So for that
1282 * particular case, I resort to gross hackery: I simply negate
1283 * the angle before trying the alignment, depending on the
1284 * direction. Which directions work which way is determined by
1285 * pure trial and error. I said it was gross :-/
1288 int all_pkey[4];
1289 int success;
1291 if (from->solid->order == 4 && direction == UP)
1292 angle = -angle; /* HACK */
1294 poly = transform_poly(from->solid,
1295 from->squares[from->current].flip,
1296 pkey[0], pkey[1], angle);
1297 flip_poly(poly, from->squares[ret->current].flip);
1298 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1300 if (!success) {
1301 sfree(poly);
1302 angle = -angle;
1303 poly = transform_poly(from->solid,
1304 from->squares[from->current].flip,
1305 pkey[0], pkey[1], angle);
1306 flip_poly(poly, from->squares[ret->current].flip);
1307 success = align_poly(poly, &from->squares[ret->current], all_pkey);
1310 assert(success);
1314 * Now we have our rotated polyhedron, which we expect to be
1315 * exactly congruent to the one we started with - but with the
1316 * faces permuted. So we map that congruence and thereby figure
1317 * out how to permute the faces as a result of the polyhedron
1318 * having rolled.
1321 int *newcolours = snewn(from->solid->nfaces, int);
1323 for (i = 0; i < from->solid->nfaces; i++)
1324 newcolours[i] = -1;
1326 for (i = 0; i < from->solid->nfaces; i++) {
1327 int nmatch = 0;
1330 * Now go through the transformed polyhedron's faces
1331 * and figure out which one's normal is approximately
1332 * equal to this one.
1334 for (j = 0; j < poly->nfaces; j++) {
1335 float dist;
1336 int k;
1338 dist = 0;
1340 for (k = 0; k < 3; k++)
1341 dist += SQ(poly->normals[j*3+k] -
1342 from->solid->normals[i*3+k]);
1344 if (APPROXEQ(dist, 0)) {
1345 nmatch++;
1346 newcolours[i] = ret->facecolours[j];
1350 assert(nmatch == 1);
1353 for (i = 0; i < from->solid->nfaces; i++)
1354 assert(newcolours[i] != -1);
1356 sfree(ret->facecolours);
1357 ret->facecolours = newcolours;
1360 ret->movecount++;
1363 * And finally, swap the colour between the bottom face of the
1364 * polyhedron and the face we've just landed on.
1366 * We don't do this if the game is already complete, since we
1367 * allow the user to roll the fully blue polyhedron around the
1368 * grid as a feeble reward.
1370 if (!ret->completed) {
1371 i = lowest_face(from->solid);
1372 j = ret->facecolours[i];
1373 ret->facecolours[i] = ret->squares[ret->current].blue;
1374 ret->squares[ret->current].blue = j;
1377 * Detect game completion.
1379 j = 0;
1380 for (i = 0; i < ret->solid->nfaces; i++)
1381 if (ret->facecolours[i])
1382 j++;
1383 if (j == ret->solid->nfaces)
1384 ret->completed = ret->movecount;
1387 sfree(poly);
1390 * Align the normal polyhedron with its grid square, to get key
1391 * points for non-animated display.
1394 int pkey[4];
1395 int success;
1397 success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
1398 assert(success);
1400 ret->dpkey[0] = pkey[0];
1401 ret->dpkey[1] = pkey[1];
1402 ret->dgkey[0] = 0;
1403 ret->dgkey[1] = 1;
1407 ret->spkey[0] = pkey[0];
1408 ret->spkey[1] = pkey[1];
1409 ret->sgkey[0] = skey[0];
1410 ret->sgkey[1] = skey[1];
1411 ret->previous = from->current;
1412 ret->angle = angle;
1414 return ret;
1417 /* ----------------------------------------------------------------------
1418 * Drawing routines.
1421 struct bbox {
1422 float l, r, u, d;
1425 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1427 struct bbox *bb = (struct bbox *)ctx;
1428 int i;
1430 for (i = 0; i < sq->npoints; i++) {
1431 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1432 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1433 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1434 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1438 static struct bbox find_bbox(game_params *params)
1440 struct bbox bb;
1443 * These should be hugely more than the real bounding box will
1444 * be.
1446 bb.l = 2.0F * (params->d1 + params->d2);
1447 bb.r = -2.0F * (params->d1 + params->d2);
1448 bb.u = 2.0F * (params->d1 + params->d2);
1449 bb.d = -2.0F * (params->d1 + params->d2);
1450 enum_grid_squares(params, find_bbox_callback, &bb);
1452 return bb;
1455 #define XSIZE(gs, bb, solid) \
1456 ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
1457 #define YSIZE(gs, bb, solid) \
1458 ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
1460 static void game_compute_size(game_params *params, int tilesize,
1461 int *x, int *y)
1463 struct bbox bb = find_bbox(params);
1465 *x = XSIZE(tilesize, bb, solids[params->solid]);
1466 *y = YSIZE(tilesize, bb, solids[params->solid]);
1469 static void game_set_size(drawing *dr, game_drawstate *ds,
1470 game_params *params, int tilesize)
1472 struct bbox bb = find_bbox(params);
1474 ds->gridscale = tilesize;
1475 ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale);
1476 ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale);
1479 static float *game_colours(frontend *fe, int *ncolours)
1481 float *ret = snewn(3 * NCOLOURS, float);
1483 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1485 ret[COL_BORDER * 3 + 0] = 0.0;
1486 ret[COL_BORDER * 3 + 1] = 0.0;
1487 ret[COL_BORDER * 3 + 2] = 0.0;
1489 ret[COL_BLUE * 3 + 0] = 0.0;
1490 ret[COL_BLUE * 3 + 1] = 0.0;
1491 ret[COL_BLUE * 3 + 2] = 1.0;
1493 *ncolours = NCOLOURS;
1494 return ret;
1497 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1499 struct game_drawstate *ds = snew(struct game_drawstate);
1501 ds->ox = ds->oy = ds->gridscale = 0.0F;/* not decided yet */
1503 return ds;
1506 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1508 sfree(ds);
1511 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1512 game_state *state, int dir, game_ui *ui,
1513 float animtime, float flashtime)
1515 int i, j;
1516 struct bbox bb = find_bbox(&state->params);
1517 struct solid *poly;
1518 int *pkey, *gkey;
1519 float t[3];
1520 float angle;
1521 game_state *newstate;
1522 int square;
1524 draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1525 YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND);
1527 if (dir < 0) {
1528 game_state *t;
1531 * This is an Undo. So reverse the order of the states, and
1532 * run the roll timer backwards.
1534 assert(oldstate);
1536 t = oldstate;
1537 oldstate = state;
1538 state = t;
1540 animtime = ROLLTIME - animtime;
1543 if (!oldstate) {
1544 oldstate = state;
1545 angle = 0.0;
1546 square = state->current;
1547 pkey = state->dpkey;
1548 gkey = state->dgkey;
1549 } else {
1550 angle = state->angle * animtime / ROLLTIME;
1551 square = state->previous;
1552 pkey = state->spkey;
1553 gkey = state->sgkey;
1555 newstate = state;
1556 state = oldstate;
1558 for (i = 0; i < state->nsquares; i++) {
1559 int coords[8];
1561 for (j = 0; j < state->squares[i].npoints; j++) {
1562 coords[2*j] = ((int)(state->squares[i].points[2*j] * GRID_SCALE)
1563 + ds->ox);
1564 coords[2*j+1] = ((int)(state->squares[i].points[2*j+1]*GRID_SCALE)
1565 + ds->oy);
1568 draw_polygon(dr, coords, state->squares[i].npoints,
1569 state->squares[i].blue ? COL_BLUE : COL_BACKGROUND,
1570 COL_BORDER);
1574 * Now compute and draw the polyhedron.
1576 poly = transform_poly(state->solid, state->squares[square].flip,
1577 pkey[0], pkey[1], angle);
1580 * Compute the translation required to align the two key points
1581 * on the polyhedron with the same key points on the current
1582 * face.
1584 for (i = 0; i < 3; i++) {
1585 float tc = 0.0;
1587 for (j = 0; j < 2; j++) {
1588 float grid_coord;
1590 if (i < 2) {
1591 grid_coord =
1592 state->squares[square].points[gkey[j]*2+i];
1593 } else {
1594 grid_coord = 0.0;
1597 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1600 t[i] = tc / 2;
1602 for (i = 0; i < poly->nvertices; i++)
1603 for (j = 0; j < 3; j++)
1604 poly->vertices[i*3+j] += t[j];
1607 * Now actually draw each face.
1609 for (i = 0; i < poly->nfaces; i++) {
1610 float points[8];
1611 int coords[8];
1613 for (j = 0; j < poly->order; j++) {
1614 int f = poly->faces[i*poly->order + j];
1615 points[j*2] = (poly->vertices[f*3+0] -
1616 poly->vertices[f*3+2] * poly->shear);
1617 points[j*2+1] = (poly->vertices[f*3+1] -
1618 poly->vertices[f*3+2] * poly->shear);
1621 for (j = 0; j < poly->order; j++) {
1622 coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
1623 coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
1627 * Find out whether these points are in a clockwise or
1628 * anticlockwise arrangement. If the latter, discard the
1629 * face because it's facing away from the viewer.
1631 * This would involve fiddly winding-number stuff for a
1632 * general polygon, but for the simple parallelograms we'll
1633 * be seeing here, all we have to do is check whether the
1634 * corners turn right or left. So we'll take the vector
1635 * from point 0 to point 1, turn it right 90 degrees,
1636 * and check the sign of the dot product with that and the
1637 * next vector (point 1 to point 2).
1640 float v1x = points[2]-points[0];
1641 float v1y = points[3]-points[1];
1642 float v2x = points[4]-points[2];
1643 float v2y = points[5]-points[3];
1644 float dp = v1x * v2y - v1y * v2x;
1646 if (dp <= 0)
1647 continue;
1650 draw_polygon(dr, coords, poly->order,
1651 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND,
1652 COL_BORDER);
1654 sfree(poly);
1656 draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
1657 YSIZE(GRID_SCALE, bb, state->solid));
1660 * Update the status bar.
1663 char statusbuf[256];
1665 sprintf(statusbuf, "%sMoves: %d",
1666 (state->completed ? "COMPLETED! " : ""),
1667 (state->completed ? state->completed : state->movecount));
1669 status_bar(dr, statusbuf);
1673 static float game_anim_length(game_state *oldstate,
1674 game_state *newstate, int dir, game_ui *ui)
1676 return ROLLTIME;
1679 static float game_flash_length(game_state *oldstate,
1680 game_state *newstate, int dir, game_ui *ui)
1682 return 0.0F;
1685 static int game_timing_state(game_state *state, game_ui *ui)
1687 return TRUE;
1690 static void game_print_size(game_params *params, float *x, float *y)
1694 static void game_print(drawing *dr, game_state *state, int tilesize)
1698 #ifdef COMBINED
1699 #define thegame cube
1700 #endif
1702 const struct game thegame = {
1703 "Cube", "games.cube", "cube",
1704 default_params,
1705 game_fetch_preset,
1706 decode_params,
1707 encode_params,
1708 free_params,
1709 dup_params,
1710 TRUE, game_configure, custom_params,
1711 validate_params,
1712 new_game_desc,
1713 validate_desc,
1714 new_game,
1715 dup_game,
1716 free_game,
1717 FALSE, solve_game,
1718 FALSE, game_text_format,
1719 new_ui,
1720 free_ui,
1721 encode_ui,
1722 decode_ui,
1723 game_changed_state,
1724 interpret_move,
1725 execute_move,
1726 PREFERRED_GRID_SCALE, game_compute_size, game_set_size,
1727 game_colours,
1728 game_new_drawstate,
1729 game_free_drawstate,
1730 game_redraw,
1731 game_anim_length,
1732 game_flash_length,
1733 FALSE, FALSE, game_print_size, game_print,
1734 TRUE, /* wants_statusbar */
1735 FALSE, game_timing_state,
1736 0, /* flags */