David Nickerson reports odd behaviour involving a drag start point
[sgt-puzzles/ydirson.git] / inertia.c
blob74fc3c1682597e3c43c54da95e45845957a76e0c
1 /*
2 * inertia.c: Game involving navigating round a grid picking up
3 * gems.
4 *
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
7 */
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
16 #include "puzzles.h"
18 /* Used in the game_state */
19 #define BLANK 'b'
20 #define GEM 'g'
21 #define MINE 'm'
22 #define STOP 's'
23 #define WALL 'w'
25 /* Used in the game IDs */
26 #define START 'S'
28 /* Used in the game generation */
29 #define POSSGEM 'G'
31 /* Used only in the game_drawstate*/
32 #define UNDRAWN '?'
34 #define DIRECTIONS 8
35 #define DP1 (DIRECTIONS+1)
36 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
37 #define DY(dir) ( DX((dir)+6) )
40 * Lvalue macro which expects x and y to be in range.
42 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
45 * Rvalue macro which can cope with x and y being out of range.
47 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
48 WALL : LV_AT(w, h, grid, x, y) )
50 enum {
51 COL_BACKGROUND,
52 COL_OUTLINE,
53 COL_HIGHLIGHT,
54 COL_LOWLIGHT,
55 COL_PLAYER,
56 COL_DEAD_PLAYER,
57 COL_MINE,
58 COL_GEM,
59 COL_WALL,
60 COL_HINT,
61 NCOLOURS
64 struct game_params {
65 int w, h;
68 typedef struct soln {
69 int refcount;
70 int len;
71 unsigned char *list;
72 } soln;
74 struct game_state {
75 game_params p;
76 int px, py;
77 int gems;
78 char *grid;
79 int distance_moved;
80 int dead;
81 int cheated;
82 int solnpos;
83 soln *soln;
86 static game_params *default_params(void)
88 game_params *ret = snew(game_params);
90 ret->w = 10;
91 #ifdef PORTRAIT_SCREEN
92 ret->h = 10;
93 #else
94 ret->h = 8;
95 #endif
96 return ret;
99 static void free_params(game_params *params)
101 sfree(params);
104 static game_params *dup_params(game_params *params)
106 game_params *ret = snew(game_params);
107 *ret = *params; /* structure copy */
108 return ret;
111 static const struct game_params inertia_presets[] = {
112 #ifdef PORTRAIT_SCREEN
113 { 10, 10 },
114 { 12, 12 },
115 { 16, 16 },
116 #else
117 { 10, 8 },
118 { 15, 12 },
119 { 20, 16 },
120 #endif
123 static int game_fetch_preset(int i, char **name, game_params **params)
125 game_params p, *ret;
126 char *retname;
127 char namebuf[80];
129 if (i < 0 || i >= lenof(inertia_presets))
130 return FALSE;
132 p = inertia_presets[i];
133 ret = dup_params(&p);
134 sprintf(namebuf, "%dx%d", ret->w, ret->h);
135 retname = dupstr(namebuf);
137 *params = ret;
138 *name = retname;
139 return TRUE;
142 static void decode_params(game_params *params, char const *string)
144 params->w = params->h = atoi(string);
145 while (*string && isdigit((unsigned char)*string)) string++;
146 if (*string == 'x') {
147 string++;
148 params->h = atoi(string);
152 static char *encode_params(game_params *params, int full)
154 char data[256];
156 sprintf(data, "%dx%d", params->w, params->h);
158 return dupstr(data);
161 static config_item *game_configure(game_params *params)
163 config_item *ret;
164 char buf[80];
166 ret = snewn(3, config_item);
168 ret[0].name = "Width";
169 ret[0].type = C_STRING;
170 sprintf(buf, "%d", params->w);
171 ret[0].sval = dupstr(buf);
172 ret[0].ival = 0;
174 ret[1].name = "Height";
175 ret[1].type = C_STRING;
176 sprintf(buf, "%d", params->h);
177 ret[1].sval = dupstr(buf);
178 ret[1].ival = 0;
180 ret[2].name = NULL;
181 ret[2].type = C_END;
182 ret[2].sval = NULL;
183 ret[2].ival = 0;
185 return ret;
188 static game_params *custom_params(config_item *cfg)
190 game_params *ret = snew(game_params);
192 ret->w = atoi(cfg[0].sval);
193 ret->h = atoi(cfg[1].sval);
195 return ret;
198 static char *validate_params(game_params *params, int full)
201 * Avoid completely degenerate cases which only have one
202 * row/column. We probably could generate completable puzzles
203 * of that shape, but they'd be forced to be extremely boring
204 * and at large sizes would take a while to happen upon at
205 * random as well.
207 if (params->w < 2 || params->h < 2)
208 return "Width and height must both be at least two";
211 * The grid construction algorithm creates 1/5 as many gems as
212 * grid squares, and must create at least one gem to have an
213 * actual puzzle. However, an area-five grid is ruled out by
214 * the above constraint, so the practical minimum is six.
216 if (params->w * params->h < 6)
217 return "Grid area must be at least six squares";
219 return NULL;
222 /* ----------------------------------------------------------------------
223 * Solver used by grid generator.
226 struct solver_scratch {
227 unsigned char *reachable_from, *reachable_to;
228 int *positions;
231 static struct solver_scratch *new_scratch(int w, int h)
233 struct solver_scratch *sc = snew(struct solver_scratch);
235 sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
236 sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
237 sc->positions = snewn(w * h * DIRECTIONS, int);
239 return sc;
242 static void free_scratch(struct solver_scratch *sc)
244 sfree(sc->reachable_from);
245 sfree(sc->reachable_to);
246 sfree(sc->positions);
247 sfree(sc);
250 static int can_go(int w, int h, char *grid,
251 int x1, int y1, int dir1, int x2, int y2, int dir2)
254 * Returns TRUE if we can transition directly from (x1,y1)
255 * going in direction dir1, to (x2,y2) going in direction dir2.
259 * If we're actually in the middle of an unoccupyable square,
260 * we cannot make any move.
262 if (AT(w, h, grid, x1, y1) == WALL ||
263 AT(w, h, grid, x1, y1) == MINE)
264 return FALSE;
267 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
268 * the same coordinate as x1,y1, then we can make the
269 * transition (by stopping and changing direction).
271 * For this to be the case, we have to either have a wall
272 * beyond x1,y1,dir1, or have a stop on x1,y1.
274 if (x2 == x1 && y2 == y1 &&
275 (AT(w, h, grid, x1, y1) == STOP ||
276 AT(w, h, grid, x1, y1) == START ||
277 AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
278 return TRUE;
281 * If a move is capable of continuing here, then x1,y1,dir1 can
282 * move one space further on.
284 if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
285 (AT(w, h, grid, x2, y2) == BLANK ||
286 AT(w, h, grid, x2, y2) == GEM ||
287 AT(w, h, grid, x2, y2) == STOP ||
288 AT(w, h, grid, x2, y2) == START))
289 return TRUE;
292 * That's it.
294 return FALSE;
297 static int find_gem_candidates(int w, int h, char *grid,
298 struct solver_scratch *sc)
300 int wh = w*h;
301 int head, tail;
302 int sx, sy, gx, gy, gd, pass, possgems;
305 * This function finds all the candidate gem squares, which are
306 * precisely those squares which can be picked up on a loop
307 * from the starting point back to the starting point. Doing
308 * this may involve passing through such a square in the middle
309 * of a move; so simple breadth-first search over the _squares_
310 * of the grid isn't quite adequate, because it might be that
311 * we can only reach a gem from the start by moving over it in
312 * one direction, but can only return to the start if we were
313 * moving over it in another direction.
315 * Instead, we BFS over a space which mentions each grid square
316 * eight times - once for each direction. We also BFS twice:
317 * once to find out what square+direction pairs we can reach
318 * _from_ the start point, and once to find out what pairs we
319 * can reach the start point from. Then a square is reachable
320 * if any of the eight directions for that square has both
321 * flags set.
324 memset(sc->reachable_from, 0, wh * DIRECTIONS);
325 memset(sc->reachable_to, 0, wh * DIRECTIONS);
328 * Find the starting square.
330 sx = -1; /* placate optimiser */
331 for (sy = 0; sy < h; sy++) {
332 for (sx = 0; sx < w; sx++)
333 if (AT(w, h, grid, sx, sy) == START)
334 break;
335 if (sx < w)
336 break;
338 assert(sy < h);
340 for (pass = 0; pass < 2; pass++) {
341 unsigned char *reachable = (pass == 0 ? sc->reachable_from :
342 sc->reachable_to);
343 int sign = (pass == 0 ? +1 : -1);
344 int dir;
346 #ifdef SOLVER_DIAGNOSTICS
347 printf("starting pass %d\n", pass);
348 #endif
351 * `head' and `tail' are indices within sc->positions which
352 * track the list of board positions left to process.
354 head = tail = 0;
355 for (dir = 0; dir < DIRECTIONS; dir++) {
356 int index = (sy*w+sx)*DIRECTIONS+dir;
357 sc->positions[tail++] = index;
358 reachable[index] = TRUE;
359 #ifdef SOLVER_DIAGNOSTICS
360 printf("starting point %d,%d,%d\n", sx, sy, dir);
361 #endif
365 * Now repeatedly pick an element off the list and process
366 * it.
368 while (head < tail) {
369 int index = sc->positions[head++];
370 int dir = index % DIRECTIONS;
371 int x = (index / DIRECTIONS) % w;
372 int y = index / (w * DIRECTIONS);
373 int n, x2, y2, d2, i2;
375 #ifdef SOLVER_DIAGNOSTICS
376 printf("processing point %d,%d,%d\n", x, y, dir);
377 #endif
379 * The places we attempt to switch to here are:
380 * - each possible direction change (all the other
381 * directions in this square)
382 * - one step further in the direction we're going (or
383 * one step back, if we're in the reachable_to pass).
385 for (n = -1; n < DIRECTIONS; n++) {
386 if (n < 0) {
387 x2 = x + sign * DX(dir);
388 y2 = y + sign * DY(dir);
389 d2 = dir;
390 } else {
391 x2 = x;
392 y2 = y;
393 d2 = n;
395 i2 = (y2*w+x2)*DIRECTIONS+d2;
396 if (x2 >= 0 && x2 < w &&
397 y2 >= 0 && y2 < h &&
398 !reachable[i2]) {
399 int ok;
400 #ifdef SOLVER_DIAGNOSTICS
401 printf(" trying point %d,%d,%d", x2, y2, d2);
402 #endif
403 if (pass == 0)
404 ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
405 else
406 ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
407 #ifdef SOLVER_DIAGNOSTICS
408 printf(" - %sok\n", ok ? "" : "not ");
409 #endif
410 if (ok) {
411 sc->positions[tail++] = i2;
412 reachable[i2] = TRUE;
420 * And that should be it. Now all we have to do is find the
421 * squares for which there exists _some_ direction such that
422 * the square plus that direction form a tuple which is both
423 * reachable from the start and reachable to the start.
425 possgems = 0;
426 for (gy = 0; gy < h; gy++)
427 for (gx = 0; gx < w; gx++)
428 if (AT(w, h, grid, gx, gy) == BLANK) {
429 for (gd = 0; gd < DIRECTIONS; gd++) {
430 int index = (gy*w+gx)*DIRECTIONS+gd;
431 if (sc->reachable_from[index] && sc->reachable_to[index]) {
432 #ifdef SOLVER_DIAGNOSTICS
433 printf("space at %d,%d is reachable via"
434 " direction %d\n", gx, gy, gd);
435 #endif
436 LV_AT(w, h, grid, gx, gy) = POSSGEM;
437 possgems++;
438 break;
443 return possgems;
446 /* ----------------------------------------------------------------------
447 * Grid generation code.
450 static char *gengrid(int w, int h, random_state *rs)
452 int wh = w*h;
453 char *grid = snewn(wh+1, char);
454 struct solver_scratch *sc = new_scratch(w, h);
455 int maxdist_threshold, tries;
457 maxdist_threshold = 2;
458 tries = 0;
460 while (1) {
461 int i, j;
462 int possgems;
463 int *dist, *list, head, tail, maxdist;
466 * We're going to fill the grid with the five basic piece
467 * types in about 1/5 proportion. For the moment, though,
468 * we leave out the gems, because we'll put those in
469 * _after_ we run the solver to tell us where the viable
470 * locations are.
472 i = 0;
473 for (j = 0; j < wh/5; j++)
474 grid[i++] = WALL;
475 for (j = 0; j < wh/5; j++)
476 grid[i++] = STOP;
477 for (j = 0; j < wh/5; j++)
478 grid[i++] = MINE;
479 assert(i < wh);
480 grid[i++] = START;
481 while (i < wh)
482 grid[i++] = BLANK;
483 shuffle(grid, wh, sizeof(*grid), rs);
486 * Find the viable gem locations, and immediately give up
487 * and try again if there aren't enough of them.
489 possgems = find_gem_candidates(w, h, grid, sc);
490 if (possgems < wh/5)
491 continue;
494 * We _could_ now select wh/5 of the POSSGEMs and set them
495 * to GEM, and have a viable level. However, there's a
496 * chance that a large chunk of the level will turn out to
497 * be unreachable, so first we test for that.
499 * We do this by finding the largest distance from any
500 * square to the nearest POSSGEM, by breadth-first search.
501 * If this is above a critical threshold, we abort and try
502 * again.
504 * (This search is purely geometric, without regard to
505 * walls and long ways round.)
507 dist = sc->positions;
508 list = sc->positions + wh;
509 for (i = 0; i < wh; i++)
510 dist[i] = -1;
511 head = tail = 0;
512 for (i = 0; i < wh; i++)
513 if (grid[i] == POSSGEM) {
514 dist[i] = 0;
515 list[tail++] = i;
517 maxdist = 0;
518 while (head < tail) {
519 int pos, x, y, d;
521 pos = list[head++];
522 if (maxdist < dist[pos])
523 maxdist = dist[pos];
525 x = pos % w;
526 y = pos / w;
528 for (d = 0; d < DIRECTIONS; d++) {
529 int x2, y2, p2;
531 x2 = x + DX(d);
532 y2 = y + DY(d);
534 if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
535 p2 = y2*w+x2;
536 if (dist[p2] < 0) {
537 dist[p2] = dist[pos] + 1;
538 list[tail++] = p2;
543 assert(head == wh && tail == wh);
546 * Now abandon this grid and go round again if maxdist is
547 * above the required threshold.
549 * We can safely start the threshold as low as 2. As we
550 * accumulate failed generation attempts, we gradually
551 * raise it as we get more desperate.
553 if (maxdist > maxdist_threshold) {
554 tries++;
555 if (tries == 50) {
556 maxdist_threshold++;
557 tries = 0;
559 continue;
563 * Now our reachable squares are plausibly evenly
564 * distributed over the grid. I'm not actually going to
565 * _enforce_ that I place the gems in such a way as not to
566 * increase that maxdist value; I'm now just going to trust
567 * to the RNG to pick a sensible subset of the POSSGEMs.
569 j = 0;
570 for (i = 0; i < wh; i++)
571 if (grid[i] == POSSGEM)
572 list[j++] = i;
573 shuffle(list, j, sizeof(*list), rs);
574 for (i = 0; i < j; i++)
575 grid[list[i]] = (i < wh/5 ? GEM : BLANK);
576 break;
579 free_scratch(sc);
581 grid[wh] = '\0';
583 return grid;
586 static char *new_game_desc(game_params *params, random_state *rs,
587 char **aux, int interactive)
589 return gengrid(params->w, params->h, rs);
592 static char *validate_desc(game_params *params, char *desc)
594 int w = params->w, h = params->h, wh = w*h;
595 int starts = 0, gems = 0, i;
597 for (i = 0; i < wh; i++) {
598 if (!desc[i])
599 return "Not enough data to fill grid";
600 if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
601 desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
602 return "Unrecognised character in game description";
603 if (desc[i] == START)
604 starts++;
605 if (desc[i] == GEM)
606 gems++;
608 if (desc[i])
609 return "Too much data to fill grid";
610 if (starts < 1)
611 return "No starting square specified";
612 if (starts > 1)
613 return "More than one starting square specified";
614 if (gems < 1)
615 return "No gems specified";
617 return NULL;
620 static game_state *new_game(midend *me, game_params *params, char *desc)
622 int w = params->w, h = params->h, wh = w*h;
623 int i;
624 game_state *state = snew(game_state);
626 state->p = *params; /* structure copy */
628 state->grid = snewn(wh, char);
629 assert(strlen(desc) == wh);
630 memcpy(state->grid, desc, wh);
632 state->px = state->py = -1;
633 state->gems = 0;
634 for (i = 0; i < wh; i++) {
635 if (state->grid[i] == START) {
636 state->grid[i] = STOP;
637 state->px = i % w;
638 state->py = i / w;
639 } else if (state->grid[i] == GEM) {
640 state->gems++;
644 assert(state->gems > 0);
645 assert(state->px >= 0 && state->py >= 0);
647 state->distance_moved = 0;
648 state->dead = FALSE;
650 state->cheated = FALSE;
651 state->solnpos = 0;
652 state->soln = NULL;
654 return state;
657 static game_state *dup_game(game_state *state)
659 int w = state->p.w, h = state->p.h, wh = w*h;
660 game_state *ret = snew(game_state);
662 ret->p = state->p;
663 ret->px = state->px;
664 ret->py = state->py;
665 ret->gems = state->gems;
666 ret->grid = snewn(wh, char);
667 ret->distance_moved = state->distance_moved;
668 ret->dead = FALSE;
669 memcpy(ret->grid, state->grid, wh);
670 ret->cheated = state->cheated;
671 ret->soln = state->soln;
672 if (ret->soln)
673 ret->soln->refcount++;
674 ret->solnpos = state->solnpos;
676 return ret;
679 static void free_game(game_state *state)
681 if (state->soln && --state->soln->refcount == 0) {
682 sfree(state->soln->list);
683 sfree(state->soln);
685 sfree(state->grid);
686 sfree(state);
690 * Internal function used by solver.
692 static int move_goes_to(int w, int h, char *grid, int x, int y, int d)
694 int dr;
697 * See where we'd get to if we made this move.
699 dr = -1; /* placate optimiser */
700 while (1) {
701 if (AT(w, h, grid, x+DX(d), y+DY(d)) == WALL) {
702 dr = DIRECTIONS; /* hit a wall, so end up stationary */
703 break;
705 x += DX(d);
706 y += DY(d);
707 if (AT(w, h, grid, x, y) == STOP) {
708 dr = DIRECTIONS; /* hit a stop, so end up stationary */
709 break;
711 if (AT(w, h, grid, x, y) == GEM) {
712 dr = d; /* hit a gem, so we're still moving */
713 break;
715 if (AT(w, h, grid, x, y) == MINE)
716 return -1; /* hit a mine, so move is invalid */
718 assert(dr >= 0);
719 return (y*w+x)*DP1+dr;
722 static int compare_integers(const void *av, const void *bv)
724 const int *a = (const int *)av;
725 const int *b = (const int *)bv;
726 if (*a < *b)
727 return -1;
728 else if (*a > *b)
729 return +1;
730 else
731 return 0;
734 static char *solve_game(game_state *state, game_state *currstate,
735 char *aux, char **error)
737 int w = state->p.w, h = state->p.h, wh = w*h;
738 int *nodes, *nodeindex, *edges, *backedges, *edgei, *backedgei, *circuit;
739 int nedges;
740 int *dist, *dist2, *list;
741 int *unvisited;
742 int circuitlen, circuitsize;
743 int head, tail, pass, i, j, n, x, y, d, dd;
744 char *err, *soln, *p;
747 * Before anything else, deal with the special case in which
748 * all the gems are already collected.
750 for (i = 0; i < wh; i++)
751 if (currstate->grid[i] == GEM)
752 break;
753 if (i == wh) {
754 *error = "Game is already solved";
755 return NULL;
759 * Solving Inertia is a question of first building up the graph
760 * of where you can get to from where, and secondly finding a
761 * tour of the graph which takes in every gem.
763 * This is of course a close cousin of the travelling salesman
764 * problem, which is NP-complete; so I rather doubt that any
765 * _optimal_ tour can be found in plausible time. Hence I'll
766 * restrict myself to merely finding a not-too-bad one.
768 * First construct the graph, by bfsing out move by move from
769 * the current player position. Graph vertices will be
770 * - every endpoint of a move (place the ball can be
771 * stationary)
772 * - every gem (place the ball can go through in motion).
773 * Vertices of this type have an associated direction, since
774 * if a gem can be collected by sliding through it in two
775 * different directions it doesn't follow that you can
776 * change direction at it.
778 * I'm going to refer to a non-directional vertex as
779 * (y*w+x)*DP1+DIRECTIONS, and a directional one as
780 * (y*w+x)*DP1+d.
784 * nodeindex[] maps node codes as shown above to numeric
785 * indices in the nodes[] array.
787 nodeindex = snewn(DP1*wh, int);
788 for (i = 0; i < DP1*wh; i++)
789 nodeindex[i] = -1;
792 * Do the bfs to find all the interesting graph nodes.
794 nodes = snewn(DP1*wh, int);
795 head = tail = 0;
797 nodes[tail] = (currstate->py * w + currstate->px) * DP1 + DIRECTIONS;
798 nodeindex[nodes[0]] = tail;
799 tail++;
801 while (head < tail) {
802 int nc = nodes[head++], nnc;
804 d = nc % DP1;
807 * Plot all possible moves from this node. If the node is
808 * directed, there's only one.
810 for (dd = 0; dd < DIRECTIONS; dd++) {
811 x = nc / DP1;
812 y = x / w;
813 x %= w;
815 if (d < DIRECTIONS && d != dd)
816 continue;
818 nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
819 if (nnc >= 0 && nnc != nc) {
820 if (nodeindex[nnc] < 0) {
821 nodes[tail] = nnc;
822 nodeindex[nnc] = tail;
823 tail++;
828 n = head;
831 * Now we know how many nodes we have, allocate the edge array
832 * and go through setting up the edges.
834 edges = snewn(DIRECTIONS*n, int);
835 edgei = snewn(n+1, int);
836 nedges = 0;
838 for (i = 0; i < n; i++) {
839 int nc = nodes[i];
841 edgei[i] = nedges;
843 d = nc % DP1;
844 x = nc / DP1;
845 y = x / w;
846 x %= w;
848 for (dd = 0; dd < DIRECTIONS; dd++) {
849 int nnc;
851 if (d >= DIRECTIONS || d == dd) {
852 nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
854 if (nnc >= 0 && nnc != nc)
855 edges[nedges++] = nodeindex[nnc];
859 edgei[n] = nedges;
862 * Now set up the backedges array.
864 backedges = snewn(nedges, int);
865 backedgei = snewn(n+1, int);
866 for (i = j = 0; i < nedges; i++) {
867 while (j+1 < n && i >= edgei[j+1])
868 j++;
869 backedges[i] = edges[i] * n + j;
871 qsort(backedges, nedges, sizeof(int), compare_integers);
872 backedgei[0] = 0;
873 for (i = j = 0; i < nedges; i++) {
874 int k = backedges[i] / n;
875 backedges[i] %= n;
876 while (j < k)
877 backedgei[++j] = i;
879 backedgei[n] = nedges;
882 * Set up the initial tour. At all times, our tour is a circuit
883 * of graph vertices (which may, and probably will often,
884 * repeat vertices). To begin with, it's got exactly one vertex
885 * in it, which is the player's current starting point.
887 circuitsize = 256;
888 circuit = snewn(circuitsize, int);
889 circuitlen = 0;
890 circuit[circuitlen++] = 0; /* node index 0 is the starting posn */
893 * Track which gems are as yet unvisited.
895 unvisited = snewn(wh, int);
896 for (i = 0; i < wh; i++)
897 unvisited[i] = FALSE;
898 for (i = 0; i < wh; i++)
899 if (currstate->grid[i] == GEM)
900 unvisited[i] = TRUE;
903 * Allocate space for doing bfses inside the main loop.
905 dist = snewn(n, int);
906 dist2 = snewn(n, int);
907 list = snewn(n, int);
909 err = NULL;
910 soln = NULL;
913 * Now enter the main loop, in each iteration of which we
914 * extend the tour to take in an as yet uncollected gem.
916 while (1) {
917 int target, n1, n2, bestdist, extralen, targetpos;
919 #ifdef TSP_DIAGNOSTICS
920 printf("circuit is");
921 for (i = 0; i < circuitlen; i++) {
922 int nc = nodes[circuit[i]];
923 printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
925 printf("\n");
926 printf("moves are ");
927 x = nodes[circuit[0]] / DP1 % w;
928 y = nodes[circuit[0]] / DP1 / w;
929 for (i = 1; i < circuitlen; i++) {
930 int x2, y2, dx, dy;
931 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
932 continue;
933 x2 = nodes[circuit[i]] / DP1 % w;
934 y2 = nodes[circuit[i]] / DP1 / w;
935 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
936 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
937 for (d = 0; d < DIRECTIONS; d++)
938 if (DX(d) == dx && DY(d) == dy)
939 printf("%c", "89632147"[d]);
940 x = x2;
941 y = y2;
943 printf("\n");
944 #endif
947 * First, start a pair of bfses at _every_ vertex currently
948 * in the tour, and extend them outwards to find the
949 * nearest as yet unreached gem vertex.
951 * This is largely a heuristic: we could pick _any_ doubly
952 * reachable node here and still get a valid tour as
953 * output. I hope that picking a nearby one will result in
954 * generally good tours.
956 for (pass = 0; pass < 2; pass++) {
957 int *ep = (pass == 0 ? edges : backedges);
958 int *ei = (pass == 0 ? edgei : backedgei);
959 int *dp = (pass == 0 ? dist : dist2);
960 head = tail = 0;
961 for (i = 0; i < n; i++)
962 dp[i] = -1;
963 for (i = 0; i < circuitlen; i++) {
964 int ni = circuit[i];
965 if (dp[ni] < 0) {
966 dp[ni] = 0;
967 list[tail++] = ni;
970 while (head < tail) {
971 int ni = list[head++];
972 for (i = ei[ni]; i < ei[ni+1]; i++) {
973 int ti = ep[i];
974 if (ti >= 0 && dp[ti] < 0) {
975 dp[ti] = dp[ni] + 1;
976 list[tail++] = ti;
981 /* Now find the nearest unvisited gem. */
982 bestdist = -1;
983 target = -1;
984 for (i = 0; i < n; i++) {
985 if (unvisited[nodes[i] / DP1] &&
986 dist[i] >= 0 && dist2[i] >= 0) {
987 int thisdist = dist[i] + dist2[i];
988 if (bestdist < 0 || bestdist > thisdist) {
989 bestdist = thisdist;
990 target = i;
995 if (target < 0) {
997 * If we get to here, we haven't found a gem we can get
998 * at all, which means we terminate this loop.
1000 break;
1004 * Now we have a graph vertex at list[tail-1] which is an
1005 * unvisited gem. We want to add that vertex to our tour.
1006 * So we run two more breadth-first searches: one starting
1007 * from that vertex and following forward edges, and
1008 * another starting from the same vertex and following
1009 * backward edges. This allows us to determine, for each
1010 * node on the current tour, how quickly we can get both to
1011 * and from the target vertex from that node.
1013 #ifdef TSP_DIAGNOSTICS
1014 printf("target node is %d (%d,%d,%d)\n", target, nodes[target]/DP1%w,
1015 nodes[target]/DP1/w, nodes[target]%DP1);
1016 #endif
1018 for (pass = 0; pass < 2; pass++) {
1019 int *ep = (pass == 0 ? edges : backedges);
1020 int *ei = (pass == 0 ? edgei : backedgei);
1021 int *dp = (pass == 0 ? dist : dist2);
1023 for (i = 0; i < n; i++)
1024 dp[i] = -1;
1025 head = tail = 0;
1027 dp[target] = 0;
1028 list[tail++] = target;
1030 while (head < tail) {
1031 int ni = list[head++];
1032 for (i = ei[ni]; i < ei[ni+1]; i++) {
1033 int ti = ep[i];
1034 if (ti >= 0 && dp[ti] < 0) {
1035 dp[ti] = dp[ni] + 1;
1036 /*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
1037 list[tail++] = ti;
1044 * Now for every node n, dist[n] gives the length of the
1045 * shortest path from the target vertex to n, and dist2[n]
1046 * gives the length of the shortest path from n to the
1047 * target vertex.
1049 * Our next step is to search linearly along the tour to
1050 * find the optimum place to insert a trip to the target
1051 * vertex and back. Our two options are either
1052 * (a) to find two adjacent vertices A,B in the tour and
1053 * replace the edge A->B with the path A->target->B
1054 * (b) to find a single vertex X in the tour and replace
1055 * it with the complete round trip X->target->X.
1056 * We do whichever takes the fewest moves.
1058 n1 = n2 = -1;
1059 bestdist = -1;
1060 for (i = 0; i < circuitlen; i++) {
1061 int thisdist;
1064 * Try a round trip from vertex i.
1066 if (dist[circuit[i]] >= 0 &&
1067 dist2[circuit[i]] >= 0) {
1068 thisdist = dist[circuit[i]] + dist2[circuit[i]];
1069 if (bestdist < 0 || thisdist < bestdist) {
1070 bestdist = thisdist;
1071 n1 = n2 = i;
1076 * Try a trip from vertex i via target to vertex i+1.
1078 if (i+1 < circuitlen &&
1079 dist2[circuit[i]] >= 0 &&
1080 dist[circuit[i+1]] >= 0) {
1081 thisdist = dist2[circuit[i]] + dist[circuit[i+1]];
1082 if (bestdist < 0 || thisdist < bestdist) {
1083 bestdist = thisdist;
1084 n1 = i;
1085 n2 = i+1;
1089 if (bestdist < 0) {
1091 * We couldn't find a round trip taking in this gem _at
1092 * all_. Give up.
1094 err = "Unable to find a solution from this starting point";
1095 break;
1097 #ifdef TSP_DIAGNOSTICS
1098 printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1, n2, bestdist);
1099 #endif
1101 #ifdef TSP_DIAGNOSTICS
1102 printf("circuit before lengthening is");
1103 for (i = 0; i < circuitlen; i++) {
1104 printf(" %d", circuit[i]);
1106 printf("\n");
1107 #endif
1110 * Now actually lengthen the tour to take in this round
1111 * trip.
1113 extralen = dist2[circuit[n1]] + dist[circuit[n2]];
1114 if (n1 != n2)
1115 extralen--;
1116 circuitlen += extralen;
1117 if (circuitlen >= circuitsize) {
1118 circuitsize = circuitlen + 256;
1119 circuit = sresize(circuit, circuitsize, int);
1121 memmove(circuit + n2 + extralen, circuit + n2,
1122 (circuitlen - n2 - extralen) * sizeof(int));
1123 n2 += extralen;
1125 #ifdef TSP_DIAGNOSTICS
1126 printf("circuit in middle of lengthening is");
1127 for (i = 0; i < circuitlen; i++) {
1128 printf(" %d", circuit[i]);
1130 printf("\n");
1131 #endif
1134 * Find the shortest-path routes to and from the target,
1135 * and write them into the circuit.
1137 targetpos = n1 + dist2[circuit[n1]];
1138 assert(targetpos - dist2[circuit[n1]] == n1);
1139 assert(targetpos + dist[circuit[n2]] == n2);
1140 for (pass = 0; pass < 2; pass++) {
1141 int dir = (pass == 0 ? -1 : +1);
1142 int *ep = (pass == 0 ? backedges : edges);
1143 int *ei = (pass == 0 ? backedgei : edgei);
1144 int *dp = (pass == 0 ? dist : dist2);
1145 int nn = (pass == 0 ? n2 : n1);
1146 int ni = circuit[nn], ti, dest = nn;
1148 while (1) {
1149 circuit[dest] = ni;
1150 if (dp[ni] == 0)
1151 break;
1152 dest += dir;
1153 ti = -1;
1154 /*printf("pass %d: looking at vertex %d\n", pass, ni);*/
1155 for (i = ei[ni]; i < ei[ni+1]; i++) {
1156 ti = ep[i];
1157 if (ti >= 0 && dp[ti] == dp[ni] - 1)
1158 break;
1160 assert(i < ei[ni+1] && ti >= 0);
1161 ni = ti;
1165 #ifdef TSP_DIAGNOSTICS
1166 printf("circuit after lengthening is");
1167 for (i = 0; i < circuitlen; i++) {
1168 printf(" %d", circuit[i]);
1170 printf("\n");
1171 #endif
1174 * Finally, mark all gems that the new piece of circuit
1175 * passes through as visited.
1177 for (i = n1; i <= n2; i++) {
1178 int pos = nodes[circuit[i]] / DP1;
1179 assert(pos >= 0 && pos < wh);
1180 unvisited[pos] = FALSE;
1184 #ifdef TSP_DIAGNOSTICS
1185 printf("before reduction, moves are ");
1186 x = nodes[circuit[0]] / DP1 % w;
1187 y = nodes[circuit[0]] / DP1 / w;
1188 for (i = 1; i < circuitlen; i++) {
1189 int x2, y2, dx, dy;
1190 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1191 continue;
1192 x2 = nodes[circuit[i]] / DP1 % w;
1193 y2 = nodes[circuit[i]] / DP1 / w;
1194 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1195 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1196 for (d = 0; d < DIRECTIONS; d++)
1197 if (DX(d) == dx && DY(d) == dy)
1198 printf("%c", "89632147"[d]);
1199 x = x2;
1200 y = y2;
1202 printf("\n");
1203 #endif
1206 * That's got a basic solution. Now optimise it by removing
1207 * redundant sections of the circuit: it's entirely possible
1208 * that a piece of circuit we carefully inserted at one stage
1209 * to collect a gem has become pointless because the steps
1210 * required to collect some _later_ gem necessarily passed
1211 * through the same one.
1213 * So first we go through and work out how many times each gem
1214 * is collected. Then we look for maximal sections of circuit
1215 * which are redundant in the sense that their removal would
1216 * not reduce any gem's collection count to zero, and replace
1217 * each one with a bfs-derived fastest path between their
1218 * endpoints.
1220 while (1) {
1221 int oldlen = circuitlen;
1222 int dir;
1224 for (dir = +1; dir >= -1; dir -= 2) {
1226 for (i = 0; i < wh; i++)
1227 unvisited[i] = 0;
1228 for (i = 0; i < circuitlen; i++) {
1229 int xy = nodes[circuit[i]] / DP1;
1230 if (currstate->grid[xy] == GEM)
1231 unvisited[xy]++;
1235 * If there's any gem we didn't end up visiting at all,
1236 * give up.
1238 for (i = 0; i < wh; i++) {
1239 if (currstate->grid[i] == GEM && unvisited[i] == 0) {
1240 err = "Unable to find a solution from this starting point";
1241 break;
1244 if (i < wh)
1245 break;
1247 for (i = j = (dir > 0 ? 0 : circuitlen-1);
1248 i < circuitlen && i >= 0;
1249 i += dir) {
1250 int xy = nodes[circuit[i]] / DP1;
1251 if (currstate->grid[xy] == GEM && unvisited[xy] > 1) {
1252 unvisited[xy]--;
1253 } else if (currstate->grid[xy] == GEM || i == circuitlen-1) {
1255 * circuit[i] collects a gem for the only time,
1256 * or is the last node in the circuit.
1257 * Therefore it cannot be removed; so we now
1258 * want to replace the path from circuit[j] to
1259 * circuit[i] with a bfs-shortest path.
1261 int p, q, k, dest, ni, ti, thisdist;
1264 * Set up the upper and lower bounds of the
1265 * reduced section.
1267 p = min(i, j);
1268 q = max(i, j);
1270 #ifdef TSP_DIAGNOSTICS
1271 printf("optimising section from %d - %d\n", p, q);
1272 #endif
1274 for (k = 0; k < n; k++)
1275 dist[k] = -1;
1276 head = tail = 0;
1278 dist[circuit[p]] = 0;
1279 list[tail++] = circuit[p];
1281 while (head < tail && dist[circuit[q]] < 0) {
1282 int ni = list[head++];
1283 for (k = edgei[ni]; k < edgei[ni+1]; k++) {
1284 int ti = edges[k];
1285 if (ti >= 0 && dist[ti] < 0) {
1286 dist[ti] = dist[ni] + 1;
1287 list[tail++] = ti;
1292 thisdist = dist[circuit[q]];
1293 assert(thisdist >= 0 && thisdist <= q-p);
1295 memmove(circuit+p+thisdist, circuit+q,
1296 (circuitlen - q) * sizeof(int));
1297 circuitlen -= q-p;
1298 q = p + thisdist;
1299 circuitlen += q-p;
1301 if (dir > 0)
1302 i = q; /* resume loop from the right place */
1304 #ifdef TSP_DIAGNOSTICS
1305 printf("new section runs from %d - %d\n", p, q);
1306 #endif
1308 dest = q;
1309 assert(dest >= 0);
1310 ni = circuit[q];
1312 while (1) {
1313 /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
1314 circuit[dest] = ni;
1315 if (dist[ni] == 0)
1316 break;
1317 dest--;
1318 ti = -1;
1319 for (k = backedgei[ni]; k < backedgei[ni+1]; k++) {
1320 ti = backedges[k];
1321 if (ti >= 0 && dist[ti] == dist[ni] - 1)
1322 break;
1324 assert(k < backedgei[ni+1] && ti >= 0);
1325 ni = ti;
1329 * Now re-increment the visit counts for the
1330 * new path.
1332 while (++p < q) {
1333 int xy = nodes[circuit[p]] / DP1;
1334 if (currstate->grid[xy] == GEM)
1335 unvisited[xy]++;
1338 j = i;
1340 #ifdef TSP_DIAGNOSTICS
1341 printf("during reduction, circuit is");
1342 for (k = 0; k < circuitlen; k++) {
1343 int nc = nodes[circuit[k]];
1344 printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
1346 printf("\n");
1347 printf("moves are ");
1348 x = nodes[circuit[0]] / DP1 % w;
1349 y = nodes[circuit[0]] / DP1 / w;
1350 for (k = 1; k < circuitlen; k++) {
1351 int x2, y2, dx, dy;
1352 if (nodes[circuit[k]] % DP1 != DIRECTIONS)
1353 continue;
1354 x2 = nodes[circuit[k]] / DP1 % w;
1355 y2 = nodes[circuit[k]] / DP1 / w;
1356 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1357 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1358 for (d = 0; d < DIRECTIONS; d++)
1359 if (DX(d) == dx && DY(d) == dy)
1360 printf("%c", "89632147"[d]);
1361 x = x2;
1362 y = y2;
1364 printf("\n");
1365 #endif
1369 #ifdef TSP_DIAGNOSTICS
1370 printf("after reduction, moves are ");
1371 x = nodes[circuit[0]] / DP1 % w;
1372 y = nodes[circuit[0]] / DP1 / w;
1373 for (i = 1; i < circuitlen; i++) {
1374 int x2, y2, dx, dy;
1375 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1376 continue;
1377 x2 = nodes[circuit[i]] / DP1 % w;
1378 y2 = nodes[circuit[i]] / DP1 / w;
1379 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1380 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1381 for (d = 0; d < DIRECTIONS; d++)
1382 if (DX(d) == dx && DY(d) == dy)
1383 printf("%c", "89632147"[d]);
1384 x = x2;
1385 y = y2;
1387 printf("\n");
1388 #endif
1392 * If we've managed an entire reduction pass in each
1393 * direction and not made the solution any shorter, we're
1394 * _really_ done.
1396 if (circuitlen == oldlen)
1397 break;
1401 * Encode the solution as a move string.
1403 if (!err) {
1404 soln = snewn(circuitlen+2, char);
1405 p = soln;
1406 *p++ = 'S';
1407 x = nodes[circuit[0]] / DP1 % w;
1408 y = nodes[circuit[0]] / DP1 / w;
1409 for (i = 1; i < circuitlen; i++) {
1410 int x2, y2, dx, dy;
1411 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1412 continue;
1413 x2 = nodes[circuit[i]] / DP1 % w;
1414 y2 = nodes[circuit[i]] / DP1 / w;
1415 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1416 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1417 for (d = 0; d < DIRECTIONS; d++)
1418 if (DX(d) == dx && DY(d) == dy) {
1419 *p++ = '0' + d;
1420 break;
1422 assert(d < DIRECTIONS);
1423 x = x2;
1424 y = y2;
1426 *p++ = '\0';
1427 assert(p - soln < circuitlen+2);
1430 sfree(list);
1431 sfree(dist);
1432 sfree(dist2);
1433 sfree(unvisited);
1434 sfree(circuit);
1435 sfree(backedgei);
1436 sfree(backedges);
1437 sfree(edgei);
1438 sfree(edges);
1439 sfree(nodeindex);
1440 sfree(nodes);
1442 if (err)
1443 *error = err;
1445 return soln;
1448 static int game_can_format_as_text_now(game_params *params)
1450 return TRUE;
1453 static char *game_text_format(game_state *state)
1455 return NULL;
1458 struct game_ui {
1459 float anim_length;
1460 int flashtype;
1461 int deaths;
1462 int just_made_move;
1463 int just_died;
1466 static game_ui *new_ui(game_state *state)
1468 game_ui *ui = snew(game_ui);
1469 ui->anim_length = 0.0F;
1470 ui->flashtype = 0;
1471 ui->deaths = 0;
1472 ui->just_made_move = FALSE;
1473 ui->just_died = FALSE;
1474 return ui;
1477 static void free_ui(game_ui *ui)
1479 sfree(ui);
1482 static char *encode_ui(game_ui *ui)
1484 char buf[80];
1486 * The deaths counter needs preserving across a serialisation.
1488 sprintf(buf, "D%d", ui->deaths);
1489 return dupstr(buf);
1492 static void decode_ui(game_ui *ui, char *encoding)
1494 int p = 0;
1495 sscanf(encoding, "D%d%n", &ui->deaths, &p);
1498 static void game_changed_state(game_ui *ui, game_state *oldstate,
1499 game_state *newstate)
1502 * Increment the deaths counter. We only do this if
1503 * ui->just_made_move is set (redoing a suicide move doesn't
1504 * kill you _again_), and also we only do it if the game wasn't
1505 * already completed (once you're finished, you can play).
1507 if (!oldstate->dead && newstate->dead && ui->just_made_move &&
1508 oldstate->gems) {
1509 ui->deaths++;
1510 ui->just_died = TRUE;
1511 } else {
1512 ui->just_died = FALSE;
1514 ui->just_made_move = FALSE;
1517 struct game_drawstate {
1518 game_params p;
1519 int tilesize;
1520 int started;
1521 unsigned short *grid;
1522 blitter *player_background;
1523 int player_bg_saved, pbgx, pbgy;
1526 #define PREFERRED_TILESIZE 32
1527 #define TILESIZE (ds->tilesize)
1528 #ifdef SMALL_SCREEN
1529 #define BORDER (TILESIZE / 4)
1530 #else
1531 #define BORDER (TILESIZE)
1532 #endif
1533 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
1534 #define COORD(x) ( (x) * TILESIZE + BORDER )
1535 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1537 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1538 int x, int y, int button)
1540 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1541 int dir;
1542 char buf[80];
1544 dir = -1;
1546 if (button == LEFT_BUTTON) {
1548 * Mouse-clicking near the target point (or, more
1549 * accurately, in the appropriate octant) is an alternative
1550 * way to input moves.
1553 if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
1554 int dx, dy;
1555 float angle;
1557 dx = FROMCOORD(x) - state->px;
1558 dy = FROMCOORD(y) - state->py;
1559 /* I pass dx,dy rather than dy,dx so that the octants
1560 * end up the right way round. */
1561 angle = atan2(dx, -dy);
1563 angle = (angle + (PI/8)) / (PI/4);
1564 assert(angle > -16.0F);
1565 dir = (int)(angle + 16.0F) & 7;
1567 } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1568 dir = 0;
1569 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1570 dir = 4;
1571 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1572 dir = 6;
1573 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1574 dir = 2;
1575 else if (button == (MOD_NUM_KEYPAD | '7'))
1576 dir = 7;
1577 else if (button == (MOD_NUM_KEYPAD | '1'))
1578 dir = 5;
1579 else if (button == (MOD_NUM_KEYPAD | '9'))
1580 dir = 1;
1581 else if (button == (MOD_NUM_KEYPAD | '3'))
1582 dir = 3;
1583 else if (IS_CURSOR_SELECT(button) &&
1584 state->soln && state->solnpos < state->soln->len)
1585 dir = state->soln->list[state->solnpos];
1587 if (dir < 0)
1588 return NULL;
1591 * Reject the move if we can't make it at all due to a wall
1592 * being in the way.
1594 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
1595 return NULL;
1598 * Reject the move if we're dead!
1600 if (state->dead)
1601 return NULL;
1604 * Otherwise, we can make the move. All we need to specify is
1605 * the direction.
1607 ui->just_made_move = TRUE;
1608 sprintf(buf, "%d", dir);
1609 return dupstr(buf);
1612 static game_state *execute_move(game_state *state, char *move)
1614 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1615 int dir;
1616 game_state *ret;
1618 if (*move == 'S') {
1619 int len, i;
1620 soln *sol;
1623 * This is a solve move, so we don't actually _change_ the
1624 * grid but merely set up a stored solution path.
1626 move++;
1627 len = strlen(move);
1628 sol = snew(soln);
1629 sol->len = len;
1630 sol->list = snewn(len, unsigned char);
1631 for (i = 0; i < len; i++)
1632 sol->list[i] = move[i] - '0';
1633 ret = dup_game(state);
1634 ret->cheated = TRUE;
1635 if (ret->soln && --ret->soln->refcount == 0) {
1636 sfree(ret->soln->list);
1637 sfree(ret->soln);
1639 ret->soln = sol;
1640 ret->solnpos = 0;
1641 sol->refcount = 1;
1642 return ret;
1645 dir = atoi(move);
1646 if (dir < 0 || dir >= DIRECTIONS)
1647 return NULL; /* huh? */
1649 if (state->dead)
1650 return NULL;
1652 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
1653 return NULL; /* wall in the way! */
1656 * Now make the move.
1658 ret = dup_game(state);
1659 ret->distance_moved = 0;
1660 while (1) {
1661 ret->px += DX(dir);
1662 ret->py += DY(dir);
1663 ret->distance_moved++;
1665 if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
1666 LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
1667 ret->gems--;
1670 if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
1671 ret->dead = TRUE;
1672 break;
1675 if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
1676 AT(w, h, ret->grid, ret->px+DX(dir),
1677 ret->py+DY(dir)) == WALL)
1678 break;
1681 if (ret->soln) {
1683 * If this move is the correct next one in the stored
1684 * solution path, advance solnpos.
1686 if (ret->soln->list[ret->solnpos] == dir &&
1687 ret->solnpos+1 < ret->soln->len) {
1688 ret->solnpos++;
1689 } else {
1691 * Otherwise, the user has strayed from the path, so
1692 * the path is no longer valid.
1694 ret->soln->refcount--;
1695 assert(ret->soln->refcount > 0);/* `state' at least still exists */
1696 ret->soln = NULL;
1697 ret->solnpos = 0;
1701 return ret;
1704 /* ----------------------------------------------------------------------
1705 * Drawing routines.
1708 static void game_compute_size(game_params *params, int tilesize,
1709 int *x, int *y)
1711 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1712 struct { int tilesize; } ads, *ds = &ads;
1713 ads.tilesize = tilesize;
1715 *x = 2 * BORDER + 1 + params->w * TILESIZE;
1716 *y = 2 * BORDER + 1 + params->h * TILESIZE;
1719 static void game_set_size(drawing *dr, game_drawstate *ds,
1720 game_params *params, int tilesize)
1722 ds->tilesize = tilesize;
1724 assert(!ds->player_background); /* set_size is never called twice */
1725 assert(!ds->player_bg_saved);
1727 ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
1730 static float *game_colours(frontend *fe, int *ncolours)
1732 float *ret = snewn(3 * NCOLOURS, float);
1733 int i;
1735 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1737 ret[COL_OUTLINE * 3 + 0] = 0.0F;
1738 ret[COL_OUTLINE * 3 + 1] = 0.0F;
1739 ret[COL_OUTLINE * 3 + 2] = 0.0F;
1741 ret[COL_PLAYER * 3 + 0] = 0.0F;
1742 ret[COL_PLAYER * 3 + 1] = 1.0F;
1743 ret[COL_PLAYER * 3 + 2] = 0.0F;
1745 ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
1746 ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
1747 ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
1749 ret[COL_MINE * 3 + 0] = 0.0F;
1750 ret[COL_MINE * 3 + 1] = 0.0F;
1751 ret[COL_MINE * 3 + 2] = 0.0F;
1753 ret[COL_GEM * 3 + 0] = 0.6F;
1754 ret[COL_GEM * 3 + 1] = 1.0F;
1755 ret[COL_GEM * 3 + 2] = 1.0F;
1757 for (i = 0; i < 3; i++) {
1758 ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
1759 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
1762 ret[COL_HINT * 3 + 0] = 1.0F;
1763 ret[COL_HINT * 3 + 1] = 1.0F;
1764 ret[COL_HINT * 3 + 2] = 0.0F;
1766 *ncolours = NCOLOURS;
1767 return ret;
1770 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1772 int w = state->p.w, h = state->p.h, wh = w*h;
1773 struct game_drawstate *ds = snew(struct game_drawstate);
1774 int i;
1776 ds->tilesize = 0;
1778 /* We can't allocate the blitter rectangle for the player background
1779 * until we know what size to make it. */
1780 ds->player_background = NULL;
1781 ds->player_bg_saved = FALSE;
1782 ds->pbgx = ds->pbgy = -1;
1784 ds->p = state->p; /* structure copy */
1785 ds->started = FALSE;
1786 ds->grid = snewn(wh, unsigned short);
1787 for (i = 0; i < wh; i++)
1788 ds->grid[i] = UNDRAWN;
1790 return ds;
1793 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1795 if (ds->player_background)
1796 blitter_free(dr, ds->player_background);
1797 sfree(ds->grid);
1798 sfree(ds);
1801 static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
1802 int dead, int hintdir)
1804 if (dead) {
1805 int coords[DIRECTIONS*4];
1806 int d;
1808 for (d = 0; d < DIRECTIONS; d++) {
1809 float x1, y1, x2, y2, x3, y3, len;
1811 x1 = DX(d);
1812 y1 = DY(d);
1813 len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
1815 x3 = DX(d+1);
1816 y3 = DY(d+1);
1817 len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
1819 x2 = (x1+x3) / 4;
1820 y2 = (y1+y3) / 4;
1822 coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
1823 coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
1824 coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
1825 coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
1827 draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
1828 } else {
1829 draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
1830 TILESIZE/3, COL_PLAYER, COL_OUTLINE);
1833 if (!dead && hintdir >= 0) {
1834 float scale = (DX(hintdir) && DY(hintdir) ? 0.8F : 1.0F);
1835 int ax = (TILESIZE*2/5) * scale * DX(hintdir);
1836 int ay = (TILESIZE*2/5) * scale * DY(hintdir);
1837 int px = -ay, py = ax;
1838 int ox = x + TILESIZE/2, oy = y + TILESIZE/2;
1839 int coords[14], *c;
1841 c = coords;
1842 *c++ = ox + px/9;
1843 *c++ = oy + py/9;
1844 *c++ = ox + px/9 + ax*2/3;
1845 *c++ = oy + py/9 + ay*2/3;
1846 *c++ = ox + px/3 + ax*2/3;
1847 *c++ = oy + py/3 + ay*2/3;
1848 *c++ = ox + ax;
1849 *c++ = oy + ay;
1850 *c++ = ox - px/3 + ax*2/3;
1851 *c++ = oy - py/3 + ay*2/3;
1852 *c++ = ox - px/9 + ax*2/3;
1853 *c++ = oy - py/9 + ay*2/3;
1854 *c++ = ox - px/9;
1855 *c++ = oy - py/9;
1856 draw_polygon(dr, coords, 7, COL_HINT, COL_OUTLINE);
1859 draw_update(dr, x, y, TILESIZE, TILESIZE);
1862 #define FLASH_DEAD 0x100
1863 #define FLASH_WIN 0x200
1864 #define FLASH_MASK 0x300
1866 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
1868 int tx = COORD(x), ty = COORD(y);
1869 int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
1870 v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
1872 v &= ~FLASH_MASK;
1874 clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
1875 draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
1877 if (v == WALL) {
1878 int coords[6];
1880 coords[0] = tx + TILESIZE;
1881 coords[1] = ty + TILESIZE;
1882 coords[2] = tx + TILESIZE;
1883 coords[3] = ty + 1;
1884 coords[4] = tx + 1;
1885 coords[5] = ty + TILESIZE;
1886 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1888 coords[0] = tx + 1;
1889 coords[1] = ty + 1;
1890 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1892 draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
1893 TILESIZE - 2*HIGHLIGHT_WIDTH,
1894 TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
1895 } else if (v == MINE) {
1896 int cx = tx + TILESIZE / 2;
1897 int cy = ty + TILESIZE / 2;
1898 int r = TILESIZE / 2 - 3;
1900 draw_circle(dr, cx, cy, 5*r/6, COL_MINE, COL_MINE);
1901 draw_rect(dr, cx - r/6, cy - r, 2*(r/6)+1, 2*r+1, COL_MINE);
1902 draw_rect(dr, cx - r, cy - r/6, 2*r+1, 2*(r/6)+1, COL_MINE);
1903 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
1904 } else if (v == STOP) {
1905 draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1906 TILESIZE*3/7, -1, COL_OUTLINE);
1907 draw_rect(dr, tx + TILESIZE*3/7, ty+1,
1908 TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
1909 draw_rect(dr, tx+1, ty + TILESIZE*3/7,
1910 TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
1911 } else if (v == GEM) {
1912 int coords[8];
1914 coords[0] = tx+TILESIZE/2;
1915 coords[1] = ty+TILESIZE/2-TILESIZE*5/14;
1916 coords[2] = tx+TILESIZE/2-TILESIZE*5/14;
1917 coords[3] = ty+TILESIZE/2;
1918 coords[4] = tx+TILESIZE/2;
1919 coords[5] = ty+TILESIZE/2+TILESIZE*5/14;
1920 coords[6] = tx+TILESIZE/2+TILESIZE*5/14;
1921 coords[7] = ty+TILESIZE/2;
1923 draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
1926 unclip(dr);
1927 draw_update(dr, tx, ty, TILESIZE, TILESIZE);
1930 #define BASE_ANIM_LENGTH 0.1F
1931 #define FLASH_LENGTH 0.3F
1933 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1934 game_state *state, int dir, game_ui *ui,
1935 float animtime, float flashtime)
1937 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1938 int x, y;
1939 float ap;
1940 int player_dist;
1941 int flashtype;
1942 int gems, deaths;
1943 char status[256];
1945 if (flashtime &&
1946 !((int)(flashtime * 3 / FLASH_LENGTH) % 2))
1947 flashtype = ui->flashtype;
1948 else
1949 flashtype = 0;
1952 * Erase the player sprite.
1954 if (ds->player_bg_saved) {
1955 assert(ds->player_background);
1956 blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
1957 draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
1958 ds->player_bg_saved = FALSE;
1962 * Initialise a fresh drawstate.
1964 if (!ds->started) {
1965 int wid, ht;
1968 * Blank out the window initially.
1970 game_compute_size(&ds->p, TILESIZE, &wid, &ht);
1971 draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
1972 draw_update(dr, 0, 0, wid, ht);
1975 * Draw the grid lines.
1977 for (y = 0; y <= h; y++)
1978 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
1979 COL_LOWLIGHT);
1980 for (x = 0; x <= w; x++)
1981 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
1982 COL_LOWLIGHT);
1984 ds->started = TRUE;
1988 * If we're in the process of animating a move, let's start by
1989 * working out how far the player has moved from their _older_
1990 * state.
1992 if (oldstate) {
1993 ap = animtime / ui->anim_length;
1994 player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
1995 } else {
1996 player_dist = 0;
1997 ap = 0.0F;
2001 * Draw the grid contents.
2003 * We count the gems as we go round this loop, for the purposes
2004 * of the status bar. Of course we have a gems counter in the
2005 * game_state already, but if we do the counting in this loop
2006 * then it tracks gems being picked up in a sliding move, and
2007 * updates one by one.
2009 gems = 0;
2010 for (y = 0; y < h; y++)
2011 for (x = 0; x < w; x++) {
2012 unsigned short v = (unsigned char)state->grid[y*w+x];
2015 * Special case: if the player is in the process of
2016 * moving over a gem, we draw the gem iff they haven't
2017 * gone past it yet.
2019 if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
2021 * Compute the distance from this square to the
2022 * original player position.
2024 int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
2027 * If the player has reached here, use the new grid
2028 * element. Otherwise use the old one.
2030 if (player_dist < dist)
2031 v = oldstate->grid[y*w+x];
2032 else
2033 v = state->grid[y*w+x];
2037 * Special case: erase the mine the dead player is
2038 * sitting on. Only at the end of the move.
2040 if (v == MINE && !oldstate && state->dead &&
2041 x == state->px && y == state->py)
2042 v = BLANK;
2044 if (v == GEM)
2045 gems++;
2047 v |= flashtype;
2049 if (ds->grid[y*w+x] != v) {
2050 draw_tile(dr, ds, x, y, v);
2051 ds->grid[y*w+x] = v;
2056 * Gem counter in the status bar. We replace it with
2057 * `COMPLETED!' when it reaches zero ... or rather, when the
2058 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
2059 * shown between the collection of the last gem and the
2060 * completion of the move animation that did it.)
2062 if (state->dead && (!oldstate || oldstate->dead)) {
2063 sprintf(status, "DEAD!");
2064 } else if (state->gems || (oldstate && oldstate->gems)) {
2065 if (state->cheated)
2066 sprintf(status, "Auto-solver used. ");
2067 else
2068 *status = '\0';
2069 sprintf(status + strlen(status), "Gems: %d", gems);
2070 } else if (state->cheated) {
2071 sprintf(status, "Auto-solved.");
2072 } else {
2073 sprintf(status, "COMPLETED!");
2075 /* We subtract one from the visible death counter if we're still
2076 * animating the move at the end of which the death took place. */
2077 deaths = ui->deaths;
2078 if (oldstate && ui->just_died) {
2079 assert(deaths > 0);
2080 deaths--;
2082 if (deaths)
2083 sprintf(status + strlen(status), " Deaths: %d", deaths);
2084 status_bar(dr, status);
2087 * Draw the player sprite.
2089 assert(!ds->player_bg_saved);
2090 assert(ds->player_background);
2092 int ox, oy, nx, ny;
2093 nx = COORD(state->px);
2094 ny = COORD(state->py);
2095 if (oldstate) {
2096 ox = COORD(oldstate->px);
2097 oy = COORD(oldstate->py);
2098 } else {
2099 ox = nx;
2100 oy = ny;
2102 ds->pbgx = ox + ap * (nx - ox);
2103 ds->pbgy = oy + ap * (ny - oy);
2105 blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
2106 draw_player(dr, ds, ds->pbgx, ds->pbgy,
2107 (state->dead && !oldstate),
2108 (!oldstate && state->soln ?
2109 state->soln->list[state->solnpos] : -1));
2110 ds->player_bg_saved = TRUE;
2113 static float game_anim_length(game_state *oldstate, game_state *newstate,
2114 int dir, game_ui *ui)
2116 int dist;
2117 if (dir > 0)
2118 dist = newstate->distance_moved;
2119 else
2120 dist = oldstate->distance_moved;
2121 ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
2122 return ui->anim_length;
2125 static float game_flash_length(game_state *oldstate, game_state *newstate,
2126 int dir, game_ui *ui)
2128 if (!oldstate->dead && newstate->dead) {
2129 ui->flashtype = FLASH_DEAD;
2130 return FLASH_LENGTH;
2131 } else if (oldstate->gems && !newstate->gems) {
2132 ui->flashtype = FLASH_WIN;
2133 return FLASH_LENGTH;
2135 return 0.0F;
2138 static int game_status(game_state *state)
2141 * We never report the game as lost, on the grounds that if the
2142 * player has died they're quite likely to want to undo and carry
2143 * on.
2145 return state->gems == 0 ? +1 : 0;
2148 static int game_timing_state(game_state *state, game_ui *ui)
2150 return TRUE;
2153 static void game_print_size(game_params *params, float *x, float *y)
2157 static void game_print(drawing *dr, game_state *state, int tilesize)
2161 #ifdef COMBINED
2162 #define thegame inertia
2163 #endif
2165 const struct game thegame = {
2166 "Inertia", "games.inertia", "inertia",
2167 default_params,
2168 game_fetch_preset,
2169 decode_params,
2170 encode_params,
2171 free_params,
2172 dup_params,
2173 TRUE, game_configure, custom_params,
2174 validate_params,
2175 new_game_desc,
2176 validate_desc,
2177 new_game,
2178 dup_game,
2179 free_game,
2180 TRUE, solve_game,
2181 FALSE, game_can_format_as_text_now, game_text_format,
2182 new_ui,
2183 free_ui,
2184 encode_ui,
2185 decode_ui,
2186 game_changed_state,
2187 interpret_move,
2188 execute_move,
2189 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2190 game_colours,
2191 game_new_drawstate,
2192 game_free_drawstate,
2193 game_redraw,
2194 game_anim_length,
2195 game_flash_length,
2196 game_status,
2197 FALSE, FALSE, game_print_size, game_print,
2198 TRUE, /* wants_statusbar */
2199 FALSE, game_timing_state,
2200 0, /* flags */