2 * inertia.c: Game involving navigating round a grid picking up
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
18 /* Used in the game_state */
25 /* Used in the game IDs */
28 /* Used in the game generation */
31 /* Used only in the game_drawstate*/
35 #define DP1 (DIRECTIONS+1)
36 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
37 #define DY(dir) ( DX((dir)+6) )
40 * Lvalue macro which expects x and y to be in range.
42 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
45 * Rvalue macro which can cope with x and y being out of range.
47 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
48 WALL : LV_AT(w, h, grid, x, y) )
86 static game_params
*default_params(void)
88 game_params
*ret
= snew(game_params
);
91 #ifdef PORTRAIT_SCREEN
99 static void free_params(game_params
*params
)
104 static game_params
*dup_params(game_params
*params
)
106 game_params
*ret
= snew(game_params
);
107 *ret
= *params
; /* structure copy */
111 static const struct game_params inertia_presets
[] = {
112 #ifdef PORTRAIT_SCREEN
123 static int game_fetch_preset(int i
, char **name
, game_params
**params
)
129 if (i
< 0 || i
>= lenof(inertia_presets
))
132 p
= inertia_presets
[i
];
133 ret
= dup_params(&p
);
134 sprintf(namebuf
, "%dx%d", ret
->w
, ret
->h
);
135 retname
= dupstr(namebuf
);
142 static void decode_params(game_params
*params
, char const *string
)
144 params
->w
= params
->h
= atoi(string
);
145 while (*string
&& isdigit((unsigned char)*string
)) string
++;
146 if (*string
== 'x') {
148 params
->h
= atoi(string
);
152 static char *encode_params(game_params
*params
, int full
)
156 sprintf(data
, "%dx%d", params
->w
, params
->h
);
161 static config_item
*game_configure(game_params
*params
)
166 ret
= snewn(3, config_item
);
168 ret
[0].name
= "Width";
169 ret
[0].type
= C_STRING
;
170 sprintf(buf
, "%d", params
->w
);
171 ret
[0].sval
= dupstr(buf
);
174 ret
[1].name
= "Height";
175 ret
[1].type
= C_STRING
;
176 sprintf(buf
, "%d", params
->h
);
177 ret
[1].sval
= dupstr(buf
);
188 static game_params
*custom_params(config_item
*cfg
)
190 game_params
*ret
= snew(game_params
);
192 ret
->w
= atoi(cfg
[0].sval
);
193 ret
->h
= atoi(cfg
[1].sval
);
198 static char *validate_params(game_params
*params
, int full
)
201 * Avoid completely degenerate cases which only have one
202 * row/column. We probably could generate completable puzzles
203 * of that shape, but they'd be forced to be extremely boring
204 * and at large sizes would take a while to happen upon at
207 if (params
->w
< 2 || params
->h
< 2)
208 return "Width and height must both be at least two";
211 * The grid construction algorithm creates 1/5 as many gems as
212 * grid squares, and must create at least one gem to have an
213 * actual puzzle. However, an area-five grid is ruled out by
214 * the above constraint, so the practical minimum is six.
216 if (params
->w
* params
->h
< 6)
217 return "Grid area must be at least six squares";
222 /* ----------------------------------------------------------------------
223 * Solver used by grid generator.
226 struct solver_scratch
{
227 unsigned char *reachable_from
, *reachable_to
;
231 static struct solver_scratch
*new_scratch(int w
, int h
)
233 struct solver_scratch
*sc
= snew(struct solver_scratch
);
235 sc
->reachable_from
= snewn(w
* h
* DIRECTIONS
, unsigned char);
236 sc
->reachable_to
= snewn(w
* h
* DIRECTIONS
, unsigned char);
237 sc
->positions
= snewn(w
* h
* DIRECTIONS
, int);
242 static void free_scratch(struct solver_scratch
*sc
)
244 sfree(sc
->reachable_from
);
245 sfree(sc
->reachable_to
);
246 sfree(sc
->positions
);
250 static int can_go(int w
, int h
, char *grid
,
251 int x1
, int y1
, int dir1
, int x2
, int y2
, int dir2
)
254 * Returns TRUE if we can transition directly from (x1,y1)
255 * going in direction dir1, to (x2,y2) going in direction dir2.
259 * If we're actually in the middle of an unoccupyable square,
260 * we cannot make any move.
262 if (AT(w
, h
, grid
, x1
, y1
) == WALL
||
263 AT(w
, h
, grid
, x1
, y1
) == MINE
)
267 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
268 * the same coordinate as x1,y1, then we can make the
269 * transition (by stopping and changing direction).
271 * For this to be the case, we have to either have a wall
272 * beyond x1,y1,dir1, or have a stop on x1,y1.
274 if (x2
== x1
&& y2
== y1
&&
275 (AT(w
, h
, grid
, x1
, y1
) == STOP
||
276 AT(w
, h
, grid
, x1
, y1
) == START
||
277 AT(w
, h
, grid
, x1
+DX(dir1
), y1
+DY(dir1
)) == WALL
))
281 * If a move is capable of continuing here, then x1,y1,dir1 can
282 * move one space further on.
284 if (x2
== x1
+DX(dir1
) && y2
== y1
+DY(dir1
) && dir1
== dir2
&&
285 (AT(w
, h
, grid
, x2
, y2
) == BLANK
||
286 AT(w
, h
, grid
, x2
, y2
) == GEM
||
287 AT(w
, h
, grid
, x2
, y2
) == STOP
||
288 AT(w
, h
, grid
, x2
, y2
) == START
))
297 static int find_gem_candidates(int w
, int h
, char *grid
,
298 struct solver_scratch
*sc
)
302 int sx
, sy
, gx
, gy
, gd
, pass
, possgems
;
305 * This function finds all the candidate gem squares, which are
306 * precisely those squares which can be picked up on a loop
307 * from the starting point back to the starting point. Doing
308 * this may involve passing through such a square in the middle
309 * of a move; so simple breadth-first search over the _squares_
310 * of the grid isn't quite adequate, because it might be that
311 * we can only reach a gem from the start by moving over it in
312 * one direction, but can only return to the start if we were
313 * moving over it in another direction.
315 * Instead, we BFS over a space which mentions each grid square
316 * eight times - once for each direction. We also BFS twice:
317 * once to find out what square+direction pairs we can reach
318 * _from_ the start point, and once to find out what pairs we
319 * can reach the start point from. Then a square is reachable
320 * if any of the eight directions for that square has both
324 memset(sc
->reachable_from
, 0, wh
* DIRECTIONS
);
325 memset(sc
->reachable_to
, 0, wh
* DIRECTIONS
);
328 * Find the starting square.
330 sx
= -1; /* placate optimiser */
331 for (sy
= 0; sy
< h
; sy
++) {
332 for (sx
= 0; sx
< w
; sx
++)
333 if (AT(w
, h
, grid
, sx
, sy
) == START
)
340 for (pass
= 0; pass
< 2; pass
++) {
341 unsigned char *reachable
= (pass
== 0 ? sc
->reachable_from
:
343 int sign
= (pass
== 0 ? +1 : -1);
346 #ifdef SOLVER_DIAGNOSTICS
347 printf("starting pass %d\n", pass
);
351 * `head' and `tail' are indices within sc->positions which
352 * track the list of board positions left to process.
355 for (dir
= 0; dir
< DIRECTIONS
; dir
++) {
356 int index
= (sy
*w
+sx
)*DIRECTIONS
+dir
;
357 sc
->positions
[tail
++] = index
;
358 reachable
[index
] = TRUE
;
359 #ifdef SOLVER_DIAGNOSTICS
360 printf("starting point %d,%d,%d\n", sx
, sy
, dir
);
365 * Now repeatedly pick an element off the list and process
368 while (head
< tail
) {
369 int index
= sc
->positions
[head
++];
370 int dir
= index
% DIRECTIONS
;
371 int x
= (index
/ DIRECTIONS
) % w
;
372 int y
= index
/ (w
* DIRECTIONS
);
373 int n
, x2
, y2
, d2
, i2
;
375 #ifdef SOLVER_DIAGNOSTICS
376 printf("processing point %d,%d,%d\n", x
, y
, dir
);
379 * The places we attempt to switch to here are:
380 * - each possible direction change (all the other
381 * directions in this square)
382 * - one step further in the direction we're going (or
383 * one step back, if we're in the reachable_to pass).
385 for (n
= -1; n
< DIRECTIONS
; n
++) {
387 x2
= x
+ sign
* DX(dir
);
388 y2
= y
+ sign
* DY(dir
);
395 i2
= (y2
*w
+x2
)*DIRECTIONS
+d2
;
396 if (x2
>= 0 && x2
< w
&&
400 #ifdef SOLVER_DIAGNOSTICS
401 printf(" trying point %d,%d,%d", x2
, y2
, d2
);
404 ok
= can_go(w
, h
, grid
, x
, y
, dir
, x2
, y2
, d2
);
406 ok
= can_go(w
, h
, grid
, x2
, y2
, d2
, x
, y
, dir
);
407 #ifdef SOLVER_DIAGNOSTICS
408 printf(" - %sok\n", ok
? "" : "not ");
411 sc
->positions
[tail
++] = i2
;
412 reachable
[i2
] = TRUE
;
420 * And that should be it. Now all we have to do is find the
421 * squares for which there exists _some_ direction such that
422 * the square plus that direction form a tuple which is both
423 * reachable from the start and reachable to the start.
426 for (gy
= 0; gy
< h
; gy
++)
427 for (gx
= 0; gx
< w
; gx
++)
428 if (AT(w
, h
, grid
, gx
, gy
) == BLANK
) {
429 for (gd
= 0; gd
< DIRECTIONS
; gd
++) {
430 int index
= (gy
*w
+gx
)*DIRECTIONS
+gd
;
431 if (sc
->reachable_from
[index
] && sc
->reachable_to
[index
]) {
432 #ifdef SOLVER_DIAGNOSTICS
433 printf("space at %d,%d is reachable via"
434 " direction %d\n", gx
, gy
, gd
);
436 LV_AT(w
, h
, grid
, gx
, gy
) = POSSGEM
;
446 /* ----------------------------------------------------------------------
447 * Grid generation code.
450 static char *gengrid(int w
, int h
, random_state
*rs
)
453 char *grid
= snewn(wh
+1, char);
454 struct solver_scratch
*sc
= new_scratch(w
, h
);
455 int maxdist_threshold
, tries
;
457 maxdist_threshold
= 2;
463 int *dist
, *list
, head
, tail
, maxdist
;
466 * We're going to fill the grid with the five basic piece
467 * types in about 1/5 proportion. For the moment, though,
468 * we leave out the gems, because we'll put those in
469 * _after_ we run the solver to tell us where the viable
473 for (j
= 0; j
< wh
/5; j
++)
475 for (j
= 0; j
< wh
/5; j
++)
477 for (j
= 0; j
< wh
/5; j
++)
483 shuffle(grid
, wh
, sizeof(*grid
), rs
);
486 * Find the viable gem locations, and immediately give up
487 * and try again if there aren't enough of them.
489 possgems
= find_gem_candidates(w
, h
, grid
, sc
);
494 * We _could_ now select wh/5 of the POSSGEMs and set them
495 * to GEM, and have a viable level. However, there's a
496 * chance that a large chunk of the level will turn out to
497 * be unreachable, so first we test for that.
499 * We do this by finding the largest distance from any
500 * square to the nearest POSSGEM, by breadth-first search.
501 * If this is above a critical threshold, we abort and try
504 * (This search is purely geometric, without regard to
505 * walls and long ways round.)
507 dist
= sc
->positions
;
508 list
= sc
->positions
+ wh
;
509 for (i
= 0; i
< wh
; i
++)
512 for (i
= 0; i
< wh
; i
++)
513 if (grid
[i
] == POSSGEM
) {
518 while (head
< tail
) {
522 if (maxdist
< dist
[pos
])
528 for (d
= 0; d
< DIRECTIONS
; d
++) {
534 if (x2
>= 0 && x2
< w
&& y2
>= 0 && y2
< h
) {
537 dist
[p2
] = dist
[pos
] + 1;
543 assert(head
== wh
&& tail
== wh
);
546 * Now abandon this grid and go round again if maxdist is
547 * above the required threshold.
549 * We can safely start the threshold as low as 2. As we
550 * accumulate failed generation attempts, we gradually
551 * raise it as we get more desperate.
553 if (maxdist
> maxdist_threshold
) {
563 * Now our reachable squares are plausibly evenly
564 * distributed over the grid. I'm not actually going to
565 * _enforce_ that I place the gems in such a way as not to
566 * increase that maxdist value; I'm now just going to trust
567 * to the RNG to pick a sensible subset of the POSSGEMs.
570 for (i
= 0; i
< wh
; i
++)
571 if (grid
[i
] == POSSGEM
)
573 shuffle(list
, j
, sizeof(*list
), rs
);
574 for (i
= 0; i
< j
; i
++)
575 grid
[list
[i
]] = (i
< wh
/5 ? GEM
: BLANK
);
586 static char *new_game_desc(game_params
*params
, random_state
*rs
,
587 char **aux
, int interactive
)
589 return gengrid(params
->w
, params
->h
, rs
);
592 static char *validate_desc(game_params
*params
, char *desc
)
594 int w
= params
->w
, h
= params
->h
, wh
= w
*h
;
595 int starts
= 0, gems
= 0, i
;
597 for (i
= 0; i
< wh
; i
++) {
599 return "Not enough data to fill grid";
600 if (desc
[i
] != WALL
&& desc
[i
] != START
&& desc
[i
] != STOP
&&
601 desc
[i
] != GEM
&& desc
[i
] != MINE
&& desc
[i
] != BLANK
)
602 return "Unrecognised character in game description";
603 if (desc
[i
] == START
)
609 return "Too much data to fill grid";
611 return "No starting square specified";
613 return "More than one starting square specified";
615 return "No gems specified";
620 static game_state
*new_game(midend
*me
, game_params
*params
, char *desc
)
622 int w
= params
->w
, h
= params
->h
, wh
= w
*h
;
624 game_state
*state
= snew(game_state
);
626 state
->p
= *params
; /* structure copy */
628 state
->grid
= snewn(wh
, char);
629 assert(strlen(desc
) == wh
);
630 memcpy(state
->grid
, desc
, wh
);
632 state
->px
= state
->py
= -1;
634 for (i
= 0; i
< wh
; i
++) {
635 if (state
->grid
[i
] == START
) {
636 state
->grid
[i
] = STOP
;
639 } else if (state
->grid
[i
] == GEM
) {
644 assert(state
->gems
> 0);
645 assert(state
->px
>= 0 && state
->py
>= 0);
647 state
->distance_moved
= 0;
650 state
->cheated
= FALSE
;
657 static game_state
*dup_game(game_state
*state
)
659 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
660 game_state
*ret
= snew(game_state
);
665 ret
->gems
= state
->gems
;
666 ret
->grid
= snewn(wh
, char);
667 ret
->distance_moved
= state
->distance_moved
;
669 memcpy(ret
->grid
, state
->grid
, wh
);
670 ret
->cheated
= state
->cheated
;
671 ret
->soln
= state
->soln
;
673 ret
->soln
->refcount
++;
674 ret
->solnpos
= state
->solnpos
;
679 static void free_game(game_state
*state
)
681 if (state
->soln
&& --state
->soln
->refcount
== 0) {
682 sfree(state
->soln
->list
);
690 * Internal function used by solver.
692 static int move_goes_to(int w
, int h
, char *grid
, int x
, int y
, int d
)
697 * See where we'd get to if we made this move.
699 dr
= -1; /* placate optimiser */
701 if (AT(w
, h
, grid
, x
+DX(d
), y
+DY(d
)) == WALL
) {
702 dr
= DIRECTIONS
; /* hit a wall, so end up stationary */
707 if (AT(w
, h
, grid
, x
, y
) == STOP
) {
708 dr
= DIRECTIONS
; /* hit a stop, so end up stationary */
711 if (AT(w
, h
, grid
, x
, y
) == GEM
) {
712 dr
= d
; /* hit a gem, so we're still moving */
715 if (AT(w
, h
, grid
, x
, y
) == MINE
)
716 return -1; /* hit a mine, so move is invalid */
719 return (y
*w
+x
)*DP1
+dr
;
722 static int compare_integers(const void *av
, const void *bv
)
724 const int *a
= (const int *)av
;
725 const int *b
= (const int *)bv
;
734 static char *solve_game(game_state
*state
, game_state
*currstate
,
735 char *aux
, char **error
)
737 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
738 int *nodes
, *nodeindex
, *edges
, *backedges
, *edgei
, *backedgei
, *circuit
;
740 int *dist
, *dist2
, *list
;
742 int circuitlen
, circuitsize
;
743 int head
, tail
, pass
, i
, j
, n
, x
, y
, d
, dd
;
744 char *err
, *soln
, *p
;
747 * Before anything else, deal with the special case in which
748 * all the gems are already collected.
750 for (i
= 0; i
< wh
; i
++)
751 if (currstate
->grid
[i
] == GEM
)
754 *error
= "Game is already solved";
759 * Solving Inertia is a question of first building up the graph
760 * of where you can get to from where, and secondly finding a
761 * tour of the graph which takes in every gem.
763 * This is of course a close cousin of the travelling salesman
764 * problem, which is NP-complete; so I rather doubt that any
765 * _optimal_ tour can be found in plausible time. Hence I'll
766 * restrict myself to merely finding a not-too-bad one.
768 * First construct the graph, by bfsing out move by move from
769 * the current player position. Graph vertices will be
770 * - every endpoint of a move (place the ball can be
772 * - every gem (place the ball can go through in motion).
773 * Vertices of this type have an associated direction, since
774 * if a gem can be collected by sliding through it in two
775 * different directions it doesn't follow that you can
776 * change direction at it.
778 * I'm going to refer to a non-directional vertex as
779 * (y*w+x)*DP1+DIRECTIONS, and a directional one as
784 * nodeindex[] maps node codes as shown above to numeric
785 * indices in the nodes[] array.
787 nodeindex
= snewn(DP1
*wh
, int);
788 for (i
= 0; i
< DP1
*wh
; i
++)
792 * Do the bfs to find all the interesting graph nodes.
794 nodes
= snewn(DP1
*wh
, int);
797 nodes
[tail
] = (currstate
->py
* w
+ currstate
->px
) * DP1
+ DIRECTIONS
;
798 nodeindex
[nodes
[0]] = tail
;
801 while (head
< tail
) {
802 int nc
= nodes
[head
++], nnc
;
807 * Plot all possible moves from this node. If the node is
808 * directed, there's only one.
810 for (dd
= 0; dd
< DIRECTIONS
; dd
++) {
815 if (d
< DIRECTIONS
&& d
!= dd
)
818 nnc
= move_goes_to(w
, h
, currstate
->grid
, x
, y
, dd
);
819 if (nnc
>= 0 && nnc
!= nc
) {
820 if (nodeindex
[nnc
] < 0) {
822 nodeindex
[nnc
] = tail
;
831 * Now we know how many nodes we have, allocate the edge array
832 * and go through setting up the edges.
834 edges
= snewn(DIRECTIONS
*n
, int);
835 edgei
= snewn(n
+1, int);
838 for (i
= 0; i
< n
; i
++) {
848 for (dd
= 0; dd
< DIRECTIONS
; dd
++) {
851 if (d
>= DIRECTIONS
|| d
== dd
) {
852 nnc
= move_goes_to(w
, h
, currstate
->grid
, x
, y
, dd
);
854 if (nnc
>= 0 && nnc
!= nc
)
855 edges
[nedges
++] = nodeindex
[nnc
];
862 * Now set up the backedges array.
864 backedges
= snewn(nedges
, int);
865 backedgei
= snewn(n
+1, int);
866 for (i
= j
= 0; i
< nedges
; i
++) {
867 while (j
+1 < n
&& i
>= edgei
[j
+1])
869 backedges
[i
] = edges
[i
] * n
+ j
;
871 qsort(backedges
, nedges
, sizeof(int), compare_integers
);
873 for (i
= j
= 0; i
< nedges
; i
++) {
874 int k
= backedges
[i
] / n
;
879 backedgei
[n
] = nedges
;
882 * Set up the initial tour. At all times, our tour is a circuit
883 * of graph vertices (which may, and probably will often,
884 * repeat vertices). To begin with, it's got exactly one vertex
885 * in it, which is the player's current starting point.
888 circuit
= snewn(circuitsize
, int);
890 circuit
[circuitlen
++] = 0; /* node index 0 is the starting posn */
893 * Track which gems are as yet unvisited.
895 unvisited
= snewn(wh
, int);
896 for (i
= 0; i
< wh
; i
++)
897 unvisited
[i
] = FALSE
;
898 for (i
= 0; i
< wh
; i
++)
899 if (currstate
->grid
[i
] == GEM
)
903 * Allocate space for doing bfses inside the main loop.
905 dist
= snewn(n
, int);
906 dist2
= snewn(n
, int);
907 list
= snewn(n
, int);
913 * Now enter the main loop, in each iteration of which we
914 * extend the tour to take in an as yet uncollected gem.
917 int target
, n1
, n2
, bestdist
, extralen
, targetpos
;
919 #ifdef TSP_DIAGNOSTICS
920 printf("circuit is");
921 for (i
= 0; i
< circuitlen
; i
++) {
922 int nc
= nodes
[circuit
[i
]];
923 printf(" (%d,%d,%d)", nc
/DP1
%w
, nc
/(DP1
*w
), nc
%DP1
);
926 printf("moves are ");
927 x
= nodes
[circuit
[0]] / DP1
% w
;
928 y
= nodes
[circuit
[0]] / DP1
/ w
;
929 for (i
= 1; i
< circuitlen
; i
++) {
931 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
933 x2
= nodes
[circuit
[i
]] / DP1
% w
;
934 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
935 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
936 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
937 for (d
= 0; d
< DIRECTIONS
; d
++)
938 if (DX(d
) == dx
&& DY(d
) == dy
)
939 printf("%c", "89632147"[d
]);
947 * First, start a pair of bfses at _every_ vertex currently
948 * in the tour, and extend them outwards to find the
949 * nearest as yet unreached gem vertex.
951 * This is largely a heuristic: we could pick _any_ doubly
952 * reachable node here and still get a valid tour as
953 * output. I hope that picking a nearby one will result in
954 * generally good tours.
956 for (pass
= 0; pass
< 2; pass
++) {
957 int *ep
= (pass
== 0 ? edges
: backedges
);
958 int *ei
= (pass
== 0 ? edgei
: backedgei
);
959 int *dp
= (pass
== 0 ? dist
: dist2
);
961 for (i
= 0; i
< n
; i
++)
963 for (i
= 0; i
< circuitlen
; i
++) {
970 while (head
< tail
) {
971 int ni
= list
[head
++];
972 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
974 if (ti
>= 0 && dp
[ti
] < 0) {
981 /* Now find the nearest unvisited gem. */
984 for (i
= 0; i
< n
; i
++) {
985 if (unvisited
[nodes
[i
] / DP1
] &&
986 dist
[i
] >= 0 && dist2
[i
] >= 0) {
987 int thisdist
= dist
[i
] + dist2
[i
];
988 if (bestdist
< 0 || bestdist
> thisdist
) {
997 * If we get to here, we haven't found a gem we can get
998 * at all, which means we terminate this loop.
1004 * Now we have a graph vertex at list[tail-1] which is an
1005 * unvisited gem. We want to add that vertex to our tour.
1006 * So we run two more breadth-first searches: one starting
1007 * from that vertex and following forward edges, and
1008 * another starting from the same vertex and following
1009 * backward edges. This allows us to determine, for each
1010 * node on the current tour, how quickly we can get both to
1011 * and from the target vertex from that node.
1013 #ifdef TSP_DIAGNOSTICS
1014 printf("target node is %d (%d,%d,%d)\n", target
, nodes
[target
]/DP1
%w
,
1015 nodes
[target
]/DP1
/w
, nodes
[target
]%DP1
);
1018 for (pass
= 0; pass
< 2; pass
++) {
1019 int *ep
= (pass
== 0 ? edges
: backedges
);
1020 int *ei
= (pass
== 0 ? edgei
: backedgei
);
1021 int *dp
= (pass
== 0 ? dist
: dist2
);
1023 for (i
= 0; i
< n
; i
++)
1028 list
[tail
++] = target
;
1030 while (head
< tail
) {
1031 int ni
= list
[head
++];
1032 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
1034 if (ti
>= 0 && dp
[ti
] < 0) {
1035 dp
[ti
] = dp
[ni
] + 1;
1036 /*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
1044 * Now for every node n, dist[n] gives the length of the
1045 * shortest path from the target vertex to n, and dist2[n]
1046 * gives the length of the shortest path from n to the
1049 * Our next step is to search linearly along the tour to
1050 * find the optimum place to insert a trip to the target
1051 * vertex and back. Our two options are either
1052 * (a) to find two adjacent vertices A,B in the tour and
1053 * replace the edge A->B with the path A->target->B
1054 * (b) to find a single vertex X in the tour and replace
1055 * it with the complete round trip X->target->X.
1056 * We do whichever takes the fewest moves.
1060 for (i
= 0; i
< circuitlen
; i
++) {
1064 * Try a round trip from vertex i.
1066 if (dist
[circuit
[i
]] >= 0 &&
1067 dist2
[circuit
[i
]] >= 0) {
1068 thisdist
= dist
[circuit
[i
]] + dist2
[circuit
[i
]];
1069 if (bestdist
< 0 || thisdist
< bestdist
) {
1070 bestdist
= thisdist
;
1076 * Try a trip from vertex i via target to vertex i+1.
1078 if (i
+1 < circuitlen
&&
1079 dist2
[circuit
[i
]] >= 0 &&
1080 dist
[circuit
[i
+1]] >= 0) {
1081 thisdist
= dist2
[circuit
[i
]] + dist
[circuit
[i
+1]];
1082 if (bestdist
< 0 || thisdist
< bestdist
) {
1083 bestdist
= thisdist
;
1091 * We couldn't find a round trip taking in this gem _at
1094 err
= "Unable to find a solution from this starting point";
1097 #ifdef TSP_DIAGNOSTICS
1098 printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1
, n2
, bestdist
);
1101 #ifdef TSP_DIAGNOSTICS
1102 printf("circuit before lengthening is");
1103 for (i
= 0; i
< circuitlen
; i
++) {
1104 printf(" %d", circuit
[i
]);
1110 * Now actually lengthen the tour to take in this round
1113 extralen
= dist2
[circuit
[n1
]] + dist
[circuit
[n2
]];
1116 circuitlen
+= extralen
;
1117 if (circuitlen
>= circuitsize
) {
1118 circuitsize
= circuitlen
+ 256;
1119 circuit
= sresize(circuit
, circuitsize
, int);
1121 memmove(circuit
+ n2
+ extralen
, circuit
+ n2
,
1122 (circuitlen
- n2
- extralen
) * sizeof(int));
1125 #ifdef TSP_DIAGNOSTICS
1126 printf("circuit in middle of lengthening is");
1127 for (i
= 0; i
< circuitlen
; i
++) {
1128 printf(" %d", circuit
[i
]);
1134 * Find the shortest-path routes to and from the target,
1135 * and write them into the circuit.
1137 targetpos
= n1
+ dist2
[circuit
[n1
]];
1138 assert(targetpos
- dist2
[circuit
[n1
]] == n1
);
1139 assert(targetpos
+ dist
[circuit
[n2
]] == n2
);
1140 for (pass
= 0; pass
< 2; pass
++) {
1141 int dir
= (pass
== 0 ? -1 : +1);
1142 int *ep
= (pass
== 0 ? backedges
: edges
);
1143 int *ei
= (pass
== 0 ? backedgei
: edgei
);
1144 int *dp
= (pass
== 0 ? dist
: dist2
);
1145 int nn
= (pass
== 0 ? n2
: n1
);
1146 int ni
= circuit
[nn
], ti
, dest
= nn
;
1154 /*printf("pass %d: looking at vertex %d\n", pass, ni);*/
1155 for (i
= ei
[ni
]; i
< ei
[ni
+1]; i
++) {
1157 if (ti
>= 0 && dp
[ti
] == dp
[ni
] - 1)
1160 assert(i
< ei
[ni
+1] && ti
>= 0);
1165 #ifdef TSP_DIAGNOSTICS
1166 printf("circuit after lengthening is");
1167 for (i
= 0; i
< circuitlen
; i
++) {
1168 printf(" %d", circuit
[i
]);
1174 * Finally, mark all gems that the new piece of circuit
1175 * passes through as visited.
1177 for (i
= n1
; i
<= n2
; i
++) {
1178 int pos
= nodes
[circuit
[i
]] / DP1
;
1179 assert(pos
>= 0 && pos
< wh
);
1180 unvisited
[pos
] = FALSE
;
1184 #ifdef TSP_DIAGNOSTICS
1185 printf("before reduction, moves are ");
1186 x
= nodes
[circuit
[0]] / DP1
% w
;
1187 y
= nodes
[circuit
[0]] / DP1
/ w
;
1188 for (i
= 1; i
< circuitlen
; i
++) {
1190 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1192 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1193 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1194 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1195 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1196 for (d
= 0; d
< DIRECTIONS
; d
++)
1197 if (DX(d
) == dx
&& DY(d
) == dy
)
1198 printf("%c", "89632147"[d
]);
1206 * That's got a basic solution. Now optimise it by removing
1207 * redundant sections of the circuit: it's entirely possible
1208 * that a piece of circuit we carefully inserted at one stage
1209 * to collect a gem has become pointless because the steps
1210 * required to collect some _later_ gem necessarily passed
1211 * through the same one.
1213 * So first we go through and work out how many times each gem
1214 * is collected. Then we look for maximal sections of circuit
1215 * which are redundant in the sense that their removal would
1216 * not reduce any gem's collection count to zero, and replace
1217 * each one with a bfs-derived fastest path between their
1221 int oldlen
= circuitlen
;
1224 for (dir
= +1; dir
>= -1; dir
-= 2) {
1226 for (i
= 0; i
< wh
; i
++)
1228 for (i
= 0; i
< circuitlen
; i
++) {
1229 int xy
= nodes
[circuit
[i
]] / DP1
;
1230 if (currstate
->grid
[xy
] == GEM
)
1235 * If there's any gem we didn't end up visiting at all,
1238 for (i
= 0; i
< wh
; i
++) {
1239 if (currstate
->grid
[i
] == GEM
&& unvisited
[i
] == 0) {
1240 err
= "Unable to find a solution from this starting point";
1247 for (i
= j
= (dir
> 0 ? 0 : circuitlen
-1);
1248 i
< circuitlen
&& i
>= 0;
1250 int xy
= nodes
[circuit
[i
]] / DP1
;
1251 if (currstate
->grid
[xy
] == GEM
&& unvisited
[xy
] > 1) {
1253 } else if (currstate
->grid
[xy
] == GEM
|| i
== circuitlen
-1) {
1255 * circuit[i] collects a gem for the only time,
1256 * or is the last node in the circuit.
1257 * Therefore it cannot be removed; so we now
1258 * want to replace the path from circuit[j] to
1259 * circuit[i] with a bfs-shortest path.
1261 int p
, q
, k
, dest
, ni
, ti
, thisdist
;
1264 * Set up the upper and lower bounds of the
1270 #ifdef TSP_DIAGNOSTICS
1271 printf("optimising section from %d - %d\n", p
, q
);
1274 for (k
= 0; k
< n
; k
++)
1278 dist
[circuit
[p
]] = 0;
1279 list
[tail
++] = circuit
[p
];
1281 while (head
< tail
&& dist
[circuit
[q
]] < 0) {
1282 int ni
= list
[head
++];
1283 for (k
= edgei
[ni
]; k
< edgei
[ni
+1]; k
++) {
1285 if (ti
>= 0 && dist
[ti
] < 0) {
1286 dist
[ti
] = dist
[ni
] + 1;
1292 thisdist
= dist
[circuit
[q
]];
1293 assert(thisdist
>= 0 && thisdist
<= q
-p
);
1295 memmove(circuit
+p
+thisdist
, circuit
+q
,
1296 (circuitlen
- q
) * sizeof(int));
1302 i
= q
; /* resume loop from the right place */
1304 #ifdef TSP_DIAGNOSTICS
1305 printf("new section runs from %d - %d\n", p
, q
);
1313 /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
1319 for (k
= backedgei
[ni
]; k
< backedgei
[ni
+1]; k
++) {
1321 if (ti
>= 0 && dist
[ti
] == dist
[ni
] - 1)
1324 assert(k
< backedgei
[ni
+1] && ti
>= 0);
1329 * Now re-increment the visit counts for the
1333 int xy
= nodes
[circuit
[p
]] / DP1
;
1334 if (currstate
->grid
[xy
] == GEM
)
1340 #ifdef TSP_DIAGNOSTICS
1341 printf("during reduction, circuit is");
1342 for (k
= 0; k
< circuitlen
; k
++) {
1343 int nc
= nodes
[circuit
[k
]];
1344 printf(" (%d,%d,%d)", nc
/DP1
%w
, nc
/(DP1
*w
), nc
%DP1
);
1347 printf("moves are ");
1348 x
= nodes
[circuit
[0]] / DP1
% w
;
1349 y
= nodes
[circuit
[0]] / DP1
/ w
;
1350 for (k
= 1; k
< circuitlen
; k
++) {
1352 if (nodes
[circuit
[k
]] % DP1
!= DIRECTIONS
)
1354 x2
= nodes
[circuit
[k
]] / DP1
% w
;
1355 y2
= nodes
[circuit
[k
]] / DP1
/ w
;
1356 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1357 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1358 for (d
= 0; d
< DIRECTIONS
; d
++)
1359 if (DX(d
) == dx
&& DY(d
) == dy
)
1360 printf("%c", "89632147"[d
]);
1369 #ifdef TSP_DIAGNOSTICS
1370 printf("after reduction, moves are ");
1371 x
= nodes
[circuit
[0]] / DP1
% w
;
1372 y
= nodes
[circuit
[0]] / DP1
/ w
;
1373 for (i
= 1; i
< circuitlen
; i
++) {
1375 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1377 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1378 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1379 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1380 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1381 for (d
= 0; d
< DIRECTIONS
; d
++)
1382 if (DX(d
) == dx
&& DY(d
) == dy
)
1383 printf("%c", "89632147"[d
]);
1392 * If we've managed an entire reduction pass in each
1393 * direction and not made the solution any shorter, we're
1396 if (circuitlen
== oldlen
)
1401 * Encode the solution as a move string.
1404 soln
= snewn(circuitlen
+2, char);
1407 x
= nodes
[circuit
[0]] / DP1
% w
;
1408 y
= nodes
[circuit
[0]] / DP1
/ w
;
1409 for (i
= 1; i
< circuitlen
; i
++) {
1411 if (nodes
[circuit
[i
]] % DP1
!= DIRECTIONS
)
1413 x2
= nodes
[circuit
[i
]] / DP1
% w
;
1414 y2
= nodes
[circuit
[i
]] / DP1
/ w
;
1415 dx
= (x2
> x
? +1 : x2
< x
? -1 : 0);
1416 dy
= (y2
> y
? +1 : y2
< y
? -1 : 0);
1417 for (d
= 0; d
< DIRECTIONS
; d
++)
1418 if (DX(d
) == dx
&& DY(d
) == dy
) {
1422 assert(d
< DIRECTIONS
);
1427 assert(p
- soln
< circuitlen
+2);
1448 static int game_can_format_as_text_now(game_params
*params
)
1453 static char *game_text_format(game_state
*state
)
1466 static game_ui
*new_ui(game_state
*state
)
1468 game_ui
*ui
= snew(game_ui
);
1469 ui
->anim_length
= 0.0F
;
1472 ui
->just_made_move
= FALSE
;
1473 ui
->just_died
= FALSE
;
1477 static void free_ui(game_ui
*ui
)
1482 static char *encode_ui(game_ui
*ui
)
1486 * The deaths counter needs preserving across a serialisation.
1488 sprintf(buf
, "D%d", ui
->deaths
);
1492 static void decode_ui(game_ui
*ui
, char *encoding
)
1495 sscanf(encoding
, "D%d%n", &ui
->deaths
, &p
);
1498 static void game_changed_state(game_ui
*ui
, game_state
*oldstate
,
1499 game_state
*newstate
)
1502 * Increment the deaths counter. We only do this if
1503 * ui->just_made_move is set (redoing a suicide move doesn't
1504 * kill you _again_), and also we only do it if the game wasn't
1505 * already completed (once you're finished, you can play).
1507 if (!oldstate
->dead
&& newstate
->dead
&& ui
->just_made_move
&&
1510 ui
->just_died
= TRUE
;
1512 ui
->just_died
= FALSE
;
1514 ui
->just_made_move
= FALSE
;
1517 struct game_drawstate
{
1521 unsigned short *grid
;
1522 blitter
*player_background
;
1523 int player_bg_saved
, pbgx
, pbgy
;
1526 #define PREFERRED_TILESIZE 32
1527 #define TILESIZE (ds->tilesize)
1529 #define BORDER (TILESIZE / 4)
1531 #define BORDER (TILESIZE)
1533 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
1534 #define COORD(x) ( (x) * TILESIZE + BORDER )
1535 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1537 static char *interpret_move(game_state
*state
, game_ui
*ui
, game_drawstate
*ds
,
1538 int x
, int y
, int button
)
1540 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1546 if (button
== LEFT_BUTTON
) {
1548 * Mouse-clicking near the target point (or, more
1549 * accurately, in the appropriate octant) is an alternative
1550 * way to input moves.
1553 if (FROMCOORD(x
) != state
->px
|| FROMCOORD(y
) != state
->py
) {
1557 dx
= FROMCOORD(x
) - state
->px
;
1558 dy
= FROMCOORD(y
) - state
->py
;
1559 /* I pass dx,dy rather than dy,dx so that the octants
1560 * end up the right way round. */
1561 angle
= atan2(dx
, -dy
);
1563 angle
= (angle
+ (PI
/8)) / (PI
/4);
1564 assert(angle
> -16.0F
);
1565 dir
= (int)(angle
+ 16.0F
) & 7;
1567 } else if (button
== CURSOR_UP
|| button
== (MOD_NUM_KEYPAD
| '8'))
1569 else if (button
== CURSOR_DOWN
|| button
== (MOD_NUM_KEYPAD
| '2'))
1571 else if (button
== CURSOR_LEFT
|| button
== (MOD_NUM_KEYPAD
| '4'))
1573 else if (button
== CURSOR_RIGHT
|| button
== (MOD_NUM_KEYPAD
| '6'))
1575 else if (button
== (MOD_NUM_KEYPAD
| '7'))
1577 else if (button
== (MOD_NUM_KEYPAD
| '1'))
1579 else if (button
== (MOD_NUM_KEYPAD
| '9'))
1581 else if (button
== (MOD_NUM_KEYPAD
| '3'))
1583 else if (IS_CURSOR_SELECT(button
) &&
1584 state
->soln
&& state
->solnpos
< state
->soln
->len
)
1585 dir
= state
->soln
->list
[state
->solnpos
];
1591 * Reject the move if we can't make it at all due to a wall
1594 if (AT(w
, h
, state
->grid
, state
->px
+DX(dir
), state
->py
+DY(dir
)) == WALL
)
1598 * Reject the move if we're dead!
1604 * Otherwise, we can make the move. All we need to specify is
1607 ui
->just_made_move
= TRUE
;
1608 sprintf(buf
, "%d", dir
);
1612 static game_state
*execute_move(game_state
*state
, char *move
)
1614 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1623 * This is a solve move, so we don't actually _change_ the
1624 * grid but merely set up a stored solution path.
1630 sol
->list
= snewn(len
, unsigned char);
1631 for (i
= 0; i
< len
; i
++)
1632 sol
->list
[i
] = move
[i
] - '0';
1633 ret
= dup_game(state
);
1634 ret
->cheated
= TRUE
;
1635 if (ret
->soln
&& --ret
->soln
->refcount
== 0) {
1636 sfree(ret
->soln
->list
);
1646 if (dir
< 0 || dir
>= DIRECTIONS
)
1647 return NULL
; /* huh? */
1652 if (AT(w
, h
, state
->grid
, state
->px
+DX(dir
), state
->py
+DY(dir
)) == WALL
)
1653 return NULL
; /* wall in the way! */
1656 * Now make the move.
1658 ret
= dup_game(state
);
1659 ret
->distance_moved
= 0;
1663 ret
->distance_moved
++;
1665 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == GEM
) {
1666 LV_AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) = BLANK
;
1670 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == MINE
) {
1675 if (AT(w
, h
, ret
->grid
, ret
->px
, ret
->py
) == STOP
||
1676 AT(w
, h
, ret
->grid
, ret
->px
+DX(dir
),
1677 ret
->py
+DY(dir
)) == WALL
)
1683 * If this move is the correct next one in the stored
1684 * solution path, advance solnpos.
1686 if (ret
->soln
->list
[ret
->solnpos
] == dir
&&
1687 ret
->solnpos
+1 < ret
->soln
->len
) {
1691 * Otherwise, the user has strayed from the path, so
1692 * the path is no longer valid.
1694 ret
->soln
->refcount
--;
1695 assert(ret
->soln
->refcount
> 0);/* `state' at least still exists */
1704 /* ----------------------------------------------------------------------
1708 static void game_compute_size(game_params
*params
, int tilesize
,
1711 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1712 struct { int tilesize
; } ads
, *ds
= &ads
;
1713 ads
.tilesize
= tilesize
;
1715 *x
= 2 * BORDER
+ 1 + params
->w
* TILESIZE
;
1716 *y
= 2 * BORDER
+ 1 + params
->h
* TILESIZE
;
1719 static void game_set_size(drawing
*dr
, game_drawstate
*ds
,
1720 game_params
*params
, int tilesize
)
1722 ds
->tilesize
= tilesize
;
1724 assert(!ds
->player_background
); /* set_size is never called twice */
1725 assert(!ds
->player_bg_saved
);
1727 ds
->player_background
= blitter_new(dr
, TILESIZE
, TILESIZE
);
1730 static float *game_colours(frontend
*fe
, int *ncolours
)
1732 float *ret
= snewn(3 * NCOLOURS
, float);
1735 game_mkhighlight(fe
, ret
, COL_BACKGROUND
, COL_HIGHLIGHT
, COL_LOWLIGHT
);
1737 ret
[COL_OUTLINE
* 3 + 0] = 0.0F
;
1738 ret
[COL_OUTLINE
* 3 + 1] = 0.0F
;
1739 ret
[COL_OUTLINE
* 3 + 2] = 0.0F
;
1741 ret
[COL_PLAYER
* 3 + 0] = 0.0F
;
1742 ret
[COL_PLAYER
* 3 + 1] = 1.0F
;
1743 ret
[COL_PLAYER
* 3 + 2] = 0.0F
;
1745 ret
[COL_DEAD_PLAYER
* 3 + 0] = 1.0F
;
1746 ret
[COL_DEAD_PLAYER
* 3 + 1] = 0.0F
;
1747 ret
[COL_DEAD_PLAYER
* 3 + 2] = 0.0F
;
1749 ret
[COL_MINE
* 3 + 0] = 0.0F
;
1750 ret
[COL_MINE
* 3 + 1] = 0.0F
;
1751 ret
[COL_MINE
* 3 + 2] = 0.0F
;
1753 ret
[COL_GEM
* 3 + 0] = 0.6F
;
1754 ret
[COL_GEM
* 3 + 1] = 1.0F
;
1755 ret
[COL_GEM
* 3 + 2] = 1.0F
;
1757 for (i
= 0; i
< 3; i
++) {
1758 ret
[COL_WALL
* 3 + i
] = (3 * ret
[COL_BACKGROUND
* 3 + i
] +
1759 1 * ret
[COL_HIGHLIGHT
* 3 + i
]) / 4;
1762 ret
[COL_HINT
* 3 + 0] = 1.0F
;
1763 ret
[COL_HINT
* 3 + 1] = 1.0F
;
1764 ret
[COL_HINT
* 3 + 2] = 0.0F
;
1766 *ncolours
= NCOLOURS
;
1770 static game_drawstate
*game_new_drawstate(drawing
*dr
, game_state
*state
)
1772 int w
= state
->p
.w
, h
= state
->p
.h
, wh
= w
*h
;
1773 struct game_drawstate
*ds
= snew(struct game_drawstate
);
1778 /* We can't allocate the blitter rectangle for the player background
1779 * until we know what size to make it. */
1780 ds
->player_background
= NULL
;
1781 ds
->player_bg_saved
= FALSE
;
1782 ds
->pbgx
= ds
->pbgy
= -1;
1784 ds
->p
= state
->p
; /* structure copy */
1785 ds
->started
= FALSE
;
1786 ds
->grid
= snewn(wh
, unsigned short);
1787 for (i
= 0; i
< wh
; i
++)
1788 ds
->grid
[i
] = UNDRAWN
;
1793 static void game_free_drawstate(drawing
*dr
, game_drawstate
*ds
)
1795 if (ds
->player_background
)
1796 blitter_free(dr
, ds
->player_background
);
1801 static void draw_player(drawing
*dr
, game_drawstate
*ds
, int x
, int y
,
1802 int dead
, int hintdir
)
1805 int coords
[DIRECTIONS
*4];
1808 for (d
= 0; d
< DIRECTIONS
; d
++) {
1809 float x1
, y1
, x2
, y2
, x3
, y3
, len
;
1813 len
= sqrt(x1
*x1
+y1
*y1
); x1
/= len
; y1
/= len
;
1817 len
= sqrt(x3
*x3
+y3
*y3
); x3
/= len
; y3
/= len
;
1822 coords
[d
*4+0] = x
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * x1
);
1823 coords
[d
*4+1] = y
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * y1
);
1824 coords
[d
*4+2] = x
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * x2
);
1825 coords
[d
*4+3] = y
+ TILESIZE
/2 + (int)((TILESIZE
*3/7) * y2
);
1827 draw_polygon(dr
, coords
, DIRECTIONS
*2, COL_DEAD_PLAYER
, COL_OUTLINE
);
1829 draw_circle(dr
, x
+ TILESIZE
/2, y
+ TILESIZE
/2,
1830 TILESIZE
/3, COL_PLAYER
, COL_OUTLINE
);
1833 if (!dead
&& hintdir
>= 0) {
1834 float scale
= (DX(hintdir
) && DY(hintdir
) ? 0.8F
: 1.0F
);
1835 int ax
= (TILESIZE
*2/5) * scale
* DX(hintdir
);
1836 int ay
= (TILESIZE
*2/5) * scale
* DY(hintdir
);
1837 int px
= -ay
, py
= ax
;
1838 int ox
= x
+ TILESIZE
/2, oy
= y
+ TILESIZE
/2;
1844 *c
++ = ox
+ px
/9 + ax
*2/3;
1845 *c
++ = oy
+ py
/9 + ay
*2/3;
1846 *c
++ = ox
+ px
/3 + ax
*2/3;
1847 *c
++ = oy
+ py
/3 + ay
*2/3;
1850 *c
++ = ox
- px
/3 + ax
*2/3;
1851 *c
++ = oy
- py
/3 + ay
*2/3;
1852 *c
++ = ox
- px
/9 + ax
*2/3;
1853 *c
++ = oy
- py
/9 + ay
*2/3;
1856 draw_polygon(dr
, coords
, 7, COL_HINT
, COL_OUTLINE
);
1859 draw_update(dr
, x
, y
, TILESIZE
, TILESIZE
);
1862 #define FLASH_DEAD 0x100
1863 #define FLASH_WIN 0x200
1864 #define FLASH_MASK 0x300
1866 static void draw_tile(drawing
*dr
, game_drawstate
*ds
, int x
, int y
, int v
)
1868 int tx
= COORD(x
), ty
= COORD(y
);
1869 int bg
= (v
& FLASH_DEAD
? COL_DEAD_PLAYER
:
1870 v
& FLASH_WIN
? COL_HIGHLIGHT
: COL_BACKGROUND
);
1874 clip(dr
, tx
+1, ty
+1, TILESIZE
-1, TILESIZE
-1);
1875 draw_rect(dr
, tx
+1, ty
+1, TILESIZE
-1, TILESIZE
-1, bg
);
1880 coords
[0] = tx
+ TILESIZE
;
1881 coords
[1] = ty
+ TILESIZE
;
1882 coords
[2] = tx
+ TILESIZE
;
1885 coords
[5] = ty
+ TILESIZE
;
1886 draw_polygon(dr
, coords
, 3, COL_LOWLIGHT
, COL_LOWLIGHT
);
1890 draw_polygon(dr
, coords
, 3, COL_HIGHLIGHT
, COL_HIGHLIGHT
);
1892 draw_rect(dr
, tx
+ 1 + HIGHLIGHT_WIDTH
, ty
+ 1 + HIGHLIGHT_WIDTH
,
1893 TILESIZE
- 2*HIGHLIGHT_WIDTH
,
1894 TILESIZE
- 2*HIGHLIGHT_WIDTH
, COL_WALL
);
1895 } else if (v
== MINE
) {
1896 int cx
= tx
+ TILESIZE
/ 2;
1897 int cy
= ty
+ TILESIZE
/ 2;
1898 int r
= TILESIZE
/ 2 - 3;
1900 draw_circle(dr
, cx
, cy
, 5*r
/6, COL_MINE
, COL_MINE
);
1901 draw_rect(dr
, cx
- r
/6, cy
- r
, 2*(r
/6)+1, 2*r
+1, COL_MINE
);
1902 draw_rect(dr
, cx
- r
, cy
- r
/6, 2*r
+1, 2*(r
/6)+1, COL_MINE
);
1903 draw_rect(dr
, cx
-r
/3, cy
-r
/3, r
/3, r
/4, COL_HIGHLIGHT
);
1904 } else if (v
== STOP
) {
1905 draw_circle(dr
, tx
+ TILESIZE
/2, ty
+ TILESIZE
/2,
1906 TILESIZE
*3/7, -1, COL_OUTLINE
);
1907 draw_rect(dr
, tx
+ TILESIZE
*3/7, ty
+1,
1908 TILESIZE
- 2*(TILESIZE
*3/7) + 1, TILESIZE
-1, bg
);
1909 draw_rect(dr
, tx
+1, ty
+ TILESIZE
*3/7,
1910 TILESIZE
-1, TILESIZE
- 2*(TILESIZE
*3/7) + 1, bg
);
1911 } else if (v
== GEM
) {
1914 coords
[0] = tx
+TILESIZE
/2;
1915 coords
[1] = ty
+TILESIZE
/2-TILESIZE
*5/14;
1916 coords
[2] = tx
+TILESIZE
/2-TILESIZE
*5/14;
1917 coords
[3] = ty
+TILESIZE
/2;
1918 coords
[4] = tx
+TILESIZE
/2;
1919 coords
[5] = ty
+TILESIZE
/2+TILESIZE
*5/14;
1920 coords
[6] = tx
+TILESIZE
/2+TILESIZE
*5/14;
1921 coords
[7] = ty
+TILESIZE
/2;
1923 draw_polygon(dr
, coords
, 4, COL_GEM
, COL_OUTLINE
);
1927 draw_update(dr
, tx
, ty
, TILESIZE
, TILESIZE
);
1930 #define BASE_ANIM_LENGTH 0.1F
1931 #define FLASH_LENGTH 0.3F
1933 static void game_redraw(drawing
*dr
, game_drawstate
*ds
, game_state
*oldstate
,
1934 game_state
*state
, int dir
, game_ui
*ui
,
1935 float animtime
, float flashtime
)
1937 int w
= state
->p
.w
, h
= state
->p
.h
/*, wh = w*h */;
1946 !((int)(flashtime
* 3 / FLASH_LENGTH
) % 2))
1947 flashtype
= ui
->flashtype
;
1952 * Erase the player sprite.
1954 if (ds
->player_bg_saved
) {
1955 assert(ds
->player_background
);
1956 blitter_load(dr
, ds
->player_background
, ds
->pbgx
, ds
->pbgy
);
1957 draw_update(dr
, ds
->pbgx
, ds
->pbgy
, TILESIZE
, TILESIZE
);
1958 ds
->player_bg_saved
= FALSE
;
1962 * Initialise a fresh drawstate.
1968 * Blank out the window initially.
1970 game_compute_size(&ds
->p
, TILESIZE
, &wid
, &ht
);
1971 draw_rect(dr
, 0, 0, wid
, ht
, COL_BACKGROUND
);
1972 draw_update(dr
, 0, 0, wid
, ht
);
1975 * Draw the grid lines.
1977 for (y
= 0; y
<= h
; y
++)
1978 draw_line(dr
, COORD(0), COORD(y
), COORD(w
), COORD(y
),
1980 for (x
= 0; x
<= w
; x
++)
1981 draw_line(dr
, COORD(x
), COORD(0), COORD(x
), COORD(h
),
1988 * If we're in the process of animating a move, let's start by
1989 * working out how far the player has moved from their _older_
1993 ap
= animtime
/ ui
->anim_length
;
1994 player_dist
= ap
* (dir
> 0 ? state
: oldstate
)->distance_moved
;
2001 * Draw the grid contents.
2003 * We count the gems as we go round this loop, for the purposes
2004 * of the status bar. Of course we have a gems counter in the
2005 * game_state already, but if we do the counting in this loop
2006 * then it tracks gems being picked up in a sliding move, and
2007 * updates one by one.
2010 for (y
= 0; y
< h
; y
++)
2011 for (x
= 0; x
< w
; x
++) {
2012 unsigned short v
= (unsigned char)state
->grid
[y
*w
+x
];
2015 * Special case: if the player is in the process of
2016 * moving over a gem, we draw the gem iff they haven't
2019 if (oldstate
&& oldstate
->grid
[y
*w
+x
] != state
->grid
[y
*w
+x
]) {
2021 * Compute the distance from this square to the
2022 * original player position.
2024 int dist
= max(abs(x
- oldstate
->px
), abs(y
- oldstate
->py
));
2027 * If the player has reached here, use the new grid
2028 * element. Otherwise use the old one.
2030 if (player_dist
< dist
)
2031 v
= oldstate
->grid
[y
*w
+x
];
2033 v
= state
->grid
[y
*w
+x
];
2037 * Special case: erase the mine the dead player is
2038 * sitting on. Only at the end of the move.
2040 if (v
== MINE
&& !oldstate
&& state
->dead
&&
2041 x
== state
->px
&& y
== state
->py
)
2049 if (ds
->grid
[y
*w
+x
] != v
) {
2050 draw_tile(dr
, ds
, x
, y
, v
);
2051 ds
->grid
[y
*w
+x
] = v
;
2056 * Gem counter in the status bar. We replace it with
2057 * `COMPLETED!' when it reaches zero ... or rather, when the
2058 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
2059 * shown between the collection of the last gem and the
2060 * completion of the move animation that did it.)
2062 if (state
->dead
&& (!oldstate
|| oldstate
->dead
)) {
2063 sprintf(status
, "DEAD!");
2064 } else if (state
->gems
|| (oldstate
&& oldstate
->gems
)) {
2066 sprintf(status
, "Auto-solver used. ");
2069 sprintf(status
+ strlen(status
), "Gems: %d", gems
);
2070 } else if (state
->cheated
) {
2071 sprintf(status
, "Auto-solved.");
2073 sprintf(status
, "COMPLETED!");
2075 /* We subtract one from the visible death counter if we're still
2076 * animating the move at the end of which the death took place. */
2077 deaths
= ui
->deaths
;
2078 if (oldstate
&& ui
->just_died
) {
2083 sprintf(status
+ strlen(status
), " Deaths: %d", deaths
);
2084 status_bar(dr
, status
);
2087 * Draw the player sprite.
2089 assert(!ds
->player_bg_saved
);
2090 assert(ds
->player_background
);
2093 nx
= COORD(state
->px
);
2094 ny
= COORD(state
->py
);
2096 ox
= COORD(oldstate
->px
);
2097 oy
= COORD(oldstate
->py
);
2102 ds
->pbgx
= ox
+ ap
* (nx
- ox
);
2103 ds
->pbgy
= oy
+ ap
* (ny
- oy
);
2105 blitter_save(dr
, ds
->player_background
, ds
->pbgx
, ds
->pbgy
);
2106 draw_player(dr
, ds
, ds
->pbgx
, ds
->pbgy
,
2107 (state
->dead
&& !oldstate
),
2108 (!oldstate
&& state
->soln
?
2109 state
->soln
->list
[state
->solnpos
] : -1));
2110 ds
->player_bg_saved
= TRUE
;
2113 static float game_anim_length(game_state
*oldstate
, game_state
*newstate
,
2114 int dir
, game_ui
*ui
)
2118 dist
= newstate
->distance_moved
;
2120 dist
= oldstate
->distance_moved
;
2121 ui
->anim_length
= sqrt(dist
) * BASE_ANIM_LENGTH
;
2122 return ui
->anim_length
;
2125 static float game_flash_length(game_state
*oldstate
, game_state
*newstate
,
2126 int dir
, game_ui
*ui
)
2128 if (!oldstate
->dead
&& newstate
->dead
) {
2129 ui
->flashtype
= FLASH_DEAD
;
2130 return FLASH_LENGTH
;
2131 } else if (oldstate
->gems
&& !newstate
->gems
) {
2132 ui
->flashtype
= FLASH_WIN
;
2133 return FLASH_LENGTH
;
2138 static int game_status(game_state
*state
)
2141 * We never report the game as lost, on the grounds that if the
2142 * player has died they're quite likely to want to undo and carry
2145 return state
->gems
== 0 ? +1 : 0;
2148 static int game_timing_state(game_state
*state
, game_ui
*ui
)
2153 static void game_print_size(game_params
*params
, float *x
, float *y
)
2157 static void game_print(drawing
*dr
, game_state
*state
, int tilesize
)
2162 #define thegame inertia
2165 const struct game thegame
= {
2166 "Inertia", "games.inertia", "inertia",
2173 TRUE
, game_configure
, custom_params
,
2181 FALSE
, game_can_format_as_text_now
, game_text_format
,
2189 PREFERRED_TILESIZE
, game_compute_size
, game_set_size
,
2192 game_free_drawstate
,
2197 FALSE
, FALSE
, game_print_size
, game_print
,
2198 TRUE
, /* wants_statusbar */
2199 FALSE
, game_timing_state
,