David Nickerson reports odd behaviour involving a drag start point
[sgt-puzzles/ydirson.git] / singles.c
blobff75cfbad388813538055418ef4bbfb310a6de1d
1 /*
2 * singles.c: implementation of Hitori ('let me alone') from Nikoli.
4 * Make single-get able to fetch a specific puzzle ID from menneske.no?
6 * www.menneske.no solving methods:
8 * Done:
9 * SC: if you circle a cell, any cells in same row/col with same no --> black
10 * -- solver_op_circle
11 * SB: if you make a cell black, any cells around it --> white
12 * -- solver_op_blacken
13 * ST: 3 identical cells in row, centre is white and outer two black.
14 * SP: 2 identical cells with single-cell gap, middle cell is white.
15 * -- solver_singlesep (both ST and SP)
16 * PI: if you have a pair of same number in row/col, any other
17 * cells of same number must be black.
18 * -- solve_doubles
19 * CC: if you have a black on edge one cell away from corner, cell
20 * on edge diag. adjacent must be white.
21 * CE: if you have 2 black cells of triangle on edge, third cell must
22 * be white.
23 * QM: if you have 3 black cells of diagonal square in middle, fourth
24 * cell must be white.
25 * -- solve_allblackbutone (CC, CE, and QM).
26 * QC: a corner with 4 identical numbers (or 2 and 2) must have the
27 * corner cell (and cell diagonal to that) black.
28 * TC: a corner with 3 identical numbers (with the L either way)
29 * must have the apex of L black, and other two white.
30 * DC: a corner with 2 identical numbers in domino can set a white
31 * cell along wall.
32 * -- solve_corners (QC, TC, DC)
33 * IP: pair with one-offset-pair force whites by offset pair
34 * -- solve_offsetpair
35 * MC: any cells diag. adjacent to black cells that would split board
36 * into separate white regions must be white.
37 * -- solve_removesplits
39 * Still to do:
41 * TEP: 3 pairs of dominos parallel to side, can mark 4 white cells
42 * alongside.
43 * DEP: 2 pairs of dominos parallel to side, can mark 2 white cells.
44 * FI: if you have two sets of double-cells packed together, singles
45 * in that row/col must be white (qv. PI)
46 * QuM: four identical cells (or 2 and 2) in middle of grid only have
47 * two possible solutions each.
48 * FDE: doubles one row/column away from edge can force a white cell.
49 * FDM: doubles in centre (next to bits of diag. square) can force a white cell.
50 * MP: two pairs with same number between force number to black.
51 * CnC: if circling a cell leads to impossible board, cell is black.
52 * MC: if we have two possiblilities, can we force a white circle?
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <assert.h>
60 #include <ctype.h>
61 #include <math.h>
63 #include "puzzles.h"
64 #include "latin.h"
66 #ifdef STANDALONE_SOLVER
67 int verbose = 0;
68 #endif
70 #define PREFERRED_TILE_SIZE 32
71 #define TILE_SIZE (ds->tilesize)
72 #define BORDER (TILE_SIZE / 2)
74 #define CRAD ((TILE_SIZE / 2) - 1)
75 #define TEXTSZ ((14*CRAD/10) - 1) /* 2 * sqrt(2) of CRAD */
77 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
78 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
80 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
82 #define FLASH_TIME 0.7F
84 enum {
85 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
86 COL_BLACK, COL_WHITE, COL_BLACKNUM, COL_GRID,
87 COL_CURSOR, COL_ERROR,
88 NCOLOURS
91 struct game_params {
92 int w, h, diff;
95 #define F_BLACK 0x1
96 #define F_CIRCLE 0x2
97 #define F_ERROR 0x4
98 #define F_SCRATCH 0x8
100 struct game_state {
101 int w, h, n, o; /* n = w*h; o = max(w, h) */
102 int completed, used_solve, impossible;
103 int *nums; /* size w*h */
104 unsigned int *flags; /* size w*h */
107 /* top, right, bottom, left */
108 static const int dxs[4] = { 0, 1, 0, -1 };
109 static const int dys[4] = { -1, 0, 1, 0 };
111 /* --- Game parameters and preset functions --- */
113 #define DIFFLIST(A) \
114 A(EASY,Easy,e) \
115 A(TRICKY,Tricky,k)
117 #define ENUM(upper,title,lower) DIFF_ ## upper,
118 #define TITLE(upper,title,lower) #title,
119 #define ENCODE(upper,title,lower) #lower
120 #define CONFIG(upper,title,lower) ":" #title
122 enum { DIFFLIST(ENUM) DIFF_MAX, DIFF_ANY };
123 static char const *const singles_diffnames[] = { DIFFLIST(TITLE) };
124 static char const singles_diffchars[] = DIFFLIST(ENCODE);
125 #define DIFFCOUNT lenof(singles_diffchars)
126 #define DIFFCONFIG DIFFLIST(CONFIG)
128 static game_params *default_params(void)
130 game_params *ret = snew(game_params);
131 ret->w = ret->h = 5;
132 ret->diff = DIFF_EASY;
134 return ret;
137 static const struct game_params singles_presets[] = {
138 { 5, 5, DIFF_EASY },
139 { 5, 5, DIFF_TRICKY },
140 { 6, 6, DIFF_EASY },
141 { 6, 6, DIFF_TRICKY },
142 { 8, 8, DIFF_EASY },
143 { 8, 8, DIFF_TRICKY },
144 { 10, 10, DIFF_EASY },
145 { 10, 10, DIFF_TRICKY },
146 { 12, 12, DIFF_EASY },
147 { 12, 12, DIFF_TRICKY }
150 static int game_fetch_preset(int i, char **name, game_params **params)
152 game_params *ret;
153 char buf[80];
155 if (i < 0 || i >= lenof(singles_presets))
156 return FALSE;
158 ret = default_params();
159 *ret = singles_presets[i];
160 *params = ret;
162 sprintf(buf, "%dx%d %s", ret->w, ret->h, singles_diffnames[ret->diff]);
163 *name = dupstr(buf);
165 return TRUE;
168 static void free_params(game_params *params)
170 sfree(params);
173 static game_params *dup_params(game_params *params)
175 game_params *ret = snew(game_params);
176 *ret = *params; /* structure copy */
177 return ret;
180 static void decode_params(game_params *ret, char const *string)
182 char const *p = string;
183 int i;
185 ret->w = ret->h = atoi(p);
186 while (*p && isdigit((unsigned char)*p)) p++;
187 if (*p == 'x') {
188 p++;
189 ret->h = atoi(p);
190 while (*p && isdigit((unsigned char)*p)) p++;
192 if (*p == 'd') {
193 ret->diff = DIFF_MAX; /* which is invalid */
194 p++;
195 for (i = 0; i < DIFFCOUNT; i++) {
196 if (*p == singles_diffchars[i])
197 ret->diff = i;
199 p++;
203 static char *encode_params(game_params *params, int full)
205 char data[256];
207 if (full)
208 sprintf(data, "%dx%dd%c", params->w, params->h, singles_diffchars[params->diff]);
209 else
210 sprintf(data, "%dx%d", params->w, params->h);
212 return dupstr(data);
215 static config_item *game_configure(game_params *params)
217 config_item *ret;
218 char buf[80];
220 ret = snewn(4, config_item);
222 ret[0].name = "Width";
223 ret[0].type = C_STRING;
224 sprintf(buf, "%d", params->w);
225 ret[0].sval = dupstr(buf);
226 ret[0].ival = 0;
228 ret[1].name = "Height";
229 ret[1].type = C_STRING;
230 sprintf(buf, "%d", params->h);
231 ret[1].sval = dupstr(buf);
232 ret[1].ival = 0;
234 ret[2].name = "Difficulty";
235 ret[2].type = C_CHOICES;
236 ret[2].sval = DIFFCONFIG;
237 ret[2].ival = params->diff;
239 ret[3].name = NULL;
240 ret[3].type = C_END;
241 ret[3].sval = NULL;
242 ret[3].ival = 0;
244 return ret;
247 static game_params *custom_params(config_item *cfg)
249 game_params *ret = snew(game_params);
251 ret->w = atoi(cfg[0].sval);
252 ret->h = atoi(cfg[1].sval);
253 ret->diff = cfg[2].ival;
255 return ret;
258 static char *validate_params(game_params *params, int full)
260 if (params->w < 2 || params->h < 2)
261 return "Width and neight must be at least two";
262 if (params->w > 10+26+26 || params->h > 10+26+26)
263 return "Puzzle is too large";
264 if (full) {
265 if (params->diff < 0 || params->diff >= DIFF_MAX)
266 return "Unknown difficulty rating";
269 return NULL;
272 /* --- Game description string generation and unpicking --- */
274 static game_state *blank_game(int w, int h)
276 game_state *state = snew(game_state);
278 memset(state, 0, sizeof(game_state));
279 state->w = w;
280 state->h = h;
281 state->n = w*h;
282 state->o = max(w,h);
284 state->completed = state->used_solve = state->impossible = 0;
286 state->nums = snewn(state->n, int);
287 state->flags = snewn(state->n, unsigned int);
289 memset(state->nums, 0, state->n*sizeof(int));
290 memset(state->flags, 0, state->n*sizeof(unsigned int));
292 return state;
295 static game_state *dup_game(game_state *state)
297 game_state *ret = blank_game(state->w, state->h);
299 ret->completed = state->completed;
300 ret->used_solve = state->used_solve;
301 ret->impossible = state->impossible;
303 memcpy(ret->nums, state->nums, state->n*sizeof(int));
304 memcpy(ret->flags, state->flags, state->n*sizeof(unsigned int));
306 return ret;
309 static void free_game(game_state *state)
311 sfree(state->nums);
312 sfree(state->flags);
313 sfree(state);
316 static char n2c(int num) {
317 if (num < 10)
318 return '0' + num;
319 else if (num < 10+26)
320 return 'a' + num - 10;
321 else
322 return 'A' + num - 10 - 26;
323 return '?';
326 static int c2n(char c) {
327 if (isdigit((unsigned char)c))
328 return (int)(c - '0');
329 else if (c >= 'a' && c <= 'z')
330 return (int)(c - 'a' + 10);
331 else if (c >= 'A' && c <= 'Z')
332 return (int)(c - 'A' + 10 + 26);
333 return -1;
336 static void unpick_desc(game_params *params, char *desc,
337 game_state **sout, char **mout)
339 game_state *state = blank_game(params->w, params->h);
340 char *msg = NULL;
341 int num = 0, i = 0;
343 if (strlen(desc) != state->n) {
344 msg = "Game description is wrong length";
345 goto done;
347 for (i = 0; i < state->n; i++) {
348 num = c2n(desc[i]);
349 if (num <= 0 || num > state->o) {
350 msg = "Game description contains unexpected characters";
351 goto done;
353 state->nums[i] = num;
355 done:
356 if (msg) { /* sth went wrong. */
357 if (mout) *mout = msg;
358 free_game(state);
359 } else {
360 if (mout) *mout = NULL;
361 if (sout) *sout = state;
362 else free_game(state);
366 static char *generate_desc(game_state *state, int issolve)
368 char *ret = snewn(state->n+1+(issolve?1:0), char);
369 int i, p=0;
371 if (issolve)
372 ret[p++] = 'S';
373 for (i = 0; i < state->n; i++)
374 ret[p++] = n2c(state->nums[i]);
375 ret[p] = '\0';
376 return ret;
379 /* --- Useful game functions (completion, etc.) --- */
381 static int game_can_format_as_text_now(game_params *params)
383 return TRUE;
386 static char *game_text_format(game_state *state)
388 int len, x, y, i;
389 char *ret, *p;
391 len = (state->w)*2; /* one row ... */
392 len = len * (state->h*2); /* ... h rows, including gaps ... */
393 len += 1; /* ... final NL */
394 p = ret = snewn(len, char);
396 for (y = 0; y < state->h; y++) {
397 for (x = 0; x < state->w; x++) {
398 i = y*state->w + x;
399 if (x > 0) *p++ = ' ';
400 *p++ = (state->flags[i] & F_BLACK) ? '*' : n2c(state->nums[i]);
402 *p++ = '\n';
403 for (x = 0; x < state->w; x++) {
404 i = y*state->w + x;
405 if (x > 0) *p++ = ' ';
406 *p++ = (state->flags[i] & F_CIRCLE) ? '~' : ' ';
408 *p++ = '\n';
410 *p++ = '\0';
411 assert(p - ret == len);
413 return ret;
416 static void debug_state(const char *desc, game_state *state) {
417 char *dbg = game_text_format(state);
418 debug(("%s:\n%s", desc, dbg));
419 sfree(dbg);
422 static void connect_if_same(game_state *state, int *dsf, int i1, int i2)
424 int c1, c2;
426 if ((state->flags[i1] & F_BLACK) != (state->flags[i2] & F_BLACK))
427 return;
429 c1 = dsf_canonify(dsf, i1);
430 c2 = dsf_canonify(dsf, i2);
431 dsf_merge(dsf, c1, c2);
434 static void connect_dsf(game_state *state, int *dsf)
436 int x, y, i;
438 /* Construct a dsf array for connected blocks; connections
439 * tracked to right and down. */
440 dsf_init(dsf, state->n);
441 for (x = 0; x < state->w; x++) {
442 for (y = 0; y < state->h; y++) {
443 i = y*state->w + x;
445 if (x < state->w-1)
446 connect_if_same(state, dsf, i, i+1); /* right */
447 if (y < state->h-1)
448 connect_if_same(state, dsf, i, i+state->w); /* down */
453 #define CC_MARK_ERRORS 1
454 #define CC_MUST_FILL 2
456 static int check_rowcol(game_state *state, int starti, int di, int sz, unsigned flags)
458 int nerr = 0, n, m, i, j;
460 /* if any circled numbers have identical non-circled numbers on
461 * same row/column, error (non-circled)
462 * if any circled numbers in same column are same number, highlight them.
463 * if any rows/columns have >1 of same number, not complete. */
465 for (n = 0, i = starti; n < sz; n++, i += di) {
466 if (state->flags[i] & F_BLACK) continue;
467 for (m = n+1, j = i+di; m < sz; m++, j += di) {
468 if (state->flags[j] & F_BLACK) continue;
469 if (state->nums[i] != state->nums[j]) continue;
471 nerr++; /* ok, we have two numbers the same in a row. */
472 if (!(flags & CC_MARK_ERRORS)) continue;
474 /* If we have two circles in the same row around
475 * two identical numbers, they are _both_ wrong. */
476 if ((state->flags[i] & F_CIRCLE) &&
477 (state->flags[j] & F_CIRCLE)) {
478 state->flags[i] |= F_ERROR;
479 state->flags[j] |= F_ERROR;
481 /* Otherwise, if we have a circle, any other identical
482 * numbers in that row are obviously wrong. We don't
483 * highlight this, however, since it makes the process
484 * of solving the puzzle too easy (you circle a number
485 * and it promptly tells you which numbers to blacken! */
486 #if 0
487 else if (state->flags[i] & F_CIRCLE)
488 state->flags[j] |= F_ERROR;
489 else if (state->flags[j] & F_CIRCLE)
490 state->flags[i] |= F_ERROR;
491 #endif
494 return nerr;
497 static int check_complete(game_state *state, unsigned flags)
499 int *dsf = snewn(state->n, int);
500 int x, y, i, error = 0, nwhite, w = state->w, h = state->h;
502 if (flags & CC_MARK_ERRORS) {
503 for (i = 0; i < state->n; i++)
504 state->flags[i] &= ~F_ERROR;
506 connect_dsf(state, dsf);
508 /* If we're the solver we need the grid all to be definitively
509 * black or definitively white (i.e. circled) otherwise the solver
510 * has found an ambiguous grid. */
511 if (flags & CC_MUST_FILL) {
512 for (i = 0; i < state->n; i++) {
513 if (!(state->flags[i] & F_BLACK) && !(state->flags[i] & F_CIRCLE))
514 error += 1;
518 /* Mark any black squares in groups of >1 as errors.
519 * Count number of white squares. */
520 nwhite = 0;
521 for (i = 0; i < state->n; i++) {
522 if (state->flags[i] & F_BLACK) {
523 if (dsf_size(dsf, i) > 1) {
524 error += 1;
525 if (flags & CC_MARK_ERRORS)
526 state->flags[i] |= F_ERROR;
528 } else
529 nwhite += 1;
532 /* Check attributes of white squares, row- and column-wise. */
533 for (x = 0; x < w; x++) /* check cols from (x,0) */
534 error += check_rowcol(state, x, w, h, flags);
535 for (y = 0; y < h; y++) /* check rows from (0,y) */
536 error += check_rowcol(state, y*w, 1, w, flags);
538 /* mark (all) white regions as an error if there is more than one.
539 * may want to make this less in-your-face (by only marking
540 * the smallest region as an error, for example -- but what if we
541 * have two regions of identical size?) */
542 for (i = 0; i < state->n; i++) {
543 if (!(state->flags[i] & F_BLACK) &&
544 dsf_size(dsf, i) < nwhite) {
545 error += 1;
546 if (flags & CC_MARK_ERRORS)
547 state->flags[i] |= F_ERROR;
551 sfree(dsf);
552 return (error > 0) ? 0 : 1;
555 static char *game_state_diff(game_state *src, game_state *dst, int issolve)
557 char *ret = NULL, buf[80], c;
558 int retlen = 0, x, y, i, k;
559 unsigned int fmask = F_BLACK | F_CIRCLE;
561 assert(src->n == dst->n);
563 if (issolve) {
564 ret = sresize(ret, 3, char);
565 ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0';
566 retlen += 2;
569 for (x = 0; x < dst->w; x++) {
570 for (y = 0; y < dst->h; y++) {
571 i = y*dst->w + x;
572 if ((src->flags[i] & fmask) != (dst->flags[i] & fmask)) {
573 assert((dst->flags[i] & fmask) != fmask);
574 if (dst->flags[i] & F_BLACK)
575 c = 'B';
576 else if (dst->flags[i] & F_CIRCLE)
577 c = 'C';
578 else
579 c = 'E';
580 k = sprintf(buf, "%c%d,%d;", (int)c, x, y);
581 ret = sresize(ret, retlen + k + 1, char);
582 strcpy(ret + retlen, buf);
583 retlen += k;
587 return ret;
590 /* --- Solver --- */
592 enum { BLACK, CIRCLE };
594 struct solver_op {
595 int x, y, op; /* op one of BLACK or CIRCLE. */
596 const char *desc; /* must be non-malloced. */
599 struct solver_state {
600 struct solver_op *ops;
601 int n_ops, n_alloc;
602 int *scratch;
605 static struct solver_state *solver_state_new(game_state *state)
607 struct solver_state *ss = snew(struct solver_state);
609 ss->ops = NULL;
610 ss->n_ops = ss->n_alloc = 0;
611 ss->scratch = snewn(state->n, int);
613 return ss;
616 static void solver_state_free(struct solver_state *ss)
618 sfree(ss->scratch);
619 if (ss->ops) sfree(ss->ops);
620 sfree(ss);
623 static void solver_op_add(struct solver_state *ss, int x, int y, int op, const char *desc)
625 struct solver_op *sop;
627 if (ss->n_alloc < ss->n_ops + 1) {
628 ss->n_alloc = (ss->n_alloc + 1) * 2;
629 ss->ops = sresize(ss->ops, ss->n_alloc, struct solver_op);
631 sop = &(ss->ops[ss->n_ops++]);
632 sop->x = x; sop->y = y; sop->op = op; sop->desc = desc;
633 debug(("added solver op %s ('%s') at (%d,%d)",
634 op == BLACK ? "BLACK" : "CIRCLE", desc, x, y));
637 static void solver_op_circle(game_state *state, struct solver_state *ss,
638 int x, int y)
640 int i = y*state->w + x;
642 if (!INGRID(state, x, y)) return;
643 if (state->flags[i] & F_BLACK) {
644 debug(("... solver wants to add auto-circle on black (%d,%d)", x, y));
645 state->impossible = 1;
646 return;
648 /* Only add circle op if it's not already circled. */
649 if (!(state->flags[i] & F_CIRCLE)) {
650 solver_op_add(ss, x, y, CIRCLE, "SB - adjacent to black square");
654 static void solver_op_blacken(game_state *state, struct solver_state *ss,
655 int x, int y, int num)
657 int i = y*state->w + x;
659 if (!INGRID(state, x, y)) return;
660 if (state->nums[i] != num) return;
661 if (state->flags[i] & F_CIRCLE) {
662 debug(("... solver wants to add auto-black on circled(%d,%d)", x, y));
663 state->impossible = 1;
664 return;
666 /* Only add black op if it's not already black. */
667 if (!(state->flags[i] & F_BLACK)) {
668 solver_op_add(ss, x, y, BLACK, "SC - number on same row/col as circled");
672 static int solver_ops_do(game_state *state, struct solver_state *ss)
674 int next_op = 0, i, x, y, n_ops = 0;
675 struct solver_op op;
677 /* Care here: solver_op_* may call solver_op_add which may extend the
678 * ss->n_ops. */
680 while (next_op < ss->n_ops) {
681 op = ss->ops[next_op++]; /* copy this away, it may get reallocated. */
682 i = op.y*state->w + op.x;
684 if (op.op == BLACK) {
685 if (state->flags[i] & F_CIRCLE) {
686 debug(("Solver wants to blacken circled square (%d,%d)!", op.x, op.y));
687 state->impossible = 1;
688 return n_ops;
690 if (!(state->flags[i] & F_BLACK)) {
691 debug(("... solver adding black at (%d,%d): %s", op.x, op.y, op.desc));
692 #ifdef STANDALONE_SOLVER
693 if (verbose)
694 printf("Adding black at (%d,%d): %s\n", op.x, op.y, op.desc);
695 #endif
696 state->flags[i] |= F_BLACK;
697 /*debug_state("State after adding black", state);*/
698 n_ops++;
699 solver_op_circle(state, ss, op.x-1, op.y);
700 solver_op_circle(state, ss, op.x+1, op.y);
701 solver_op_circle(state, ss, op.x, op.y-1);
702 solver_op_circle(state, ss, op.x, op.y+1);
704 } else {
705 if (state->flags[i] & F_BLACK) {
706 debug(("Solver wants to circle blackened square (%d,%d)!", op.x, op.y));
707 state->impossible = 1;
708 return n_ops;
710 if (!(state->flags[i] & F_CIRCLE)) {
711 debug(("... solver adding circle at (%d,%d): %s", op.x, op.y, op.desc));
712 #ifdef STANDALONE_SOLVER
713 if (verbose)
714 printf("Adding circle at (%d,%d): %s\n", op.x, op.y, op.desc);
715 #endif
716 state->flags[i] |= F_CIRCLE;
717 /*debug_state("State after adding circle", state);*/
718 n_ops++;
719 for (x = 0; x < state->w; x++) {
720 if (x != op.x)
721 solver_op_blacken(state, ss, x, op.y, state->nums[i]);
723 for (y = 0; y < state->h; y++) {
724 if (y != op.y)
725 solver_op_blacken(state, ss, op.x, y, state->nums[i]);
730 ss->n_ops = 0;
731 return n_ops;
734 /* If the grid has two identical numbers with one cell between them, the inner
735 * cell _must_ be white (and thus circled); (at least) one of the two must be
736 * black (since they're in the same column or row) and thus the middle cell is
737 * next to a black cell. */
738 static int solve_singlesep(game_state *state, struct solver_state *ss)
740 int x, y, i, ir, irr, id, idd, n_ops = ss->n_ops;
742 for (x = 0; x < state->w; x++) {
743 for (y = 0; y < state->h; y++) {
744 i = y*state->w + x;
746 /* Cell two to our right? */
747 ir = i + 1; irr = ir + 1;
748 if (x < (state->w-2) &&
749 state->nums[i] == state->nums[irr] &&
750 !(state->flags[ir] & F_CIRCLE)) {
751 solver_op_add(ss, x+1, y, CIRCLE, "SP/ST - between identical nums");
753 /* Cell two below us? */
754 id = i + state->w; idd = id + state->w;
755 if (y < (state->h-2) &&
756 state->nums[i] == state->nums[idd] &&
757 !(state->flags[id] & F_CIRCLE)) {
758 solver_op_add(ss, x, y+1, CIRCLE, "SP/ST - between identical nums");
762 return ss->n_ops - n_ops;
765 /* If we have two identical numbers next to each other (in a row or column),
766 * any other identical numbers in that column must be black. */
767 static int solve_doubles(game_state *state, struct solver_state *ss)
769 int x, y, i, ii, n_ops = ss->n_ops, xy;
771 for (y = 0, i = 0; y < state->h; y++) {
772 for (x = 0; x < state->w; x++, i++) {
773 assert(i == y*state->w+x);
774 if (state->flags[i] & F_BLACK) continue;
776 ii = i+1; /* check cell to our right. */
777 if (x < (state->w-1) &&
778 !(state->flags[ii] & F_BLACK) &&
779 state->nums[i] == state->nums[ii]) {
780 for (xy = 0; xy < state->w; xy++) {
781 if (xy == x || xy == (x+1)) continue;
782 if (state->nums[y*state->w + xy] == state->nums[i] &&
783 !(state->flags[y*state->w + xy] & F_BLACK))
784 solver_op_add(ss, xy, y, BLACK, "PI - same row as pair");
788 ii = i+state->w; /* check cell below us */
789 if (y < (state->h-1) &&
790 !(state->flags[ii] & F_BLACK) &&
791 state->nums[i] == state->nums[ii]) {
792 for (xy = 0; xy < state->h; xy++) {
793 if (xy == y || xy == (y+1)) continue;
794 if (state->nums[xy*state->w + x] == state->nums[i] &&
795 !(state->flags[xy*state->w + x] & F_BLACK))
796 solver_op_add(ss, x, xy, BLACK, "PI - same col as pair");
801 return ss->n_ops - n_ops;
804 /* If a white square has all-but-one possible adjacent squares black, the
805 * one square left over must be white. */
806 static int solve_allblackbutone(game_state *state, struct solver_state *ss)
808 int x, y, i, n_ops = ss->n_ops, xd, yd, id, ifree;
809 int dis[4], d;
811 dis[0] = -state->w;
812 dis[1] = 1;
813 dis[2] = state->w;
814 dis[3] = -1;
816 for (y = 0, i = 0; y < state->h; y++) {
817 for (x = 0; x < state->w; x++, i++) {
818 assert(i == y*state->w+x);
819 if (state->flags[i] & F_BLACK) continue;
821 ifree = -1;
822 for (d = 0; d < 4; d++) {
823 xd = x + dxs[d]; yd = y + dys[d]; id = i + dis[d];
824 if (!INGRID(state, xd, yd)) continue;
826 if (state->flags[id] & F_CIRCLE)
827 goto skip; /* this cell already has a way out */
828 if (!(state->flags[id] & F_BLACK)) {
829 if (ifree != -1)
830 goto skip; /* this cell has >1 white cell around it. */
831 ifree = id;
834 if (ifree != -1)
835 solver_op_add(ss, ifree%state->w, ifree/state->w, CIRCLE,
836 "CC/CE/QM: white cell with single non-black around it");
837 else {
838 debug(("White cell with no escape at (%d,%d)", x, y));
839 state->impossible = 1;
840 return 0;
842 skip: ;
845 return ss->n_ops - n_ops;
848 /* If we have 4 numbers the same in a 2x2 corner, the far corner and the
849 * diagonally-adjacent square must both be black.
850 * If we have 3 numbers the same in a 2x2 corner, the apex of the L
851 * thus formed must be black.
852 * If we have 2 numbers the same in a 2x2 corner, the non-same cell
853 * one away from the corner must be white. */
854 static void solve_corner(game_state *state, struct solver_state *ss,
855 int x, int y, int dx, int dy)
857 int is[4], ns[4], xx, yy, w = state->w;
859 for (yy = 0; yy < 2; yy++) {
860 for (xx = 0; xx < 2; xx++) {
861 is[yy*2+xx] = (y + dy*yy) * w + (x + dx*xx);
862 ns[yy*2+xx] = state->nums[is[yy*2+xx]];
864 } /* order is now (corner, side 1, side 2, inner) */
866 if (ns[0] == ns[1] && ns[0] == ns[2] && ns[0] == ns[3]) {
867 solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "QC: corner with 4 matching");
868 solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "QC: corner with 4 matching");
869 } else if (ns[0] == ns[1] && ns[0] == ns[2]) {
870 /* corner and 2 sides: apex is corner. */
871 solver_op_add(ss, is[0]%w, is[0]/w, BLACK, "TC: corner apex from 3 matching");
872 } else if (ns[1] == ns[2] && ns[1] == ns[3]) {
873 /* side, side, fourth: apex is fourth. */
874 solver_op_add(ss, is[3]%w, is[3]/w, BLACK, "TC: inside apex from 3 matching");
875 } else if (ns[0] == ns[1] || ns[1] == ns[3]) {
876 /* either way here we match the non-identical side. */
877 solver_op_add(ss, is[2]%w, is[2]/w, CIRCLE, "DC: corner with 2 matching");
878 } else if (ns[0] == ns[2] || ns[2] == ns[3]) {
879 /* ditto */
880 solver_op_add(ss, is[1]%w, is[1]/w, CIRCLE, "DC: corner with 2 matching");
884 static int solve_corners(game_state *state, struct solver_state *ss)
886 int n_ops = ss->n_ops;
888 solve_corner(state, ss, 0, 0, 1, 1);
889 solve_corner(state, ss, state->w-1, 0, -1, 1);
890 solve_corner(state, ss, state->w-1, state->h-1, -1, -1);
891 solve_corner(state, ss, 0, state->h-1, 1, -1);
893 return ss->n_ops - n_ops;
896 /* If you have the following situation:
897 * ...
898 * ...x A x x y A x...
899 * ...x B x x B y x...
900 * ...
901 * then both squares marked 'y' must be white. One of the left-most A or B must
902 * be white (since two side-by-side black cells are disallowed), which means
903 * that the corresponding right-most A or B must be black (since you can't
904 * have two of the same number on one line); thus, the adjacent squares
905 * to that right-most A or B must be white, which include the two marked 'y'
906 * in either case.
907 * Obviously this works in any row or column. It also works if A == B.
908 * It doesn't work for the degenerate case:
909 * ...x A A x x
910 * ...x B y x x
911 * where the square marked 'y' isn't necessarily white (consider the left-most A
912 * is black).
914 * */
915 static void solve_offsetpair_pair(game_state *state, struct solver_state *ss,
916 int x1, int y1, int x2, int y2)
918 int ox, oy, w = state->w, ax, ay, an, d, dx[2], dy[2], dn, xd, yd;
920 if (x1 == x2) { /* same column */
921 ox = 1; oy = 0;
922 } else {
923 assert(y1 == y2);
924 ox = 0; oy = 1;
927 /* We try adjacent to (x1,y1) and the two diag. adjacent to (x2, y2).
928 * We expect to be called twice, once each way around. */
929 ax = x1+ox; ay = y1+oy;
930 assert(INGRID(state, ax, ay));
931 an = state->nums[ay*w + ax];
933 dx[0] = x2 + ox + oy; dx[1] = x2 + ox - oy;
934 dy[0] = y2 + oy + ox; dy[1] = y2 + oy - ox;
936 for (d = 0; d < 2; d++) {
937 if (INGRID(state, dx[d], dy[d]) && (dx[d] != ax || dy[d] != ay)) {
938 /* The 'dx != ax || dy != ay' removes the degenerate case,
939 * mentioned above. */
940 dn = state->nums[dy[d]*w + dx[d]];
941 if (an == dn) {
942 /* We have a match; so (WLOG) the 'A' marked above are at
943 * (x1,y1) and (x2,y2), and the 'B' are at (ax,ay) and (dx,dy). */
944 debug(("Found offset-pair: %d at (%d,%d) and (%d,%d)",
945 state->nums[y1*w + x1], x1, y1, x2, y2));
946 debug((" and: %d at (%d,%d) and (%d,%d)",
947 an, ax, ay, dx[d], dy[d]));
949 xd = dx[d] - x2; yd = dy[d] - y2;
950 solver_op_add(ss, x2 + xd, y2, CIRCLE, "IP: next to offset-pair");
951 solver_op_add(ss, x2, y2 + yd, CIRCLE, "IP: next to offset-pair");
957 static int solve_offsetpair(game_state *state, struct solver_state *ss)
959 int n_ops = ss->n_ops, x, xx, y, yy, n1, n2;
961 for (x = 0; x < state->w-1; x++) {
962 for (y = 0; y < state->h; y++) {
963 n1 = state->nums[y*state->w + x];
964 for (yy = y+1; yy < state->h; yy++) {
965 n2 = state->nums[yy*state->w + x];
966 if (n1 == n2) {
967 solve_offsetpair_pair(state, ss, x, y, x, yy);
968 solve_offsetpair_pair(state, ss, x, yy, x, y);
973 for (y = 0; y < state->h-1; y++) {
974 for (x = 0; x < state->w; x++) {
975 n1 = state->nums[y*state->w + x];
976 for (xx = x+1; xx < state->w; xx++) {
977 n2 = state->nums[y*state->w + xx];
978 if (n1 == n2) {
979 solve_offsetpair_pair(state, ss, x, y, xx, y);
980 solve_offsetpair_pair(state, ss, xx, y, x, y);
985 return ss->n_ops - n_ops;
988 static int solve_hassinglewhiteregion(game_state *state, struct solver_state *ss)
990 int i, j, nwhite = 0, lwhite = -1, szwhite, start, end, next, a, d, x, y;
992 for (i = 0; i < state->n; i++) {
993 if (!(state->flags[i] & F_BLACK)) {
994 nwhite++;
995 lwhite = i;
997 state->flags[i] &= ~F_SCRATCH;
999 if (lwhite == -1) {
1000 debug(("solve_hassinglewhite: no white squares found!"));
1001 state->impossible = 1;
1002 return 0;
1004 /* We don't use connect_dsf here; it's too slow, and there's a quicker
1005 * algorithm if all we want is the size of one region. */
1006 /* Having written this, this algorithm is only about 5% faster than
1007 * using a dsf. */
1008 memset(ss->scratch, -1, state->n * sizeof(int));
1009 ss->scratch[0] = lwhite;
1010 state->flags[lwhite] |= F_SCRATCH;
1011 start = 0; end = next = 1;
1012 while (start < end) {
1013 for (a = start; a < end; a++) {
1014 i = ss->scratch[a]; assert(i != -1);
1015 for (d = 0; d < 4; d++) {
1016 x = (i % state->w) + dxs[d];
1017 y = (i / state->w) + dys[d];
1018 j = y*state->w + x;
1019 if (!INGRID(state, x, y)) continue;
1020 if (state->flags[j] & (F_BLACK | F_SCRATCH)) continue;
1021 ss->scratch[next++] = j;
1022 state->flags[j] |= F_SCRATCH;
1025 start = end; end = next;
1027 szwhite = next;
1028 return (szwhite == nwhite) ? 1 : 0;
1031 static void solve_removesplits_check(game_state *state, struct solver_state *ss,
1032 int x, int y)
1034 int i = y*state->w + x, issingle;
1036 if (!INGRID(state, x, y)) return;
1037 if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK))
1038 return;
1040 /* If putting a black square at (x,y) would make the white region
1041 * non-contiguous, it must be circled. */
1042 state->flags[i] |= F_BLACK;
1043 issingle = solve_hassinglewhiteregion(state, ss);
1044 state->flags[i] &= ~F_BLACK;
1046 if (!issingle)
1047 solver_op_add(ss, x, y, CIRCLE, "MC: black square here would split white region");
1050 /* For all black squares, search in squares diagonally adjacent to see if
1051 * we can rule out putting a black square there (because it would make the
1052 * white region non-contiguous). */
1053 /* This function is likely to be somewhat slow. */
1054 static int solve_removesplits(game_state *state, struct solver_state *ss)
1056 int i, x, y, n_ops = ss->n_ops;
1058 if (!solve_hassinglewhiteregion(state, ss)) {
1059 debug(("solve_removesplits: white region is not contiguous at start!"));
1060 state->impossible = 1;
1061 return 0;
1064 for (i = 0; i < state->n; i++) {
1065 if (!(state->flags[i] & F_BLACK)) continue;
1067 x = i%state->w; y = i/state->w;
1068 solve_removesplits_check(state, ss, x-1, y-1);
1069 solve_removesplits_check(state, ss, x+1, y-1);
1070 solve_removesplits_check(state, ss, x+1, y+1);
1071 solve_removesplits_check(state, ss, x-1, y+1);
1073 return ss->n_ops - n_ops;
1077 * This function performs a solver step that isn't implicit in the rules
1078 * of the game and is thus treated somewhat differently.
1080 * It marks cells whose number does not exist elsewhere in its row/column
1081 * with circles. As it happens the game generator here does mean that this
1082 * is always correct, but it's a solving method that people should not have
1083 * to rely upon (except in the hidden 'sneaky' difficulty setting) and so
1084 * all grids at 'tricky' and above are checked to make sure that the grid
1085 * is no easier if this solving step is performed beforehand.
1087 * Calling with ss=NULL just returns the number of sneaky deductions that
1088 * would have been made.
1090 static int solve_sneaky(game_state *state, struct solver_state *ss)
1092 int i, ii, x, xx, y, yy, nunique = 0;
1094 /* Clear SCRATCH flags. */
1095 for (i = 0; i < state->n; i++) state->flags[i] &= ~F_SCRATCH;
1097 for (x = 0; x < state->w; x++) {
1098 for (y = 0; y < state->h; y++) {
1099 i = y*state->w + x;
1101 /* Check for duplicate numbers on our row, mark (both) if so */
1102 for (xx = x; xx < state->w; xx++) {
1103 ii = y*state->w + xx;
1104 if (i == ii) continue;
1106 if (state->nums[i] == state->nums[ii]) {
1107 state->flags[i] |= F_SCRATCH;
1108 state->flags[ii] |= F_SCRATCH;
1112 /* Check for duplicate numbers on our col, mark (both) if so */
1113 for (yy = y; yy < state->h; yy++) {
1114 ii = yy*state->w + x;
1115 if (i == ii) continue;
1117 if (state->nums[i] == state->nums[ii]) {
1118 state->flags[i] |= F_SCRATCH;
1119 state->flags[ii] |= F_SCRATCH;
1125 /* Any cell with no marking has no duplicates on its row or column:
1126 * set its CIRCLE. */
1127 for (i = 0; i < state->n; i++) {
1128 if (!(state->flags[i] & F_SCRATCH)) {
1129 if (ss) solver_op_add(ss, i%state->w, i/state->w, CIRCLE,
1130 "SNEAKY: only one of its number in row and col");
1131 nunique += 1;
1132 } else
1133 state->flags[i] &= ~F_SCRATCH;
1135 return nunique;
1138 static int solve_specific(game_state *state, int diff, int sneaky)
1140 struct solver_state *ss = solver_state_new(state);
1142 if (sneaky) solve_sneaky(state, ss);
1144 /* Some solver operations we only have to perform once --
1145 * they're only based on the numbers available, and not black
1146 * squares or circles which may be added later. */
1148 solve_singlesep(state, ss); /* never sets impossible */
1149 solve_doubles(state, ss); /* ditto */
1150 solve_corners(state, ss); /* ditto */
1152 if (diff >= DIFF_TRICKY)
1153 solve_offsetpair(state, ss); /* ditto */
1155 while (1) {
1156 if (ss->n_ops > 0) solver_ops_do(state, ss);
1157 if (state->impossible) break;
1159 if (solve_allblackbutone(state, ss) > 0) continue;
1160 if (state->impossible) break;
1162 if (diff >= DIFF_TRICKY) {
1163 if (solve_removesplits(state, ss) > 0) continue;
1164 if (state->impossible) break;
1167 break;
1170 solver_state_free(ss);
1171 return state->impossible ? -1 : check_complete(state, CC_MUST_FILL);
1174 static char *solve_game(game_state *state, game_state *currstate,
1175 char *aux, char **error)
1177 game_state *solved = dup_game(currstate);
1178 char *move = NULL;
1180 if (solve_specific(solved, DIFF_ANY, 0) > 0) goto solved;
1181 free_game(solved);
1183 solved = dup_game(state);
1184 if (solve_specific(solved, DIFF_ANY, 0) > 0) goto solved;
1185 free_game(solved);
1187 *error = "Unable to solve puzzle.";
1188 return NULL;
1190 solved:
1191 move = game_state_diff(currstate, solved, 1);
1192 free_game(solved);
1193 return move;
1196 /* --- Game generation --- */
1198 /* A correctly completed Hitori board is essentially a latin square
1199 * (no duplicated numbers in any row or column) with black squares
1200 * added such that no black square touches another, and the white
1201 * squares make a contiguous region.
1203 * So we can generate it by:
1204 * constructing a latin square
1205 * adding black squares at random (minding the constraints)
1206 * altering the numbers under the new black squares such that
1207 the solver gets a headstart working out where they are.
1210 static int new_game_is_good(game_params *params,
1211 game_state *state, game_state *tosolve)
1213 int sret, sret_easy = 0;
1215 memcpy(tosolve->nums, state->nums, state->n * sizeof(int));
1216 memset(tosolve->flags, 0, state->n * sizeof(unsigned int));
1217 tosolve->completed = tosolve->impossible = 0;
1220 * We try and solve it twice, once at our requested difficulty level
1221 * (ensuring it's soluble at all) and once at the level below (if
1222 * it exists), which we hope to fail: if you can also solve it at
1223 * the level below then it's too easy and we have to try again.
1225 * With this puzzle in particular there's an extra finesse, which is
1226 * that we check that the generated puzzle isn't too easy _with
1227 * an extra solver step first_, which is the 'sneaky' mode of deductions
1228 * (asserting that any number which fulfils the latin-square rules
1229 * on its row/column must be white). This is an artefact of the
1230 * generation process and not implicit in the rules, so we don't want
1231 * people to be able to use it to make the puzzle easier.
1234 assert(params->diff < DIFF_MAX);
1235 sret = solve_specific(tosolve, params->diff, 0);
1236 if (params->diff > DIFF_EASY) {
1237 memset(tosolve->flags, 0, state->n * sizeof(unsigned int));
1238 tosolve->completed = tosolve->impossible = 0;
1240 /* this is the only time the 'sneaky' flag is set to 1. */
1241 sret_easy = solve_specific(tosolve, params->diff-1, 1);
1244 if (sret <= 0 || sret_easy > 0) {
1245 debug(("Generated puzzle %s at chosen difficulty %s",
1246 sret <= 0 ? "insoluble" : "too easy",
1247 singles_diffnames[params->diff]));
1248 return 0;
1250 return 1;
1253 #define MAXTRIES 20
1255 static int best_black_col(game_state *state, random_state *rs, int *scratch,
1256 int i, int *rownums, int *colnums)
1258 int w = state->w, x = i%w, y = i/w, j, o = state->o;
1260 /* Randomise the list of numbers to try. */
1261 for (i = 0; i < o; i++) scratch[i] = i;
1262 shuffle(scratch, o, sizeof(int), rs);
1264 /* Try each number in turn, first giving preference to removing
1265 * latin-square characteristics (i.e. those numbers which only
1266 * occur once in a row/column). The '&&' here, although intuitively
1267 * wrong, results in a smaller number of 'sneaky' deductions on
1268 * solvable boards. */
1269 for (i = 0; i < o; i++) {
1270 j = scratch[i] + 1;
1271 if (rownums[y*o + j-1] == 1 && colnums[x*o + j-1] == 1)
1272 goto found;
1275 /* Then try each number in turn returning the first one that's
1276 * not actually unique in its row/column (see comment below) */
1277 for (i = 0; i < o; i++) {
1278 j = scratch[i] + 1;
1279 if (rownums[y*o + j-1] != 0 || colnums[x*o + j-1] != 0)
1280 goto found;
1282 assert(!"unable to place number under black cell.");
1283 return 0;
1285 found:
1286 /* Update column and row counts assuming this number will be placed. */
1287 rownums[y*o + j-1] += 1;
1288 colnums[x*o + j-1] += 1;
1289 return j;
1292 static char *new_game_desc(game_params *params, random_state *rs,
1293 char **aux, int interactive)
1295 game_state *state = blank_game(params->w, params->h);
1296 game_state *tosolve = blank_game(params->w, params->h);
1297 int i, j, *scratch, *rownums, *colnums, x, y, ntries;
1298 int w = state->w, h = state->h, o = state->o;
1299 char *ret;
1300 digit *latin;
1301 struct solver_state *ss = solver_state_new(state);
1303 scratch = snewn(state->n, int);
1304 rownums = snewn(h*o, int);
1305 colnums = snewn(w*o, int);
1307 generate:
1308 ss->n_ops = 0;
1309 debug(("Starting game generation, size %dx%d", w, h));
1311 memset(state->flags, 0, state->n*sizeof(unsigned int));
1313 /* First, generate the latin rectangle.
1314 * The order of this, o, is max(w,h). */
1315 latin = latin_generate_rect(w, h, rs);
1316 for (i = 0; i < state->n; i++)
1317 state->nums[i] = (int)latin[i];
1318 sfree(latin);
1319 debug_state("State after latin square", state);
1321 /* Add black squares at random, using bits of solver as we go (to lay
1322 * white squares), until we can lay no more blacks. */
1323 for (i = 0; i < state->n; i++)
1324 scratch[i] = i;
1325 shuffle(scratch, state->n, sizeof(int), rs);
1326 for (j = 0; j < state->n; j++) {
1327 i = scratch[j];
1328 if ((state->flags[i] & F_CIRCLE) || (state->flags[i] & F_BLACK)) {
1329 debug(("generator skipping (%d,%d): %s", i%w, i/w,
1330 (state->flags[i] & F_CIRCLE) ? "CIRCLE" : "BLACK"));
1331 continue; /* solver knows this must be one or the other already. */
1334 /* Add a random black cell... */
1335 solver_op_add(ss, i%w, i/w, BLACK, "Generator: adding random black cell");
1336 solver_ops_do(state, ss);
1338 /* ... and do as well as we know how to lay down whites that are now forced. */
1339 solve_allblackbutone(state, ss);
1340 solver_ops_do(state, ss);
1342 solve_removesplits(state, ss);
1343 solver_ops_do(state, ss);
1345 if (state->impossible) {
1346 debug(("generator made impossible, restarting..."));
1347 goto generate;
1350 debug_state("State after adding blacks", state);
1352 /* Now we know which squares are white and which are black, we lay numbers
1353 * under black squares at random, except that the number must appear in
1354 * white cells at least once more in the same column or row as that [black]
1355 * square. That's necessary to avoid multiple solutions, where blackening
1356 * squares in the finished puzzle becomes optional. We use two arrays:
1358 * rownums[ROW * o + NUM-1] is the no. of white cells containing NUM in y=ROW
1359 * colnums[COL * o + NUM-1] is the no. of white cells containing NUM in x=COL
1362 memset(rownums, 0, h*o * sizeof(int));
1363 memset(colnums, 0, w*o * sizeof(int));
1364 for (i = 0; i < state->n; i++) {
1365 if (state->flags[i] & F_BLACK) continue;
1366 j = state->nums[i];
1367 x = i%w; y = i/w;
1368 rownums[y * o + j-1] += 1;
1369 colnums[x * o + j-1] += 1;
1372 ntries = 0;
1373 randomise:
1374 for (i = 0; i < state->n; i++) {
1375 if (!(state->flags[i] & F_BLACK)) continue;
1376 state->nums[i] = best_black_col(state, rs, scratch, i, rownums, colnums);
1378 debug_state("State after adding numbers", state);
1380 /* DIFF_ANY just returns whatever we first generated, for testing purposes. */
1381 if (params->diff != DIFF_ANY &&
1382 !new_game_is_good(params, state, tosolve)) {
1383 ntries++;
1384 if (ntries > MAXTRIES) {
1385 debug(("Ran out of randomisation attempts, re-generating."));
1386 goto generate;
1388 debug(("Re-randomising numbers under black squares."));
1389 goto randomise;
1392 ret = generate_desc(state, 0);
1394 free_game(tosolve);
1395 free_game(state);
1396 solver_state_free(ss);
1397 sfree(scratch);
1398 sfree(rownums);
1399 sfree(colnums);
1401 return ret;
1404 static char *validate_desc(game_params *params, char *desc)
1406 char *ret = NULL;
1408 unpick_desc(params, desc, NULL, &ret);
1409 return ret;
1412 static game_state *new_game(midend *me, game_params *params, char *desc)
1414 game_state *state = NULL;
1416 unpick_desc(params, desc, &state, NULL);
1417 if (!state) assert(!"new_game failed to unpick");
1418 return state;
1421 /* --- Game UI and move routines --- */
1423 struct game_ui {
1424 int cx, cy, cshow;
1425 int show_black_nums;
1428 static game_ui *new_ui(game_state *state)
1430 game_ui *ui = snew(game_ui);
1432 ui->cx = ui->cy = ui->cshow = 0;
1433 ui->show_black_nums = 0;
1435 return ui;
1438 static void free_ui(game_ui *ui)
1440 sfree(ui);
1443 static char *encode_ui(game_ui *ui)
1445 return NULL;
1448 static void decode_ui(game_ui *ui, char *encoding)
1452 static void game_changed_state(game_ui *ui, game_state *oldstate,
1453 game_state *newstate)
1455 if (!oldstate->completed && newstate->completed)
1456 ui->cshow = 0;
1459 #define DS_BLACK 0x1
1460 #define DS_CIRCLE 0x2
1461 #define DS_CURSOR 0x4
1462 #define DS_BLACK_NUM 0x8
1463 #define DS_ERROR 0x10
1464 #define DS_FLASH 0x20
1465 #define DS_IMPOSSIBLE 0x40
1467 struct game_drawstate {
1468 int tilesize, started, solved;
1469 int w, h, n;
1471 unsigned int *flags;
1474 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1475 int mx, int my, int button)
1477 char buf[80], c;
1478 int i, x = FROMCOORD(mx), y = FROMCOORD(my);
1479 enum { NONE, TOGGLE_BLACK, TOGGLE_CIRCLE, UI } action = NONE;
1481 if (IS_CURSOR_MOVE(button)) {
1482 move_cursor(button, &ui->cx, &ui->cy, state->w, state->h, 1);
1483 ui->cshow = 1;
1484 action = UI;
1485 } else if (IS_CURSOR_SELECT(button)) {
1486 x = ui->cx; y = ui->cy;
1487 if (!ui->cshow) {
1488 action = UI;
1489 ui->cshow = 1;
1491 if (button == CURSOR_SELECT) {
1492 action = TOGGLE_BLACK;
1493 } else if (button == CURSOR_SELECT2) {
1494 action = TOGGLE_CIRCLE;
1496 } else if (IS_MOUSE_DOWN(button)) {
1497 if (ui->cshow) {
1498 ui->cshow = 0;
1499 action = UI;
1501 if (!INGRID(state, x, y)) {
1502 ui->show_black_nums = 1 - ui->show_black_nums;
1503 action = UI; /* this wants to be a per-game option. */
1504 } else if (button == LEFT_BUTTON) {
1505 action = TOGGLE_BLACK;
1506 } else if (button == RIGHT_BUTTON) {
1507 action = TOGGLE_CIRCLE;
1510 if (action == UI) return "";
1512 if (action == TOGGLE_BLACK || action == TOGGLE_CIRCLE) {
1513 i = y * state->w + x;
1514 if (state->flags[i] & (F_BLACK | F_CIRCLE))
1515 c = 'E';
1516 else
1517 c = (action == TOGGLE_BLACK) ? 'B' : 'C';
1518 sprintf(buf, "%c%d,%d", (int)c, x, y);
1519 return dupstr(buf);
1522 return NULL;
1525 static game_state *execute_move(game_state *state, char *move)
1527 game_state *ret = dup_game(state);
1528 int x, y, i, n;
1530 debug(("move: %s", move));
1532 while (*move) {
1533 char c = *move;
1534 if (c == 'B' || c == 'C' || c == 'E') {
1535 move++;
1536 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
1537 !INGRID(state, x, y))
1538 goto badmove;
1540 i = y*ret->w + x;
1541 ret->flags[i] &= ~(F_CIRCLE | F_BLACK); /* empty first, always. */
1542 if (c == 'B')
1543 ret->flags[i] |= F_BLACK;
1544 else if (c == 'C')
1545 ret->flags[i] |= F_CIRCLE;
1546 move += n;
1547 } else if (c == 'S') {
1548 move++;
1549 ret->used_solve = 1;
1550 } else
1551 goto badmove;
1553 if (*move == ';')
1554 move++;
1555 else if (*move)
1556 goto badmove;
1558 if (check_complete(ret, CC_MARK_ERRORS)) ret->completed = 1;
1559 return ret;
1561 badmove:
1562 free_game(ret);
1563 return NULL;
1566 /* ----------------------------------------------------------------------
1567 * Drawing routines.
1570 static void game_compute_size(game_params *params, int tilesize,
1571 int *x, int *y)
1573 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1574 struct { int tilesize; } ads, *ds = &ads;
1575 ads.tilesize = tilesize;
1577 *x = TILE_SIZE * params->w + 2 * BORDER;
1578 *y = TILE_SIZE * params->h + 2 * BORDER;
1581 static void game_set_size(drawing *dr, game_drawstate *ds,
1582 game_params *params, int tilesize)
1584 ds->tilesize = tilesize;
1587 static float *game_colours(frontend *fe, int *ncolours)
1589 float *ret = snewn(3 * NCOLOURS, float);
1590 int i;
1592 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1593 for (i = 0; i < 3; i++) {
1594 ret[COL_BLACK * 3 + i] = 0.0F;
1595 ret[COL_BLACKNUM * 3 + i] = 0.4F;
1596 ret[COL_WHITE * 3 + i] = 1.0F;
1597 ret[COL_GRID * 3 + i] = ret[COL_LOWLIGHT * 3 + i];
1599 ret[COL_CURSOR * 3 + 0] = 0.2F;
1600 ret[COL_CURSOR * 3 + 1] = 0.8F;
1601 ret[COL_CURSOR * 3 + 2] = 0.0F;
1603 ret[COL_ERROR * 3 + 0] = 1.0F;
1604 ret[COL_ERROR * 3 + 1] = 0.0F;
1605 ret[COL_ERROR * 3 + 2] = 0.0F;
1607 *ncolours = NCOLOURS;
1608 return ret;
1611 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1613 struct game_drawstate *ds = snew(struct game_drawstate);
1615 ds->tilesize = ds->started = ds->solved = 0;
1616 ds->w = state->w;
1617 ds->h = state->h;
1618 ds->n = state->n;
1620 ds->flags = snewn(state->n, unsigned int);
1622 memset(ds->flags, 0, state->n*sizeof(unsigned int));
1624 return ds;
1627 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1629 sfree(ds->flags);
1630 sfree(ds);
1633 static void tile_redraw(drawing *dr, game_drawstate *ds, int x, int y,
1634 int num, unsigned int f)
1636 int tcol, bg, dnum, cx, cy, tsz;
1637 char buf[32];
1639 if (f & DS_BLACK) {
1640 bg = (f & DS_ERROR) ? COL_ERROR : COL_BLACK;
1641 tcol = COL_BLACKNUM;
1642 dnum = (f & DS_BLACK_NUM) ? 1 : 0;
1643 } else {
1644 bg = (f & DS_FLASH) ? COL_LOWLIGHT : COL_BACKGROUND;
1645 tcol = (f & DS_ERROR) ? COL_ERROR : COL_BLACK;
1646 dnum = 1;
1649 cx = x + TILE_SIZE/2; cy = y + TILE_SIZE/2;
1651 draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE, bg);
1652 draw_rect_outline(dr, x, y, TILE_SIZE, TILE_SIZE,
1653 (f & DS_IMPOSSIBLE) ? COL_ERROR : COL_GRID);
1655 if (f & DS_CIRCLE) {
1656 draw_circle(dr, cx, cy, CRAD, tcol, tcol);
1657 draw_circle(dr, cx, cy, CRAD-1, bg, tcol);
1660 if (dnum) {
1661 sprintf(buf, "%d", num);
1662 if (strlen(buf) == 1)
1663 tsz = TEXTSZ;
1664 else
1665 tsz = (CRAD*2 - 1) / strlen(buf);
1666 draw_text(dr, cx, cy, FONT_VARIABLE, tsz,
1667 ALIGN_VCENTRE | ALIGN_HCENTRE, tcol, buf);
1670 if (f & DS_CURSOR)
1671 draw_rect_corners(dr, cx, cy, TEXTSZ/2, COL_CURSOR);
1673 draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
1676 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1677 game_state *state, int dir, game_ui *ui,
1678 float animtime, float flashtime)
1680 int x, y, i, flash;
1681 unsigned int f;
1683 flash = (int)(flashtime * 5 / FLASH_TIME) % 2;
1685 if (!ds->started) {
1686 int wsz = TILE_SIZE * state->w + 2 * BORDER;
1687 int hsz = TILE_SIZE * state->h + 2 * BORDER;
1688 draw_rect(dr, 0, 0, wsz, hsz, COL_BACKGROUND);
1689 draw_rect_outline(dr, COORD(0)-1, COORD(0)-1,
1690 TILE_SIZE * state->w + 2, TILE_SIZE * state->h + 2,
1691 COL_GRID);
1692 draw_update(dr, 0, 0, wsz, hsz);
1694 for (x = 0; x < state->w; x++) {
1695 for (y = 0; y < state->h; y++) {
1696 i = y*state->w + x;
1697 f = 0;
1699 if (flash) f |= DS_FLASH;
1700 if (state->impossible) f |= DS_IMPOSSIBLE;
1702 if (ui->cshow && x == ui->cx && y == ui->cy)
1703 f |= DS_CURSOR;
1704 if (state->flags[i] & F_BLACK) {
1705 f |= DS_BLACK;
1706 if (ui->show_black_nums) f |= DS_BLACK_NUM;
1708 if (state->flags[i] & F_CIRCLE)
1709 f |= DS_CIRCLE;
1710 if (state->flags[i] & F_ERROR)
1711 f |= DS_ERROR;
1713 if (!ds->started || ds->flags[i] != f) {
1714 tile_redraw(dr, ds, COORD(x), COORD(y),
1715 state->nums[i], f);
1716 ds->flags[i] = f;
1720 ds->started = 1;
1723 static float game_anim_length(game_state *oldstate, game_state *newstate,
1724 int dir, game_ui *ui)
1726 return 0.0F;
1729 static float game_flash_length(game_state *oldstate, game_state *newstate,
1730 int dir, game_ui *ui)
1732 if (!oldstate->completed &&
1733 newstate->completed && !newstate->used_solve)
1734 return FLASH_TIME;
1735 return 0.0F;
1738 static int game_status(game_state *state)
1740 return state->completed ? +1 : 0;
1743 static int game_timing_state(game_state *state, game_ui *ui)
1745 return TRUE;
1748 static void game_print_size(game_params *params, float *x, float *y)
1750 int pw, ph;
1752 /* 8mm squares by default. */
1753 game_compute_size(params, 800, &pw, &ph);
1754 *x = pw / 100.0F;
1755 *y = ph / 100.0F;
1758 static void game_print(drawing *dr, game_state *state, int tilesize)
1760 int ink = print_mono_colour(dr, 0);
1761 int paper = print_mono_colour(dr, 1);
1762 int x, y, ox, oy, i;
1763 char buf[32];
1765 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1766 game_drawstate ads, *ds = &ads;
1767 game_set_size(dr, ds, NULL, tilesize);
1769 print_line_width(dr, 2 * TILE_SIZE / 40);
1771 for (x = 0; x < state->w; x++) {
1772 for (y = 0; y < state->h; y++) {
1773 ox = COORD(x); oy = COORD(y);
1774 i = y*state->w+x;
1776 if (state->flags[i] & F_BLACK) {
1777 draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink);
1778 } else {
1779 draw_rect_outline(dr, ox, oy, TILE_SIZE, TILE_SIZE, ink);
1781 if (state->flags[i] & DS_CIRCLE)
1782 draw_circle(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, CRAD,
1783 paper, ink);
1785 sprintf(buf, "%d", state->nums[i]);
1786 draw_text(dr, ox+TILE_SIZE/2, oy+TILE_SIZE/2, FONT_VARIABLE,
1787 TEXTSZ/strlen(buf), ALIGN_VCENTRE | ALIGN_HCENTRE,
1788 ink, buf);
1794 #ifdef COMBINED
1795 #define thegame singles
1796 #endif
1798 const struct game thegame = {
1799 "Singles", "games.singles", "singles",
1800 default_params,
1801 game_fetch_preset,
1802 decode_params,
1803 encode_params,
1804 free_params,
1805 dup_params,
1806 TRUE, game_configure, custom_params,
1807 validate_params,
1808 new_game_desc,
1809 validate_desc,
1810 new_game,
1811 dup_game,
1812 free_game,
1813 TRUE, solve_game,
1814 TRUE, game_can_format_as_text_now, game_text_format,
1815 new_ui,
1816 free_ui,
1817 encode_ui,
1818 decode_ui,
1819 game_changed_state,
1820 interpret_move,
1821 execute_move,
1822 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1823 game_colours,
1824 game_new_drawstate,
1825 game_free_drawstate,
1826 game_redraw,
1827 game_anim_length,
1828 game_flash_length,
1829 game_status,
1830 TRUE, FALSE, game_print_size, game_print,
1831 FALSE, /* wants_statusbar */
1832 FALSE, game_timing_state,
1833 REQUIRE_RBUTTON, /* flags */
1836 #ifdef STANDALONE_SOLVER
1838 #include <time.h>
1839 #include <stdarg.h>
1841 static void start_soak(game_params *p, random_state *rs)
1843 time_t tt_start, tt_now, tt_last;
1844 char *desc, *aux;
1845 game_state *s;
1846 int i, n = 0, ndiff[DIFF_MAX], diff, sret, nblack = 0, nsneaky = 0;
1848 tt_start = tt_now = time(NULL);
1850 printf("Soak-testing a %dx%d grid.\n", p->w, p->h);
1851 p->diff = DIFF_ANY;
1853 memset(ndiff, 0, DIFF_MAX * sizeof(int));
1855 while (1) {
1856 n++;
1857 desc = new_game_desc(p, rs, &aux, 0);
1858 s = new_game(NULL, p, desc);
1859 nsneaky += solve_sneaky(s, NULL);
1861 for (diff = 0; diff < DIFF_MAX; diff++) {
1862 memset(s->flags, 0, s->n * sizeof(unsigned int));
1863 s->completed = s->impossible = 0;
1864 sret = solve_specific(s, diff, 0);
1865 if (sret > 0) {
1866 ndiff[diff]++;
1867 break;
1868 } else if (sret < 0)
1869 fprintf(stderr, "Impossible! %s\n", desc);
1871 for (i = 0; i < s->n; i++) {
1872 if (s->flags[i] & F_BLACK) nblack++;
1874 free_game(s);
1875 sfree(desc);
1877 tt_last = time(NULL);
1878 if (tt_last > tt_now) {
1879 tt_now = tt_last;
1880 printf("%d total, %3.1f/s, bl/sn %3.1f%%/%3.1f%%: ",
1881 n, (double)n / ((double)tt_now - tt_start),
1882 ((double)nblack * 100.0) / (double)(n * p->w * p->h),
1883 ((double)nsneaky * 100.0) / (double)(n * p->w * p->h));
1884 for (diff = 0; diff < DIFF_MAX; diff++) {
1885 if (diff > 0) printf(", ");
1886 printf("%d (%3.1f%%) %s",
1887 ndiff[diff], (double)ndiff[diff] * 100.0 / (double)n,
1888 singles_diffnames[diff]);
1890 printf("\n");
1895 int main(int argc, char **argv)
1897 char *id = NULL, *desc, *desc_gen = NULL, *tgame, *err, *aux;
1898 game_state *s = NULL;
1899 game_params *p = NULL;
1900 int soln, soak = 0, ret = 1;
1901 time_t seed = time(NULL);
1902 random_state *rs = NULL;
1904 setvbuf(stdout, NULL, _IONBF, 0);
1906 while (--argc > 0) {
1907 char *p = *++argv;
1908 if (!strcmp(p, "-v")) {
1909 verbose = 1;
1910 } else if (!strcmp(p, "--soak")) {
1911 soak = 1;
1912 } else if (!strcmp(p, "--seed")) {
1913 if (argc == 0) {
1914 fprintf(stderr, "%s: --seed needs an argument", argv[0]);
1915 goto done;
1917 seed = (time_t)atoi(*++argv);
1918 argc--;
1919 } else if (*p == '-') {
1920 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
1921 return 1;
1922 } else {
1923 id = p;
1927 rs = random_new((void*)&seed, sizeof(time_t));
1929 if (!id) {
1930 fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]);
1931 goto done;
1933 desc = strchr(id, ':');
1934 if (desc) *desc++ = '\0';
1936 p = default_params();
1937 decode_params(p, id);
1938 err = validate_params(p, 1);
1939 if (err) {
1940 fprintf(stderr, "%s: %s", argv[0], err);
1941 goto done;
1944 if (soak) {
1945 if (desc) {
1946 fprintf(stderr, "%s: --soak only needs params, not game desc.\n", argv[0]);
1947 goto done;
1949 start_soak(p, rs);
1950 } else {
1951 if (!desc) desc = desc_gen = new_game_desc(p, rs, &aux, 0);
1953 err = validate_desc(p, desc);
1954 if (err) {
1955 fprintf(stderr, "%s: %s\n", argv[0], err);
1956 free_params(p);
1957 goto done;
1959 s = new_game(NULL, p, desc);
1961 if (verbose) {
1962 tgame = game_text_format(s);
1963 fputs(tgame, stdout);
1964 sfree(tgame);
1967 soln = solve_specific(s, DIFF_ANY, 0);
1968 tgame = game_text_format(s);
1969 fputs(tgame, stdout);
1970 sfree(tgame);
1971 printf("Game was %s.\n\n",
1972 soln < 0 ? "impossible" : soln > 0 ? "solved" : "not solved");
1974 ret = 0;
1976 done:
1977 if (desc_gen) sfree(desc_gen);
1978 if (p) free_params(p);
1979 if (s) free_game(s);
1980 if (rs) random_free(rs);
1982 return ret;
1985 #endif
1988 /* vim: set shiftwidth=4 tabstop=8: */