David Nickerson reports odd behaviour involving a drag start point
[sgt-puzzles/ydirson.git] / tree234.c
blob4b3151ee2f65c5d3793be15a43623d162511b313
1 /*
2 * tree234.c: reasonably generic counted 2-3-4 tree routines.
3 *
4 * This file is copyright 1999-2001 Simon Tatham.
5 *
6 * Permission is hereby granted, free of charge, to any person
7 * obtaining a copy of this software and associated documentation
8 * files (the "Software"), to deal in the Software without
9 * restriction, including without limitation the rights to use,
10 * copy, modify, merge, publish, distribute, sublicense, and/or
11 * sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following
13 * conditions:
15 * The above copyright notice and this permission notice shall be
16 * included in all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
20 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
21 * NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
23 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * SOFTWARE.
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <assert.h>
32 #include "tree234.h"
34 #include "puzzles.h" /* for smalloc/sfree */
36 #ifdef TEST
37 #define LOG(x) (printf x)
38 #define smalloc malloc
39 #define srealloc realloc
40 #define sfree free
41 #else
42 #define LOG(x)
43 #endif
45 typedef struct node234_Tag node234;
47 struct tree234_Tag {
48 node234 *root;
49 cmpfn234 cmp;
52 struct node234_Tag {
53 node234 *parent;
54 node234 *kids[4];
55 int counts[4];
56 void *elems[3];
60 * Create a 2-3-4 tree.
62 tree234 *newtree234(cmpfn234 cmp) {
63 tree234 *ret = snew(tree234);
64 LOG(("created tree %p\n", ret));
65 ret->root = NULL;
66 ret->cmp = cmp;
67 return ret;
71 * Free a 2-3-4 tree (not including freeing the elements).
73 static void freenode234(node234 *n) {
74 if (!n)
75 return;
76 freenode234(n->kids[0]);
77 freenode234(n->kids[1]);
78 freenode234(n->kids[2]);
79 freenode234(n->kids[3]);
80 sfree(n);
82 void freetree234(tree234 *t) {
83 freenode234(t->root);
84 sfree(t);
88 * Internal function to count a node.
90 static int countnode234(node234 *n) {
91 int count = 0;
92 int i;
93 if (!n)
94 return 0;
95 for (i = 0; i < 4; i++)
96 count += n->counts[i];
97 for (i = 0; i < 3; i++)
98 if (n->elems[i])
99 count++;
100 return count;
104 * Count the elements in a tree.
106 int count234(tree234 *t) {
107 if (t->root)
108 return countnode234(t->root);
109 else
110 return 0;
114 * Propagate a node overflow up a tree until it stops. Returns 0 or
115 * 1, depending on whether the root had to be split or not.
117 static int add234_insert(node234 *left, void *e, node234 *right,
118 node234 **root, node234 *n, int ki) {
119 int lcount, rcount;
121 * We need to insert the new left/element/right set in n at
122 * child position ki.
124 lcount = countnode234(left);
125 rcount = countnode234(right);
126 while (n) {
127 LOG((" at %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
129 n->kids[0], n->counts[0], n->elems[0],
130 n->kids[1], n->counts[1], n->elems[1],
131 n->kids[2], n->counts[2], n->elems[2],
132 n->kids[3], n->counts[3]));
133 LOG((" need to insert %p/%d \"%s\" %p/%d at position %d\n",
134 left, lcount, e, right, rcount, ki));
135 if (n->elems[1] == NULL) {
137 * Insert in a 2-node; simple.
139 if (ki == 0) {
140 LOG((" inserting on left of 2-node\n"));
141 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
142 n->elems[1] = n->elems[0];
143 n->kids[1] = right; n->counts[1] = rcount;
144 n->elems[0] = e;
145 n->kids[0] = left; n->counts[0] = lcount;
146 } else { /* ki == 1 */
147 LOG((" inserting on right of 2-node\n"));
148 n->kids[2] = right; n->counts[2] = rcount;
149 n->elems[1] = e;
150 n->kids[1] = left; n->counts[1] = lcount;
152 if (n->kids[0]) n->kids[0]->parent = n;
153 if (n->kids[1]) n->kids[1]->parent = n;
154 if (n->kids[2]) n->kids[2]->parent = n;
155 LOG((" done\n"));
156 break;
157 } else if (n->elems[2] == NULL) {
159 * Insert in a 3-node; simple.
161 if (ki == 0) {
162 LOG((" inserting on left of 3-node\n"));
163 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
164 n->elems[2] = n->elems[1];
165 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
166 n->elems[1] = n->elems[0];
167 n->kids[1] = right; n->counts[1] = rcount;
168 n->elems[0] = e;
169 n->kids[0] = left; n->counts[0] = lcount;
170 } else if (ki == 1) {
171 LOG((" inserting in middle of 3-node\n"));
172 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
173 n->elems[2] = n->elems[1];
174 n->kids[2] = right; n->counts[2] = rcount;
175 n->elems[1] = e;
176 n->kids[1] = left; n->counts[1] = lcount;
177 } else { /* ki == 2 */
178 LOG((" inserting on right of 3-node\n"));
179 n->kids[3] = right; n->counts[3] = rcount;
180 n->elems[2] = e;
181 n->kids[2] = left; n->counts[2] = lcount;
183 if (n->kids[0]) n->kids[0]->parent = n;
184 if (n->kids[1]) n->kids[1]->parent = n;
185 if (n->kids[2]) n->kids[2]->parent = n;
186 if (n->kids[3]) n->kids[3]->parent = n;
187 LOG((" done\n"));
188 break;
189 } else {
190 node234 *m = snew(node234);
191 m->parent = n->parent;
192 LOG((" splitting a 4-node; created new node %p\n", m));
194 * Insert in a 4-node; split into a 2-node and a
195 * 3-node, and move focus up a level.
197 * I don't think it matters which way round we put the
198 * 2 and the 3. For simplicity, we'll put the 3 first
199 * always.
201 if (ki == 0) {
202 m->kids[0] = left; m->counts[0] = lcount;
203 m->elems[0] = e;
204 m->kids[1] = right; m->counts[1] = rcount;
205 m->elems[1] = n->elems[0];
206 m->kids[2] = n->kids[1]; m->counts[2] = n->counts[1];
207 e = n->elems[1];
208 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
209 n->elems[0] = n->elems[2];
210 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
211 } else if (ki == 1) {
212 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
213 m->elems[0] = n->elems[0];
214 m->kids[1] = left; m->counts[1] = lcount;
215 m->elems[1] = e;
216 m->kids[2] = right; m->counts[2] = rcount;
217 e = n->elems[1];
218 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
219 n->elems[0] = n->elems[2];
220 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
221 } else if (ki == 2) {
222 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
223 m->elems[0] = n->elems[0];
224 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
225 m->elems[1] = n->elems[1];
226 m->kids[2] = left; m->counts[2] = lcount;
227 /* e = e; */
228 n->kids[0] = right; n->counts[0] = rcount;
229 n->elems[0] = n->elems[2];
230 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
231 } else { /* ki == 3 */
232 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
233 m->elems[0] = n->elems[0];
234 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
235 m->elems[1] = n->elems[1];
236 m->kids[2] = n->kids[2]; m->counts[2] = n->counts[2];
237 n->kids[0] = left; n->counts[0] = lcount;
238 n->elems[0] = e;
239 n->kids[1] = right; n->counts[1] = rcount;
240 e = n->elems[2];
242 m->kids[3] = n->kids[3] = n->kids[2] = NULL;
243 m->counts[3] = n->counts[3] = n->counts[2] = 0;
244 m->elems[2] = n->elems[2] = n->elems[1] = NULL;
245 if (m->kids[0]) m->kids[0]->parent = m;
246 if (m->kids[1]) m->kids[1]->parent = m;
247 if (m->kids[2]) m->kids[2]->parent = m;
248 if (n->kids[0]) n->kids[0]->parent = n;
249 if (n->kids[1]) n->kids[1]->parent = n;
250 LOG((" left (%p): %p/%d \"%s\" %p/%d \"%s\" %p/%d\n", m,
251 m->kids[0], m->counts[0], m->elems[0],
252 m->kids[1], m->counts[1], m->elems[1],
253 m->kids[2], m->counts[2]));
254 LOG((" right (%p): %p/%d \"%s\" %p/%d\n", n,
255 n->kids[0], n->counts[0], n->elems[0],
256 n->kids[1], n->counts[1]));
257 left = m; lcount = countnode234(left);
258 right = n; rcount = countnode234(right);
260 if (n->parent)
261 ki = (n->parent->kids[0] == n ? 0 :
262 n->parent->kids[1] == n ? 1 :
263 n->parent->kids[2] == n ? 2 : 3);
264 n = n->parent;
268 * If we've come out of here by `break', n will still be
269 * non-NULL and all we need to do is go back up the tree
270 * updating counts. If we've come here because n is NULL, we
271 * need to create a new root for the tree because the old one
272 * has just split into two. */
273 if (n) {
274 while (n->parent) {
275 int count = countnode234(n);
276 int childnum;
277 childnum = (n->parent->kids[0] == n ? 0 :
278 n->parent->kids[1] == n ? 1 :
279 n->parent->kids[2] == n ? 2 : 3);
280 n->parent->counts[childnum] = count;
281 n = n->parent;
283 return 0; /* root unchanged */
284 } else {
285 LOG((" root is overloaded, split into two\n"));
286 (*root) = snew(node234);
287 (*root)->kids[0] = left; (*root)->counts[0] = lcount;
288 (*root)->elems[0] = e;
289 (*root)->kids[1] = right; (*root)->counts[1] = rcount;
290 (*root)->elems[1] = NULL;
291 (*root)->kids[2] = NULL; (*root)->counts[2] = 0;
292 (*root)->elems[2] = NULL;
293 (*root)->kids[3] = NULL; (*root)->counts[3] = 0;
294 (*root)->parent = NULL;
295 if ((*root)->kids[0]) (*root)->kids[0]->parent = (*root);
296 if ((*root)->kids[1]) (*root)->kids[1]->parent = (*root);
297 LOG((" new root is %p/%d \"%s\" %p/%d\n",
298 (*root)->kids[0], (*root)->counts[0],
299 (*root)->elems[0],
300 (*root)->kids[1], (*root)->counts[1]));
301 return 1; /* root moved */
306 * Add an element e to a 2-3-4 tree t. Returns e on success, or if
307 * an existing element compares equal, returns that.
309 static void *add234_internal(tree234 *t, void *e, int index) {
310 node234 *n;
311 int ki;
312 void *orig_e = e;
313 int c;
315 LOG(("adding element \"%s\" to tree %p\n", e, t));
316 if (t->root == NULL) {
317 t->root = snew(node234);
318 t->root->elems[1] = t->root->elems[2] = NULL;
319 t->root->kids[0] = t->root->kids[1] = NULL;
320 t->root->kids[2] = t->root->kids[3] = NULL;
321 t->root->counts[0] = t->root->counts[1] = 0;
322 t->root->counts[2] = t->root->counts[3] = 0;
323 t->root->parent = NULL;
324 t->root->elems[0] = e;
325 LOG((" created root %p\n", t->root));
326 return orig_e;
329 n = t->root;
330 while (n) {
331 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
333 n->kids[0], n->counts[0], n->elems[0],
334 n->kids[1], n->counts[1], n->elems[1],
335 n->kids[2], n->counts[2], n->elems[2],
336 n->kids[3], n->counts[3]));
337 if (index >= 0) {
338 if (!n->kids[0]) {
340 * Leaf node. We want to insert at kid position
341 * equal to the index:
343 * 0 A 1 B 2 C 3
345 ki = index;
346 } else {
348 * Internal node. We always descend through it (add
349 * always starts at the bottom, never in the
350 * middle).
352 if (index <= n->counts[0]) {
353 ki = 0;
354 } else if (index -= n->counts[0] + 1, index <= n->counts[1]) {
355 ki = 1;
356 } else if (index -= n->counts[1] + 1, index <= n->counts[2]) {
357 ki = 2;
358 } else if (index -= n->counts[2] + 1, index <= n->counts[3]) {
359 ki = 3;
360 } else
361 return NULL; /* error: index out of range */
363 } else {
364 if ((c = t->cmp(e, n->elems[0])) < 0)
365 ki = 0;
366 else if (c == 0)
367 return n->elems[0]; /* already exists */
368 else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
369 ki = 1;
370 else if (c == 0)
371 return n->elems[1]; /* already exists */
372 else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
373 ki = 2;
374 else if (c == 0)
375 return n->elems[2]; /* already exists */
376 else
377 ki = 3;
379 LOG((" moving to child %d (%p)\n", ki, n->kids[ki]));
380 if (!n->kids[ki])
381 break;
382 n = n->kids[ki];
385 add234_insert(NULL, e, NULL, &t->root, n, ki);
387 return orig_e;
390 void *add234(tree234 *t, void *e) {
391 if (!t->cmp) /* tree is unsorted */
392 return NULL;
394 return add234_internal(t, e, -1);
396 void *addpos234(tree234 *t, void *e, int index) {
397 if (index < 0 || /* index out of range */
398 t->cmp) /* tree is sorted */
399 return NULL; /* return failure */
401 return add234_internal(t, e, index); /* this checks the upper bound */
405 * Look up the element at a given numeric index in a 2-3-4 tree.
406 * Returns NULL if the index is out of range.
408 void *index234(tree234 *t, int index) {
409 node234 *n;
411 if (!t->root)
412 return NULL; /* tree is empty */
414 if (index < 0 || index >= countnode234(t->root))
415 return NULL; /* out of range */
417 n = t->root;
419 while (n) {
420 if (index < n->counts[0])
421 n = n->kids[0];
422 else if (index -= n->counts[0] + 1, index < 0)
423 return n->elems[0];
424 else if (index < n->counts[1])
425 n = n->kids[1];
426 else if (index -= n->counts[1] + 1, index < 0)
427 return n->elems[1];
428 else if (index < n->counts[2])
429 n = n->kids[2];
430 else if (index -= n->counts[2] + 1, index < 0)
431 return n->elems[2];
432 else
433 n = n->kids[3];
436 /* We shouldn't ever get here. I wonder how we did. */
437 return NULL;
441 * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
442 * found. e is always passed as the first argument to cmp, so cmp
443 * can be an asymmetric function if desired. cmp can also be passed
444 * as NULL, in which case the compare function from the tree proper
445 * will be used.
447 void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp,
448 int relation, int *index) {
449 node234 *n;
450 void *ret;
451 int c;
452 int idx, ecount, kcount, cmpret;
454 if (t->root == NULL)
455 return NULL;
457 if (cmp == NULL)
458 cmp = t->cmp;
460 n = t->root;
462 * Attempt to find the element itself.
464 idx = 0;
465 ecount = -1;
467 * Prepare a fake `cmp' result if e is NULL.
469 cmpret = 0;
470 if (e == NULL) {
471 assert(relation == REL234_LT || relation == REL234_GT);
472 if (relation == REL234_LT)
473 cmpret = +1; /* e is a max: always greater */
474 else if (relation == REL234_GT)
475 cmpret = -1; /* e is a min: always smaller */
477 while (1) {
478 for (kcount = 0; kcount < 4; kcount++) {
479 if (kcount >= 3 || n->elems[kcount] == NULL ||
480 (c = cmpret ? cmpret : cmp(e, n->elems[kcount])) < 0) {
481 break;
483 if (n->kids[kcount]) idx += n->counts[kcount];
484 if (c == 0) {
485 ecount = kcount;
486 break;
488 idx++;
490 if (ecount >= 0)
491 break;
492 if (n->kids[kcount])
493 n = n->kids[kcount];
494 else
495 break;
498 if (ecount >= 0) {
500 * We have found the element we're looking for. It's
501 * n->elems[ecount], at tree index idx. If our search
502 * relation is EQ, LE or GE we can now go home.
504 if (relation != REL234_LT && relation != REL234_GT) {
505 if (index) *index = idx;
506 return n->elems[ecount];
510 * Otherwise, we'll do an indexed lookup for the previous
511 * or next element. (It would be perfectly possible to
512 * implement these search types in a non-counted tree by
513 * going back up from where we are, but far more fiddly.)
515 if (relation == REL234_LT)
516 idx--;
517 else
518 idx++;
519 } else {
521 * We've found our way to the bottom of the tree and we
522 * know where we would insert this node if we wanted to:
523 * we'd put it in in place of the (empty) subtree
524 * n->kids[kcount], and it would have index idx
526 * But the actual element isn't there. So if our search
527 * relation is EQ, we're doomed.
529 if (relation == REL234_EQ)
530 return NULL;
533 * Otherwise, we must do an index lookup for index idx-1
534 * (if we're going left - LE or LT) or index idx (if we're
535 * going right - GE or GT).
537 if (relation == REL234_LT || relation == REL234_LE) {
538 idx--;
543 * We know the index of the element we want; just call index234
544 * to do the rest. This will return NULL if the index is out of
545 * bounds, which is exactly what we want.
547 ret = index234(t, idx);
548 if (ret && index) *index = idx;
549 return ret;
551 void *find234(tree234 *t, void *e, cmpfn234 cmp) {
552 return findrelpos234(t, e, cmp, REL234_EQ, NULL);
554 void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation) {
555 return findrelpos234(t, e, cmp, relation, NULL);
557 void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index) {
558 return findrelpos234(t, e, cmp, REL234_EQ, index);
562 * Tree transformation used in delete and split: move a subtree
563 * right, from child ki of a node to the next child. Update k and
564 * index so that they still point to the same place in the
565 * transformed tree. Assumes the destination child is not full, and
566 * that the source child does have a subtree to spare. Can cope if
567 * the destination child is undersized.
569 * . C . . B .
570 * / \ -> / \
571 * [more] a A b B c d D e [more] a A b c C d D e
573 * . C . . B .
574 * / \ -> / \
575 * [more] a A b B c d [more] a A b c C d
577 static void trans234_subtree_right(node234 *n, int ki, int *k, int *index) {
578 node234 *src, *dest;
579 int i, srclen, adjust;
581 src = n->kids[ki];
582 dest = n->kids[ki+1];
584 LOG((" trans234_subtree_right(%p, %d):\n", n, ki));
585 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
587 n->kids[0], n->counts[0], n->elems[0],
588 n->kids[1], n->counts[1], n->elems[1],
589 n->kids[2], n->counts[2], n->elems[2],
590 n->kids[3], n->counts[3]));
591 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
592 src,
593 src->kids[0], src->counts[0], src->elems[0],
594 src->kids[1], src->counts[1], src->elems[1],
595 src->kids[2], src->counts[2], src->elems[2],
596 src->kids[3], src->counts[3]));
597 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
598 dest,
599 dest->kids[0], dest->counts[0], dest->elems[0],
600 dest->kids[1], dest->counts[1], dest->elems[1],
601 dest->kids[2], dest->counts[2], dest->elems[2],
602 dest->kids[3], dest->counts[3]));
604 * Move over the rest of the destination node to make space.
606 dest->kids[3] = dest->kids[2]; dest->counts[3] = dest->counts[2];
607 dest->elems[2] = dest->elems[1];
608 dest->kids[2] = dest->kids[1]; dest->counts[2] = dest->counts[1];
609 dest->elems[1] = dest->elems[0];
610 dest->kids[1] = dest->kids[0]; dest->counts[1] = dest->counts[0];
612 /* which element to move over */
613 i = (src->elems[2] ? 2 : src->elems[1] ? 1 : 0);
615 dest->elems[0] = n->elems[ki];
616 n->elems[ki] = src->elems[i];
617 src->elems[i] = NULL;
619 dest->kids[0] = src->kids[i+1]; dest->counts[0] = src->counts[i+1];
620 src->kids[i+1] = NULL; src->counts[i+1] = 0;
622 if (dest->kids[0]) dest->kids[0]->parent = dest;
624 adjust = dest->counts[0] + 1;
626 n->counts[ki] -= adjust;
627 n->counts[ki+1] += adjust;
629 srclen = n->counts[ki];
631 if (k) {
632 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
633 if ((*k) == ki && (*index) > srclen) {
634 (*index) -= srclen + 1;
635 (*k)++;
636 } else if ((*k) == ki+1) {
637 (*index) += adjust;
639 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
642 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
644 n->kids[0], n->counts[0], n->elems[0],
645 n->kids[1], n->counts[1], n->elems[1],
646 n->kids[2], n->counts[2], n->elems[2],
647 n->kids[3], n->counts[3]));
648 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
649 src,
650 src->kids[0], src->counts[0], src->elems[0],
651 src->kids[1], src->counts[1], src->elems[1],
652 src->kids[2], src->counts[2], src->elems[2],
653 src->kids[3], src->counts[3]));
654 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
655 dest,
656 dest->kids[0], dest->counts[0], dest->elems[0],
657 dest->kids[1], dest->counts[1], dest->elems[1],
658 dest->kids[2], dest->counts[2], dest->elems[2],
659 dest->kids[3], dest->counts[3]));
663 * Tree transformation used in delete and split: move a subtree
664 * left, from child ki of a node to the previous child. Update k
665 * and index so that they still point to the same place in the
666 * transformed tree. Assumes the destination child is not full, and
667 * that the source child does have a subtree to spare. Can cope if
668 * the destination child is undersized.
670 * . B . . C .
671 * / \ -> / \
672 * a A b c C d D e [more] a A b B c d D e [more]
674 * . A . . B .
675 * / \ -> / \
676 * a b B c C d [more] a A b c C d [more]
678 static void trans234_subtree_left(node234 *n, int ki, int *k, int *index) {
679 node234 *src, *dest;
680 int i, adjust;
682 src = n->kids[ki];
683 dest = n->kids[ki-1];
685 LOG((" trans234_subtree_left(%p, %d):\n", n, ki));
686 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
688 n->kids[0], n->counts[0], n->elems[0],
689 n->kids[1], n->counts[1], n->elems[1],
690 n->kids[2], n->counts[2], n->elems[2],
691 n->kids[3], n->counts[3]));
692 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
693 dest,
694 dest->kids[0], dest->counts[0], dest->elems[0],
695 dest->kids[1], dest->counts[1], dest->elems[1],
696 dest->kids[2], dest->counts[2], dest->elems[2],
697 dest->kids[3], dest->counts[3]));
698 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
699 src,
700 src->kids[0], src->counts[0], src->elems[0],
701 src->kids[1], src->counts[1], src->elems[1],
702 src->kids[2], src->counts[2], src->elems[2],
703 src->kids[3], src->counts[3]));
705 /* where in dest to put it */
706 i = (dest->elems[1] ? 2 : dest->elems[0] ? 1 : 0);
707 dest->elems[i] = n->elems[ki-1];
708 n->elems[ki-1] = src->elems[0];
710 dest->kids[i+1] = src->kids[0]; dest->counts[i+1] = src->counts[0];
712 if (dest->kids[i+1]) dest->kids[i+1]->parent = dest;
715 * Move over the rest of the source node.
717 src->kids[0] = src->kids[1]; src->counts[0] = src->counts[1];
718 src->elems[0] = src->elems[1];
719 src->kids[1] = src->kids[2]; src->counts[1] = src->counts[2];
720 src->elems[1] = src->elems[2];
721 src->kids[2] = src->kids[3]; src->counts[2] = src->counts[3];
722 src->elems[2] = NULL;
723 src->kids[3] = NULL; src->counts[3] = 0;
725 adjust = dest->counts[i+1] + 1;
727 n->counts[ki] -= adjust;
728 n->counts[ki-1] += adjust;
730 if (k) {
731 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
732 if ((*k) == ki) {
733 (*index) -= adjust;
734 if ((*index) < 0) {
735 (*index) += n->counts[ki-1] + 1;
736 (*k)--;
739 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
742 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
744 n->kids[0], n->counts[0], n->elems[0],
745 n->kids[1], n->counts[1], n->elems[1],
746 n->kids[2], n->counts[2], n->elems[2],
747 n->kids[3], n->counts[3]));
748 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
749 dest,
750 dest->kids[0], dest->counts[0], dest->elems[0],
751 dest->kids[1], dest->counts[1], dest->elems[1],
752 dest->kids[2], dest->counts[2], dest->elems[2],
753 dest->kids[3], dest->counts[3]));
754 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
755 src,
756 src->kids[0], src->counts[0], src->elems[0],
757 src->kids[1], src->counts[1], src->elems[1],
758 src->kids[2], src->counts[2], src->elems[2],
759 src->kids[3], src->counts[3]));
763 * Tree transformation used in delete and split: merge child nodes
764 * ki and ki+1 of a node. Update k and index so that they still
765 * point to the same place in the transformed tree. Assumes both
766 * children _are_ sufficiently small.
768 * . B . .
769 * / \ -> |
770 * a A b c C d a A b B c C d
772 * This routine can also cope with either child being undersized:
774 * . A . .
775 * / \ -> |
776 * a b B c a A b B c
778 * . A . .
779 * / \ -> |
780 * a b B c C d a A b B c C d
782 static void trans234_subtree_merge(node234 *n, int ki, int *k, int *index) {
783 node234 *left, *right;
784 int i, leftlen, rightlen, lsize, rsize;
786 left = n->kids[ki]; leftlen = n->counts[ki];
787 right = n->kids[ki+1]; rightlen = n->counts[ki+1];
789 LOG((" trans234_subtree_merge(%p, %d):\n", n, ki));
790 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
792 n->kids[0], n->counts[0], n->elems[0],
793 n->kids[1], n->counts[1], n->elems[1],
794 n->kids[2], n->counts[2], n->elems[2],
795 n->kids[3], n->counts[3]));
796 LOG((" left %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
797 left,
798 left->kids[0], left->counts[0], left->elems[0],
799 left->kids[1], left->counts[1], left->elems[1],
800 left->kids[2], left->counts[2], left->elems[2],
801 left->kids[3], left->counts[3]));
802 LOG((" right %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
803 right,
804 right->kids[0], right->counts[0], right->elems[0],
805 right->kids[1], right->counts[1], right->elems[1],
806 right->kids[2], right->counts[2], right->elems[2],
807 right->kids[3], right->counts[3]));
809 assert(!left->elems[2] && !right->elems[2]); /* neither is large! */
810 lsize = (left->elems[1] ? 2 : left->elems[0] ? 1 : 0);
811 rsize = (right->elems[1] ? 2 : right->elems[0] ? 1 : 0);
813 left->elems[lsize] = n->elems[ki];
815 for (i = 0; i < rsize+1; i++) {
816 left->kids[lsize+1+i] = right->kids[i];
817 left->counts[lsize+1+i] = right->counts[i];
818 if (left->kids[lsize+1+i])
819 left->kids[lsize+1+i]->parent = left;
820 if (i < rsize)
821 left->elems[lsize+1+i] = right->elems[i];
824 n->counts[ki] += rightlen + 1;
826 sfree(right);
829 * Move the rest of n up by one.
831 for (i = ki+1; i < 3; i++) {
832 n->kids[i] = n->kids[i+1];
833 n->counts[i] = n->counts[i+1];
835 for (i = ki; i < 2; i++) {
836 n->elems[i] = n->elems[i+1];
838 n->kids[3] = NULL;
839 n->counts[3] = 0;
840 n->elems[2] = NULL;
842 if (k) {
843 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
844 if ((*k) == ki+1) {
845 (*k)--;
846 (*index) += leftlen + 1;
847 } else if ((*k) > ki+1) {
848 (*k)--;
850 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
853 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
855 n->kids[0], n->counts[0], n->elems[0],
856 n->kids[1], n->counts[1], n->elems[1],
857 n->kids[2], n->counts[2], n->elems[2],
858 n->kids[3], n->counts[3]));
859 LOG((" merged %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
860 left,
861 left->kids[0], left->counts[0], left->elems[0],
862 left->kids[1], left->counts[1], left->elems[1],
863 left->kids[2], left->counts[2], left->elems[2],
864 left->kids[3], left->counts[3]));
869 * Delete an element e in a 2-3-4 tree. Does not free the element,
870 * merely removes all links to it from the tree nodes.
872 static void *delpos234_internal(tree234 *t, int index) {
873 node234 *n;
874 void *retval;
875 int ki, i;
877 retval = NULL;
879 n = t->root; /* by assumption this is non-NULL */
880 LOG(("deleting item %d from tree %p\n", index, t));
881 while (1) {
882 node234 *sub;
884 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
886 n->kids[0], n->counts[0], n->elems[0],
887 n->kids[1], n->counts[1], n->elems[1],
888 n->kids[2], n->counts[2], n->elems[2],
889 n->kids[3], n->counts[3],
890 index));
891 if (index <= n->counts[0]) {
892 ki = 0;
893 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
894 ki = 1;
895 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
896 ki = 2;
897 } else if (index -= n->counts[2]+1, index <= n->counts[3]) {
898 ki = 3;
899 } else {
900 assert(0); /* can't happen */
903 if (!n->kids[0])
904 break; /* n is a leaf node; we're here! */
907 * Check to see if we've found our target element. If so,
908 * we must choose a new target (we'll use the old target's
909 * successor, which will be in a leaf), move it into the
910 * place of the old one, continue down to the leaf and
911 * delete the old copy of the new target.
913 if (index == n->counts[ki]) {
914 node234 *m;
915 LOG((" found element in internal node, index %d\n", ki));
916 assert(n->elems[ki]); /* must be a kid _before_ an element */
917 ki++; index = 0;
918 for (m = n->kids[ki]; m->kids[0]; m = m->kids[0])
919 continue;
920 LOG((" replacing with element \"%s\" from leaf node %p\n",
921 m->elems[0], m));
922 retval = n->elems[ki-1];
923 n->elems[ki-1] = m->elems[0];
927 * Recurse down to subtree ki. If it has only one element,
928 * we have to do some transformation to start with.
930 LOG((" moving to subtree %d\n", ki));
931 sub = n->kids[ki];
932 if (!sub->elems[1]) {
933 LOG((" subtree has only one element!\n"));
934 if (ki > 0 && n->kids[ki-1]->elems[1]) {
936 * Child ki has only one element, but child
937 * ki-1 has two or more. So we need to move a
938 * subtree from ki-1 to ki.
940 trans234_subtree_right(n, ki-1, &ki, &index);
941 } else if (ki < 3 && n->kids[ki+1] &&
942 n->kids[ki+1]->elems[1]) {
944 * Child ki has only one element, but ki+1 has
945 * two or more. Move a subtree from ki+1 to ki.
947 trans234_subtree_left(n, ki+1, &ki, &index);
948 } else {
950 * ki is small with only small neighbours. Pick a
951 * neighbour and merge with it.
953 trans234_subtree_merge(n, ki>0 ? ki-1 : ki, &ki, &index);
954 sub = n->kids[ki];
956 if (!n->elems[0]) {
958 * The root is empty and needs to be
959 * removed.
961 LOG((" shifting root!\n"));
962 t->root = sub;
963 sub->parent = NULL;
964 sfree(n);
965 n = NULL;
970 if (n)
971 n->counts[ki]--;
972 n = sub;
976 * Now n is a leaf node, and ki marks the element number we
977 * want to delete. We've already arranged for the leaf to be
978 * bigger than minimum size, so let's just go to it.
980 assert(!n->kids[0]);
981 if (!retval)
982 retval = n->elems[ki];
984 for (i = ki; i < 2 && n->elems[i+1]; i++)
985 n->elems[i] = n->elems[i+1];
986 n->elems[i] = NULL;
989 * It's just possible that we have reduced the leaf to zero
990 * size. This can only happen if it was the root - so destroy
991 * it and make the tree empty.
993 if (!n->elems[0]) {
994 LOG((" removed last element in tree, destroying empty root\n"));
995 assert(n == t->root);
996 sfree(n);
997 t->root = NULL;
1000 return retval; /* finished! */
1002 void *delpos234(tree234 *t, int index) {
1003 if (index < 0 || index >= countnode234(t->root))
1004 return NULL;
1005 return delpos234_internal(t, index);
1007 void *del234(tree234 *t, void *e) {
1008 int index;
1009 if (!findrelpos234(t, e, NULL, REL234_EQ, &index))
1010 return NULL; /* it wasn't in there anyway */
1011 return delpos234_internal(t, index); /* it's there; delete it. */
1015 * Join two subtrees together with a separator element between
1016 * them, given their relative height.
1018 * (Height<0 means the left tree is shorter, >0 means the right
1019 * tree is shorter, =0 means (duh) they're equal.)
1021 * It is assumed that any checks needed on the ordering criterion
1022 * have _already_ been done.
1024 * The value returned in `height' is 0 or 1 depending on whether the
1025 * resulting tree is the same height as the original larger one, or
1026 * one higher.
1028 static node234 *join234_internal(node234 *left, void *sep,
1029 node234 *right, int *height) {
1030 node234 *root, *node;
1031 int relht = *height;
1032 int ki;
1034 LOG((" join: joining %p \"%s\" %p, relative height is %d\n",
1035 left, sep, right, relht));
1036 if (relht == 0) {
1038 * The trees are the same height. Create a new one-element
1039 * root containing the separator and pointers to the two
1040 * nodes.
1042 node234 *newroot;
1043 newroot = snew(node234);
1044 newroot->kids[0] = left; newroot->counts[0] = countnode234(left);
1045 newroot->elems[0] = sep;
1046 newroot->kids[1] = right; newroot->counts[1] = countnode234(right);
1047 newroot->elems[1] = NULL;
1048 newroot->kids[2] = NULL; newroot->counts[2] = 0;
1049 newroot->elems[2] = NULL;
1050 newroot->kids[3] = NULL; newroot->counts[3] = 0;
1051 newroot->parent = NULL;
1052 if (left) left->parent = newroot;
1053 if (right) right->parent = newroot;
1054 *height = 1;
1055 LOG((" join: same height, brand new root\n"));
1056 return newroot;
1060 * This now works like the addition algorithm on the larger
1061 * tree. We're replacing a single kid pointer with two kid
1062 * pointers separated by an element; if that causes the node to
1063 * overload, we split it in two, move a separator element up to
1064 * the next node, and repeat.
1066 if (relht < 0) {
1068 * Left tree is shorter. Search down the right tree to find
1069 * the pointer we're inserting at.
1071 node = root = right;
1072 while (++relht < 0) {
1073 node = node->kids[0];
1075 ki = 0;
1076 right = node->kids[ki];
1077 } else {
1079 * Right tree is shorter; search down the left to find the
1080 * pointer we're inserting at.
1082 node = root = left;
1083 while (--relht > 0) {
1084 if (node->elems[2])
1085 node = node->kids[3];
1086 else if (node->elems[1])
1087 node = node->kids[2];
1088 else
1089 node = node->kids[1];
1091 if (node->elems[2])
1092 ki = 3;
1093 else if (node->elems[1])
1094 ki = 2;
1095 else
1096 ki = 1;
1097 left = node->kids[ki];
1101 * Now proceed as for addition.
1103 *height = add234_insert(left, sep, right, &root, node, ki);
1105 return root;
1107 static int height234(tree234 *t) {
1108 int level = 0;
1109 node234 *n = t->root;
1110 while (n) {
1111 level++;
1112 n = n->kids[0];
1114 return level;
1116 tree234 *join234(tree234 *t1, tree234 *t2) {
1117 int size2 = countnode234(t2->root);
1118 if (size2 > 0) {
1119 void *element;
1120 int relht;
1122 if (t1->cmp) {
1123 element = index234(t2, 0);
1124 element = findrelpos234(t1, element, NULL, REL234_GE, NULL);
1125 if (element)
1126 return NULL;
1129 element = delpos234(t2, 0);
1130 relht = height234(t1) - height234(t2);
1131 t1->root = join234_internal(t1->root, element, t2->root, &relht);
1132 t2->root = NULL;
1134 return t1;
1136 tree234 *join234r(tree234 *t1, tree234 *t2) {
1137 int size1 = countnode234(t1->root);
1138 if (size1 > 0) {
1139 void *element;
1140 int relht;
1142 if (t2->cmp) {
1143 element = index234(t1, size1-1);
1144 element = findrelpos234(t2, element, NULL, REL234_LE, NULL);
1145 if (element)
1146 return NULL;
1149 element = delpos234(t1, size1-1);
1150 relht = height234(t1) - height234(t2);
1151 t2->root = join234_internal(t1->root, element, t2->root, &relht);
1152 t1->root = NULL;
1154 return t2;
1158 * Split out the first <index> elements in a tree and return a
1159 * pointer to the root node. Leave the root node of the remainder
1160 * in t.
1162 static node234 *split234_internal(tree234 *t, int index) {
1163 node234 *halves[2] = { NULL, NULL }, *n, *sib, *sub;
1164 node234 *lparent, *rparent;
1165 int ki, pki, i, half, lcount, rcount;
1167 n = t->root;
1168 LOG(("splitting tree %p at point %d\n", t, index));
1171 * Easy special cases. After this we have also dealt completely
1172 * with the empty-tree case and we can assume the root exists.
1174 if (index == 0) /* return nothing */
1175 return NULL;
1176 if (index == countnode234(t->root)) { /* return the whole tree */
1177 node234 *ret = t->root;
1178 t->root = NULL;
1179 return ret;
1183 * Search down the tree to find the split point.
1185 halves[0] = halves[1] = NULL;
1186 lparent = rparent = NULL;
1187 pki = -1;
1188 while (n) {
1189 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
1191 n->kids[0], n->counts[0], n->elems[0],
1192 n->kids[1], n->counts[1], n->elems[1],
1193 n->kids[2], n->counts[2], n->elems[2],
1194 n->kids[3], n->counts[3],
1195 index));
1196 lcount = index;
1197 rcount = countnode234(n) - lcount;
1198 if (index <= n->counts[0]) {
1199 ki = 0;
1200 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
1201 ki = 1;
1202 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
1203 ki = 2;
1204 } else {
1205 index -= n->counts[2]+1;
1206 ki = 3;
1209 LOG((" splitting at subtree %d\n", ki));
1210 sub = n->kids[ki];
1212 LOG((" splitting at child index %d\n", ki));
1215 * Split the node, put halves[0] on the right of the left
1216 * one and halves[1] on the left of the right one, put the
1217 * new node pointers in halves[0] and halves[1], and go up
1218 * a level.
1220 sib = snew(node234);
1221 for (i = 0; i < 3; i++) {
1222 if (i+ki < 3 && n->elems[i+ki]) {
1223 sib->elems[i] = n->elems[i+ki];
1224 sib->kids[i+1] = n->kids[i+ki+1];
1225 if (sib->kids[i+1]) sib->kids[i+1]->parent = sib;
1226 sib->counts[i+1] = n->counts[i+ki+1];
1227 n->elems[i+ki] = NULL;
1228 n->kids[i+ki+1] = NULL;
1229 n->counts[i+ki+1] = 0;
1230 } else {
1231 sib->elems[i] = NULL;
1232 sib->kids[i+1] = NULL;
1233 sib->counts[i+1] = 0;
1236 if (lparent) {
1237 lparent->kids[pki] = n;
1238 lparent->counts[pki] = lcount;
1239 n->parent = lparent;
1240 rparent->kids[0] = sib;
1241 rparent->counts[0] = rcount;
1242 sib->parent = rparent;
1243 } else {
1244 halves[0] = n;
1245 n->parent = NULL;
1246 halves[1] = sib;
1247 sib->parent = NULL;
1249 lparent = n;
1250 rparent = sib;
1251 pki = ki;
1252 LOG((" left node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1254 n->kids[0], n->counts[0], n->elems[0],
1255 n->kids[1], n->counts[1], n->elems[1],
1256 n->kids[2], n->counts[2], n->elems[2],
1257 n->kids[3], n->counts[3]));
1258 LOG((" right node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1259 sib,
1260 sib->kids[0], sib->counts[0], sib->elems[0],
1261 sib->kids[1], sib->counts[1], sib->elems[1],
1262 sib->kids[2], sib->counts[2], sib->elems[2],
1263 sib->kids[3], sib->counts[3]));
1265 n = sub;
1269 * We've come off the bottom here, so we've successfully split
1270 * the tree into two equally high subtrees. The only problem is
1271 * that some of the nodes down the fault line will be smaller
1272 * than the minimum permitted size. (Since this is a 2-3-4
1273 * tree, that means they'll be zero-element one-child nodes.)
1275 LOG((" fell off bottom, lroot is %p, rroot is %p\n",
1276 halves[0], halves[1]));
1277 assert(halves[0] != NULL);
1278 assert(halves[1] != NULL);
1279 lparent->counts[pki] = rparent->counts[0] = 0;
1280 lparent->kids[pki] = rparent->kids[0] = NULL;
1283 * So now we go back down the tree from each of the two roots,
1284 * fixing up undersize nodes.
1286 for (half = 0; half < 2; half++) {
1288 * Remove the root if it's undersize (it will contain only
1289 * one child pointer, so just throw it away and replace it
1290 * with its child). This might happen several times.
1292 while (halves[half] && !halves[half]->elems[0]) {
1293 LOG((" root %p is undersize, throwing away\n", halves[half]));
1294 halves[half] = halves[half]->kids[0];
1295 sfree(halves[half]->parent);
1296 halves[half]->parent = NULL;
1297 LOG((" new root is %p\n", halves[half]));
1300 n = halves[half];
1301 while (n) {
1302 void (*toward)(node234 *n, int ki, int *k, int *index);
1303 int ni, merge;
1306 * Now we have a potentially undersize node on the
1307 * right (if half==0) or left (if half==1). Sort it
1308 * out, by merging with a neighbour or by transferring
1309 * subtrees over. At this time we must also ensure that
1310 * nodes are bigger than minimum, in case we need an
1311 * element to merge two nodes below.
1313 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1315 n->kids[0], n->counts[0], n->elems[0],
1316 n->kids[1], n->counts[1], n->elems[1],
1317 n->kids[2], n->counts[2], n->elems[2],
1318 n->kids[3], n->counts[3]));
1319 if (half == 1) {
1320 ki = 0; /* the kid we're interested in */
1321 ni = 1; /* the neighbour */
1322 merge = 0; /* for merge: leftmost of the two */
1323 toward = trans234_subtree_left;
1324 } else {
1325 ki = (n->kids[3] ? 3 : n->kids[2] ? 2 : 1);
1326 ni = ki-1;
1327 merge = ni;
1328 toward = trans234_subtree_right;
1331 sub = n->kids[ki];
1332 if (sub && !sub->elems[1]) {
1334 * This node is undersized or minimum-size. If we
1335 * can merge it with its neighbour, we do so;
1336 * otherwise we must be able to transfer subtrees
1337 * over to it until it is greater than minimum
1338 * size.
1340 int undersized = (!sub->elems[0]);
1341 LOG((" child %d is %ssize\n", ki,
1342 undersized ? "under" : "minimum-"));
1343 LOG((" neighbour is %s\n",
1344 n->kids[ni]->elems[2] ? "large" :
1345 n->kids[ni]->elems[1] ? "medium" : "small"));
1346 if (!n->kids[ni]->elems[1] ||
1347 (undersized && !n->kids[ni]->elems[2])) {
1349 * Neighbour is small, or possibly neighbour is
1350 * medium and we are undersize.
1352 trans234_subtree_merge(n, merge, NULL, NULL);
1353 sub = n->kids[merge];
1354 if (!n->elems[0]) {
1356 * n is empty, and hence must have been the
1357 * root and needs to be removed.
1359 assert(!n->parent);
1360 LOG((" shifting root!\n"));
1361 halves[half] = sub;
1362 halves[half]->parent = NULL;
1363 sfree(n);
1365 } else {
1366 /* Neighbour is big enough to move trees over. */
1367 toward(n, ni, NULL, NULL);
1368 if (undersized)
1369 toward(n, ni, NULL, NULL);
1372 n = sub;
1376 t->root = halves[1];
1377 return halves[0];
1379 tree234 *splitpos234(tree234 *t, int index, int before) {
1380 tree234 *ret;
1381 node234 *n;
1382 int count;
1384 count = countnode234(t->root);
1385 if (index < 0 || index > count)
1386 return NULL; /* error */
1387 ret = newtree234(t->cmp);
1388 n = split234_internal(t, index);
1389 if (before) {
1390 /* We want to return the ones before the index. */
1391 ret->root = n;
1392 } else {
1394 * We want to keep the ones before the index and return the
1395 * ones after.
1397 ret->root = t->root;
1398 t->root = n;
1400 return ret;
1402 tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel) {
1403 int before;
1404 int index;
1406 assert(rel != REL234_EQ);
1408 if (rel == REL234_GT || rel == REL234_GE) {
1409 before = 1;
1410 rel = (rel == REL234_GT ? REL234_LE : REL234_LT);
1411 } else {
1412 before = 0;
1414 if (!findrelpos234(t, e, cmp, rel, &index))
1415 index = 0;
1417 return splitpos234(t, index+1, before);
1420 static node234 *copynode234(node234 *n, copyfn234 copyfn, void *copyfnstate) {
1421 int i;
1422 node234 *n2 = snew(node234);
1424 for (i = 0; i < 3; i++) {
1425 if (n->elems[i] && copyfn)
1426 n2->elems[i] = copyfn(copyfnstate, n->elems[i]);
1427 else
1428 n2->elems[i] = n->elems[i];
1431 for (i = 0; i < 4; i++) {
1432 if (n->kids[i]) {
1433 n2->kids[i] = copynode234(n->kids[i], copyfn, copyfnstate);
1434 n2->kids[i]->parent = n2;
1435 } else {
1436 n2->kids[i] = NULL;
1438 n2->counts[i] = n->counts[i];
1441 return n2;
1443 tree234 *copytree234(tree234 *t, copyfn234 copyfn, void *copyfnstate) {
1444 tree234 *t2;
1446 t2 = newtree234(t->cmp);
1447 if (t->root) {
1448 t2->root = copynode234(t->root, copyfn, copyfnstate);
1449 t2->root->parent = NULL;
1450 } else
1451 t2->root = NULL;
1453 return t2;
1456 #ifdef TEST
1459 * Test code for the 2-3-4 tree. This code maintains an alternative
1460 * representation of the data in the tree, in an array (using the
1461 * obvious and slow insert and delete functions). After each tree
1462 * operation, the verify() function is called, which ensures all
1463 * the tree properties are preserved:
1464 * - node->child->parent always equals node
1465 * - tree->root->parent always equals NULL
1466 * - number of kids == 0 or number of elements + 1;
1467 * - tree has the same depth everywhere
1468 * - every node has at least one element
1469 * - subtree element counts are accurate
1470 * - any NULL kid pointer is accompanied by a zero count
1471 * - in a sorted tree: ordering property between elements of a
1472 * node and elements of its children is preserved
1473 * and also ensures the list represented by the tree is the same
1474 * list it should be. (This last check also doubly verifies the
1475 * ordering properties, because the `same list it should be' is by
1476 * definition correctly ordered. It also ensures all nodes are
1477 * distinct, because the enum functions would get caught in a loop
1478 * if not.)
1481 #include <string.h>
1482 #include <stdarg.h>
1484 #define srealloc realloc
1487 * Error reporting function.
1489 void error(char *fmt, ...) {
1490 va_list ap;
1491 printf("ERROR: ");
1492 va_start(ap, fmt);
1493 vfprintf(stdout, fmt, ap);
1494 va_end(ap);
1495 printf("\n");
1498 /* The array representation of the data. */
1499 void **array;
1500 int arraylen, arraysize;
1501 cmpfn234 cmp;
1503 /* The tree representation of the same data. */
1504 tree234 *tree;
1507 * Routines to provide a diagnostic printout of a tree. Currently
1508 * relies on every element in the tree being a one-character string
1509 * :-)
1511 typedef struct {
1512 char **levels;
1513 } dispctx;
1515 int dispnode(node234 *n, int level, dispctx *ctx) {
1516 if (level == 0) {
1517 int xpos = strlen(ctx->levels[0]);
1518 int len;
1520 if (n->elems[2])
1521 len = sprintf(ctx->levels[0]+xpos, " %s%s%s",
1522 n->elems[0], n->elems[1], n->elems[2]);
1523 else if (n->elems[1])
1524 len = sprintf(ctx->levels[0]+xpos, " %s%s",
1525 n->elems[0], n->elems[1]);
1526 else
1527 len = sprintf(ctx->levels[0]+xpos, " %s",
1528 n->elems[0]);
1529 return xpos + 1 + (len-1) / 2;
1530 } else {
1531 int xpos[4], nkids;
1532 int nodelen, mypos, myleft, x, i;
1534 xpos[0] = dispnode(n->kids[0], level-3, ctx);
1535 xpos[1] = dispnode(n->kids[1], level-3, ctx);
1536 nkids = 2;
1537 if (n->kids[2]) {
1538 xpos[2] = dispnode(n->kids[2], level-3, ctx);
1539 nkids = 3;
1541 if (n->kids[3]) {
1542 xpos[3] = dispnode(n->kids[3], level-3, ctx);
1543 nkids = 4;
1546 if (nkids == 4)
1547 mypos = (xpos[1] + xpos[2]) / 2;
1548 else if (nkids == 3)
1549 mypos = xpos[1];
1550 else
1551 mypos = (xpos[0] + xpos[1]) / 2;
1552 nodelen = nkids * 2 - 1;
1553 myleft = mypos - ((nodelen-1)/2);
1554 assert(myleft >= xpos[0]);
1555 assert(myleft + nodelen-1 <= xpos[nkids-1]);
1557 x = strlen(ctx->levels[level]);
1558 while (x <= xpos[0] && x < myleft)
1559 ctx->levels[level][x++] = ' ';
1560 while (x < myleft)
1561 ctx->levels[level][x++] = '_';
1562 if (nkids==4)
1563 x += sprintf(ctx->levels[level]+x, ".%s.%s.%s.",
1564 n->elems[0], n->elems[1], n->elems[2]);
1565 else if (nkids==3)
1566 x += sprintf(ctx->levels[level]+x, ".%s.%s.",
1567 n->elems[0], n->elems[1]);
1568 else
1569 x += sprintf(ctx->levels[level]+x, ".%s.",
1570 n->elems[0]);
1571 while (x < xpos[nkids-1])
1572 ctx->levels[level][x++] = '_';
1573 ctx->levels[level][x] = '\0';
1575 x = strlen(ctx->levels[level-1]);
1576 for (i = 0; i < nkids; i++) {
1577 int rpos, pos;
1578 rpos = xpos[i];
1579 if (i > 0 && i < nkids-1)
1580 pos = myleft + 2*i;
1581 else
1582 pos = rpos;
1583 if (rpos < pos)
1584 rpos++;
1585 while (x < pos && x < rpos)
1586 ctx->levels[level-1][x++] = ' ';
1587 if (x == pos)
1588 ctx->levels[level-1][x++] = '|';
1589 while (x < pos || x < rpos)
1590 ctx->levels[level-1][x++] = '_';
1591 if (x == pos)
1592 ctx->levels[level-1][x++] = '|';
1594 ctx->levels[level-1][x] = '\0';
1596 x = strlen(ctx->levels[level-2]);
1597 for (i = 0; i < nkids; i++) {
1598 int rpos = xpos[i];
1600 while (x < rpos)
1601 ctx->levels[level-2][x++] = ' ';
1602 ctx->levels[level-2][x++] = '|';
1604 ctx->levels[level-2][x] = '\0';
1606 return mypos;
1610 void disptree(tree234 *t) {
1611 dispctx ctx;
1612 char *leveldata;
1613 int width = count234(t);
1614 int ht = height234(t) * 3 - 2;
1615 int i;
1617 if (!t->root) {
1618 printf("[empty tree]\n");
1621 leveldata = smalloc(ht * (width+2));
1622 ctx.levels = smalloc(ht * sizeof(char *));
1623 for (i = 0; i < ht; i++) {
1624 ctx.levels[i] = leveldata + i * (width+2);
1625 ctx.levels[i][0] = '\0';
1628 (void) dispnode(t->root, ht-1, &ctx);
1630 for (i = ht; i-- ;)
1631 printf("%s\n", ctx.levels[i]);
1633 sfree(ctx.levels);
1634 sfree(leveldata);
1637 typedef struct {
1638 int treedepth;
1639 int elemcount;
1640 } chkctx;
1642 int chknode(chkctx *ctx, int level, node234 *node,
1643 void *lowbound, void *highbound) {
1644 int nkids, nelems;
1645 int i;
1646 int count;
1648 /* Count the non-NULL kids. */
1649 for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
1650 /* Ensure no kids beyond the first NULL are non-NULL. */
1651 for (i = nkids; i < 4; i++)
1652 if (node->kids[i]) {
1653 error("node %p: nkids=%d but kids[%d] non-NULL",
1654 node, nkids, i);
1655 } else if (node->counts[i]) {
1656 error("node %p: kids[%d] NULL but count[%d]=%d nonzero",
1657 node, i, i, node->counts[i]);
1660 /* Count the non-NULL elements. */
1661 for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
1662 /* Ensure no elements beyond the first NULL are non-NULL. */
1663 for (i = nelems; i < 3; i++)
1664 if (node->elems[i]) {
1665 error("node %p: nelems=%d but elems[%d] non-NULL",
1666 node, nelems, i);
1669 if (nkids == 0) {
1671 * If nkids==0, this is a leaf node; verify that the tree
1672 * depth is the same everywhere.
1674 if (ctx->treedepth < 0)
1675 ctx->treedepth = level; /* we didn't know the depth yet */
1676 else if (ctx->treedepth != level)
1677 error("node %p: leaf at depth %d, previously seen depth %d",
1678 node, level, ctx->treedepth);
1679 } else {
1681 * If nkids != 0, then it should be nelems+1, unless nelems
1682 * is 0 in which case nkids should also be 0 (and so we
1683 * shouldn't be in this condition at all).
1685 int shouldkids = (nelems ? nelems+1 : 0);
1686 if (nkids != shouldkids) {
1687 error("node %p: %d elems should mean %d kids but has %d",
1688 node, nelems, shouldkids, nkids);
1693 * nelems should be at least 1.
1695 if (nelems == 0) {
1696 error("node %p: no elems", node, nkids);
1700 * Add nelems to the running element count of the whole tree.
1702 ctx->elemcount += nelems;
1705 * Check ordering property: all elements should be strictly >
1706 * lowbound, strictly < highbound, and strictly < each other in
1707 * sequence. (lowbound and highbound are NULL at edges of tree
1708 * - both NULL at root node - and NULL is considered to be <
1709 * everything and > everything. IYSWIM.)
1711 if (cmp) {
1712 for (i = -1; i < nelems; i++) {
1713 void *lower = (i == -1 ? lowbound : node->elems[i]);
1714 void *higher = (i+1 == nelems ? highbound : node->elems[i+1]);
1715 if (lower && higher && cmp(lower, higher) >= 0) {
1716 error("node %p: kid comparison [%d=%s,%d=%s] failed",
1717 node, i, lower, i+1, higher);
1723 * Check parent pointers: all non-NULL kids should have a
1724 * parent pointer coming back to this node.
1726 for (i = 0; i < nkids; i++)
1727 if (node->kids[i]->parent != node) {
1728 error("node %p kid %d: parent ptr is %p not %p",
1729 node, i, node->kids[i]->parent, node);
1734 * Now (finally!) recurse into subtrees.
1736 count = nelems;
1738 for (i = 0; i < nkids; i++) {
1739 void *lower = (i == 0 ? lowbound : node->elems[i-1]);
1740 void *higher = (i >= nelems ? highbound : node->elems[i]);
1741 int subcount = chknode(ctx, level+1, node->kids[i], lower, higher);
1742 if (node->counts[i] != subcount) {
1743 error("node %p kid %d: count says %d, subtree really has %d",
1744 node, i, node->counts[i], subcount);
1746 count += subcount;
1749 return count;
1752 void verifytree(tree234 *tree, void **array, int arraylen) {
1753 chkctx ctx;
1754 int i;
1755 void *p;
1757 ctx.treedepth = -1; /* depth unknown yet */
1758 ctx.elemcount = 0; /* no elements seen yet */
1760 * Verify validity of tree properties.
1762 if (tree->root) {
1763 if (tree->root->parent != NULL)
1764 error("root->parent is %p should be null", tree->root->parent);
1765 chknode(&ctx, 0, tree->root, NULL, NULL);
1767 printf("tree depth: %d\n", ctx.treedepth);
1769 * Enumerate the tree and ensure it matches up to the array.
1771 for (i = 0; NULL != (p = index234(tree, i)); i++) {
1772 if (i >= arraylen)
1773 error("tree contains more than %d elements", arraylen);
1774 if (array[i] != p)
1775 error("enum at position %d: array says %s, tree says %s",
1776 i, array[i], p);
1778 if (ctx.elemcount != i) {
1779 error("tree really contains %d elements, enum gave %d",
1780 ctx.elemcount, i);
1782 if (i < arraylen) {
1783 error("enum gave only %d elements, array has %d", i, arraylen);
1785 i = count234(tree);
1786 if (ctx.elemcount != i) {
1787 error("tree really contains %d elements, count234 gave %d",
1788 ctx.elemcount, i);
1791 void verify(void) { verifytree(tree, array, arraylen); }
1793 void internal_addtest(void *elem, int index, void *realret) {
1794 int i, j;
1795 void *retval;
1797 if (arraysize < arraylen+1) {
1798 arraysize = arraylen+1+256;
1799 array = (array == NULL ? smalloc(arraysize*sizeof(*array)) :
1800 srealloc(array, arraysize*sizeof(*array)));
1803 i = index;
1804 /* now i points to the first element >= elem */
1805 retval = elem; /* expect elem returned (success) */
1806 for (j = arraylen; j > i; j--)
1807 array[j] = array[j-1];
1808 array[i] = elem; /* add elem to array */
1809 arraylen++;
1811 if (realret != retval) {
1812 error("add: retval was %p expected %p", realret, retval);
1815 verify();
1818 void addtest(void *elem) {
1819 int i;
1820 void *realret;
1822 realret = add234(tree, elem);
1824 i = 0;
1825 while (i < arraylen && cmp(elem, array[i]) > 0)
1826 i++;
1827 if (i < arraylen && !cmp(elem, array[i])) {
1828 void *retval = array[i]; /* expect that returned not elem */
1829 if (realret != retval) {
1830 error("add: retval was %p expected %p", realret, retval);
1832 } else
1833 internal_addtest(elem, i, realret);
1836 void addpostest(void *elem, int i) {
1837 void *realret;
1839 realret = addpos234(tree, elem, i);
1841 internal_addtest(elem, i, realret);
1844 void delpostest(int i) {
1845 int index = i;
1846 void *elem = array[i], *ret;
1848 /* i points to the right element */
1849 while (i < arraylen-1) {
1850 array[i] = array[i+1];
1851 i++;
1853 arraylen--; /* delete elem from array */
1855 if (tree->cmp)
1856 ret = del234(tree, elem);
1857 else
1858 ret = delpos234(tree, index);
1860 if (ret != elem) {
1861 error("del returned %p, expected %p", ret, elem);
1864 verify();
1867 void deltest(void *elem) {
1868 int i;
1870 i = 0;
1871 while (i < arraylen && cmp(elem, array[i]) > 0)
1872 i++;
1873 if (i >= arraylen || cmp(elem, array[i]) != 0)
1874 return; /* don't do it! */
1875 delpostest(i);
1878 /* A sample data set and test utility. Designed for pseudo-randomness,
1879 * and yet repeatability. */
1882 * This random number generator uses the `portable implementation'
1883 * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
1884 * change it if not.
1886 int randomnumber(unsigned *seed) {
1887 *seed *= 1103515245;
1888 *seed += 12345;
1889 return ((*seed) / 65536) % 32768;
1892 int mycmp(void *av, void *bv) {
1893 char const *a = (char const *)av;
1894 char const *b = (char const *)bv;
1895 return strcmp(a, b);
1898 char *strings[] = {
1899 "0", "2", "3", "I", "K", "d", "H", "J", "Q", "N", "n", "q", "j", "i",
1900 "7", "G", "F", "D", "b", "x", "g", "B", "e", "v", "V", "T", "f", "E",
1901 "S", "8", "A", "k", "X", "p", "C", "R", "a", "o", "r", "O", "Z", "u",
1902 "6", "1", "w", "L", "P", "M", "c", "U", "h", "9", "t", "5", "W", "Y",
1903 "m", "s", "l", "4",
1904 #if 0
1905 "a", "ab", "absque", "coram", "de",
1906 "palam", "clam", "cum", "ex", "e",
1907 "sine", "tenus", "pro", "prae",
1908 "banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
1909 "penguin", "blancmange", "pangolin", "whale", "hedgehog",
1910 "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
1911 "murfl", "spoo", "breen", "flarn", "octothorpe",
1912 "snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
1913 "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
1914 "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
1915 "wand", "ring", "amulet"
1916 #endif
1919 #define NSTR lenof(strings)
1921 void findtest(void) {
1922 static const int rels[] = {
1923 REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT
1925 static const char *const relnames[] = {
1926 "EQ", "GE", "LE", "LT", "GT"
1928 int i, j, rel, index;
1929 char *p, *ret, *realret, *realret2;
1930 int lo, hi, mid, c;
1932 for (i = 0; i < (int)NSTR; i++) {
1933 p = strings[i];
1934 for (j = 0; j < (int)(sizeof(rels)/sizeof(*rels)); j++) {
1935 rel = rels[j];
1937 lo = 0; hi = arraylen-1;
1938 while (lo <= hi) {
1939 mid = (lo + hi) / 2;
1940 c = strcmp(p, array[mid]);
1941 if (c < 0)
1942 hi = mid-1;
1943 else if (c > 0)
1944 lo = mid+1;
1945 else
1946 break;
1949 if (c == 0) {
1950 if (rel == REL234_LT)
1951 ret = (mid > 0 ? array[--mid] : NULL);
1952 else if (rel == REL234_GT)
1953 ret = (mid < arraylen-1 ? array[++mid] : NULL);
1954 else
1955 ret = array[mid];
1956 } else {
1957 assert(lo == hi+1);
1958 if (rel == REL234_LT || rel == REL234_LE) {
1959 mid = hi;
1960 ret = (hi >= 0 ? array[hi] : NULL);
1961 } else if (rel == REL234_GT || rel == REL234_GE) {
1962 mid = lo;
1963 ret = (lo < arraylen ? array[lo] : NULL);
1964 } else
1965 ret = NULL;
1968 realret = findrelpos234(tree, p, NULL, rel, &index);
1969 if (realret != ret) {
1970 error("find(\"%s\",%s) gave %s should be %s",
1971 p, relnames[j], realret, ret);
1973 if (realret && index != mid) {
1974 error("find(\"%s\",%s) gave %d should be %d",
1975 p, relnames[j], index, mid);
1977 if (realret && rel == REL234_EQ) {
1978 realret2 = index234(tree, index);
1979 if (realret2 != realret) {
1980 error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
1981 p, relnames[j], realret, index, index, realret2);
1984 #if 0
1985 printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],
1986 realret, index);
1987 #endif
1991 realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);
1992 if (arraylen && (realret != array[0] || index != 0)) {
1993 error("find(NULL,GT) gave %s(%d) should be %s(0)",
1994 realret, index, array[0]);
1995 } else if (!arraylen && (realret != NULL)) {
1996 error("find(NULL,GT) gave %s(%d) should be NULL",
1997 realret, index);
2000 realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);
2001 if (arraylen && (realret != array[arraylen-1] || index != arraylen-1)) {
2002 error("find(NULL,LT) gave %s(%d) should be %s(0)",
2003 realret, index, array[arraylen-1]);
2004 } else if (!arraylen && (realret != NULL)) {
2005 error("find(NULL,LT) gave %s(%d) should be NULL",
2006 realret, index);
2010 void splittest(tree234 *tree, void **array, int arraylen) {
2011 int i;
2012 tree234 *tree3, *tree4;
2013 for (i = 0; i <= arraylen; i++) {
2014 tree3 = copytree234(tree, NULL, NULL);
2015 tree4 = splitpos234(tree3, i, 0);
2016 verifytree(tree3, array, i);
2017 verifytree(tree4, array+i, arraylen-i);
2018 join234(tree3, tree4);
2019 freetree234(tree4); /* left empty by join */
2020 verifytree(tree3, array, arraylen);
2021 freetree234(tree3);
2025 int main(void) {
2026 int in[NSTR];
2027 int i, j, k;
2028 int tworoot, tmplen;
2029 unsigned seed = 0;
2030 tree234 *tree2, *tree3, *tree4;
2031 int c;
2033 setvbuf(stdout, NULL, _IOLBF, 0);
2035 for (i = 0; i < (int)NSTR; i++) in[i] = 0;
2036 array = NULL;
2037 arraylen = arraysize = 0;
2038 tree = newtree234(mycmp);
2039 cmp = mycmp;
2041 verify();
2042 for (i = 0; i < 10000; i++) {
2043 j = randomnumber(&seed);
2044 j %= NSTR;
2045 printf("trial: %d\n", i);
2046 if (in[j]) {
2047 printf("deleting %s (%d)\n", strings[j], j);
2048 deltest(strings[j]);
2049 in[j] = 0;
2050 } else {
2051 printf("adding %s (%d)\n", strings[j], j);
2052 addtest(strings[j]);
2053 in[j] = 1;
2055 disptree(tree);
2056 findtest();
2059 while (arraylen > 0) {
2060 j = randomnumber(&seed);
2061 j %= arraylen;
2062 deltest(array[j]);
2065 freetree234(tree);
2068 * Now try an unsorted tree. We don't really need to test
2069 * delpos234 because we know del234 is based on it, so it's
2070 * already been tested in the above sorted-tree code; but for
2071 * completeness we'll use it to tear down our unsorted tree
2072 * once we've built it.
2074 tree = newtree234(NULL);
2075 cmp = NULL;
2076 verify();
2077 for (i = 0; i < 1000; i++) {
2078 printf("trial: %d\n", i);
2079 j = randomnumber(&seed);
2080 j %= NSTR;
2081 k = randomnumber(&seed);
2082 k %= count234(tree)+1;
2083 printf("adding string %s at index %d\n", strings[j], k);
2084 addpostest(strings[j], k);
2088 * While we have this tree in its full form, we'll take a copy
2089 * of it to use in split and join testing.
2091 tree2 = copytree234(tree, NULL, NULL);
2092 verifytree(tree2, array, arraylen);/* check the copy is accurate */
2094 * Split tests. Split the tree at every possible point and
2095 * check the resulting subtrees.
2097 tworoot = (!tree2->root->elems[1]);/* see if it has a 2-root */
2098 splittest(tree2, array, arraylen);
2100 * Now do the split test again, but on a tree that has a 2-root
2101 * (if the previous one didn't) or doesn't (if the previous one
2102 * did).
2104 tmplen = arraylen;
2105 while ((!tree2->root->elems[1]) == tworoot) {
2106 delpos234(tree2, --tmplen);
2108 printf("now trying splits on second tree\n");
2109 splittest(tree2, array, tmplen);
2110 freetree234(tree2);
2113 * Back to the main testing of uncounted trees.
2115 while (count234(tree) > 0) {
2116 printf("cleanup: tree size %d\n", count234(tree));
2117 j = randomnumber(&seed);
2118 j %= count234(tree);
2119 printf("deleting string %s from index %d\n", (char *)array[j], j);
2120 delpostest(j);
2122 freetree234(tree);
2125 * Finally, do some testing on split/join on _sorted_ trees. At
2126 * the same time, we'll be testing split on very small trees.
2128 tree = newtree234(mycmp);
2129 cmp = mycmp;
2130 arraylen = 0;
2131 for (i = 0; i < 17; i++) {
2132 tree2 = copytree234(tree, NULL, NULL);
2133 splittest(tree2, array, arraylen);
2134 freetree234(tree2);
2135 if (i < 16)
2136 addtest(strings[i]);
2138 freetree234(tree);
2141 * Test silly cases of join: join(emptytree, emptytree), and
2142 * also ensure join correctly spots when sorted trees fail the
2143 * ordering constraint.
2145 tree = newtree234(mycmp);
2146 tree2 = newtree234(mycmp);
2147 tree3 = newtree234(mycmp);
2148 tree4 = newtree234(mycmp);
2149 assert(mycmp(strings[0], strings[1]) < 0); /* just in case :-) */
2150 add234(tree2, strings[1]);
2151 add234(tree4, strings[0]);
2152 array[0] = strings[0];
2153 array[1] = strings[1];
2154 verifytree(tree, array, 0);
2155 verifytree(tree2, array+1, 1);
2156 verifytree(tree3, array, 0);
2157 verifytree(tree4, array, 1);
2160 * So:
2161 * - join(tree,tree3) should leave both tree and tree3 unchanged.
2162 * - joinr(tree,tree2) should leave both tree and tree2 unchanged.
2163 * - join(tree4,tree3) should leave both tree3 and tree4 unchanged.
2164 * - join(tree, tree2) should move the element from tree2 to tree.
2165 * - joinr(tree4, tree3) should move the element from tree4 to tree3.
2166 * - join(tree,tree3) should return NULL and leave both unchanged.
2167 * - join(tree3,tree) should work and create a bigger tree in tree3.
2169 assert(tree == join234(tree, tree3));
2170 verifytree(tree, array, 0);
2171 verifytree(tree3, array, 0);
2172 assert(tree2 == join234r(tree, tree2));
2173 verifytree(tree, array, 0);
2174 verifytree(tree2, array+1, 1);
2175 assert(tree4 == join234(tree4, tree3));
2176 verifytree(tree3, array, 0);
2177 verifytree(tree4, array, 1);
2178 assert(tree == join234(tree, tree2));
2179 verifytree(tree, array+1, 1);
2180 verifytree(tree2, array, 0);
2181 assert(tree3 == join234r(tree4, tree3));
2182 verifytree(tree3, array, 1);
2183 verifytree(tree4, array, 0);
2184 assert(NULL == join234(tree, tree3));
2185 verifytree(tree, array+1, 1);
2186 verifytree(tree3, array, 1);
2187 assert(tree3 == join234(tree3, tree));
2188 verifytree(tree3, array, 2);
2189 verifytree(tree, array, 0);
2191 return 0;
2194 #endif
2196 #if 0 /* sorted list of strings might be useful */
2198 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x",
2200 #endif