2 * Stack-less Just-In-Time compiler
4 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
81 #include "sljitConfigInternal.h"
87 /* --------------------------------------------------------------------- */
89 /* --------------------------------------------------------------------- */
91 /* Indicates no error. */
92 #define SLJIT_SUCCESS 0
93 /* After the call of sljit_generate_code(), the error code of the compiler
94 is set to this value to avoid future sljit calls (in debug mode at least).
95 The complier should be freed after sljit_generate_code(). */
96 #define SLJIT_ERR_COMPILED 1
97 /* Cannot allocate non executable memory. */
98 #define SLJIT_ERR_ALLOC_FAILED 2
99 /* Cannot allocate executable memory.
100 Only for sljit_generate_code() */
101 #define SLJIT_ERR_EX_ALLOC_FAILED 3
102 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
103 #define SLJIT_ERR_UNSUPPORTED 4
104 /* An ivalid argument is passed to any SLJIT function. */
105 #define SLJIT_ERR_BAD_ARGUMENT 5
106 /* Dynamic code modification is not enabled. */
107 #define SLJIT_ERR_DYN_CODE_MOD 6
109 /* --------------------------------------------------------------------- */
111 /* --------------------------------------------------------------------- */
114 Scratch (R) registers: registers whose may not preserve their values
115 across function calls.
117 Saved (S) registers: registers whose preserve their values across
120 The scratch and saved register sets are overlap. The last scratch register
121 is the first saved register, the one before the last is the second saved
124 If an architecture provides two scratch and three saved registers,
125 its scratch and saved register sets are the following:
127 R0 | | R0 is always a scratch register
128 R1 | | R1 is always a scratch register
129 [R2] | S2 | R2 and S2 represent the same physical register
130 [R3] | S1 | R3 and S1 represent the same physical register
131 [R4] | S0 | R4 and S0 represent the same physical register
133 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
134 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
136 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
137 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
138 are virtual on x86-32. See below.
140 The purpose of this definition is convenience: saved registers can
141 be used as extra scratch registers. For example four registers can
142 be specified as scratch registers and the fifth one as saved register
143 on the CPU above and any user code which requires four scratch
144 registers can run unmodified. The SLJIT compiler automatically saves
145 the content of the two extra scratch register on the stack. Scratch
146 registers can also be preserved by saving their value on the stack
147 but this needs to be done manually.
149 Note: To emphasize that registers assigned to R2-R4 are saved
150 registers, they are enclosed by square brackets.
152 Note: sljit_emit_enter and sljit_set_context defines whether a register
153 is S or R register. E.g: when 3 scratches and 1 saved is mapped
154 by sljit_emit_enter, the allowed register set will be: R0-R2 and
155 S0. Although S2 is mapped to the same position as R2, it does not
156 available in the current configuration. Furthermore the S1 register
157 is not available at all.
160 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1
161 or sljit_emit_op2 operations the result is discarded. If no status
162 flags are set, no instructions are emitted for these operations. Data
163 prefetch is a special exception, see SLJIT_MOV operation. Other SLJIT
164 operations do not support SLJIT_UNUSED as a destination operand. */
165 #define SLJIT_UNUSED 0
167 /* Scratch registers. */
171 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
172 are allocated on the stack). These registers are called virtual
173 and cannot be used for memory addressing (cannot be part of
174 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
175 limitation on other CPUs. See sljit_get_register_index(). */
183 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
184 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
185 #define SLJIT_R(i) (1 + (i))
187 /* Saved registers. */
188 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
189 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
190 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
191 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
192 are allocated on the stack). These registers are called virtual
193 and cannot be used for memory addressing (cannot be part of
194 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
195 limitation on other CPUs. See sljit_get_register_index(). */
196 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
197 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
198 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
199 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
200 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
201 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
202 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
203 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
204 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
205 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
207 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
208 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
210 /* The SLJIT_SP provides direct access to the linear stack space allocated by
211 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
212 The immediate offset is extended by the relative stack offset automatically.
213 The sljit_get_local_base can be used to obtain the absolute offset. */
214 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
216 /* Return with machine word. */
218 #define SLJIT_RETURN_REG SLJIT_R0
220 /* --------------------------------------------------------------------- */
221 /* Floating point registers */
222 /* --------------------------------------------------------------------- */
224 /* Each floating point register can store a 32 or a 64 bit precision
225 value. The FR and FS register sets are overlap in the same way as R
226 and S register sets. See above. */
228 /* Note: SLJIT_UNUSED as destination is not valid for floating point
229 operations, since they cannot be used for setting flags. */
231 /* Floating point scratch registers. */
238 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
239 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
240 #define SLJIT_FR(i) (1 + (i))
242 /* Floating point saved registers. */
243 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
244 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
245 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
246 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
247 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
248 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
249 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
250 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
251 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
253 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
254 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
256 /* --------------------------------------------------------------------- */
257 /* Argument type definitions */
258 /* --------------------------------------------------------------------- */
260 /* Argument type definitions.
261 Used by SLJIT_[DEF_]ARGx and SLJIT_[DEF]_RET macros. */
263 #define SLJIT_ARG_TYPE_VOID 0
264 #define SLJIT_ARG_TYPE_SW 1
265 #define SLJIT_ARG_TYPE_UW 2
266 #define SLJIT_ARG_TYPE_S32 3
267 #define SLJIT_ARG_TYPE_U32 4
268 #define SLJIT_ARG_TYPE_F32 5
269 #define SLJIT_ARG_TYPE_F64 6
271 /* The following argument type definitions are used by sljit_emit_enter,
272 sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
273 The following return type definitions are used by sljit_emit_call
274 and sljit_emit_icall functions.
276 When a function is called, the first integer argument must be placed
277 in SLJIT_R0, the second in SLJIT_R1, and so on. Similarly the first
278 floating point argument must be placed in SLJIT_FR0, the second in
279 SLJIT_FR1, and so on.
281 Example function definition:
282 sljit_f32 SLJIT_FUNC example_c_callback(sljit_sw arg_a,
283 sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
285 Argument type definition:
286 SLJIT_DEF_RET(SLJIT_ARG_TYPE_F32)
287 | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F64)
288 | SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_U32) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F32)
290 Short form of argument type definition:
291 SLJIT_RET(F32) | SLJIT_ARG1(SW) | SLJIT_ARG2(F64)
292 | SLJIT_ARG3(S32) | SLJIT_ARG4(F32)
295 arg_a must be placed in SLJIT_R0
296 arg_c must be placed in SLJIT_R1
297 arg_b must be placed in SLJIT_FR0
298 arg_d must be placed in SLJIT_FR1
301 The SLJIT_ARG_TYPE_VOID type is only supported by
302 SLJIT_DEF_RET, and SLJIT_ARG_TYPE_VOID is also the
303 default value when SLJIT_DEF_RET is not specified. */
304 #define SLJIT_DEF_SHIFT 4
305 #define SLJIT_DEF_RET(type) (type)
306 #define SLJIT_DEF_ARG1(type) ((type) << SLJIT_DEF_SHIFT)
307 #define SLJIT_DEF_ARG2(type) ((type) << (2 * SLJIT_DEF_SHIFT))
308 #define SLJIT_DEF_ARG3(type) ((type) << (3 * SLJIT_DEF_SHIFT))
309 #define SLJIT_DEF_ARG4(type) ((type) << (4 * SLJIT_DEF_SHIFT))
311 /* Short form of the macros above.
313 For example the following definition:
314 SLJIT_DEF_RET(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_F32)
317 SLJIT_RET(SW) | SLJIT_ARG1(F32)
320 The VOID type is only supported by SLJIT_RET, and
321 VOID is also the default value when SLJIT_RET is
323 #define SLJIT_RET(type) SLJIT_DEF_RET(SLJIT_ARG_TYPE_ ## type)
324 #define SLJIT_ARG1(type) SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_ ## type)
325 #define SLJIT_ARG2(type) SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_ ## type)
326 #define SLJIT_ARG3(type) SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_ ## type)
327 #define SLJIT_ARG4(type) SLJIT_DEF_ARG4(SLJIT_ARG_TYPE_ ## type)
329 /* --------------------------------------------------------------------- */
330 /* Main structures and functions */
331 /* --------------------------------------------------------------------- */
334 The following structures are private, and can be changed in the
335 future. Keeping them here allows code inlining.
338 struct sljit_memory_fragment
{
339 struct sljit_memory_fragment
*next
;
341 /* Must be aligned to sljit_sw. */
346 struct sljit_label
*next
;
348 /* The maximum size difference. */
353 struct sljit_jump
*next
;
358 struct sljit_label
*label
;
362 struct sljit_put_label
{
363 struct sljit_put_label
*next
;
364 struct sljit_label
*label
;
370 struct sljit_const
*next
;
374 struct sljit_compiler
{
378 struct sljit_label
*labels
;
379 struct sljit_jump
*jumps
;
380 struct sljit_put_label
*put_labels
;
381 struct sljit_const
*consts
;
382 struct sljit_label
*last_label
;
383 struct sljit_jump
*last_jump
;
384 struct sljit_const
*last_const
;
385 struct sljit_put_label
*last_put_label
;
387 void *allocator_data
;
388 struct sljit_memory_fragment
*buf
;
389 struct sljit_memory_fragment
*abuf
;
391 /* Used scratch registers. */
393 /* Used saved registers. */
395 /* Used float scratch registers. */
396 sljit_s32 fscratches
;
397 /* Used float saved registers. */
399 /* Local stack size. */
400 sljit_s32 local_size
;
403 /* Relative offset of the executable mapping from the writable mapping. */
404 sljit_uw executable_offset
;
405 /* Executable size for statistical purposes. */
406 sljit_uw executable_size
;
408 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
410 sljit_s32 locals_offset
;
411 sljit_s32 saveds_offset
;
412 sljit_s32 stack_tmp_size
;
415 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
418 sljit_s32 locals_offset
;
422 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
423 /* Constant pool handling. */
425 sljit_u8
*cpool_unique
;
429 /* Contains pointer, "ldr pc, [...]" pairs. */
433 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
434 /* Temporary fields. */
438 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
442 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
443 sljit_s32 delay_slot
;
448 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
449 sljit_s32 delay_slot
;
454 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
459 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
463 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
464 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
465 /* Flags specified by the last arithmetic instruction.
466 It contains the type of the variable flag. */
467 sljit_s32 last_flags
;
468 /* Local size passed to the functions. */
469 sljit_s32 logical_local_size
;
472 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
473 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
474 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
475 /* Trust arguments when the API function is called. */
476 sljit_s32 skip_checks
;
480 /* --------------------------------------------------------------------- */
482 /* --------------------------------------------------------------------- */
484 /* Creates an sljit compiler. The allocator_data is required by some
485 custom memory managers. This pointer is passed to SLJIT_MALLOC
486 and SLJIT_FREE macros. Most allocators (including the default
487 one) ignores this value, and it is recommended to pass NULL
488 as a dummy value for allocator_data.
490 Returns NULL if failed. */
491 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_compiler
* sljit_create_compiler(void *allocator_data
);
493 /* Frees everything except the compiled machine code. */
494 SLJIT_API_FUNC_ATTRIBUTE
void sljit_free_compiler(struct sljit_compiler
*compiler
);
496 /* Returns the current error code. If an error is occurred, future sljit
497 calls which uses the same compiler argument returns early with the same
498 error code. Thus there is no need for checking the error after every
499 call, it is enough to do it before the code is compiled. Removing
500 these checks increases the performance of the compiling process. */
501 static SLJIT_INLINE sljit_s32
sljit_get_compiler_error(struct sljit_compiler
*compiler
) { return compiler
->error
; }
503 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
504 if an error was detected before. After the error code is set
505 the compiler behaves as if the allocation failure happened
506 during an sljit function call. This can greatly simplify error
507 checking, since only the compiler status needs to be checked
508 after the compilation. */
509 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_compiler_memory_error(struct sljit_compiler
*compiler
);
512 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
513 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
514 compiler, and freed by sljit_free_compiler. The returned pointer is
515 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
516 the compiling, and no need to worry about freeing them. The size is
517 enough to contain at most 16 pointers. If the size is outside of the range,
518 the function will return with NULL. However, this return value does not
519 indicate that there is no more memory (does not set the current error code
520 of the compiler to out-of-memory status).
522 SLJIT_API_FUNC_ATTRIBUTE
void* sljit_alloc_memory(struct sljit_compiler
*compiler
, sljit_s32 size
);
524 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
525 /* Passing NULL disables verbose. */
526 SLJIT_API_FUNC_ATTRIBUTE
void sljit_compiler_verbose(struct sljit_compiler
*compiler
, FILE* verbose
);
530 Create executable code from the sljit instruction stream. This is the final step
531 of the code generation so no more instructions can be added after this call.
534 SLJIT_API_FUNC_ATTRIBUTE
void* sljit_generate_code(struct sljit_compiler
*compiler
);
536 /* Free executable code. */
538 SLJIT_API_FUNC_ATTRIBUTE
void sljit_free_code(void* code
);
541 When the protected executable allocator is used the JIT code is mapped
542 twice. The first mapping has read/write and the second mapping has read/exec
543 permissions. This function returns with the relative offset of the executable
544 mapping using the writable mapping as the base after the machine code is
545 successfully generated. The returned value is always 0 for the normal executable
546 allocator, since it uses only one mapping with read/write/exec permissions.
547 Dynamic code modifications requires this value.
549 Before a successful code generation, this function returns with 0.
551 static SLJIT_INLINE sljit_sw
sljit_get_executable_offset(struct sljit_compiler
*compiler
) { return compiler
->executable_offset
; }
554 The executable memory consumption of the generated code can be retrieved by
555 this function. The returned value can be used for statistical purposes.
557 Before a successful code generation, this function returns with 0.
559 static SLJIT_INLINE sljit_uw
sljit_get_generated_code_size(struct sljit_compiler
*compiler
) { return compiler
->executable_size
; }
561 /* Returns with non-zero if the feature or limitation type passed as its
562 argument is present on the current CPU.
564 Some features (e.g. floating point operations) require hardware (CPU)
565 support while others (e.g. move with update) are emulated if not available.
566 However even if a feature is emulated, specialized code paths can be faster
567 than the emulation. Some limitations are emulated as well so their general
568 case is supported but it has extra performance costs. */
570 /* [Not emulated] Floating-point support is available. */
571 #define SLJIT_HAS_FPU 0
572 /* [Limitation] Some registers are virtual registers. */
573 #define SLJIT_HAS_VIRTUAL_REGISTERS 1
574 /* [Emulated] Count leading zero is supported. */
575 #define SLJIT_HAS_CLZ 2
576 /* [Emulated] Conditional move is supported. */
577 #define SLJIT_HAS_CMOV 3
579 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
580 /* [Not emulated] SSE2 support is available on x86. */
581 #define SLJIT_HAS_SSE2 100
584 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_has_cpu_feature(sljit_s32 feature_type
);
586 /* Instruction generation. Returns with any error code. If there is no
587 error, they return with SLJIT_SUCCESS. */
590 The executable code is a function from the viewpoint of the C
591 language. The function calls must obey to the ABI (Application
592 Binary Interface) of the platform, which specify the purpose of
593 machine registers and stack handling among other things. The
594 sljit_emit_enter function emits the necessary instructions for
595 setting up a new context for the executable code and moves function
596 arguments to the saved registers. Furthermore the options argument
597 can be used to pass configuration options to the compiler. The
598 available options are listed before sljit_emit_enter.
600 The function argument list is the combination of SLJIT_ARGx
601 (SLJIT_DEF_ARG1) macros. Currently maximum 3 SW / UW
602 (SLJIT_ARG_TYPE_SW / LJIT_ARG_TYPE_UW) arguments are supported.
603 The first argument goes to SLJIT_S0, the second goes to SLJIT_S1
604 and so on. The register set used by the function must be declared
605 as well. The number of scratch and saved registers used by the
606 function must be passed to sljit_emit_enter. Only R registers
607 between R0 and "scratches" argument can be used later. E.g. if
608 "scratches" is set to 2, the scratch register set will be limited
609 to SLJIT_R0 and SLJIT_R1. The S registers and the floating point
610 registers ("fscratches" and "fsaveds") are specified in a similar
611 manner. The sljit_emit_enter is also capable of allocating a stack
612 space for local variables. The "local_size" argument contains the
613 size in bytes of this local area and its staring address is stored
614 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
615 SLJIT_SP + local_size (exclusive) can be modified freely until
616 the function returns. The stack space is not initialized.
618 Note: the following conditions must met:
619 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
620 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
621 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
622 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
623 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
624 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
626 Note: every call of sljit_emit_enter and sljit_set_context
627 overwrites the previous context.
630 /* The absolute address returned by sljit_get_local_base with
631 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
632 #define SLJIT_F64_ALIGNMENT 0x00000001
634 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
635 #define SLJIT_MAX_LOCAL_SIZE 65536
637 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_enter(struct sljit_compiler
*compiler
,
638 sljit_s32 options
, sljit_s32 arg_types
, sljit_s32 scratches
, sljit_s32 saveds
,
639 sljit_s32 fscratches
, sljit_s32 fsaveds
, sljit_s32 local_size
);
641 /* The machine code has a context (which contains the local stack space size,
642 number of used registers, etc.) which initialized by sljit_emit_enter. Several
643 functions (like sljit_emit_return) requres this context to be able to generate
644 the appropriate code. However, some code fragments (like inline cache) may have
645 no normal entry point so their context is unknown for the compiler. Their context
646 can be provided to the compiler by the sljit_set_context function.
648 Note: every call of sljit_emit_enter and sljit_set_context overwrites
649 the previous context. */
651 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_set_context(struct sljit_compiler
*compiler
,
652 sljit_s32 options
, sljit_s32 arg_types
, sljit_s32 scratches
, sljit_s32 saveds
,
653 sljit_s32 fscratches
, sljit_s32 fsaveds
, sljit_s32 local_size
);
655 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
656 function does not return with anything or any opcode between SLJIT_MOV and
657 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
658 is SLJIT_UNUSED, otherwise see below the description about source and
659 destination arguments. */
661 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_return(struct sljit_compiler
*compiler
, sljit_s32 op
,
662 sljit_s32 src
, sljit_sw srcw
);
664 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
665 Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
666 values of all registers and stack frame. The return address is stored in the
667 dst argument of sljit_emit_fast_enter, and this return address can be passed
668 to SLJIT_FAST_RETURN to continue the execution after the fast call.
670 Fast calls are cheap operations (usually only a single call instruction is
671 emitted) but they do not preserve any registers. However the callee function
672 can freely use / update any registers and stack values which can be
673 efficiently exploited by various optimizations. Registers can be saved
674 manually by the callee function if needed.
676 Although returning to different address by SLJIT_FAST_RETURN is possible,
677 this address usually cannot be predicted by the return address predictor of
678 modern CPUs which may reduce performance. Furthermore certain security
679 enhancement technologies such as Intel Control-flow Enforcement Technology
680 (CET) may disallow returning to a different address.
682 Flags: - (does not modify flags). */
684 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_fast_enter(struct sljit_compiler
*compiler
, sljit_s32 dst
, sljit_sw dstw
);
687 Source and destination operands for arithmetical instructions
688 imm - a simple immediate value (cannot be used as a destination)
689 reg - any of the registers (immediate argument must be 0)
690 [imm] - absolute immediate memory address
691 [reg+imm] - indirect memory address
692 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
693 useful for (byte, half, int, sljit_sw) array access
694 (fully supported by both x86 and ARM architectures, and cheap operation on others)
698 IMPORATNT NOTE: memory access MUST be naturally aligned except
699 SLJIT_UNALIGNED macro is defined and its value is 1.
702 ---------+-----------
703 byte | 1 byte (any physical_address is accepted)
704 half | 2 byte (physical_address & 0x1 == 0)
705 int | 4 byte (physical_address & 0x3 == 0)
706 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
707 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
708 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
709 | on 64 bit machines)
711 Note: Different architectures have different addressing limitations.
712 A single instruction is enough for the following addressing
713 modes. Other adrressing modes are emulated by instruction
714 sequences. This information could help to improve those code
715 generators which focuses only a few architectures.
717 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
718 [reg+(reg<<imm)] is supported
719 [imm], -2^32+1 <= imm <= 2^32-1 is supported
720 Write-back is not supported
721 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
722 bytes, any halfs or floating point values)
723 [reg+(reg<<imm)] is supported
724 Write-back is supported
725 arm-t2: [reg+imm], -255 <= imm <= 4095
726 [reg+(reg<<imm)] is supported
727 Write back is supported only for [reg+imm], where -255 <= imm <= 255
728 arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
729 [reg+(reg<<imm)] is supported
730 Write back is supported only for [reg+imm], where -256 <= imm <= 255
731 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
732 signed load on 64 bit requires immediates divisible by 4.
733 [reg+imm] is not supported for signed 8 bit values.
734 [reg+reg] is supported
735 Write-back is supported except for one instruction: 32 bit signed
736 load with [reg+imm] addressing mode on 64 bit.
737 mips: [reg+imm], -65536 <= imm <= 65535
738 sparc: [reg+imm], -4096 <= imm <= 4095
739 [reg+reg] is supported
742 /* Macros for specifying operand types. */
743 #define SLJIT_MEM 0x80
744 #define SLJIT_MEM0() (SLJIT_MEM)
745 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
746 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
747 #define SLJIT_IMM 0x40
749 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
750 32 bit CPUs. When this option is set for an arithmetic operation, only
751 the lower 32 bit of the input registers are used, and the CPU status
752 flags are set according to the 32 bit result. Although the higher 32 bit
753 of the input and the result registers are not defined by SLJIT, it might
754 be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
755 requirements all source registers must be the result of those operations
756 where this option was also set. Memory loads read 32 bit values rather
757 than 64 bit ones. In other words 32 bit and 64 bit operations cannot
758 be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
759 register can hold any 32 or 64 bit value, and it is converted to a 32 bit
760 compatible format first. This conversion is free (no instructions are
761 emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
762 value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
764 Note: memory addressing always uses 64 bit values on 64 bit systems so
765 the result of a 32 bit operation must not be used with SLJIT_MEMx
768 This option is part of the instruction name, so there is no need to
769 manually set it. E.g:
771 SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
772 #define SLJIT_I32_OP 0x100
774 /* Set F32 (single) precision mode for floating-point computation. This
775 option is similar to SLJIT_I32_OP, it just applies to floating point
776 registers. When this option is passed, the CPU performs 32 bit floating
777 point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
778 register arguments must be the result of those operations where this
781 This option is part of the instruction name, so there is no need to
782 manually set it. E.g:
784 SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
786 #define SLJIT_F32_OP SLJIT_I32_OP
788 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
789 to the result of an operation. Other CPUs (MIPS) do not have status
790 flags, and results must be stored in registers. To cover both architecture
791 types efficiently only two flags are defined by SLJIT:
793 * Zero (equal) flag: it is set if the result is zero
794 * Variable flag: its value is defined by the last arithmetic operation
796 SLJIT instructions can set any or both of these flags. The value of
797 these flags is undefined if the instruction does not specify their value.
798 The description of each instruction contains the list of allowed flag
801 Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
803 sljit_op2(..., SLJIT_ADD, ...)
804 Both the zero and variable flags are undefined so they can
805 have any value after the operation is completed.
807 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
808 Sets the zero flag if the result is zero, clears it otherwise.
809 The variable flag is undefined.
811 sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
812 Sets the variable flag if an integer overflow occurs, clears
813 it otherwise. The zero flag is undefined.
815 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
816 Sets the zero flag if the result is zero, clears it otherwise.
817 Sets the variable flag if unsigned overflow (carry) occurs,
820 If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
823 Using these flags can reduce the number of emitted instructions. E.g. a
824 fast loop can be implemented by decreasing a counter register and set the
825 zero flag to jump back if the counter register has not reached zero.
827 Motivation: although CPUs can set a large number of flags, usually their
828 values are ignored or only one of them is used. Emulating a large number
829 of flags on systems without flag register is complicated so SLJIT
830 instructions must specify the flag they want to use and only that flag
831 will be emulated. The last arithmetic instruction can be repeated if
832 multiple flags need to be checked.
835 /* Set Zero status flag. */
836 #define SLJIT_SET_Z 0x0200
837 /* Set the variable status flag if condition is true.
838 See comparison types. */
839 #define SLJIT_SET(condition) ((condition) << 10)
842 - you cannot postpone conditional jump instructions except if noted that
843 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
844 - flag combinations: '|' means 'logical or'. */
846 /* Starting index of opcodes for sljit_emit_op0. */
847 #define SLJIT_OP0_BASE 0
849 /* Flags: - (does not modify flags)
850 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
851 It falls back to SLJIT_NOP in those cases. */
852 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
853 /* Flags: - (does not modify flags)
854 Note: may or may not cause an extra cycle wait
855 it can even decrease the runtime in a few cases. */
856 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
857 /* Flags: - (may destroy flags)
858 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
859 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
860 #define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
861 /* Flags: - (may destroy flags)
862 Signed multiplication of SLJIT_R0 and SLJIT_R1.
863 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
864 #define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
865 /* Flags: - (may destroy flags)
866 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
867 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
868 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
869 #define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
870 #define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_I32_OP)
871 /* Flags: - (may destroy flags)
872 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
873 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
874 Note: if SLJIT_R1 is 0, the behaviour is undefined.
875 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
876 the behaviour is undefined. */
877 #define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
878 #define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_I32_OP)
879 /* Flags: - (may destroy flags)
880 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
881 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
882 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
883 #define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
884 #define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_I32_OP)
885 /* Flags: - (may destroy flags)
886 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
887 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
888 Note: if SLJIT_R1 is 0, the behaviour is undefined.
889 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
890 the behaviour is undefined. */
891 #define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
892 #define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_I32_OP)
893 /* Flags: - (does not modify flags)
894 ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
895 when Intel Control-flow Enforcement Technology (CET) is enabled.
896 No instruction for other architectures. */
897 #define SLJIT_ENDBR (SLJIT_OP0_BASE + 8)
898 /* Flags: - (may destroy flags)
899 Skip stack frames before return. */
900 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN (SLJIT_OP0_BASE + 9)
902 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_op0(struct sljit_compiler
*compiler
, sljit_s32 op
);
904 /* Starting index of opcodes for sljit_emit_op1. */
905 #define SLJIT_OP1_BASE 32
907 /* The MOV instruction transfers data from source to destination.
909 MOV instruction suffixes:
911 U8 - unsigned 8 bit data transfer
912 S8 - signed 8 bit data transfer
913 U16 - unsigned 16 bit data transfer
914 S16 - signed 16 bit data transfer
915 U32 - unsigned int (32 bit) data transfer
916 S32 - signed int (32 bit) data transfer
917 P - pointer (sljit_p) data transfer
919 If the destination of a MOV instruction is SLJIT_UNUSED and the source
920 operand is a memory address the compiler emits a prefetch instruction
921 if this instruction is supported by the current CPU. Higher data sizes
922 bring the data closer to the core: a MOV with word size loads the data
923 into a higher level cache than a byte size. Otherwise the type does not
924 affect the prefetch instruction. Furthermore a prefetch instruction
925 never fails, so it can be used to prefetch a data from an address and
926 check whether that address is NULL afterwards.
929 /* Flags: - (does not modify flags) */
930 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
931 /* Flags: - (does not modify flags) */
932 #define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
933 #define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_I32_OP)
934 /* Flags: - (does not modify flags) */
935 #define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
936 #define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_I32_OP)
937 /* Flags: - (does not modify flags) */
938 #define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
939 #define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_I32_OP)
940 /* Flags: - (does not modify flags) */
941 #define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
942 #define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_I32_OP)
943 /* Flags: - (does not modify flags)
944 Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
945 #define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
946 /* Flags: - (does not modify flags)
947 Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
948 #define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
949 /* Flags: - (does not modify flags) */
950 #define SLJIT_MOV32 (SLJIT_MOV_S32 | SLJIT_I32_OP)
951 /* Flags: - (does not modify flags)
952 Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
953 where all x64 features are available, e.g. 16 register) or similar
955 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
957 Note: immediate source argument is not supported */
958 #define SLJIT_NOT (SLJIT_OP1_BASE + 8)
959 #define SLJIT_NOT32 (SLJIT_NOT | SLJIT_I32_OP)
960 /* Flags: Z | OVERFLOW
961 Note: immediate source argument is not supported */
962 #define SLJIT_NEG (SLJIT_OP1_BASE + 9)
963 #define SLJIT_NEG32 (SLJIT_NEG | SLJIT_I32_OP)
964 /* Count leading zeroes
965 Flags: - (may destroy flags)
966 Note: immediate source argument is not supported */
967 #define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
968 #define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_I32_OP)
970 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_op1(struct sljit_compiler
*compiler
, sljit_s32 op
,
971 sljit_s32 dst
, sljit_sw dstw
,
972 sljit_s32 src
, sljit_sw srcw
);
974 /* Starting index of opcodes for sljit_emit_op2. */
975 #define SLJIT_OP2_BASE 96
977 /* Flags: Z | OVERFLOW | CARRY */
978 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
979 #define SLJIT_ADD32 (SLJIT_ADD | SLJIT_I32_OP)
981 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
982 #define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_I32_OP)
983 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
984 SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
985 SIG_LESS_EQUAL | CARRY */
986 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
987 #define SLJIT_SUB32 (SLJIT_SUB | SLJIT_I32_OP)
989 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
990 #define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_I32_OP)
992 Flags: MUL_OVERFLOW */
993 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
994 #define SLJIT_MUL32 (SLJIT_MUL | SLJIT_I32_OP)
996 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
997 #define SLJIT_AND32 (SLJIT_AND | SLJIT_I32_OP)
999 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
1000 #define SLJIT_OR32 (SLJIT_OR | SLJIT_I32_OP)
1002 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
1003 #define SLJIT_XOR32 (SLJIT_XOR | SLJIT_I32_OP)
1005 Let bit_length be the length of the shift operation: 32 or 64.
1006 If src2 is immediate, src2w is masked by (bit_length - 1).
1007 Otherwise, if the content of src2 is outside the range from 0
1008 to bit_length - 1, the result is undefined. */
1009 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
1010 #define SLJIT_SHL32 (SLJIT_SHL | SLJIT_I32_OP)
1012 Let bit_length be the length of the shift operation: 32 or 64.
1013 If src2 is immediate, src2w is masked by (bit_length - 1).
1014 Otherwise, if the content of src2 is outside the range from 0
1015 to bit_length - 1, the result is undefined. */
1016 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
1017 #define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_I32_OP)
1019 Let bit_length be the length of the shift operation: 32 or 64.
1020 If src2 is immediate, src2w is masked by (bit_length - 1).
1021 Otherwise, if the content of src2 is outside the range from 0
1022 to bit_length - 1, the result is undefined. */
1023 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
1024 #define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_I32_OP)
1026 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_op2(struct sljit_compiler
*compiler
, sljit_s32 op
,
1027 sljit_s32 dst
, sljit_sw dstw
,
1028 sljit_s32 src1
, sljit_sw src1w
,
1029 sljit_s32 src2
, sljit_sw src2w
);
1031 /* Starting index of opcodes for sljit_emit_op2. */
1032 #define SLJIT_OP_SRC_BASE 128
1034 /* Note: src cannot be an immedate value
1035 Flags: - (does not modify flags) */
1036 #define SLJIT_FAST_RETURN (SLJIT_OP_SRC_BASE + 0)
1038 /* Skip stack frames before fast return.
1039 Note: src cannot be an immedate value
1040 Flags: may destroy flags. */
1041 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN (SLJIT_OP_SRC_BASE + 1)
1043 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_op_src(struct sljit_compiler
*compiler
, sljit_s32 op
,
1044 sljit_s32 src
, sljit_sw srcw
);
1046 /* Starting index of opcodes for sljit_emit_fop1. */
1047 #define SLJIT_FOP1_BASE 160
1049 /* Flags: - (does not modify flags) */
1050 #define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
1051 #define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_F32_OP)
1052 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1053 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1054 Rounding mode when the destination is W or I: round towards zero. */
1055 /* Flags: - (does not modify flags) */
1056 #define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
1057 #define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1058 /* Flags: - (does not modify flags) */
1059 #define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
1060 #define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1061 /* Flags: - (does not modify flags) */
1062 #define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
1063 #define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1064 /* Flags: - (does not modify flags) */
1065 #define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
1066 #define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1067 /* Flags: - (does not modify flags) */
1068 #define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
1069 #define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1070 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1071 Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1072 #define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
1073 #define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_F32_OP)
1074 /* Flags: - (does not modify flags) */
1075 #define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
1076 #define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_F32_OP)
1077 /* Flags: - (does not modify flags) */
1078 #define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
1079 #define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_F32_OP)
1081 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_fop1(struct sljit_compiler
*compiler
, sljit_s32 op
,
1082 sljit_s32 dst
, sljit_sw dstw
,
1083 sljit_s32 src
, sljit_sw srcw
);
1085 /* Starting index of opcodes for sljit_emit_fop2. */
1086 #define SLJIT_FOP2_BASE 192
1088 /* Flags: - (does not modify flags) */
1089 #define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
1090 #define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_F32_OP)
1091 /* Flags: - (does not modify flags) */
1092 #define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
1093 #define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_F32_OP)
1094 /* Flags: - (does not modify flags) */
1095 #define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
1096 #define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_F32_OP)
1097 /* Flags: - (does not modify flags) */
1098 #define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
1099 #define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_F32_OP)
1101 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_fop2(struct sljit_compiler
*compiler
, sljit_s32 op
,
1102 sljit_s32 dst
, sljit_sw dstw
,
1103 sljit_s32 src1
, sljit_sw src1w
,
1104 sljit_s32 src2
, sljit_sw src2w
);
1106 /* Label and jump instructions. */
1108 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_label
* sljit_emit_label(struct sljit_compiler
*compiler
);
1110 /* Invert (negate) conditional type: xor (^) with 0x1 */
1112 /* Integer comparison types. */
1113 #define SLJIT_EQUAL 0
1114 #define SLJIT_EQUAL32 (SLJIT_EQUAL | SLJIT_I32_OP)
1115 #define SLJIT_ZERO 0
1116 #define SLJIT_ZERO32 (SLJIT_ZERO | SLJIT_I32_OP)
1117 #define SLJIT_NOT_EQUAL 1
1118 #define SLJIT_NOT_EQUAL32 (SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1119 #define SLJIT_NOT_ZERO 1
1120 #define SLJIT_NOT_ZERO32 (SLJIT_NOT_ZERO | SLJIT_I32_OP)
1122 #define SLJIT_LESS 2
1123 #define SLJIT_LESS32 (SLJIT_LESS | SLJIT_I32_OP)
1124 #define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
1125 #define SLJIT_GREATER_EQUAL 3
1126 #define SLJIT_GREATER_EQUAL32 (SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1127 #define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
1128 #define SLJIT_GREATER 4
1129 #define SLJIT_GREATER32 (SLJIT_GREATER | SLJIT_I32_OP)
1130 #define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
1131 #define SLJIT_LESS_EQUAL 5
1132 #define SLJIT_LESS_EQUAL32 (SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1133 #define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
1134 #define SLJIT_SIG_LESS 6
1135 #define SLJIT_SIG_LESS32 (SLJIT_SIG_LESS | SLJIT_I32_OP)
1136 #define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
1137 #define SLJIT_SIG_GREATER_EQUAL 7
1138 #define SLJIT_SIG_GREATER_EQUAL32 (SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1139 #define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1140 #define SLJIT_SIG_GREATER 8
1141 #define SLJIT_SIG_GREATER32 (SLJIT_SIG_GREATER | SLJIT_I32_OP)
1142 #define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
1143 #define SLJIT_SIG_LESS_EQUAL 9
1144 #define SLJIT_SIG_LESS_EQUAL32 (SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1145 #define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1147 #define SLJIT_OVERFLOW 10
1148 #define SLJIT_OVERFLOW32 (SLJIT_OVERFLOW | SLJIT_I32_OP)
1149 #define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
1150 #define SLJIT_NOT_OVERFLOW 11
1151 #define SLJIT_NOT_OVERFLOW32 (SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1153 #define SLJIT_MUL_OVERFLOW 12
1154 #define SLJIT_MUL_OVERFLOW32 (SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1155 #define SLJIT_SET_MUL_OVERFLOW SLJIT_SET(SLJIT_MUL_OVERFLOW)
1156 #define SLJIT_MUL_NOT_OVERFLOW 13
1157 #define SLJIT_MUL_NOT_OVERFLOW32 (SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1159 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1160 #define SLJIT_SET_CARRY SLJIT_SET(14)
1162 /* Floating point comparison types. */
1163 #define SLJIT_EQUAL_F64 16
1164 #define SLJIT_EQUAL_F32 (SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1165 #define SLJIT_SET_EQUAL_F SLJIT_SET(SLJIT_EQUAL_F64)
1166 #define SLJIT_NOT_EQUAL_F64 17
1167 #define SLJIT_NOT_EQUAL_F32 (SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1168 #define SLJIT_SET_NOT_EQUAL_F SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1169 #define SLJIT_LESS_F64 18
1170 #define SLJIT_LESS_F32 (SLJIT_LESS_F64 | SLJIT_F32_OP)
1171 #define SLJIT_SET_LESS_F SLJIT_SET(SLJIT_LESS_F64)
1172 #define SLJIT_GREATER_EQUAL_F64 19
1173 #define SLJIT_GREATER_EQUAL_F32 (SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1174 #define SLJIT_SET_GREATER_EQUAL_F SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1175 #define SLJIT_GREATER_F64 20
1176 #define SLJIT_GREATER_F32 (SLJIT_GREATER_F64 | SLJIT_F32_OP)
1177 #define SLJIT_SET_GREATER_F SLJIT_SET(SLJIT_GREATER_F64)
1178 #define SLJIT_LESS_EQUAL_F64 21
1179 #define SLJIT_LESS_EQUAL_F32 (SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1180 #define SLJIT_SET_LESS_EQUAL_F SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1181 #define SLJIT_UNORDERED_F64 22
1182 #define SLJIT_UNORDERED_F32 (SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1183 #define SLJIT_SET_UNORDERED_F SLJIT_SET(SLJIT_UNORDERED_F64)
1184 #define SLJIT_ORDERED_F64 23
1185 #define SLJIT_ORDERED_F32 (SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1186 #define SLJIT_SET_ORDERED_F SLJIT_SET(SLJIT_ORDERED_F64)
1188 /* Unconditional jump types. */
1189 #define SLJIT_JUMP 24
1190 /* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1191 #define SLJIT_FAST_CALL 25
1192 /* Called function must be declared with the SLJIT_FUNC attribute. */
1193 #define SLJIT_CALL 26
1194 /* Called function must be declared with cdecl attribute.
1195 This is the default attribute for C functions. */
1196 #define SLJIT_CALL_CDECL 27
1198 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1199 #define SLJIT_REWRITABLE_JUMP 0x1000
1201 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1202 type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1203 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1205 Flags: does not modify flags. */
1206 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_jump
* sljit_emit_jump(struct sljit_compiler
*compiler
, sljit_s32 type
);
1208 /* Emit a C compiler (ABI) compatible function call.
1209 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1210 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1211 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1213 Flags: destroy all flags. */
1214 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_jump
* sljit_emit_call(struct sljit_compiler
*compiler
, sljit_s32 type
, sljit_s32 arg_types
);
1216 /* Basic arithmetic comparison. In most architectures it is implemented as
1217 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1218 appropriate flags) followed by a sljit_emit_jump. However some
1219 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1220 It is suggested to use this comparison form when appropriate.
1221 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1222 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1224 Flags: may destroy flags. */
1225 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_jump
* sljit_emit_cmp(struct sljit_compiler
*compiler
, sljit_s32 type
,
1226 sljit_s32 src1
, sljit_sw src1w
,
1227 sljit_s32 src2
, sljit_sw src2w
);
1229 /* Basic floating point comparison. In most architectures it is implemented as
1230 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1231 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1232 special optimizations here. It is suggested to use this comparison form
1234 type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1235 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1236 Flags: destroy flags.
1237 Note: if either operand is NaN, the behaviour is undefined for
1238 types up to SLJIT_S_LESS_EQUAL. */
1239 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_jump
* sljit_emit_fcmp(struct sljit_compiler
*compiler
, sljit_s32 type
,
1240 sljit_s32 src1
, sljit_sw src1w
,
1241 sljit_s32 src2
, sljit_sw src2w
);
1243 /* Set the destination of the jump to this label. */
1244 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_label(struct sljit_jump
*jump
, struct sljit_label
* label
);
1245 /* Set the destination address of the jump to this label. */
1246 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_target(struct sljit_jump
*jump
, sljit_uw target
);
1248 /* Emit an indirect jump or fast call.
1249 Direct form: set src to SLJIT_IMM() and srcw to the address
1250 Indirect form: any other valid addressing mode
1251 type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1253 Flags: does not modify flags. */
1254 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_ijump(struct sljit_compiler
*compiler
, sljit_s32 type
, sljit_s32 src
, sljit_sw srcw
);
1256 /* Emit a C compiler (ABI) compatible function call.
1257 Direct form: set src to SLJIT_IMM() and srcw to the address
1258 Indirect form: any other valid addressing mode
1259 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1260 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1262 Flags: destroy all flags. */
1263 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_icall(struct sljit_compiler
*compiler
, sljit_s32 type
, sljit_s32 arg_types
, sljit_s32 src
, sljit_sw srcw
);
1265 /* Perform the operation using the conditional flags as the second argument.
1266 Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1267 represented by the type is 1, if the condition represented by the type
1268 is fulfilled, and 0 otherwise.
1270 If op == SLJIT_MOV, SLJIT_MOV32:
1271 Set dst to the value represented by the type (0 or 1).
1272 Flags: - (does not modify flags)
1273 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1274 Performs the binary operation using dst as the first, and the value
1275 represented by type as the second argument. Result is written into dst.
1276 Flags: Z (may destroy flags) */
1277 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_op_flags(struct sljit_compiler
*compiler
, sljit_s32 op
,
1278 sljit_s32 dst
, sljit_sw dstw
,
1281 /* Emit a conditional mov instruction which moves source to destination,
1282 if the condition is satisfied. Unlike other arithmetic operations this
1283 instruction does not support memory access.
1285 type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1286 dst_reg must be a valid register and it can be combined
1287 with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1288 src must be register or immediate (SLJIT_IMM)
1290 Flags: - (does not modify flags) */
1291 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_cmov(struct sljit_compiler
*compiler
, sljit_s32 type
,
1293 sljit_s32 src
, sljit_sw srcw
);
1295 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1297 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1298 Instead the function returns with SLJIT_SUCCESS if the instruction
1299 form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1300 allows runtime checking of available instruction forms. */
1301 #define SLJIT_MEM_SUPP 0x0200
1302 /* Memory load operation. This is the default. */
1303 #define SLJIT_MEM_LOAD 0x0000
1304 /* Memory store operation. */
1305 #define SLJIT_MEM_STORE 0x0400
1306 /* Base register is updated before the memory access. */
1307 #define SLJIT_MEM_PRE 0x0800
1308 /* Base register is updated after the memory access. */
1309 #define SLJIT_MEM_POST 0x1000
1311 /* Emit a single memory load or store with update instruction. When the
1312 requested instruction form is not supported by the CPU, it returns
1313 with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1314 allows specializing tight loops based on the supported instruction
1315 forms (see SLJIT_MEM_SUPP flag).
1317 type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1318 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1319 or SLJIT_MEM_POST must be specified.
1320 reg is the source or destination register, and must be
1321 different from the base register of the mem operand
1322 mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1324 Flags: - (does not modify flags) */
1325 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_mem(struct sljit_compiler
*compiler
, sljit_s32 type
,
1327 sljit_s32 mem
, sljit_sw memw
);
1329 /* Same as sljit_emit_mem except the followings:
1331 type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1332 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1333 or SLJIT_MEM_POST must be specified.
1334 freg is the source or destination floating point register */
1336 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_fmem(struct sljit_compiler
*compiler
, sljit_s32 type
,
1338 sljit_s32 mem
, sljit_sw memw
);
1340 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1341 anything to negate the effect of relative addressing. For example if an
1342 array of sljit_sw values is stored on the stack from offset 0x40, and R0
1343 contains the offset of an array item plus 0x120, this item can be
1344 overwritten by two SLJIT instructions:
1346 sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1347 sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1349 Flags: - (may destroy flags) */
1350 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_get_local_base(struct sljit_compiler
*compiler
, sljit_s32 dst
, sljit_sw dstw
, sljit_sw offset
);
1352 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1353 Flags: - (does not modify flags) */
1354 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_const
* sljit_emit_const(struct sljit_compiler
*compiler
, sljit_s32 dst
, sljit_sw dstw
, sljit_sw init_value
);
1356 /* Store the value of a label (see: sljit_set_put_label)
1357 Flags: - (does not modify flags) */
1358 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_put_label
* sljit_emit_put_label(struct sljit_compiler
*compiler
, sljit_s32 dst
, sljit_sw dstw
);
1360 /* Set the value stored by put_label to this label. */
1361 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_put_label(struct sljit_put_label
*put_label
, struct sljit_label
*label
);
1363 /* After the code generation the address for label, jump and const instructions
1364 are computed. Since these structures are freed by sljit_free_compiler, the
1365 addresses must be preserved by the user program elsewere. */
1366 static SLJIT_INLINE sljit_uw
sljit_get_label_addr(struct sljit_label
*label
) { return label
->addr
; }
1367 static SLJIT_INLINE sljit_uw
sljit_get_jump_addr(struct sljit_jump
*jump
) { return jump
->addr
; }
1368 static SLJIT_INLINE sljit_uw
sljit_get_const_addr(struct sljit_const
*const_
) { return const_
->addr
; }
1370 /* Only the address and executable offset are required to perform dynamic
1371 code modifications. See sljit_get_executable_offset function. */
1372 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_jump_addr(sljit_uw addr
, sljit_uw new_target
, sljit_sw executable_offset
);
1373 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_const(sljit_uw addr
, sljit_sw new_constant
, sljit_sw executable_offset
);
1375 /* --------------------------------------------------------------------- */
1376 /* Miscellaneous utility functions */
1377 /* --------------------------------------------------------------------- */
1379 #define SLJIT_MAJOR_VERSION 0
1380 #define SLJIT_MINOR_VERSION 94
1382 /* Get the human readable name of the platform. Can be useful on platforms
1383 like ARM, where ARM and Thumb2 functions can be mixed, and
1384 it is useful to know the type of the code generator. */
1385 SLJIT_API_FUNC_ATTRIBUTE
const char* sljit_get_platform_name(void);
1387 /* Portable helper function to get an offset of a member. */
1388 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1390 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1391 /* This global lock is useful to compile common functions. */
1392 SLJIT_API_FUNC_ATTRIBUTE
void SLJIT_FUNC
sljit_grab_lock(void);
1393 SLJIT_API_FUNC_ATTRIBUTE
void SLJIT_FUNC
sljit_release_lock(void);
1396 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1398 /* The sljit_stack structure and its manipulation functions provides
1399 an implementation for a top-down stack. The stack top is stored
1400 in the end field of the sljit_stack structure and the stack goes
1401 down to the min_start field, so the memory region reserved for
1402 this stack is between min_start (inclusive) and end (exclusive)
1403 fields. However the application can only use the region between
1404 start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1405 function can be used to extend this region up to min_start.
1407 This feature uses the "address space reserve" feature of modern
1408 operating systems. Instead of allocating a large memory block
1409 applications can allocate a small memory region and extend it
1410 later without moving the content of the memory area. Therefore
1411 after a successful resize by sljit_stack_resize all pointers into
1412 this region are still valid.
1415 this structure may not be supported by all operating systems.
1416 end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1418 stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1420 struct sljit_stack
{
1421 /* User data, anything can be stored here.
1422 Initialized to the same value as the end field. */
1424 /* These members are read only. */
1425 /* End address of the stack */
1427 /* Current start address of the stack. */
1429 /* Lowest start address of the stack. */
1430 sljit_u8
*min_start
;
1433 /* Allocates a new stack. Returns NULL if unsuccessful.
1434 Note: see sljit_create_compiler for the explanation of allocator_data. */
1435 SLJIT_API_FUNC_ATTRIBUTE
struct sljit_stack
* SLJIT_FUNC
sljit_allocate_stack(sljit_uw start_size
, sljit_uw max_size
, void *allocator_data
);
1436 SLJIT_API_FUNC_ATTRIBUTE
void SLJIT_FUNC
sljit_free_stack(struct sljit_stack
*stack
, void *allocator_data
);
1438 /* Can be used to increase (extend) or decrease (shrink) the stack
1439 memory area. Returns with new_start if successful and NULL otherwise.
1440 It always fails if new_start is less than min_start or greater or equal
1441 than end fields. The fields of the stack are not changed if the returned
1442 value is NULL (the current memory content is never lost). */
1443 SLJIT_API_FUNC_ATTRIBUTE sljit_u8
*SLJIT_FUNC
sljit_stack_resize(struct sljit_stack
*stack
, sljit_u8
*new_start
);
1445 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1447 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1449 /* Get the entry address of a given function. */
1450 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1452 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1454 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1456 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1458 /* For powerpc64, the function pointers point to a context descriptor. */
1459 struct sljit_function_context
{
1465 /* Fill the context arguments using the addr and the function.
1466 If func_ptr is NULL, it will not be set to the address of context
1467 If addr is NULL, the function address also comes from the func pointer. */
1468 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_function_context(void** func_ptr
, struct sljit_function_context
* context
, sljit_sw addr
, void* func
);
1470 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1472 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1473 /* Free unused executable memory. The allocator keeps some free memory
1474 around to reduce the number of OS executable memory allocations.
1475 This improves performance since these calls are costly. However
1476 it is sometimes desired to free all unused memory regions, e.g.
1477 before the application terminates. */
1478 SLJIT_API_FUNC_ATTRIBUTE
void sljit_free_unused_memory_exec(void);
1481 /* --------------------------------------------------------------------- */
1482 /* CPU specific functions */
1483 /* --------------------------------------------------------------------- */
1485 /* The following function is a helper function for sljit_emit_op_custom.
1486 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1487 SLJIT_S and SLJIT_SP registers.
1489 Note: it returns with -1 for virtual registers (only on x86-32). */
1491 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_get_register_index(sljit_s32 reg
);
1493 /* The following function is a helper function for sljit_emit_op_custom.
1494 It returns with the real machine register index of any SLJIT_FLOAT register.
1496 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1498 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_get_float_register_index(sljit_s32 reg
);
1500 /* Any instruction can be inserted into the instruction stream by
1501 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1502 The size parameter must match to the instruction size of the target
1505 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1506 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1507 if size == 4, the instruction argument must be 4 byte aligned.
1508 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1510 SLJIT_API_FUNC_ATTRIBUTE sljit_s32
sljit_emit_op_custom(struct sljit_compiler
*compiler
,
1511 void *instruction
, sljit_s32 size
);
1513 /* Define the currently available CPU status flags. It is usually used after an
1514 sljit_emit_op_custom call to define which flags are set. */
1516 SLJIT_API_FUNC_ATTRIBUTE
void sljit_set_current_flags(struct sljit_compiler
*compiler
,
1517 sljit_s32 current_flags
);
1523 #endif /* _SLJIT_LIR_H_ */