Support unsaved registers
[sljit.git] / sljit_src / sljitLir.h
blob784e1cfb21ac41efdccac1da3fdc52c27c2b7356
1 /*
2 * Stack-less Just-In-Time compiler
4 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #ifndef SLJIT_LIR_H_
28 #define SLJIT_LIR_H_
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
73 #if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
74 #include "sljitConfigPre.h"
75 #endif /* SLJIT_HAVE_CONFIG_PRE */
77 #include "sljitConfig.h"
79 /* The following header file defines useful macros for fine tuning
80 sljit based code generators. They are listed in the beginning
81 of sljitConfigInternal.h */
83 #include "sljitConfigInternal.h"
85 #if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
86 #include "sljitConfigPost.h"
87 #endif /* SLJIT_HAVE_CONFIG_POST */
89 #ifdef __cplusplus
90 extern "C" {
91 #endif
93 /* --------------------------------------------------------------------- */
94 /* Error codes */
95 /* --------------------------------------------------------------------- */
97 /* Indicates no error. */
98 #define SLJIT_SUCCESS 0
99 /* After the call of sljit_generate_code(), the error code of the compiler
100 is set to this value to avoid future sljit calls (in debug mode at least).
101 The complier should be freed after sljit_generate_code(). */
102 #define SLJIT_ERR_COMPILED 1
103 /* Cannot allocate non executable memory. */
104 #define SLJIT_ERR_ALLOC_FAILED 2
105 /* Cannot allocate executable memory.
106 Only for sljit_generate_code() */
107 #define SLJIT_ERR_EX_ALLOC_FAILED 3
108 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
109 #define SLJIT_ERR_UNSUPPORTED 4
110 /* An ivalid argument is passed to any SLJIT function. */
111 #define SLJIT_ERR_BAD_ARGUMENT 5
112 /* Dynamic code modification is not enabled. */
113 #define SLJIT_ERR_DYN_CODE_MOD 6
115 /* --------------------------------------------------------------------- */
116 /* Registers */
117 /* --------------------------------------------------------------------- */
120 Scratch (R) registers: registers whose may not preserve their values
121 across function calls.
123 Saved (S) registers: registers whose preserve their values across
124 function calls.
126 The scratch and saved register sets are overlap. The last scratch register
127 is the first saved register, the one before the last is the second saved
128 register, and so on.
130 If an architecture provides two scratch and three saved registers,
131 its scratch and saved register sets are the following:
133 R0 | | R0 is always a scratch register
134 R1 | | R1 is always a scratch register
135 [R2] | S2 | R2 and S2 represent the same physical register
136 [R3] | S1 | R3 and S1 represent the same physical register
137 [R4] | S0 | R4 and S0 represent the same physical register
139 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
140 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
142 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
143 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
144 are virtual on x86-32. See below.
146 The purpose of this definition is convenience: saved registers can
147 be used as extra scratch registers. For example four registers can
148 be specified as scratch registers and the fifth one as saved register
149 on the CPU above and any user code which requires four scratch
150 registers can run unmodified. The SLJIT compiler automatically saves
151 the content of the two extra scratch register on the stack. Scratch
152 registers can also be preserved by saving their value on the stack
153 but this needs to be done manually.
155 Note: To emphasize that registers assigned to R2-R4 are saved
156 registers, they are enclosed by square brackets.
158 Note: sljit_emit_enter and sljit_set_context defines whether a register
159 is S or R register. E.g: when 3 scratches and 1 saved is mapped
160 by sljit_emit_enter, the allowed register set will be: R0-R2 and
161 S0. Although S2 is mapped to the same position as R2, it does not
162 available in the current configuration. Furthermore the S1 register
163 is not available at all.
166 /* Scratch registers. */
167 #define SLJIT_R0 1
168 #define SLJIT_R1 2
169 #define SLJIT_R2 3
170 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
171 are allocated on the stack). These registers are called virtual
172 and cannot be used for memory addressing (cannot be part of
173 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
174 limitation on other CPUs. See sljit_get_register_index(). */
175 #define SLJIT_R3 4
176 #define SLJIT_R4 5
177 #define SLJIT_R5 6
178 #define SLJIT_R6 7
179 #define SLJIT_R7 8
180 #define SLJIT_R8 9
181 #define SLJIT_R9 10
182 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
183 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
184 #define SLJIT_R(i) (1 + (i))
186 /* Saved registers. */
187 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
188 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
189 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
190 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
191 are allocated on the stack). These registers are called virtual
192 and cannot be used for memory addressing (cannot be part of
193 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
194 limitation on other CPUs. See sljit_get_register_index(). */
195 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
196 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
197 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
198 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
199 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
200 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
201 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
202 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
203 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
204 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
206 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
207 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
209 /* The SLJIT_SP provides direct access to the linear stack space allocated by
210 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
211 The immediate offset is extended by the relative stack offset automatically.
212 The sljit_get_local_base can be used to obtain the absolute offset. */
213 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
215 /* Return with machine word. */
217 #define SLJIT_RETURN_REG SLJIT_R0
219 /* --------------------------------------------------------------------- */
220 /* Floating point registers */
221 /* --------------------------------------------------------------------- */
223 /* Each floating point register can store a 32 or a 64 bit precision
224 value. The FR and FS register sets are overlap in the same way as R
225 and S register sets. See above. */
227 /* Floating point scratch registers. */
228 #define SLJIT_FR0 1
229 #define SLJIT_FR1 2
230 #define SLJIT_FR2 3
231 #define SLJIT_FR3 4
232 #define SLJIT_FR4 5
233 #define SLJIT_FR5 6
234 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
235 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
236 #define SLJIT_FR(i) (1 + (i))
238 /* Floating point saved registers. */
239 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
240 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
241 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
242 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
243 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
244 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
245 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
246 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
247 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
249 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
250 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
252 /* --------------------------------------------------------------------- */
253 /* Argument type definitions */
254 /* --------------------------------------------------------------------- */
256 /* The following argument type definitions are used by sljit_emit_enter,
257 sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
259 As for sljit_emit_call and sljit_emit_icall, the first integer argument
260 must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on.
261 Similarly the first floating point argument must be placed into SLJIT_FR0,
262 the second one into SLJIT_FR1, and so on.
264 As for sljit_emit_enter, the integer arguments can be stored in scratch
265 or saved registers. The first integer argument without _R postfix is
266 stored in SLJIT_S0, the next one in SLJIT_S1, and so on. The integer
267 arguments with _R postfix are placed into scratch registers. The index
268 of the scratch register is the count of the previous integer arguments
269 starting from SLJIT_R0. The floating point arguments are always placed
270 into SLJIT_FR0, SLJIT_FR1, and so on.
272 Note: if a function is called by sljit_emit_call/sljit_emit_icall and
273 an argument is stored in a scratch register by sljit_emit_enter,
274 that argument uses the same scratch register index for both
275 integer and floating point arguments.
277 Example function definition:
278 sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a,
279 sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
281 Argument type definition:
282 SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32)
283 | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2)
284 | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4)
286 Short form of argument type definition:
287 SLJIT_ARGS4(32, P, F64, 32, F32)
289 Argument passing:
290 arg_a must be placed in SLJIT_R0
291 arg_c must be placed in SLJIT_R1
292 arg_b must be placed in SLJIT_FR0
293 arg_d must be placed in SLJIT_FR1
295 Examples for argument processing by sljit_emit_enter:
296 SLJIT_ARGS4(VOID, P, 32_R, F32, W)
297 Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1
299 SLJIT_ARGS4(VOID, W, W_R, W, W_R)
300 Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3
302 SLJIT_ARGS4(VOID, F64, W, F32, W_R)
303 Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1
305 Note: it is recommended to pass the scratch arguments first
306 followed by the saved arguments:
308 SLJIT_ARGS4(VOID, W_R, W_R, W, W)
309 Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1
312 /* The following flag is only allowed for the integer arguments of
313 sljit_emit_enter. When the flag is set, the integer argument is
314 stored in a scratch register instead of a saved register. */
315 #define SLJIT_ARG_TYPE_SCRATCH_REG 0x8
317 /* Void result, can only be used by SLJIT_ARG_RETURN. */
318 #define SLJIT_ARG_TYPE_VOID 0
319 /* Machine word sized integer argument or result. */
320 #define SLJIT_ARG_TYPE_W 1
321 #define SLJIT_ARG_TYPE_W_R (SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG)
322 /* 32 bit integer argument or result. */
323 #define SLJIT_ARG_TYPE_32 2
324 #define SLJIT_ARG_TYPE_32_R (SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG)
325 /* Pointer sized integer argument or result. */
326 #define SLJIT_ARG_TYPE_P 3
327 #define SLJIT_ARG_TYPE_P_R (SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG)
328 /* 64 bit floating point argument or result. */
329 #define SLJIT_ARG_TYPE_F64 4
330 /* 32 bit floating point argument or result. */
331 #define SLJIT_ARG_TYPE_F32 5
333 #define SLJIT_ARG_SHIFT 4
334 #define SLJIT_ARG_RETURN(type) (type)
335 #define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT))
337 /* Simplified argument list definitions.
339 The following definition:
340 SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1)
342 can be shortened to:
343 SLJIT_ARGS1(W, F32)
346 #define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type
348 #define SLJIT_ARGS0(ret) \
349 SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret))
351 #define SLJIT_ARGS1(ret, arg1) \
352 (SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
354 #define SLJIT_ARGS2(ret, arg1, arg2) \
355 (SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
357 #define SLJIT_ARGS3(ret, arg1, arg2, arg3) \
358 (SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
360 #define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \
361 (SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
363 /* --------------------------------------------------------------------- */
364 /* Main structures and functions */
365 /* --------------------------------------------------------------------- */
368 The following structures are private, and can be changed in the
369 future. Keeping them here allows code inlining.
372 struct sljit_memory_fragment {
373 struct sljit_memory_fragment *next;
374 sljit_uw used_size;
375 /* Must be aligned to sljit_sw. */
376 sljit_u8 memory[1];
379 struct sljit_label {
380 struct sljit_label *next;
381 sljit_uw addr;
382 /* The maximum size difference. */
383 sljit_uw size;
386 struct sljit_jump {
387 struct sljit_jump *next;
388 sljit_uw addr;
389 sljit_uw flags;
390 union {
391 sljit_uw target;
392 struct sljit_label *label;
393 } u;
396 struct sljit_put_label {
397 struct sljit_put_label *next;
398 struct sljit_label *label;
399 sljit_uw addr;
400 sljit_uw flags;
403 struct sljit_const {
404 struct sljit_const *next;
405 sljit_uw addr;
408 struct sljit_compiler {
409 sljit_s32 error;
410 sljit_s32 options;
412 struct sljit_label *labels;
413 struct sljit_jump *jumps;
414 struct sljit_put_label *put_labels;
415 struct sljit_const *consts;
416 struct sljit_label *last_label;
417 struct sljit_jump *last_jump;
418 struct sljit_const *last_const;
419 struct sljit_put_label *last_put_label;
421 void *allocator_data;
422 void *exec_allocator_data;
423 struct sljit_memory_fragment *buf;
424 struct sljit_memory_fragment *abuf;
426 /* Used scratch registers. */
427 sljit_s32 scratches;
428 /* Used saved registers. */
429 sljit_s32 saveds;
430 /* Used float scratch registers. */
431 sljit_s32 fscratches;
432 /* Used float saved registers. */
433 sljit_s32 fsaveds;
434 /* Local stack size. */
435 sljit_s32 local_size;
436 /* Code size. */
437 sljit_uw size;
438 /* Relative offset of the executable mapping from the writable mapping. */
439 sljit_sw executable_offset;
440 /* Executable size for statistical purposes. */
441 sljit_uw executable_size;
443 #if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE)
444 sljit_s32 status_flags_state;
445 #endif
447 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
448 sljit_s32 args_size;
449 sljit_s32 locals_offset;
450 sljit_s32 scratches_offset;
451 #endif
453 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
454 sljit_s32 mode32;
455 #endif
457 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
458 /* Constant pool handling. */
459 sljit_uw *cpool;
460 sljit_u8 *cpool_unique;
461 sljit_uw cpool_diff;
462 sljit_uw cpool_fill;
463 /* Other members. */
464 /* Contains pointer, "ldr pc, [...]" pairs. */
465 sljit_uw patches;
466 #endif
468 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
469 /* Temporary fields. */
470 sljit_uw shift_imm;
471 #endif /* SLJIT_CONFIG_ARM_V5 || SLJIT_CONFIG_ARM_V7 */
473 #if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__)
474 sljit_uw args_size;
475 #endif
477 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
478 sljit_u32 imm;
479 #endif
481 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
482 sljit_s32 delay_slot;
483 sljit_s32 cache_arg;
484 sljit_sw cache_argw;
485 #endif
487 #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
488 sljit_uw args_size;
489 #endif
491 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
492 sljit_s32 delay_slot;
493 sljit_s32 cache_arg;
494 sljit_sw cache_argw;
495 #endif
497 #if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
498 /* Need to allocate register save area to make calls. */
499 sljit_s32 mode;
500 #endif
502 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
503 FILE* verbose;
504 #endif
506 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
507 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
508 /* Flags specified by the last arithmetic instruction.
509 It contains the type of the variable flag. */
510 sljit_s32 last_flags;
511 /* Return value type set by entry functions. */
512 sljit_s32 last_return;
513 /* Local size passed to entry functions. */
514 sljit_s32 logical_local_size;
515 #endif
517 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
518 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
519 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
520 /* Trust arguments when the API function is called. */
521 sljit_s32 skip_checks;
522 #endif
525 /* --------------------------------------------------------------------- */
526 /* Main functions */
527 /* --------------------------------------------------------------------- */
529 /* Creates an sljit compiler. The allocator_data is required by some
530 custom memory managers. This pointer is passed to SLJIT_MALLOC
531 and SLJIT_FREE macros. Most allocators (including the default
532 one) ignores this value, and it is recommended to pass NULL
533 as a dummy value for allocator_data. The exec_allocator_data
534 has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
535 SLJIT_MALLOC_FREE functions.
537 Returns NULL if failed. */
538 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);
540 /* Frees everything except the compiled machine code. */
541 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
543 /* Returns the current error code. If an error is occurred, future sljit
544 calls which uses the same compiler argument returns early with the same
545 error code. Thus there is no need for checking the error after every
546 call, it is enough to do it before the code is compiled. Removing
547 these checks increases the performance of the compiling process. */
548 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
550 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
551 if an error was detected before. After the error code is set
552 the compiler behaves as if the allocation failure happened
553 during an sljit function call. This can greatly simplify error
554 checking, since only the compiler status needs to be checked
555 after the compilation. */
556 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
559 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
560 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
561 compiler, and freed by sljit_free_compiler. The returned pointer is
562 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
563 the compiling, and no need to worry about freeing them. The size is
564 enough to contain at most 16 pointers. If the size is outside of the range,
565 the function will return with NULL. However, this return value does not
566 indicate that there is no more memory (does not set the current error code
567 of the compiler to out-of-memory status).
569 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
571 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
572 /* Passing NULL disables verbose. */
573 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
574 #endif
577 Create executable code from the sljit instruction stream. This is the final step
578 of the code generation so no more instructions can be added after this call.
581 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
583 /* Free executable code. */
585 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
588 When the protected executable allocator is used the JIT code is mapped
589 twice. The first mapping has read/write and the second mapping has read/exec
590 permissions. This function returns with the relative offset of the executable
591 mapping using the writable mapping as the base after the machine code is
592 successfully generated. The returned value is always 0 for the normal executable
593 allocator, since it uses only one mapping with read/write/exec permissions.
594 Dynamic code modifications requires this value.
596 Before a successful code generation, this function returns with 0.
598 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
601 The executable memory consumption of the generated code can be retrieved by
602 this function. The returned value can be used for statistical purposes.
604 Before a successful code generation, this function returns with 0.
606 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
608 /* Returns with non-zero if the feature or limitation type passed as its
609 argument is present on the current CPU.
611 Some features (e.g. floating point operations) require hardware (CPU)
612 support while others (e.g. move with update) are emulated if not available.
613 However even if a feature is emulated, specialized code paths can be faster
614 than the emulation. Some limitations are emulated as well so their general
615 case is supported but it has extra performance costs. */
617 /* [Not emulated] Floating-point support is available. */
618 #define SLJIT_HAS_FPU 0
619 /* [Limitation] Some registers are virtual registers. */
620 #define SLJIT_HAS_VIRTUAL_REGISTERS 1
621 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
622 #define SLJIT_HAS_ZERO_REGISTER 2
623 /* [Emulated] Count leading zero is supported. */
624 #define SLJIT_HAS_CLZ 3
625 /* [Emulated] Conditional move is supported. */
626 #define SLJIT_HAS_CMOV 4
627 /* [Emulated] Conditional move is supported. */
628 #define SLJIT_HAS_PREFETCH 5
630 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
631 /* [Not emulated] SSE2 support is available on x86. */
632 #define SLJIT_HAS_SSE2 100
633 #endif
635 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
637 /* If type is between SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL,
638 sljit_cmp_info returns one, if the cpu supports the passed floating
639 point comparison type.
641 If type is SLJIT_UNORDERED or SLJIT_ORDERED, sljit_cmp_info returns
642 one, if the cpu supports checking the unordered comparison result
643 regardless of the comparison type passed to the comparison instruction.
644 The returned value is always one, if there is at least one type between
645 SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL where sljit_cmp_info
646 returns with a zero value.
648 Otherwise it returns zero. */
649 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type);
651 /* Instruction generation. Returns with any error code. If there is no
652 error, they return with SLJIT_SUCCESS. */
655 The executable code is a function from the viewpoint of the C
656 language. The function calls must obey to the ABI (Application
657 Binary Interface) of the platform, which specify the purpose of
658 machine registers and stack handling among other things. The
659 sljit_emit_enter function emits the necessary instructions for
660 setting up a new context for the executable code and moves function
661 arguments to the saved registers. Furthermore the options argument
662 can be used to pass configuration options to the compiler. The
663 available options are listed before sljit_emit_enter.
665 The function argument list is the combination of SLJIT_ARGx
666 (SLJIT_DEF_ARG1) macros. Currently maximum 4 arguments are
667 supported. The first integer argument is loaded into SLJIT_S0,
668 the second one is loaded into SLJIT_S1, and so on. Similarly,
669 the first floating point argument is loaded into SLJIT_FR0,
670 the second one is loaded into SLJIT_FR1, and so on. Furthermore
671 the register set used by the function must be declared as well.
672 The number of scratch and saved registers used by the function
673 must be passed to sljit_emit_enter. Only R registers between R0
674 and "scratches" argument can be used later. E.g. if "scratches"
675 is set to 2, the scratch register set will be limited to SLJIT_R0
676 and SLJIT_R1. The S registers and the floating point registers
677 ("fscratches" and "fsaveds") are specified in a similar manner.
678 The sljit_emit_enter is also capable of allocating a stack space
679 for local variables. The "local_size" argument contains the size
680 in bytes of this local area and its staring address is stored
681 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
682 SLJIT_SP + local_size (exclusive) can be modified freely until
683 the function returns. The stack space is not initialized.
685 Note: the following conditions must met:
686 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
687 0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS
688 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
689 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
690 0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS
691 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
693 Note: the compiler can use saved registers as scratch registers,
694 but the opposite is not supported
696 Note: every call of sljit_emit_enter and sljit_set_context
697 overwrites the previous context.
700 /* The SLJIT_S0/SLJIT_S1 registers are not saved / restored on function
701 enter / return. Instead, these registers can be used to pass / return
702 data (such as global / local context pointers) across function calls.
703 This is an sljit specific (non ABI compatible) function call extension
704 so both the caller and called function must be compiled by sljit. */
705 #define SLJIT_ENTER_KEEP_S0 0x00000001
706 #define SLJIT_ENTER_KEEP_S0_S1 0x00000002
708 /* The compiled function uses cdecl calling
709 * convention instead of SLJIT_FUNC. */
710 #define SLJIT_ENTER_CDECL 0x00000004
712 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
713 #define SLJIT_MAX_LOCAL_SIZE 65536
715 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
716 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
717 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
719 /* The machine code has a context (which contains the local stack space size,
720 number of used registers, etc.) which initialized by sljit_emit_enter. Several
721 functions (such as sljit_emit_return) requres this context to be able to generate
722 the appropriate code. However, some code fragments (like inline cache) may have
723 no normal entry point so their context is unknown for the compiler. Their context
724 can be provided to the compiler by the sljit_set_context function.
726 Note: every call of sljit_emit_enter and sljit_set_context overwrites
727 the previous context. */
729 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
730 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
731 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
733 /* Return from machine code. The sljit_emit_return_void function does not return with
734 any value. The sljit_emit_return function returns with a single value which stores
735 the result of a data move instruction. The instruction is specified by the op
736 argument, and must be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1). */
738 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler);
740 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
741 sljit_s32 src, sljit_sw srcw);
743 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
744 Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
745 values of all registers and stack frame. The return address is stored in the
746 dst argument of sljit_emit_fast_enter, and this return address can be passed
747 to SLJIT_FAST_RETURN to continue the execution after the fast call.
749 Fast calls are cheap operations (usually only a single call instruction is
750 emitted) but they do not preserve any registers. However the callee function
751 can freely use / update any registers and stack values which can be
752 efficiently exploited by various optimizations. Registers can be saved
753 manually by the callee function if needed.
755 Although returning to different address by SLJIT_FAST_RETURN is possible,
756 this address usually cannot be predicted by the return address predictor of
757 modern CPUs which may reduce performance. Furthermore certain security
758 enhancement technologies such as Intel Control-flow Enforcement Technology
759 (CET) may disallow returning to a different address.
761 Flags: - (does not modify flags). */
763 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
766 Source and destination operands for arithmetical instructions
767 imm - a simple immediate value (cannot be used as a destination)
768 reg - any of the registers (immediate argument must be 0)
769 [imm] - absolute immediate memory address
770 [reg+imm] - indirect memory address
771 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
772 useful for (byte, half, int, sljit_sw) array access
773 (fully supported by both x86 and ARM architectures, and cheap operation on others)
777 IMPORTANT NOTE: memory access MUST be naturally aligned unless
778 SLJIT_UNALIGNED macro is defined and its value is 1.
780 length | alignment
781 ---------+-----------
782 byte | 1 byte (any physical_address is accepted)
783 half | 2 byte (physical_address & 0x1 == 0)
784 int | 4 byte (physical_address & 0x3 == 0)
785 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
786 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
787 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
788 | on 64 bit machines)
790 Note: Different architectures have different addressing limitations.
791 A single instruction is enough for the following addressing
792 modes. Other adrressing modes are emulated by instruction
793 sequences. This information could help to improve those code
794 generators which focuses only a few architectures.
796 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
797 [reg+(reg<<imm)] is supported
798 [imm], -2^32+1 <= imm <= 2^32-1 is supported
799 Write-back is not supported
800 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
801 bytes, any halfs or floating point values)
802 [reg+(reg<<imm)] is supported
803 Write-back is supported
804 arm-t2: [reg+imm], -255 <= imm <= 4095
805 [reg+(reg<<imm)] is supported
806 Write back is supported only for [reg+imm], where -255 <= imm <= 255
807 arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
808 [reg+(reg<<imm)] is supported
809 Write back is supported only for [reg+imm], where -256 <= imm <= 255
810 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
811 signed load on 64 bit requires immediates divisible by 4.
812 [reg+imm] is not supported for signed 8 bit values.
813 [reg+reg] is supported
814 Write-back is supported except for one instruction: 32 bit signed
815 load with [reg+imm] addressing mode on 64 bit.
816 mips: [reg+imm], -65536 <= imm <= 65535
817 sparc: [reg+imm], -4096 <= imm <= 4095
818 [reg+reg] is supported
819 s390x: [reg+imm], -2^19 <= imm < 2^19
820 [reg+reg] is supported
821 Write-back is not supported
824 /* Macros for specifying operand types. */
825 #define SLJIT_MEM 0x80
826 #define SLJIT_MEM0() (SLJIT_MEM)
827 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
828 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
829 #define SLJIT_IMM 0x40
831 /* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on
832 32 bit CPUs. When this option is set for an arithmetic operation, only
833 the lower 32 bit of the input registers are used, and the CPU status
834 flags are set according to the 32 bit result. Although the higher 32 bit
835 of the input and the result registers are not defined by SLJIT, it might
836 be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
837 requirements all source registers must be the result of those operations
838 where this option was also set. Memory loads read 32 bit values rather
839 than 64 bit ones. In other words 32 bit and 64 bit operations cannot be
840 mixed. The only exception is SLJIT_MOV32 whose source register can hold
841 any 32 or 64 bit value, and it is converted to a 32 bit compatible format
842 first. This conversion is free (no instructions are emitted) on most CPUs.
843 A 32 bit value can also be converted to a 64 bit value by SLJIT_MOV_S32
844 (sign extension) or SLJIT_MOV_U32 (zero extension).
846 As for floating-point operations, this option sets 32 bit single
847 precision mode. Similar to the integer operations, all register arguments
848 must be the result of those operations where this option was also set.
850 Note: memory addressing always uses 64 bit values on 64 bit systems so
851 the result of a 32 bit operation must not be used with SLJIT_MEMx
852 macros.
854 This option is part of the instruction name, so there is no need to
855 manually set it. E.g:
857 SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */
858 #define SLJIT_32 0x100
860 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
861 to the result of an operation. Other CPUs (MIPS) do not have status
862 flags, and results must be stored in registers. To cover both architecture
863 types efficiently only two flags are defined by SLJIT:
865 * Zero (equal) flag: it is set if the result is zero
866 * Variable flag: its value is defined by the last arithmetic operation
868 SLJIT instructions can set any or both of these flags. The value of
869 these flags is undefined if the instruction does not specify their value.
870 The description of each instruction contains the list of allowed flag
871 types.
873 Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
875 sljit_op2(..., SLJIT_ADD, ...)
876 Both the zero and variable flags are undefined so they can
877 have any value after the operation is completed.
879 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
880 Sets the zero flag if the result is zero, clears it otherwise.
881 The variable flag is undefined.
883 sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
884 Sets the variable flag if an integer overflow occurs, clears
885 it otherwise. The zero flag is undefined.
887 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
888 Sets the zero flag if the result is zero, clears it otherwise.
889 Sets the variable flag if unsigned overflow (carry) occurs,
890 clears it otherwise.
892 If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
893 unchanged.
895 Using these flags can reduce the number of emitted instructions. E.g. a
896 fast loop can be implemented by decreasing a counter register and set the
897 zero flag to jump back if the counter register has not reached zero.
899 Motivation: although CPUs can set a large number of flags, usually their
900 values are ignored or only one of them is used. Emulating a large number
901 of flags on systems without flag register is complicated so SLJIT
902 instructions must specify the flag they want to use and only that flag
903 will be emulated. The last arithmetic instruction can be repeated if
904 multiple flags need to be checked.
907 /* Set Zero status flag. */
908 #define SLJIT_SET_Z 0x0200
909 /* Set the variable status flag if condition is true.
910 See comparison types. */
911 #define SLJIT_SET(condition) ((condition) << 10)
913 /* Notes:
914 - you cannot postpone conditional jump instructions except if noted that
915 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
916 - flag combinations: '|' means 'logical or'. */
918 /* Starting index of opcodes for sljit_emit_op0. */
919 #define SLJIT_OP0_BASE 0
921 /* Flags: - (does not modify flags)
922 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
923 It falls back to SLJIT_NOP in those cases. */
924 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
925 /* Flags: - (does not modify flags)
926 Note: may or may not cause an extra cycle wait
927 it can even decrease the runtime in a few cases. */
928 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
929 /* Flags: - (may destroy flags)
930 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
931 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
932 #define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
933 /* Flags: - (may destroy flags)
934 Signed multiplication of SLJIT_R0 and SLJIT_R1.
935 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
936 #define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
937 /* Flags: - (may destroy flags)
938 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
939 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
940 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
941 #define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
942 #define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_32)
943 /* Flags: - (may destroy flags)
944 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
945 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
946 Note: if SLJIT_R1 is 0, the behaviour is undefined.
947 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
948 the behaviour is undefined. */
949 #define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
950 #define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_32)
951 /* Flags: - (may destroy flags)
952 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
953 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
954 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
955 #define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
956 #define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_32)
957 /* Flags: - (may destroy flags)
958 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
959 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
960 Note: if SLJIT_R1 is 0, the behaviour is undefined.
961 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
962 the behaviour is undefined. */
963 #define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
964 #define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_32)
965 /* Flags: - (does not modify flags)
966 ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
967 when Intel Control-flow Enforcement Technology (CET) is enabled.
968 No instruction for other architectures. */
969 #define SLJIT_ENDBR (SLJIT_OP0_BASE + 8)
970 /* Flags: - (may destroy flags)
971 Skip stack frames before return. */
972 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN (SLJIT_OP0_BASE + 9)
974 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
976 /* Starting index of opcodes for sljit_emit_op1. */
977 #define SLJIT_OP1_BASE 32
979 /* The MOV instruction transfers data from source to destination.
981 MOV instruction suffixes:
983 U8 - unsigned 8 bit data transfer
984 S8 - signed 8 bit data transfer
985 U16 - unsigned 16 bit data transfer
986 S16 - signed 16 bit data transfer
987 U32 - unsigned int (32 bit) data transfer
988 S32 - signed int (32 bit) data transfer
989 P - pointer (sljit_p) data transfer
992 /* Flags: - (does not modify flags) */
993 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
994 /* Flags: - (does not modify flags) */
995 #define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
996 #define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_32)
997 /* Flags: - (does not modify flags) */
998 #define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
999 #define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_32)
1000 /* Flags: - (does not modify flags) */
1001 #define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
1002 #define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_32)
1003 /* Flags: - (does not modify flags) */
1004 #define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
1005 #define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_32)
1006 /* Flags: - (does not modify flags)
1007 Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
1008 #define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
1009 /* Flags: - (does not modify flags)
1010 Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
1011 #define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
1012 /* Flags: - (does not modify flags) */
1013 #define SLJIT_MOV32 (SLJIT_OP1_BASE + 7)
1014 /* Flags: - (does not modify flags)
1015 Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
1016 where all x64 features are available, e.g. 16 register) or similar
1017 compiling modes */
1018 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 8)
1019 /* Flags: Z
1020 Note: immediate source argument is not supported */
1021 #define SLJIT_NOT (SLJIT_OP1_BASE + 9)
1022 #define SLJIT_NOT32 (SLJIT_NOT | SLJIT_32)
1023 /* Count leading zeroes
1024 Flags: - (may destroy flags)
1025 Note: immediate source argument is not supported */
1026 #define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
1027 #define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_32)
1029 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
1030 sljit_s32 dst, sljit_sw dstw,
1031 sljit_s32 src, sljit_sw srcw);
1033 /* Starting index of opcodes for sljit_emit_op2. */
1034 #define SLJIT_OP2_BASE 96
1036 /* Flags: Z | OVERFLOW | CARRY */
1037 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
1038 #define SLJIT_ADD32 (SLJIT_ADD | SLJIT_32)
1039 /* Flags: CARRY */
1040 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
1041 #define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_32)
1042 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
1043 SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
1044 SIG_LESS_EQUAL | CARRY */
1045 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
1046 #define SLJIT_SUB32 (SLJIT_SUB | SLJIT_32)
1047 /* Flags: CARRY */
1048 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
1049 #define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_32)
1050 /* Note: integer mul
1051 Flags: OVERFLOW */
1052 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
1053 #define SLJIT_MUL32 (SLJIT_MUL | SLJIT_32)
1054 /* Flags: Z */
1055 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
1056 #define SLJIT_AND32 (SLJIT_AND | SLJIT_32)
1057 /* Flags: Z */
1058 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
1059 #define SLJIT_OR32 (SLJIT_OR | SLJIT_32)
1060 /* Flags: Z */
1061 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
1062 #define SLJIT_XOR32 (SLJIT_XOR | SLJIT_32)
1063 /* Flags: Z
1064 Let bit_length be the length of the shift operation: 32 or 64.
1065 If src2 is immediate, src2w is masked by (bit_length - 1).
1066 Otherwise, if the content of src2 is outside the range from 0
1067 to bit_length - 1, the result is undefined. */
1068 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
1069 #define SLJIT_SHL32 (SLJIT_SHL | SLJIT_32)
1070 /* Flags: Z
1071 Let bit_length be the length of the shift operation: 32 or 64.
1072 If src2 is immediate, src2w is masked by (bit_length - 1).
1073 Otherwise, if the content of src2 is outside the range from 0
1074 to bit_length - 1, the result is undefined. */
1075 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
1076 #define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_32)
1077 /* Flags: Z
1078 Let bit_length be the length of the shift operation: 32 or 64.
1079 If src2 is immediate, src2w is masked by (bit_length - 1).
1080 Otherwise, if the content of src2 is outside the range from 0
1081 to bit_length - 1, the result is undefined. */
1082 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
1083 #define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_32)
1085 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1086 sljit_s32 dst, sljit_sw dstw,
1087 sljit_s32 src1, sljit_sw src1w,
1088 sljit_s32 src2, sljit_sw src2w);
1090 /* The sljit_emit_op2u function is the same as sljit_emit_op2 except the result is discarded. */
1092 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
1093 sljit_s32 src1, sljit_sw src1w,
1094 sljit_s32 src2, sljit_sw src2w);
1096 /* Starting index of opcodes for sljit_emit_op2. */
1097 #define SLJIT_OP_SRC_BASE 128
1099 /* Note: src cannot be an immedate value
1100 Flags: - (does not modify flags) */
1101 #define SLJIT_FAST_RETURN (SLJIT_OP_SRC_BASE + 0)
1102 /* Skip stack frames before fast return.
1103 Note: src cannot be an immedate value
1104 Flags: may destroy flags. */
1105 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN (SLJIT_OP_SRC_BASE + 1)
1106 /* Prefetch value into the level 1 data cache
1107 Note: if the target CPU does not support data prefetch,
1108 no instructions are emitted.
1109 Note: this instruction never fails, even if the memory address is invalid.
1110 Flags: - (does not modify flags) */
1111 #define SLJIT_PREFETCH_L1 (SLJIT_OP_SRC_BASE + 2)
1112 /* Prefetch value into the level 2 data cache
1113 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1114 does not support this instruction form.
1115 Note: this instruction never fails, even if the memory address is invalid.
1116 Flags: - (does not modify flags) */
1117 #define SLJIT_PREFETCH_L2 (SLJIT_OP_SRC_BASE + 3)
1118 /* Prefetch value into the level 3 data cache
1119 Note: same as SLJIT_PREFETCH_L2 if the target CPU
1120 does not support this instruction form.
1121 Note: this instruction never fails, even if the memory address is invalid.
1122 Flags: - (does not modify flags) */
1123 #define SLJIT_PREFETCH_L3 (SLJIT_OP_SRC_BASE + 4)
1124 /* Prefetch a value which is only used once (and can be discarded afterwards)
1125 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1126 does not support this instruction form.
1127 Note: this instruction never fails, even if the memory address is invalid.
1128 Flags: - (does not modify flags) */
1129 #define SLJIT_PREFETCH_ONCE (SLJIT_OP_SRC_BASE + 5)
1131 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1132 sljit_s32 src, sljit_sw srcw);
1134 /* Starting index of opcodes for sljit_emit_fop1. */
1135 #define SLJIT_FOP1_BASE 160
1137 /* Flags: - (does not modify flags) */
1138 #define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
1139 #define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_32)
1140 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1141 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1142 Rounding mode when the destination is W or I: round towards zero. */
1143 /* Flags: - (may destroy flags) */
1144 #define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
1145 #define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_32)
1146 /* Flags: - (may destroy flags) */
1147 #define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
1148 #define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_32)
1149 /* Flags: - (may destroy flags) */
1150 #define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
1151 #define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_32)
1152 /* Flags: - (may destroy flags) */
1153 #define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
1154 #define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_32)
1155 /* Flags: - (may destroy flags) */
1156 #define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
1157 #define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_32)
1158 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1159 Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1160 #define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
1161 #define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_32)
1162 /* Flags: - (may destroy flags) */
1163 #define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
1164 #define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_32)
1165 /* Flags: - (may destroy flags) */
1166 #define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
1167 #define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_32)
1169 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1170 sljit_s32 dst, sljit_sw dstw,
1171 sljit_s32 src, sljit_sw srcw);
1173 /* Starting index of opcodes for sljit_emit_fop2. */
1174 #define SLJIT_FOP2_BASE 192
1176 /* Flags: - (may destroy flags) */
1177 #define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
1178 #define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_32)
1179 /* Flags: - (may destroy flags) */
1180 #define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
1181 #define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_32)
1182 /* Flags: - (may destroy flags) */
1183 #define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
1184 #define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_32)
1185 /* Flags: - (may destroy flags) */
1186 #define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
1187 #define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_32)
1189 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1190 sljit_s32 dst, sljit_sw dstw,
1191 sljit_s32 src1, sljit_sw src1w,
1192 sljit_s32 src2, sljit_sw src2w);
1194 /* Label and jump instructions. */
1196 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1198 /* Invert (negate) conditional type: xor (^) with 0x1 */
1200 /* Integer comparison types. */
1201 #define SLJIT_EQUAL 0
1202 #define SLJIT_ZERO SLJIT_EQUAL
1203 #define SLJIT_NOT_EQUAL 1
1204 #define SLJIT_NOT_ZERO SLJIT_NOT_EQUAL
1206 #define SLJIT_LESS 2
1207 #define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
1208 #define SLJIT_GREATER_EQUAL 3
1209 #define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
1210 #define SLJIT_GREATER 4
1211 #define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
1212 #define SLJIT_LESS_EQUAL 5
1213 #define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
1214 #define SLJIT_SIG_LESS 6
1215 #define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
1216 #define SLJIT_SIG_GREATER_EQUAL 7
1217 #define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1218 #define SLJIT_SIG_GREATER 8
1219 #define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
1220 #define SLJIT_SIG_LESS_EQUAL 9
1221 #define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1223 #define SLJIT_OVERFLOW 10
1224 #define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
1225 #define SLJIT_NOT_OVERFLOW 11
1227 /* Unlike other flags, sljit_emit_jump may destroy this flag. */
1228 #define SLJIT_CARRY 12
1229 #define SLJIT_SET_CARRY SLJIT_SET(SLJIT_CARRY)
1230 #define SLJIT_NOT_CARRY 13
1232 /* Basic floating point comparison types.
1234 Note: when the comparison result is unordered, their behaviour is unspecified. */
1236 #define SLJIT_F_EQUAL 14
1237 #define SLJIT_SET_F_EQUAL SLJIT_SET(SLJIT_F_EQUAL)
1238 #define SLJIT_F_NOT_EQUAL 15
1239 #define SLJIT_SET_F_NOT_EQUAL SLJIT_SET(SLJIT_F_NOT_EQUAL)
1240 #define SLJIT_F_LESS 16
1241 #define SLJIT_SET_F_LESS SLJIT_SET(SLJIT_F_LESS)
1242 #define SLJIT_F_GREATER_EQUAL 17
1243 #define SLJIT_SET_F_GREATER_EQUAL SLJIT_SET(SLJIT_F_GREATER_EQUAL)
1244 #define SLJIT_F_GREATER 18
1245 #define SLJIT_SET_F_GREATER SLJIT_SET(SLJIT_F_GREATER)
1246 #define SLJIT_F_LESS_EQUAL 19
1247 #define SLJIT_SET_F_LESS_EQUAL SLJIT_SET(SLJIT_F_LESS_EQUAL)
1249 /* Jumps when either argument contains a NaN value. */
1250 #define SLJIT_UNORDERED 20
1251 #define SLJIT_SET_UNORDERED SLJIT_SET(SLJIT_UNORDERED)
1252 /* Jumps when neither argument contains a NaN value. */
1253 #define SLJIT_ORDERED 21
1254 #define SLJIT_SET_ORDERED SLJIT_SET(SLJIT_ORDERED)
1256 /* Ordered / unordered floating point comparison types.
1258 Note: each comparison type has an ordered and unordered form. Some
1259 architectures supports only either of them (see: sljit_cmp_info). */
1261 #define SLJIT_ORDERED_EQUAL 22
1262 #define SLJIT_SET_ORDERED_EQUAL SLJIT_SET(SLJIT_ORDERED_EQUAL)
1263 #define SLJIT_UNORDERED_OR_NOT_EQUAL 23
1264 #define SLJIT_SET_UNORDERED_OR_NOT_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_NOT_EQUAL)
1265 #define SLJIT_ORDERED_LESS 24
1266 #define SLJIT_SET_ORDERED_LESS SLJIT_SET(SLJIT_ORDERED_LESS)
1267 #define SLJIT_UNORDERED_OR_GREATER_EQUAL 25
1268 #define SLJIT_SET_UNORDERED_OR_GREATER_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_GREATER_EQUAL)
1269 #define SLJIT_ORDERED_GREATER 26
1270 #define SLJIT_SET_ORDERED_GREATER SLJIT_SET(SLJIT_ORDERED_GREATER)
1271 #define SLJIT_UNORDERED_OR_LESS_EQUAL 27
1272 #define SLJIT_SET_UNORDERED_OR_LESS_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_LESS_EQUAL)
1274 #define SLJIT_UNORDERED_OR_EQUAL 28
1275 #define SLJIT_SET_UNORDERED_OR_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL)
1276 #define SLJIT_ORDERED_NOT_EQUAL 29
1277 #define SLJIT_SET_ORDERED_NOT_EQUAL SLJIT_SET(SLJIT_ORDERED_NOT_EQUAL)
1278 #define SLJIT_UNORDERED_OR_LESS 30
1279 #define SLJIT_SET_UNORDERED_OR_LESS SLJIT_SET(SLJIT_UNORDERED_OR_LESS)
1280 #define SLJIT_ORDERED_GREATER_EQUAL 31
1281 #define SLJIT_SET_ORDERED_GREATER_EQUAL SLJIT_SET(SLJIT_ORDERED_GREATER_EQUAL)
1282 #define SLJIT_UNORDERED_OR_GREATER 32
1283 #define SLJIT_SET_UNORDERED_OR_GREATER SLJIT_SET(SLJIT_UNORDERED_OR_GREATER)
1284 #define SLJIT_ORDERED_LESS_EQUAL 33
1285 #define SLJIT_SET_ORDERED_LESS_EQUAL SLJIT_SET(SLJIT_ORDERED_LESS_EQUAL)
1287 /* Unconditional jump types. */
1288 #define SLJIT_JUMP 34
1289 /* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1290 #define SLJIT_FAST_CALL 35
1291 /* Called function must be declared with the SLJIT_FUNC attribute. */
1292 #define SLJIT_CALL 36
1293 /* Called function must be declared with cdecl attribute.
1294 This is the default attribute for C functions. */
1295 #define SLJIT_CALL_CDECL 37
1297 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1298 #define SLJIT_REWRITABLE_JUMP 0x1000
1299 /* When this flag is passed, the execution of the current function ends and
1300 the called function returns to the caller of the current function. The
1301 stack usage is reduced before the call, but it is not necessarily reduced
1302 to zero. In the latter case the compiler needs to allocate space for some
1303 arguments and the return register must be kept as well.
1305 This feature is highly experimental and not supported on SPARC platform
1306 at the moment. */
1307 #define SLJIT_CALL_RETURN 0x2000
1309 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1310 type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1311 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1313 Flags: does not modify flags. */
1314 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1316 /* Emit a C compiler (ABI) compatible function call.
1317 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1318 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and SLJIT_CALL_RETURN
1319 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1321 Flags: destroy all flags. */
1322 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1324 /* Basic arithmetic comparison. In most architectures it is implemented as
1325 an compare operation followed by a sljit_emit_jump. However some
1326 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1327 It is suggested to use this comparison form when appropriate.
1328 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1329 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1331 Flags: may destroy flags. */
1332 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1333 sljit_s32 src1, sljit_sw src1w,
1334 sljit_s32 src2, sljit_sw src2w);
1336 /* Basic floating point comparison. In most architectures it is implemented as
1337 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1338 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1339 special optimizations here. It is suggested to use this comparison form
1340 when appropriate.
1341 type must be between SLJIT_F_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1342 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1343 Flags: destroy flags.
1344 Note: if either operand is NaN, the behaviour is undefined for
1345 types up to SLJIT_S_LESS_EQUAL. */
1346 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1347 sljit_s32 src1, sljit_sw src1w,
1348 sljit_s32 src2, sljit_sw src2w);
1350 /* Set the destination of the jump to this label. */
1351 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1352 /* Set the destination address of the jump to this label. */
1353 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1355 /* Emit an indirect jump or fast call.
1356 Direct form: set src to SLJIT_IMM() and srcw to the address
1357 Indirect form: any other valid addressing mode
1358 type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1360 Flags: does not modify flags. */
1361 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1363 /* Emit a C compiler (ABI) compatible function call.
1364 Direct form: set src to SLJIT_IMM() and srcw to the address
1365 Indirect form: any other valid addressing mode
1366 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1367 type can be combined (or'ed) with SLJIT_CALL_RETURN
1368 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1370 Flags: destroy all flags. */
1371 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1373 /* Perform the operation using the conditional flags as the second argument.
1374 Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL. The value
1375 represented by the type is 1, if the condition represented by the type
1376 is fulfilled, and 0 otherwise.
1378 If op == SLJIT_MOV, SLJIT_MOV32:
1379 Set dst to the value represented by the type (0 or 1).
1380 Flags: - (does not modify flags)
1381 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1382 Performs the binary operation using dst as the first, and the value
1383 represented by type as the second argument. Result is written into dst.
1384 Flags: Z (may destroy flags) */
1385 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1386 sljit_s32 dst, sljit_sw dstw,
1387 sljit_s32 type);
1389 /* Emit a conditional mov instruction which moves source to destination,
1390 if the condition is satisfied. Unlike other arithmetic operations this
1391 instruction does not support memory access.
1393 type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1394 dst_reg must be a valid register and it can be combined
1395 with SLJIT_32 to perform a 32 bit arithmetic operation
1396 src must be register or immediate (SLJIT_IMM)
1398 Flags: - (does not modify flags) */
1399 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1400 sljit_s32 dst_reg,
1401 sljit_s32 src, sljit_sw srcw);
1403 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1405 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1406 Instead the function returns with SLJIT_SUCCESS if the instruction
1407 form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1408 allows runtime checking of available instruction forms. */
1409 #define SLJIT_MEM_SUPP 0x0200
1410 /* Memory load operation. This is the default. */
1411 #define SLJIT_MEM_LOAD 0x0000
1412 /* Memory store operation. */
1413 #define SLJIT_MEM_STORE 0x0400
1414 /* Base register is updated before the memory access. */
1415 #define SLJIT_MEM_PRE 0x0800
1416 /* Base register is updated after the memory access. */
1417 #define SLJIT_MEM_POST 0x1000
1419 /* Emit a single memory load or store with update instruction. When the
1420 requested instruction form is not supported by the CPU, it returns
1421 with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1422 allows specializing tight loops based on the supported instruction
1423 forms (see SLJIT_MEM_SUPP flag).
1425 type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1426 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1427 or SLJIT_MEM_POST must be specified.
1428 reg is the source or destination register, and must be
1429 different from the base register of the mem operand
1430 mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1432 Flags: - (does not modify flags) */
1433 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1434 sljit_s32 reg,
1435 sljit_s32 mem, sljit_sw memw);
1437 /* Same as sljit_emit_mem except the followings:
1439 type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1440 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1441 or SLJIT_MEM_POST must be specified.
1442 freg is the source or destination floating point register */
1444 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1445 sljit_s32 freg,
1446 sljit_s32 mem, sljit_sw memw);
1448 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1449 anything to negate the effect of relative addressing. For example if an
1450 array of sljit_sw values is stored on the stack from offset 0x40, and R0
1451 contains the offset of an array item plus 0x120, this item can be
1452 overwritten by two SLJIT instructions:
1454 sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1455 sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1457 Flags: - (may destroy flags) */
1458 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1460 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1461 Flags: - (does not modify flags) */
1462 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1464 /* Store the value of a label (see: sljit_set_put_label)
1465 Flags: - (does not modify flags) */
1466 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1468 /* Set the value stored by put_label to this label. */
1469 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1471 /* After the code generation the address for label, jump and const instructions
1472 are computed. Since these structures are freed by sljit_free_compiler, the
1473 addresses must be preserved by the user program elsewere. */
1474 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
1475 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
1476 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1478 /* Only the address and executable offset are required to perform dynamic
1479 code modifications. See sljit_get_executable_offset function. */
1480 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1481 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1483 /* --------------------------------------------------------------------- */
1484 /* Miscellaneous utility functions */
1485 /* --------------------------------------------------------------------- */
1487 #define SLJIT_MAJOR_VERSION 0
1488 #define SLJIT_MINOR_VERSION 94
1490 /* Get the human readable name of the platform. Can be useful on platforms
1491 like ARM, where ARM and Thumb2 functions can be mixed, and
1492 it is useful to know the type of the code generator. */
1493 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1495 /* Portable helper function to get an offset of a member. */
1496 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1498 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1500 /* The sljit_stack structure and its manipulation functions provides
1501 an implementation for a top-down stack. The stack top is stored
1502 in the end field of the sljit_stack structure and the stack goes
1503 down to the min_start field, so the memory region reserved for
1504 this stack is between min_start (inclusive) and end (exclusive)
1505 fields. However the application can only use the region between
1506 start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1507 function can be used to extend this region up to min_start.
1509 This feature uses the "address space reserve" feature of modern
1510 operating systems. Instead of allocating a large memory block
1511 applications can allocate a small memory region and extend it
1512 later without moving the content of the memory area. Therefore
1513 after a successful resize by sljit_stack_resize all pointers into
1514 this region are still valid.
1516 Note:
1517 this structure may not be supported by all operating systems.
1518 end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1519 4 Kbyte or more).
1520 stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1522 struct sljit_stack {
1523 /* User data, anything can be stored here.
1524 Initialized to the same value as the end field. */
1525 sljit_u8 *top;
1526 /* These members are read only. */
1527 /* End address of the stack */
1528 sljit_u8 *end;
1529 /* Current start address of the stack. */
1530 sljit_u8 *start;
1531 /* Lowest start address of the stack. */
1532 sljit_u8 *min_start;
1535 /* Allocates a new stack. Returns NULL if unsuccessful.
1536 Note: see sljit_create_compiler for the explanation of allocator_data. */
1537 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1538 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1540 /* Can be used to increase (extend) or decrease (shrink) the stack
1541 memory area. Returns with new_start if successful and NULL otherwise.
1542 It always fails if new_start is less than min_start or greater or equal
1543 than end fields. The fields of the stack are not changed if the returned
1544 value is NULL (the current memory content is never lost). */
1545 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1547 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1549 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1551 /* Get the entry address of a given function (signed, unsigned result). */
1552 #define SLJIT_FUNC_ADDR(func_name) ((sljit_sw)func_name)
1553 #define SLJIT_FUNC_UADDR(func_name) ((sljit_uw)func_name)
1555 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1557 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1559 /* Get the entry address of a given function (signed, unsigned result). */
1560 #define SLJIT_FUNC_ADDR(func_name) (*(sljit_sw*)(void*)func_name)
1561 #define SLJIT_FUNC_UADDR(func_name) (*(sljit_uw*)(void*)func_name)
1563 /* For powerpc64, the function pointers point to a context descriptor. */
1564 struct sljit_function_context {
1565 sljit_uw addr;
1566 sljit_uw r2;
1567 sljit_uw r11;
1570 /* Fill the context arguments using the addr and the function.
1571 If func_ptr is NULL, it will not be set to the address of context
1572 If addr is NULL, the function address also comes from the func pointer. */
1573 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func);
1575 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1577 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1578 /* Free unused executable memory. The allocator keeps some free memory
1579 around to reduce the number of OS executable memory allocations.
1580 This improves performance since these calls are costly. However
1581 it is sometimes desired to free all unused memory regions, e.g.
1582 before the application terminates. */
1583 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1584 #endif
1586 /* --------------------------------------------------------------------- */
1587 /* CPU specific functions */
1588 /* --------------------------------------------------------------------- */
1590 /* The following function is a helper function for sljit_emit_op_custom.
1591 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1592 SLJIT_S and SLJIT_SP registers.
1594 Note: it returns with -1 for virtual registers (only on x86-32). */
1596 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1598 /* The following function is a helper function for sljit_emit_op_custom.
1599 It returns with the real machine register index of any SLJIT_FLOAT register.
1601 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1603 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1605 /* Any instruction can be inserted into the instruction stream by
1606 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1607 The size parameter must match to the instruction size of the target
1608 architecture:
1610 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1611 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1612 if size == 4, the instruction argument must be 4 byte aligned.
1613 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1615 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1616 void *instruction, sljit_u32 size);
1618 /* Flags were set by a 32 bit operation. */
1619 #define SLJIT_CURRENT_FLAGS_32 SLJIT_32
1621 /* Flags were set by an ADD or ADDC operations. */
1622 #define SLJIT_CURRENT_FLAGS_ADD 0x01
1623 /* Flags were set by a SUB, SUBC, or NEG operation. */
1624 #define SLJIT_CURRENT_FLAGS_SUB 0x02
1626 /* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode.
1627 Must be combined with SLJIT_CURRENT_FLAGS_SUB. */
1628 #define SLJIT_CURRENT_FLAGS_COMPARE 0x04
1630 /* Define the currently available CPU status flags. It is usually used after
1631 an sljit_emit_label or sljit_emit_op_custom operations to define which CPU
1632 status flags are available.
1634 The current_flags must be a valid combination of SLJIT_SET_* and
1635 SLJIT_CURRENT_FLAGS_* constants. */
1637 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1638 sljit_s32 current_flags);
1640 #ifdef __cplusplus
1641 } /* extern "C" */
1642 #endif
1644 #endif /* SLJIT_LIR_H_ */